Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Maximizing Performance of PC Games on
64-bit Platforms

Michael Wall
Senior Member of Technical Staff

Advanced Micro Devices, Inc.

DEV 430

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

64-bit PCs: Raise the Bar Again

e Minimum system spec is high!
— Model 3000+ CPU, 512MB RAM, DX9
e 64-bit PCs are Gamers’ PCs

e High end moving toward dual-core
CPU, 4+GB RAM, PCI Express SLI
graphics

e Design games to swamp this
machine at max detail settings

%

it

DEV 430

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Agenda

This talk is for experienced Windows® game
developers who care about performance

e A very quick look at the 64-bit OS and compatibility
A quick look at the AMD 64-bit processors & systems

e Maximizing performance of 64-bit games!!

— Leveraging Large memory

— Multi-threading for Dual Core CPUs

— 64-bit Tools, Techniques, and Extra Registers
Demo: 64-bit code on single-core and dual-core

Q & A, developer resources

DEV 430

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

AMDG64 Processor Family Names

AMDG4 Technology

«AMD Opteronm™

AMD

AMD Athlon™ 64 Multi-processor
Workstation, Server @

Single processor EMly Opteron
Desktop, Mobile

Athlonrx

and Windows® “x64” = AMD6

DEV 430

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

The 64-bit PC is evolutionary

Windows® and AMD64 Technology
Unifying theme: Designed for Compatibility

e Processor: Native hardware support for 32-bit
and 64-bit x86 code

e 0OS: 64-bit Windowse runs 32-bit and 64-bit
applications side by side, seamlessly

= Source Code: A single C/C++ source code tree_
compiles to both 32-bit and 64-bit binaries §

DEV 430

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Windows® for x64-based Systems
32-bit and 64-bit on a single platform

An AMDG64-based Processor can run both 32- and 64-bit
Windowse operating systems

START)
v
BOOT UP
Using 32 bit BIOS
v
. 32-bit Look 64-bit i
Load 32 bit OS _W Load 64 bit OSL_ |
! ! .
Run 32 bit Run 32 & 64 ‘
Applications ~ bit apps

DEV 430

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

32-bit x86 system
*0S and applications share virtual

. Virtual 4GB Virtual
and physical memory 0 GB Memory DRAM Memory
*Results in a lot of paging of info . -— 0GB
in and out of memory 2GB
o . . 2GB
¢ Limits the size of files and -b
datasets 4GB « B Os W4cB
Virtual 12GB Virtual
x64-based System Memory DRAM Memory

* 0S uses Virtual Memory space
outside range of 32-bits

* Application has exclusive use of
virtual memory space

¢ 0S can allocate each application
dedicated portions of physical
memory

*Reduces the amount of paging

* Supports larger file and dataset

izes

DEV 430

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

AMDG64 Technology: Unique Architectural Advantages

Integrated Memory Controller

* Memory is directly attached to the
processor providing high
bandwidth, low latency access

64-bit Processor Core

* Compatible with existing x86
applications while providing 64-bit
memory addressing capabilities

HyperTransport Technology

* Provides higher bandwidth for
efficient |/0 activities and a
glueless approach to
multiprocessing

DEV 430

~

AMD Opteron Architecture

L1
Instruct
Cache

L1
Data
Cache

|

HyperTransport™

L2
Cache

~

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

AMDG64 Technology: Addresses Multiprocessing Limitations

processor processor

Front Side bus

North Bridge

Chip

DRAM memory
1/0 devices

|

- The old Front Side Bus = Front Side Bottleneck!gn.
- CPUs must wait for each other, memory and /O } I
- North Bridge chip slows memory access 1

DEV 430

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

AMDG64 Solution: Glueless MP, Direct Connect Architecture

DRAM memory N

AMD Opteron™ AMD Opteron™
processor processor
DRAM memory

HyperTransport
1/0 devices links

- HyperTransport™ links connect CPUs, and I/O
- No extra silicon required for multiprocessing!

