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Abstract

Large Language Models (LLMs) have demonstrated remarkable capabilities across a variety of
software engineering and coding tasks. However, their application in the domain of code and
compiler optimization remains underexplored. Training LLMs is resource-intensive, requiring
substantial GPU hours and extensive data collection, which can be prohibitive. To address this
gap, we introduce Meta Large Language Model Compiler (LLM COMPILER), a suite of robust,
openly available, pre-trained models specifically designed for code optimization tasks. Built
on the foundation of CODE LLamMA, LLM COMPILER enhances the understanding of compiler
intermediate representations (IRs), assembly language, and optimization techniques. The
model has been trained on a vast corpus of 546 billion tokens of LLVM-IR and assembly code
and has undergone instruction fine-tuning to interpret compiler behavior. LLM COMPILER
is released under a bespoke commercial license to allow wide reuse and is available in two
sizes: 7 billion and 13 billion parameters. We also present fine-tuned versions of the model,
demonstrating its enhanced capabilities in optimizing code size and disassembling from x86_ 64
and ARM assembly back into LLVM-IR. These achieve 77% of the optimising potential of an
autotuning search, and 45% disassembly round trip (14% exact match). This release aims to
provide a scalable, cost-effective foundation for further research and development in compiler
optimization by both academic researchers and industry practitioners.

1 Introduction

There is increasing interest in large language models (LLMs) for software engineering tasks including
code generation, code translation, and code testing. Models such as StarCoder (Lozhkov et all 2024),
CobpE LraMA (Roziére et al., 2023), and GPT-4 (OpenAl, 2023) have a good statistical understanding of
code and can suggest likely completions for unfinished code, making them useful for editing and creating
software. However, there is little emphasis on training specifically to optimize code. Publicly available LLMs
can be prompted to make minor tweaks to a program such as tagging variables to be stored as registers, and
will even attempt more substantial optimizations like vectorization, though they easily become confused and
make mistakes, frequently resulting in incorrect code.

Prior works on machine learning-guided code optimization have used a range of representations from hand-
built features (Wang & O’Boyle, [2018) to graph neural networks (GNNs) (Liang et al., [2023). However, in
all cases, the way the input program is represented to the machine learning algorithm is incomplete, losing
some information along the way. For example, Trofin et al.| (2021)) use numeric features to provide hints for
function inlining, but cannot faithfully reproduce the call graph or control flow. (Cummins et al.| (2021) form
graphs of the program to pass to a GNN, but exclude the values of constants and some type information
which prevents reproducing instructions with fidelity.

In contrast, LLMs can accept source programs, as is, with a complete, lossless representation. Using text
as the input and output representation for a machine learning optimizer has desirable properties: text is a
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Figure 1: LLM COMPILER models are specialized from CODE LLAMA by training on 546 billion tokens of compiler-centric data in
two stages. In the first stage the models are trained predominantly on unlabelled compiler IRs and assembly code. In the next
stage the models are instruction fine-tuned to predict the output and effect of optimizations. LLM CoMPILER FTD models are
then further fine-tuned on 164 billion tokens of downstream flag tuning and disassembly task datasets, for a total of 710 billion
training tokens. During each of the four stages of training, 15% of data from the previous tasks is retained.

universal, portable, and accessible interface, and unlike prior approaches is not specialized to any particular
task.

However, training LLMs incurs high cost in both compute and data. For example, training CODE LLAMA’s
models consumed 1.4M A100 GPU hours to train, and curating the vast amounts of training data (hundreds
of billions of tokens) can be challenging. These costs are often prohibitive to researchers in the field and this
blocks advances that might otherwise be possible.

To address this issue, we are releasing LLM COMPILER, a family of foundation models that have already been
trained to understand the semantics of compiler IRs and assemblies and to emulate the compiler, allowing
for easy fine-tuning with minimal data for specific downstream compiler optimization tasks. Building upon
CoODE LLAMA, we extend its capabilities to encompass compiler optimization and reasoning.

The training pipeline for LLM COMPILER is illustrated in Figure [l We extend CODE LLAMA with additional
pretraining on a vast corpus of assembly codes and compiler IRs, and then instruction fine-tune on a
bespoke compiler emulation dataset to better reason about code optimization. Our intention with releasing
these models is to provide a foundation for researchers and industry practitioners to further develop code
optimization models. We then adapt the models for two downstream compilation tasks: tuning compiler flags
to optimize for code size, and disassembling x86_ 64 and ARM assembly to LLVM-IR. We also release these
LLM CoMmPILER FTD models to the community under the same bespoke commercial license. Compared to
the autotuning technique on which it was trained, LLM CoOMPILER FTD achieves 77% of the optimizing
potential without the need for any additional compilations. When disassembling, LLM CoMPILER FTD
creates correct disassembly 14% of the time. On both tasks LLM CoMPILER FTD models significantly
outperform comparable LLMs CODE LLAMA and GPT-4 Turbo.