- Super-low latency to local memory banks

- Now I/O has its own separate link(s)

- Memory bandwidth scales up with added CPUs

DEV 430 10

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Porting and Optimizing for 64-bit

Three different ways to get more performance

e Large Memory!!
— Virtually unlimited address space
e Multi-threading
— Take advantage of dual core CPUs
e EXxtra Registers in 64-bit mode
— Twice as many General Purpose Registers (GPRS)

— Twice as many SSE/SSE2 Registers
— The compiler uses ‘em all, and more

DEV 430 11

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Large Memory and Performance

Memory is the obvious 64-bit advantage

e Instruction set implements a full 64-bit virtual
address, in full 64-bit registers

e 52-bit physical address (4 million gigabytes)
e Current generation AMD CPUs support a 40- blt
physical address (1 Terabyte) &

%

DEV 430 12

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

64-b|t 63 48 47

39 38

30 29 21 20

1211

VA Sign-Extend | PML4-0O

PDP

PDO PTO

Offset

AMDG64 extends x86 PAE
mode to 64-bit VA and
52-bit PA.

32 0
000

AMD Opteron™ and
AMD Athlon™ 64
support 40-bit PA.

DEV 430

51

| Page Tbl Base (PA) RIS

Access PDl Entry

1211 .

52-bit
PA

Access PTl Entry

51

Page PA

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Creative use of big virtual address space

e Map files to memory:
CreateFileMapping and MapViewOfFile
— A single, flat address space for all data
— Let Windows® manage disk and RAM
— Simplified programming model
— Performance scales up naturally with
Increased physical RAM

DEV 430 14

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

AMDG64 Dual Core CPU!

Coming soon to a PC near you

» Expected availability in mid-2005

CpPU1

e One chip with 2 CPU cores, each
core has separate L1/L2 cache
hierarchies

— L2 cache sizes expected to be
512KB or 1MB

1MB
L2 Cache

e Shared integrated North-Bridge &
Host-Bridge interface

— Integrated memory controller
& HyperTransport™ links
route out same as today’s
implementation

A

DEV 430

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

AMDG64 Dual-Core Physical Design

90nm !mm —

Approximately same die size as
130nm single-core AMD
Opteron™ processor™

~205 million transistors>

95 watt power envelope
Fits into 90nm power
infrastructure

940 Socket compatible
e Opteron

939 Socket compatible
= Athlon 64

*Based on current revisions of the design

DEV 430

16

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Developers: Multi-thread Your Code
Two different types of threading

e Functional Threading
— Different threads perform different tasks

— Example:
» Thread #1 does audio decode
» Thread #2 performs 3D object transformation
* Thread #3 handles user input

e Data-parallel Threading
— Threads do the same thing with different data

— Example:
 Thread #1 animates half of the characters

 Thread #2 animates the other half of the characters

DEV 430

17

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Developers: Multi-thread Your Code
Data-parallel Threading is best for performance

e A very good match for AMD’s true dual-core CPUs
— Two separate cache systems
e Can hold two separate data streams
— Two complete CPU cores with FPUs, ALUSs, etc.
» Can process similar workloads concurrently
— Processing load is well balanced
— Full utilization of both cores (and 4 cores later)

« Clean data decomposition is the key to threading !

DEV 430 18

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

OpenMP Makes Threading Simple

A “Fork and Join™ programming model
e There is a pool of sleeping threads
e Execution is single-thread until a “fork™ is reached

e Then Multiple threads proceed in parallel

e Once all threads complete, resume single-thread .

DEV 430

19

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Fork and Join Programming Model

\ main thread

/ \ fork to multiple threads

\ \ parallel execution
vy

\ / join when all threads finish

\ back to main thread

DEV 430 20

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Thread Example: game pipeline wontiugm

1 main thread
r "

1 1 Character animation/skinning
N

1 main thread
~

1 1 Physics on objects
N7

1 main thread
P

1 1 Particle system animation
N7

1 main thread

DEV 430

21

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

OpenMP Implementation Detalils

Measured on 64-bit Windows®

e One-time startup overhead for OpenMP
— It's relatively big, but only happens once

e Some overhead for “waking up” a thread and
beginning a parallel section
— Approximately 20k CPU cycles, or ~10us
— Sanity check: is that too much?
* 60fps = 16.6ms per frame
» 10 parallel sections need (10 x 10us) = 100us overhead
e That's 0.1ms overhead in a 16.6ms frame, less than 1%

— - Thread overhead is quite reasonable

DEV 430

22

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

5 Step Plan for 64-bit Porting

Step 1: Get your code “64-bit clean™

Build your project using the /Wp64 compiler switch
— This switch is supported by 32-bit VS.NET compiler!

Warns about non-portable code

e Fix it so your project compiles cleanly to 32-bit
target

Then you’re ready to use the 64-bit tools

DEV 430 23

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Step 1: cleanup

Clean-up example 1: use new “polymorphic™

DEV 430

data types where appropriate

Original bad code stores a pointer in a LONG

LONG userdata = (LONG) &max coordinate;
When built for a 64-bit target, this will truncate the pointer (64-
bit value) by storing in a LONG (32-bit size).

Use LONG_PTR instead:
LONG_PTR userdata = (LONG_PTR) &max_coordinate;

Data type LONG_PTR is “a long the size of a pointer™ so it grow.
to 64 bits when you compile for 64-bit target (like size _t)

e

24

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Clean-up example 2: a few API calls have been
updated

e Old API call uses a 32-bit LONG for user data
LONG udat = myUserData;
LONG v = SetWindowLong(hWnd, GWL_USERDATA, udat);

e New API call replaces the old one:
LONG_PTR udat = myUserData;

LONG_PTR v = SetWindowLongPtr(hWnd, GWLP_USERDATA, udat);

e The old call is deprecated; the new call works for 32-bit
and 64-bit targets, so you can (and should) change all,,
your code]

DEV 430

A

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Step 2: build

Get everything to build for 64-bit target

There may be additional compiler warnings/errors

Data structure alignment is a common trouble spot

— Data is “naturally aligned” in structs

— Pointer members and polymorphic members grow

— Shared data (e.g. access by assembly code) needs special care

Data files shared between 32-bit and 64-bit processes may

need special handling, especially if they contain poin;ers *

Skip assembly code porting, for initial 64-bit build

DEV 430

26

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Step 3: measure and analyze!

Benchmark and profile your 64-bit code

e Performance profile may differ from old 32-bit
build

— There are new drivers...

— and there are new optimized libraries...

— and a new 64-bit optimizing compiler...

— all running on new CPU micro-architecture.

Focus optimization efforts on real,
measured hot spots!
You may be surprised by where your code
spends time

DEV 430 27

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Step 3: measure and analyze
Use AMD CodeAnalyst to profile your 64-bit code!!

e Timer-based & event-based profiler

J ST
o S | T | e e M g G | Tty | ety | Sty | S |
B T ere—

et il Bt

a0l

Sowrce View | nesructons Mn|
I

e ey e R TR R VTl
o [11]
Borr oeana® envipd seed oo : -I-lmllqllqll [1 T}
parr i :-|-|||[1||||||m|||||
par 1 NNy
b L . e e
fpars (0 NN
bare H | JUNNRNNRNRNNRNN]
bsrs. i 1
oo I [1]
bt R OO
freo I
= i Hntinti
oo [BRCON snnnnnnnnnnnnnni]
= i
baze Bark ol - i L __1|
bace 2 : i : N OO
o Cad1EBC e s Jrtp] 0 8 o : : 5=|- [
| — Eaep— PP - t "

e You can get a detailed pipeline view of critical code sections

CodeAnalyst can be downloaded at
www.amd.com developer section

DEV 430

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Step 4: optimize

Tune for maximum 64-bit performance

 AMD64 technology offers 8 extra GPRs and 8 extra SSE
registers... all used by the compiler

e Many old C/C++ tricks still work, some extra-well
—The compiler optimizes, but you can help it at source level

e Compiler intrinsic functions for SSE, SSE2 and other
funcs
—Portable across 32-bit and 64-bit targets, compiler does reg allocation

e Assembly code can still be used for absolute max oy
performance |
—Vectorize your 64-bit SSE code, tweak instruction scheduling, etc.)i

DEV 430

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Step 4: optimize

e Use the 64-bit compiler’s optimization features

e Good ol’ standard optimization switches
— Compile with /02 or /02b2, and use /fp:fast

e Whole Program Optimization (WPO)
— Compile with /GL and link with /LTCG
— Enables more function inlining, other cross-module
improvements
e Profile Guided Optimization (PGO or “Pogo™)
— Build instrumented binaries, run your workload, re-link
— Can improve function layout (I-cache usage) and branch fl@ -