Our work aims to establish a scalable, cost-effective foundation for further research and development in
compiler optimization, catering to both academic researchers and industry practitioners. By providing access
to pre-trained models in two sizes (7 billion and 13 billion parameters) and demonstrating their effectiveness
through fine-tuned versions, LLM Compiler paves the way for exploring the untapped potential of LLMs in
the realm of code and compiler optimization.

1.1 Overview

Figure [1| shows an overview of our approach. LLM COMPILER models target compiler optimization. They
are available in two model sizes: 7B and 13B parameters. The LLM COMPILER models are initialized
with CODE LLAMA model weights of the corresponding size and trained on an additional 546B tokens of
data comprising mostly compiler intermediate representations and assembly code. We then further train
LLM CoMmPILER FTD models using an additional 164B tokens of data for two downstream compilation
tasks: flag tuning and disassembly. At all stages of training a small amount of code and natural language
data from previous stages is used to help retain the capabilities of the base CODE LLAMA model.



Dataset Sampling prop. Epochs Disk size

IR and assembly pretraining (401 billion tokens)

Code 85.00% 1.000 872 GB
Natural language related to code 14.00% 0.019 942 GB
Natural language 1.00% 0.001 938 GB
Compiler emulation (additional 145 billion tokens)
Compiler emulation 85.00% 1.702 175 GB
Code 13.00% 0.055 872 GB
Natural language related to code 1.80% 0.001 942 GB
Natural language 0.20% 6.9e—5 938 GB
Flag tuning fine-tuning (additional 84 billion tokens)

Flag tuning 85.00% 1.700 103 GB
Compiler emulation 11.73% 0.136 175 GB
Code 2.84% 0.007 872 GB
Natural language related to code 0.40% 1.1e—4 942 GB
Natural language 0.03% 8.8¢—6 938 GB
Disassembly fine-tuning (additional 80 billion tokens)
Disassembly 85.00% 1.707 88 GB
Flag tuning 4.68% 0.089 103 GB
Compiler emulation 8.07% 0.089 175 GB
Code 1.96% 0.004 872 GB
Natural language related to code 0.27% 7.5e—5 942 GB
Natural language 0.03% 5.7e—6 938 GB

Table 1: Training datasets used.

Items Tokens Disk size

x86__64-unknown-linux-gnu 17.3 M 3403 B 738 GB
aarch64-unknown-linux-gnu 3.5 M 60.5 B 133 GB

Items Tokens  Disk size

LLVM-IR 10.7M 185 B 432 GB
Assembly 10.1 M 216 B 440 GB

nvptx64-nvidia-cuda 9.2k 146 M 286 MB
Total 208M 401B 872 GB Total 208 M 401B 872 GB
(a) Language (b) Target

Table 2: Composition of data used for initial IR and assembly pretraining. LLM COMPILER is trained on a near-even split of IR
and assembly code, predominantly targeting x86-64 architecture, with some 64-bit ARM, and a small amount of CUDA.

2 LLM Compiler: Specializing Code Llama for compiler optimization

2.1 Pretraining on assembly code and compiler IRs

The data used to train coding LLMs are typically composed largely of high level source languages like Python.
Assembly code contributes a negligible proportion of these datasets, and compiler IRs even less. To build an LLM
with a good understanding of these languages we initialize LLM COMPILER models with the weights of CODE LLAMA
and then train for 401 billion tokens on a compiler-centric dataset composed mostly of assembly code and compiler
IRs, shown in Table

Dataset LLM COMPILER is trained predominantly on compiler intermediate representations and assembly code
generated by LLVM (Lattner & Adve, 2004)) version 17.0.6. These are derived from the same dataset of publicly
available code used to train CODE LLAMA. We summarize this dataset in Table[2] As in CODE LLAMA, we also source
a small proportion of training batches from natural language datasets.
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Figure 2: To give the model an understanding of how compiler optimizations work, we use compiler emulation. Unoptimized
code samples and random pass lists are given to opt to generate optimized code (IR or assembly). Pass list and input code are
taken together as prompt while the generated output code is used as label.

opt input.bc -o output.bc -p ’module(default<0z>),module(iroutliner)’
clang output.bc -o output.o
size output.o

Listing 1: Commands used to apply an optimization pipeline comprising -Oz passes followed by IR outlining to an unoptimized
IR input.bc. Binary size is the sum of .TEXT and .DATA section sizes of the lowered object file as reported by size.

2.2 Instruction fine-tuning for compiler emulation

To understand the mechanism of code optimization we instruction fine-tune LLM COMPILER models to emulate
compiler optimizations, illustrated in Figure [2] The idea is to generate from a finite set of unoptimized seed programs
a large number of examples by applying randomly generated sequences of compiler optimizations to these programs.
We then train the model to predict the code generated by the optimizations. We also train the model to predict the
code size after the optimizations have been applied.

Task specification. Given unoptimized LLVM-IR (as emitted by the clang frontend), a list of optimization passes,
and a starting code size, generate the resulting code after those optimizations have been applied and the resulting
code size.

There are two flavors of this task: in the first the model is expected to output compiler IR, in the second the model is
expected to output assembly code. The input IR, optimization passes, and code size are the same for both flavors. The
prompt dictates the required output format. Examples of each prompt are provided in Appendices Listings [2] and

Code size. We use two metrics for code size: the number of IR instructions, and binary size. Binary size is
computed by summing the size of the . TEXT and .DATA sections of the IR or assembly after lowering to an object file;
we exclude .BSS section from our binary size metric since it does not affect on-disk size.

Optimization passes. In this work we target LLVM 17.0.6 and use the New Pass Manager (PM, 2021)) which
classifies passes for different levels such as module, function, loop, etc. as well as transformation and analysis passes.
Transformation passes change given input IR while analysis passes generate information that influence subsequent
transformations.

Of the 346 possible pass arguments for opt, we select 167 to use. This includes each of the default optimization
pipelines (e.g. module(default<0z>)), individual optimization transform passes (e.g. module(constmerge)), but



excludes non-optimization utility passes (e.g. module(dot-callgraph)) and transformations passes that are not
semantics preserving (e.g. module(internalize)). We exclude analysis passes since they have no side effects and we
rely on the pass manager to inject dependent analysis passes as needed. For passes that accept parameter arguments
we use the default values (e.g. module(licm<allowspeculation>)). Table El contains a list of all passes used. We used
LLVM’s opt tool to apply pass lists and clang to lower the resulting IR to object file. Listing[I] shows the commands
used.

Dataset. We generated the compiler emulation dataset by applying random lists of between 1 and 50 optimization
passes to unoptimized programs summarized in Table[2] The length of each pass list was selected uniformly at random.
Pass lists were generated by uniformly sampling from the set of 167 passes described above. Pass lists which resulted
in compiler crashes or timed out after 120 seconds were excluded.

3 LLM Compiler FTD: Extending for downstream compiler tasks

3.1 Instruction fine-tuning for optimization flag tuning

Manipulating compiler flags is well known to have a considerable impact on both runtime performance and code
size (Fursin et al.,|2005)). We train LLM CoMPILER FTD models on the downstream task of selecting flags for LLVM’s
IR optimization tool opt to produce the smallest code size. Machine learning approaches to flag tuning have shown
good results previously, but struggle with generalizing across different programs (Cummins et al., [2022). Previous
works usually need to compile new programs tens or hundreds of times to try out different configurations and find out
the best-performing option. We train and evaluate LLM CoOMPILER FTD models on the zero-shot version of this task
by predicting flags to minimize code size of unseen programs. Our approach is agnostic to the chosen compiler and
optimization metric, and we intend to target runtime performance in the future. For now, optimizing for code size
simplifies the collection of training data.

Task specification. We present the LLM CoMPILER FTD models with an unoptimized LLVM-IR (as emitted
by the clang frontend) and ask it to produce a list of opt flags that should be applied to it, the binary size before
and after these optimizations are applied, and the output code. If no improvement can be made over the input code,
a short output message is generated that contains only the unoptimized binary size. Listings [4] and [5] provide the
prompt and output templates for this task.

We used the same constrained set of optimization passes as in the compiler emulation task, and compute binary size
in the same manner.

Figure |3 illustrates the process used to generate training data (described below) and how the model is used for
inference. Only the generated pass list is needed at evaluation time. We extract the pass list from the model output
and run opt using the given arguments. We can then evaluate the accuracy of the model predicted binary sizes and
optimized output code, but those are auxiliary learning tasks not required for use.