DEV 430

30

Microsoft Tech-Ed 2004 Europe

GameDevelopers

Conference

Libc 64-bit functions are optimized
— example: Memcpy performance 64 vs. 32

bytes
copied
4
10
50
100
200
500
1000
5000
10000
50000
100000
500000
1000000

clocks
64-bit
68
41
49
53
55
111
166
667
1297
22606
58451
250190
669057

clocks
32-bit
77
42
67
63
90
330
451
1288
2533
22127
52863
266773
2040253

5000000, 4074051 10867828

DEV 430

relative
performance

113.24%
102.44%
136.73%
118.87%
163.64%
297.30%
271.69%
193.10%
195.30%

97.88%

90.44%
106.63%
304.94%
266.76%

Also memset,
memcmp,

strlen, strcpy,
strcat, strncpy ...

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Step 4: optimize

C/C++ optimization example 1: special loop unrolling
for greater parallelism

e The compiler unrolls loops automatically, but

manual unrolling can introduce explicit parallelism
double aJ100], sum = 0.0;
for (int 1 = 0; 1 < 100; i++) {
sum += a[i]; // no parallelism possible

}

e The compiler must use a single “sum” and perform
addition in-order, creating a long dependency chgl

and leaving execution units idle much of the time" _

e How can this be improved?

DEV 430

. "

32

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

e Manually unroll the loop into parallel dependency

chains
double a[100], sum, suml, sum2, sum3, sumé4;

The switch
suml = sum2 = sum3 = sum4 = 0.0; /fo-fast
for (int i = 0: i < 100; i += 4) { P-Tassy
suml += a[i]; // these four can do _thIS
sum2 += a[i+1]; // chains can automatically
sum3 += a[i+2]; // run in in many cases.
sum4 += a[i1+3]; // parallel

1 Use it!

sum = suml + sum2 + sum3 + sumé4;

e With 4 separate dependency chains the execution
units can be kept busy with pipelined operations...
over 3x faster here! -

= This trick is particularly advantageous in more @I
complex loops with AMD64 technology because ofy i~
all the registers available. '

DEV 430

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

C/C++ optimization example 2: aliasing

e Perhaps the biggest optimization roadblock for
the compiler is aliasing. Pointers may step on

each others’ data
int *a, *b, *c;
for (int 1 = 0; 1 < 100; i1++) {
*a += *pb++ - *c++; // b or c may point to a
}
e The compiler must be cautious, and write to
memory for each loop iteration. It cannot

safely keep the sum “a” in a register.
e How can this be improved?

DEV 430 34

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

e Use the _ restrict keyword to help the
compiler

e Apply your external knowledge that *a does
not alias *b or *c

int* _ restrict a;
int *b, *c;
for (int 1 = 0; 1 < 100; i++) {
*a += *pb++ - *c++; // no aliases exist

}

e Now the compiler can safely keep the sum in a
register, and avoid many memory writes.

e Read more about keyword __ restrict,
declspec(restrict) and declspec(noalias) in
Microsoft docs. They are powerful.

DEV 430

4.

)
=

35

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

C/C++ optimization example 3: struct data
packing
e Structure data members are “naturally aligned™

e Padding may get added when you compile for 64-bit
struct foo original { int a, void *b, iInt c };

e 12 bytes in 32-bit mode, but 24 bytes in 64-bit mode!

e Fix it by re-ordering elements for better packing
struct foo new { void *b, int a, iInt c };

e 12 bytes in 32-bit mode, only 16 bytes in 64-bit mode.

e Also re-order struct elements for better cache localityj

DEV 430 36

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

C/C++ optimization example 4: replace a
pointer with smaller data

e Structures with many pointers may get bloated

— Pointers may not need full 64-bit range
— Replace pointer with INT, WORD, or BYTE index

struct foo_original { thing *a, iInt b, .. };
My Thing = *(foo_original.a);

struct foo new { Int a, int b, .. };
My Thing = Thing_Array[foo new.a];

DEV 430 37

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Compiler intrinsic examples: SSE and SSE2