Correctness. LLVM’s optimizer is not free from bugs and running optimization passes in unexpected or untested
orders may expose subtle correctness errors that undermine the utility of the model. To mitigate this risk we developed
PassListEval, a tool to help in automatically identifying pass lists that break program semantics or cause compiler
crashes. An overview of the tool is shown in Figure El PassListEval accepts as input a candidate pass list and evaluates
it over a suite of 164 self-testing C++ programs, taken from HumanEval-X (Zheng et all |2023). Each program
contains a reference solution for a programming challenge, e.g. “Check if in given vector of numbers, are any two
numbers closer to each other than given threshold”, and a suite of unit tests that validate correctness. We apply the
candidate pass lists to the reference solution, and then link them against the test suites to produce a binary. When
executed, the binary will crash if any of the tests fail. If any binary crashes, or if any of the compiler invocations fail,
we reject the candidate pass list.

Dataset. We trained LLM CoMPILER FTD models on a dataset of flag tuning examples derived from 4.5M of the
unoptimized IRs used for pretraining. To generate the example optimal pass list for each program we ran an extensive
iterative compilation process depicted in Figure |3| and outlined below:

1. We used large-scale random search to generate an initial candidate best pass list for the programs. For each
program we independently generated random lists of up to 50 passes by uniformly sampling from the set of
167 searchable passes described previously. Every time we evaluated a pass list on a program we recorded
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Figure 3: Overview of our approach, showing the model input (Prompt) and output (Label) during training (D and inference @).
The prompt contains unoptimized code. The label contains an optimization pass list, binary size, and the optimized code. To
generate the label for the training prompt, the unoptimized code is compiled against multiple random pass lists. The pass list
achieving the minimum binary size is selected, minimized and checked for correctness with PassListEval. The final pass list
together with its corresponding optimized IR are used as label during training. In a last step, the top 100 most often selected
pass lists are broadcast among all programs. For deployment we generate only the optimization pass list which we feed into the

compiler, ensuring that the optimized code is correct.
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Figure 4: Validating a candidate list of optimization passes using PassListEval. The candidate pass list is applied to the reference
solutions for all 164 programs in HumanEval-X. The unit tests for these reference solutions are optimized using a conservative
-02 pass pipeline to ensure correctness, and then linked against the reference solutions. The resulting binaries are executed and
if any of the binaries crash during execution, or if any of the compiler invocations fail, the pass list is rejected.

the resulting binary size. We then pick the per-program pass lists that produced the lowest binary size. We
ran 22 billion unique compilations for an average 4,877 per program.

2. The pass lists generated by random search may contain redundant passes that have no effect on the final
outcome. Further, some pass orderings are commutative such that reordering then does not affect the final
outcome. Since these would introduce noise in our training data, we developed a minimization process which
we applied to each pass list. Minimization comprises three steps: redundant pass elimination, bubble sort,
and insertion search. In redundant pass elimination we minimize the best pass list by iteratively removing
individual passes to see if they contribute to the binary size. If not, they are discarded. This is repeated
until no further passes can be discarded. Bubble sort then attempts to provide a uniform ordering for pass
subsequences by sorting passes based on a key. Finally, insertion sort performs a local search by iterating
over each pass in the pass list and attempting to insert each of the 167 search passes before it. If doing so
improves the binary size, this new pass list is kept. The entire minimization pipeline loops until a fixed point
is reached. The distribution of minimized pass list lengths is shown in Figure[0] The average pass list length
is 3.84.

3. We apply PassListEval, described previously, to the candidate best pass lists. Through this we identified
167,971 of 1,704,443 unique pass lists (9.85%) as causing compile time or runtime errors.

4. We broadcast the top 100 most frequently optimal pass lists across all programs, updating the per-program
best pass lists if improvements are found. After this the total number of unique best pass lists decreases from
1,536,472 to 581,076.

The autotuning pipeline outlined above produced a geometric mean 7.1% reduction in binary size over -Oz. Figure
shows the frequency of individual passes. For our purposes, this autotuning serves as a gold standard for the
optimization of each program. While the binary size savings discovered are significant, this required 28 billion
additional compilations at a computational cost of over 21,000 CPU days. The goal of instruction fine-tuning
LLM CowMmPILER FTD to perform the flag tuning task is to achieve some fraction of the performance of the autotuner
without requiring running the compiler thousands of times.
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Figure 5: We train the model to understand the relationship between assembly and IR by training it to disassemble a given code
sample to its corresponding IR. The IR used to label this training task was generated by optimizing an IR with the -Oz flag.

3.2 Instruction fine-tuning for disassembly

The ability to lift code from assembly back into higher level structures enables running additional optimizations on
library code directly integrated with application code or porting of legacy code to new architectures. The field of
decompilation has seen advancements in applying machine learning techniques to generate readable and accurate code
from binary executables. Several studies explore the use of machine learning for decompilation tasks, such as lifting
binaries into intermediate representations for evaluation against synthetic C programs (Cao et al. 2022)), utilizing
evolutionary approaches like genetic algorithms for program analysis (Schulte et al., [2018), and proposing methods
like XLIR for matching binary code across different programming languages (Gui et al.| |2022). |Armengol-Estapé et al.
(2024) have trained a language model to decompile x86 assembly into high level C code. In this study, we demonstrate
how LLM CoOMPILER FTD can learn the relationship between assembly code and compiler IR by fine-tuning it for
disassembly. The task is to learn the inverse translation of clang -xir - -o - -8, shown in Figure

Round tripping. Using an LLM for disassembly causes problems of correctness. The lifted code must be verified
by an equivalence checker which is not always feasible or manually verified for correctness or subjected to sufficient
test cases to give confidence. However, a lower bound on correctness can be found by round-tripping. That is to say
by compiling the lifted IR back into assembly, if the assembly is identical then the IR is correct. This gives an easy
route to using the results of the LLM and an easy way to measure the utility of a disassembly model.

Task specification. We provide the model with assembly code and train it to emit the corresponding disassembled
IR. Listing [7] shows the prompt format. The context length for this task is set to 8k tokens for the input assembly
code and 8k tokens for the output IR.

Dataset. We derive the assembly codes and IR pairs from the same dataset used in previous tasks. Our fine-tuning
dataset consists in 4.7M samples. The input IR has been optimized with -Oz before being lowered to x86 assembly.

4 Training parameters

Data is tokenized via byte pair encoding (Gagel [1994)), employing the same tokenizer as CODE LLAMA, Llama (Touvron
et all 2023a), and Llama 2 (Touvron et al., [2023b).

We use the same training parameters for all four stages of training. Most of the training parameters we used are the
same as for the CODE LLAMA base model. We use the AdamW (Loshchilov & Hutter] [2017) optimizer with 81 and B2
values of 0.9 and 0.95. We use a cosine schedule with 1000 warm-up steps, and set the final learning rate to be 1/30th
of the peak learning rate. Compared to the CODE LLAMA base model, we increased the context length of individual
sequences from 4,096 to 16,384, but kept the batch size constant at 4M tokens. To account for the longer context, we
set our learning rate to 2e° and modified the parameters of the ROPE positional embeddings (Su et al.l [2024) where



we reset frequencies with a base value of § = 10°. These settings are in accordance with the long context training
done for the CODE LLAMA base model.

5 Evaluation

In this section we evaluate the performance of LLM COMPILER models on the tasks of flag tuning and disassembly,
compiler emulation, next-token prediction, and finally software engineering tasks.

5.1 Flag tuning task

Methodology. We evaluate LLM CoMPILER FTD on the task of optimization flag tuning for unseen programs
and compare to GPT-4 Turbo and CODE LLAMA - INSTRUCT. We run inference on each model and extract from the
model output the optimization pass list. We then use this pass list to optimize the particular program and record the
binary size. The baseline is the binary size of the program when optimized using -Oz.

For GPT-4 Turbo and CODE LLAMA - INSTRUCT we append a suffix to the prompt with additional context to further
describe the problem and expected output format. After some experimentation we found that the prompt suffix shown
in Listing [§] provides the best performance.

All model-generated pass lists are validated using PassListFEval, and -Oz is used as substitute if validation fails. To
further validate correctness of model-generated pass lists we link the final program binaries and differential test their
outputs against the outputs of the benchmark when optimized using a conservative -O2 optimization pipeline.

Dataset. We evaluate on 2,398 test prompts extracted from the MiBench benchmark suite (Guthaus et al., |2001).
To generate these prompts we take all of the 713 translation units that make up the 24 MiBench benchmarks and
generate unoptimized IRs from each. We then format them as prompts as per Listing [4] If the resulting prompt
exceeds 15k tokens we split the LLVM module representing that translation unit into smaller modules, one for each
function, using llvm-extract. This results in 1,985 prompts which fit within the 15k token context window, leaving
443 translation units which do not fit. We use -Oz when for the 443 excluded translation units when computing
performance scores. Table [I0] summarizes the benchmarks.

Results. Table [3| shows zero-shot performance of all models on the flag tuning task. Only LLM CoMPILER FTD
models provide an improvement over -Oz, with the 13B parameter model marginally outperforming the smaller model,
generating smaller object files than -Oz in 61% of cases.

In some cases the model-generated pass list causes a larger object file size than -Oz. For example, LLM CoMPILER FTD
13B regresses in 12% of cases. These regressions can be avoided by simply compiling the program twice: once using the
model-generated pass list, once using -Oz, and selecting the pass list which produces the best result. By eliminating
regressions wrt -Oz, these -Oz backup scores raise the overall improvement over -Oz to 5.26% for LLM CoMPILER FTD
13B, and enable modest improvements over -Oz for CODE LLAMA - INSTRUCT and GPT-4 Turbo. Figure [6] shows the
performance of each model broken down by individual benchmark.