_ m128 _mm_mul_ss(__ ml28 a, __ m128 b);
SSE MULSS scalar single-precision multiply instruction
_ m128d _mm_add pd(_ m128d a, _ ml28d b);
SSE2 ADDPD packed double-precision add instruction
~ m1281 _mm_load _si128(_ ml128i1 *p);
SSE2 MOVDQA instruction for 128-bit integer
~ m128d _mm_set pd(double x, double y);
SSEZ2 initialize a packed vector variable
~_ ml128d _mm_setzero pd();
SSE2 XORPD initialize packed double to zero
_ m1281 _mm_cvtsi32_si128(int a);
SSE2 MOVD load a 32-bit int as lower bits of SSE2 reg

DEV 430

38

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Compiler intrinsic examples: other goodies

void _ cpuid(int* CPUInfo, int InfoType);
for detecting CPU features
unsigned __ int64 _ rdtsc(void);
for reading the timestamp counter (cycle counter) and
accurately measuring performance of critical code sections
_int64 mull128(_ inté4 Multiplier, _ int64 Multiplicand,
__iInt64 *HighProduct);
fast multiply of two 64-bit integers, returning full 128-bit result
(lower 64 bits are return value, upper 64 bits by indirect pointer)
_inté4 _mulh(__int64 a, _int6é4 b);
fast multiply of two 64-bit integers, returning the high 64 bits
void _mm_prefetch(char* p, Iint i1);
software prefetch instruction for reading data into CPU cache
void _mm_stream ps(float* p, = ml28 a);
streaming store of data to memory, bypassing CPU cache

DEV 430 39

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

C/C++ optimization example 5: cache control

DEV 430

Data can be fetched with “non-temporal™ tag
_mm_prefetch ((char *) foo ptr, MM _HINT _NTA);

Loads a 64-byte cache line into L1, won’t disturb L2

Streaming store: write directly to memory, not to cache

_mm_stream ps ((float *) foo ptr, var_128);
var_128 istype = ml128 (really an SSE register)

A bit awkward, pack 16 bytes and write to aligned
address

Four 16-byte packets = 64-byte write-combine buf -

L P et

40

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Assembly code, if you’re man enough

e Assembly code is still worthwhile for maximum
performance in certain critical inner loops

e In-line _asm code is not supported for 64-bit
code, use MASM 64

e Pay attention to prolog/epilog, it’s different...
and faster
— Values passed in registers, rarely pushed on stack
— Certain regs are volatile, others are non-volatile

e Be careful about data layout: 64-bit code mayj:
be different (pointers grow from 4 to 8 bytes)f.

bia

i
=

DEV 430

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

AMDG4 (x64) Assembly Programmer’s Model

-In x86
E=hAdded by AMD64
technology

S
S
E

DEV 430

42

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Assembly code example: software pipelining
e asm code, calculates Mandelbrot set

movapd xmm2, xmmO;

mulpd xmm2, xmml; c = z_real x z_imag
mulpd xmmQ, xmmO; a = z_real x z_real
mulpd xmml, xmml; b =2z imag x z_imag
subpd xmmQ, xmml; zreal =a->0b

addpd xmm2, xmm2; c=cx?2

addpd xmm0, xmml2; z real = z_real + c_real
movapd xmml, xmm2;

addpd xmml, xmml3; z imag = C + c_imag

- L ots of data dependencies limiting performan_.., =
what can we do to fix that? k-

DEV 430

Microsoft Tech-Ed 2004 Europe

GameDevelopers

Conference

e Use the extra registers: implement software pipelining

movapd
movapd
mulpd
mulpd
mulpd
mulpd
mulpd
mulpd
subpd
subpd
addpd
addpd
addpd
addpd
movapd
movapd
addpd
addpd

e \Working 2 independent data sets
makes the code run 35% faster here!