Binary size accuracy. While the model-generated binary size predictions have no effect on actual compilation,
we can evaluate the performance of the models at predicting binary sizes before and after optimization to give an
indication of each model’s understanding of optimization. Figure [7]shows the results. LLM CoOMPILER FTD binary
size predictions correlate well with ground truth, with the 7B parameter model achieving MAPE values of 0.083
and 0.225 for unoptimized and optimized binary sizes respectively. The 13B parameter model improved has similar
MAPE values of 0.082 and 0.225. CODE LLAMA - INSTRUCT and GPT-4 Turbo binary size predictions show little
correlation with ground truth. We note that the LLM CoOMPILER FTD errors are slightly higher for optimized code
than unoptimized code. In particular, there is an occasional tendency for LLM COMPILER FTD to overestimate the
effectiveness of optimization, resulting in a lower predicted binary size than actual.

Ablation studies. Table 4| ablates the performance of models on a small holdout validation set of 500 prompts
taken from the same distribution as our training data (though not used during training). We trained for flag tuning at
each stage of the training pipeline from Figure [I] to compare performance. As shown, disassembly training causes a
slight regression in performance from average 5.15% to 5.12% improvement over -Oz. We also show performance of
the autotuner used for generating the training data described in Section LLM CoMmPILER FTD achieves 77% of the
performance of the autotuner.



Table 3: Comparison of model performance when flag tuning 2,398 object files from MiBench. Owerall improvement scores
include 443 object files which do not fit in the context window of LLM CoMPILER FTD. For GPT-4 and the CODE LLAMA
models we appended a suffix to the prompt to provide additional context (see Listing@ in the Appendix).

Overall improvement over -Oz

Size | Improved Regressed | zero-shot -Oz backup
7B 1,465 302 4.77% 5.24%
LLM ComprLER FTD 13B | 1,466 299 4.88% 5.26%
7B 379 892 -0.49% 0.23%
CODE LLAMA - INSTRUCT 13B 319 764 -0.42% 0.18%
34B 230 493 -0.27% 0.15%
GPT-4 Turbo (2024-04-09) - 13 24 ‘ -0.01% 0.03%
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Figure 6: Improvement over -Oz for each of the benchmarks in MiBench.

Table 4: Ablating the LLM COMPILER FTD training regime on the flag tuning task. All results are for 7B parameter models,
evaluated on the same holdout validation set of 500 programs. The first row is the LLM CoMPILER FTD release. All other rows
strip out successful components of the training regime.

Mean improvement
IR & asm Compiler . .
CODE LLAMA . . Flag tuning Disassembly over -Oz  wrt. Autotuner
pretraining emulation
v v v v v 5.12% 7%
v v v v 5.15% 78%
v v v 5.07% 76%
v v 4.94% 75%
4 4.79% 2%
Autotuner 6.63% 100%
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Figure 7: Accuracy of models at predicting code size before and after optimization. LLM CoOMPILER FTD is most accurate at
predicting code size before optimization than after optimization. CODE LLAMA and GPT-4 Turbo, shown left, display little
correlation between predicted and actual values.
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Table 5: Model performance at disassembling 2,015 assembly codes taken from MiBench. We use Round trips to evaluate the
capabilities of models, by taking the IR generated by the models and attempting to lower it back to assembly. Round trips shows
the number of disassembled IRs that can be lowered back, Round trip BLEU compares the round-tripped assemblies against
the originals, and Round trip exact match is the proportion of round-tripped assemblies that are exact character-for-character
matches with the input, indicating lossless round-trip from assembly up to IR and back down again.

Size ‘ Round trips Round trip BLEU Round trip exact match

7B 936 0.951 12.7%

LLM Cowprrer FTD 13B 905 0.960 13.8%
7B 30 0.477 0.0%

CODE LLAMA - INSTRUCT 13B 53 0.615 0.0%
34B 12 0.458 0.0%

GPT-4 Turbo (2024—04—09) - 127 0.429 0.0%

Table 6: Ablating the LLM CoOMPILER FTD training regime on code disassembly. All results are for 7B parameter model sizes,
evaluated on a holdout validation set of 500 programs. Values in parentheses show relative performance to the first row (i.e. the
LLM CoMPILER FTD release).

IR & asm Compiler Flag tuning . . Round trip
Copm LrAvA pretraining emulation training Disassembly Round trips BLEU
v v 4 v v 49.4% (-) 0.951 (-)
v v 4 v 45.2% (-8.5%) 0.955 (+0.4%)
v v v 44.2% (-10.5%) 0.957 (4+0.7%)
v v 39.0% (-21.1%) 0.965 (+1.5%)
v

8.8% (-82.8%) 0.908 (-4.5%)

5.2 Disassembly task

Methodology. We evaluate the functional correctness of LLM-generated code when disassembling assembly code to
LLVM-IR. As in Section [5.1] we evaluate LLM COMPILER FTD and compare to CODE LLAMA - INSTRUCT and GPT-4
Turbo, and find that an additional prompt suffix, shown in Listing [§] is required to extract the best performance from
these models. The suffix provides additional context about the task and the expected output format. To evaluate the
performance of models we round-trip the model-generated disassembled IR back down to assembly. This enables us to
evaluate accuracy of the disassembly by comparing the BLEU score (Papineni et al., [2002|) of the original assembly
against the round-trip result. A lossless and perfect disassembly from assembly to IR will have a round-trip BLEU
score of 1.0 (exact match).

Dataset. We evaluate on 2,015 test prompts extracted from the MiBench benchmark suite. We took the 2,398
translation units used for the flag tuning evaluation above and generated disassembly prompts. We then filtered the
prompts on a maximum 8k token length, allowing 8k tokens for the model output, leaving 2,015. Table [[T] summarizes
the benchmarks.

Results. Table |5 shows performance of the models on the disassembly task. LLM CoOMPILER FTD 7B has a
slightly higher round-trip success rate than LLM CoMmPILER FTD 13B, but LLM CoMmPILER FTD 13B has the
highest accuracy of round-tripped assembly (round trip BLEU) and most frequently produces a perfect disassembly
(round trip exact match). CODE LLAMA - INSTRUCT and GPT-4 Turbo struggle with generating syntactically correct
LLVM-IR. Figure [§ shows the distribution of round-trip BLEU scores for all models.

Ablation studies. Table |§| ablates the performance of models on a small holdout validation set of 500 prompts
taken from the MiBench dataset used previously. We trained for disassembly at each stage of the training pipeline
from Figure [1| to compare performance. Round trip rate is highest when going through the whole stack of training
data and drops consistently with every training stage, though round trip BLEU varies little with each stage.
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Figure 8: Distribution of round trip BLEU scores on the disassembly task.

5.3 Foundation model tasks

Methodology We ablate LLM COMPILER models on the two foundation model tasks of next-token prediction and
compiler emulation. We perform this evaluation at each stage of the training pipeline to see how training for each
successive task affects performance. For next-token prediction we compute perplexity on a small sample of LLVM-IR
and assembly code from all optimization levels. We evaluate compiler emulation using two metrics: whether the
generated IR or assembly code compiles, and whether the generated IR or assembly code is an exact match for what
the compiler would produce.

Dataset. For next-token prediction we use a small holdout set of validation data that is drawn from the same
distribution as our training data but has not been used for training. We use a mixture of optimization levels including
unoptimized code, code optimized with -Oz, and randomly generated pass lists. For compiler emulatino we evaluate
using 500 prompts generated from MiBench using randomly pass lists generated in the manner described in Section [2:2]

Results Table Iﬂ shows performance of LLM CoOMPILER FTD across all training stages on the two foundation
model training tasks of next-token prediction and compiler emulation. Next-token prediction performance jumps
sharply after CODE LLAMA, which has seen very little IR and assembly, and declines slightly with each subsequent
stage of fine-tuning.

For compiler emulation, the CODE LLAMA base model and the pre-trained models perform poorly since they have not
been trained on this task. The highest performance is achieved directly after compiler emulation training where 95.6%
of IR and assembly generated by LLM CoMPILER FTD 13B compiles, and 20% of it matches the compiler exactly.
Performance declines after fine-tuning for flag tuning and disassembly.

5.4 Software engineering tasks

Methodology. While the purpose of LLM CoMPILER FTD is to provide foundation models for code optimization,
it builds upon base CODE LLAMA models which were trained for software engineering tasks. To evaluate how the
additional training of LLM CoMPILER FTD has affected the performance of code generation we use the same
benchmark suites as in CODE LLAMA that evaluate the ability of LLMs to generate Python code from natural language
prompts, such as “Write a function to find the longest chain which can be formed from the given set of pairs.”.
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Table 7: Performance at next-token prediction and compiler emulation tasks. For Perplexity, lower is better. For Compiles and
Ezact match, higher is better.