DEV 430

xmm2, xmmO;
xmm6, xmm4;
xmm2, xmml;
Xmm6, xmm5;
xmmO, xmmO;
xmm4, xXmmé4;
xmml, xmml;
xmm5, xmm5;
xmmO, xmml;
xmm4, xmm5;
Xxmm2, xXmm2;
xmmé, Xmmé;
xmmO, xmml2;
xmm4, xmml4;
xmml, xmm2;
xmm5, Xmm6;
xmml, xmml3;
xmm5, xmml5;

c = z_real x z_imag

a = z_real x z_real

b = z_imag x z_imag
zreal = a-b
c=cx2

z_real = z_real + c_real
z_imag = cC + c_imag

No need to overlay
the two chains
quite this tightly.

The CPU re-orders
instructions
aggressively, so
dependency chains
only need to be
reasonably close
together.

For max
performance...
experiment!

44

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Step 5: beverage

e After you have your 64-bit code
running like blazes...

e Enjoy a beverage of your choice

e Don’t skip this step

%

DEV 430

45

Microsoft Tech-Ed 2004 Europe

DEV 430

46

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Demo results: dependency chains

« Inserting a second dependency chain in the loop dramatically
improves performance on both 32-bit and 64-bit

e 64-bit code benefits more, because of the extra SSE regs
e 64-bit mode provides a 30%+ boost over 32-bit mode

32-bit 64-bit
1 chain 92 Gflop 1.01 Gflop ~10% 64-bit benefit
2chains 1.31 Gflop 1.72 Gflop ~-30% 64-bit benefit -

Chain gain = 42% 70%

DEV 430 a7

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Demo results: multi-threading

e OpenMP support in Visual Studio 2005 Whidbey

—The main loop was threaded with a single pragma!
#pragma omp parallel for

—OpenMP automatically figures out how many threads

e Almost 2x the performance on dual-core or 2P
—True dual-core can give true dual performance

e Performance will scale up automatically as more
cores or CPUs are added

e Threading is the Way Forward for performance

DEV 430 a8

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

summary

e\Windows x64 has excellent backward
compatibility

ePorting to 64-bit mode is not too hard

«64-bit code has performance advantages

it
eDual-core CPUs are coming soon i%
!
& /.
9

DEV 430 49

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Call to Action

e Test all your 32-bit games on Windows x64

—-99% will just work fine

—-1% need tweaks (replace 16-bit installer, tweak OS version
detection)

—All drivers need to be ported

e Port to 64-bit mode and optimize performance

—Familiar tools, classic optimization techniques, plus a few new
ones

e Multi-thread your game to leverage dual- core'
—OpenMP makes multi-threading very straightforward -
—Relevant in every application segment

DEV 430 50

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

Resources
Start now, on your 64-bit porting/optimization project

e Compile with /Wp64 all the time for both 32-bit and 64-
bit, and use /02b2 /GL /fp:fast for 64-bit, and use
Profile Guided Optimization. See MSFT docs on PGO,
OpenMP!

e Go to amd.com and get all the AMD developer docs

—“Develop with AMD” and “AMDG64 Developer Resource Kit”,
Optimization Guide, Programmer’s Manuals, etc.

—Download and use the CodeAnalyst profiler, for 32 and 64-bit code
—Learn how to use the 64-bit PSDK compiler with VS 6 and .NET
—Other presentations, including TechEd and GDC 2003+2004 &2

—AMD Developer Center in Sunnyvale, CA! Visit us, or remote |
access 1

|
ke wall@amd.com 4

DEV 430

Microsoft Tech-Ed 2004 Europe

GameDevelopers
Conference

More Resources

e Go to MSDN and get the x64 Customer Preview OS,
Platform SDK tools, Visual Studio 2005 Whidbey beta
—Latest Windows x64 build and Platform SDK on WindowsBeta

—Current x64 Platform SDK based on VC6.0 libs; for 7.1 ATL/MFC,
CRT, STL lib files: e-mail libs7164@microsoft.com

—DirectX for x64: already released in DirectX 9.0 SDK

e Go to MSDN and Microsoft.com for more docs
—Search for 64-bit, AMD64, x64 or “64-bit Extended”
—Read about new 64-bit compiler features, OpenMP, intrinsics, etc.

—Especially read about “Whidbey” performance optimization
features

)
=

e OpenMP is simple and powerful www.openmp.org r

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. Microsoftand = }
Windows are registered trademarks of Microsoft Corporation. Other product names used in this presentation are for T
identification purposes only and may be trademarks of their respective companies. -,

DEV 430