Perplexity Compiler emulation
CODE LLAMA IR & asm Compl'ler Flag tuning  Disassembly Size IR Asm ‘ Compiles Exact match
pretraining emulation

v 7B 1.456 1.423 5.4% 1.2%
13B | 1.429  1.404 4.8% 0.8%
v v 7B | 1.050  1.041 0.8% 0.0%
13B | 1.045 1.038 35.8% 2.8%

v v v 7B | 1.052  1.046 87.0% 16.0%

13B 1.047 1.043 95.6% 20.0%

7B 1.058 1.051 55.0% 1.2%

v v v v 13B ‘ 1.052 1.048 ‘ 58.6% 4.2%
7B 1.057 1.053 71.0% 4.6%

4 / d v v/ 13B ‘ 1.054  1.052 ‘ 61.4% 5.4%

Table 8: Performance on Python programming tasks. pass@1 are computed with greedy decoding. The pass@10 and pass@100
scores are computed with nucleus sampling with p=0.95 and temperature=0.6.

<§t I

< % ¥ = £ =

4 &3 838 E§ &

— s =3 3 5]

m Qe g3 = 3

a bl ES o

o et 8 [e) E ) .8 X

O Ha OUOo &= A Size HumanEval MBPP

pass@l  pass@l0 pass@100 ‘ pass@l  pass@Ql0 pass@100
v 7B 32.9% 63.3% 85.3% 45.4% 67.5% 81.6%
13B | 36.0% 71.9% 90.6% 48.4% 71.3% 83.9%

v 7B 28.0% 58.6% 84.3% 42.8% 66.0% 80.0%
v 13B 34.1% 68.0% 87.9% 47.6% 70.3% 83.3%

v 7B 25.0% 51.3% 79.0% 37.4% 61.5% 75.6%
v v 13B 31.1% 62.9% 83.2% 46.0% 67.8% 80.9%

v 7B 24.4% 46.2% 73.1% 36.6% 58.5% 74.4%
v v v 13B 29.3% 55.9% 81.1% 42.2% 63.6% 79.1%

v 7B 26.8% 44.0% 65.3% 31.4% 55.1% 73.2%
v v v vV 13B 25.6% 51.2% 76.8% 37.6% 60.6% 76.4%

LLAMA 2 7B 12.2% 25.2% 44.4% 20.8% 41.8% 65.5%

13B 20.1% 34.8% 61.2% 27.6% 48.1% 69.5%

Datasets. We use the HumanEval (Chen et al] [2021) and MBPP (Austin et all [2021) benchmarks as in
CoDE LLAMA.

Results. Table [§shows the greedy decoding performance (pass@1) of all model training stages and model sizes
starting at the CODE LLAMA base model. It also shows the models’ scores on pass@10 and pass@100 which were
generated with p=0.95 and temperature=0.6. Each stage of compiler-centric training causes a slight regression in
Python programming ability. pass@1 performance on HumanEval and MBPP declines by up to 18% and 5% for
LLM COMPILER and by up to 29% and 22% for LLM COMPILER F'TD after the additional flag tuning and disassembly
fine-tuning. All models still outperform Llama 2 on both tasks.

6 Related work

Language models over code. There is increasing interest in LLMs for source code reasoning and generation (Jiang
et al.| 2024; Hou et all [2023). The main enablers of progress in this area are pretrained foundational models made
available for others to build upon, including CODE LLAaMA (Roziére et all [2023), StarCoder (Lozhkov et al.| |2024),

Magicoder (Wei et al., [2024)), DeepSeek-Coder (Guo et al., 2024), GPT-4 (OpenAl, |2023) and others (Wang et al.,
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2023; |Allal et al., 2023} [Feng et al., 2020). Some of the existing models are open source (Roziére et al.l [2023} |Lozhkov
et al.l [2024; Wei et al., 2024; Allal et al., 2023) while others are closed source (Chen et al., 2021} |OpenAlL [2023; |Li
et al.}[2022} [Gunasekar et al.,[2023). We extend the collection of foundational models for code with a family of models
specifically trained on intermediate code representation with a license that allows wide reuse.

Language models have been adapted to perform program fuzzing (Xia et all [2023a; Deng et all [2023)), test genera-
tion (Schéfer et al., 2023)), automated program repair (Xia et al.L 2023b)), and source-level algorithmic optimization
[Madaan et al.| (2023). The introduction of fill-in-the-middle capabilities is especially useful for software engineering
use cases such as code completion, and has become common in recent code models such as InCoder (Fried et al.
[2023), SantaCoder [2023), StarCoder (Lozhkov et al) [2024), and CopE LrAMA (Rozitre et al., [2023).
A large number of useful applications have been explored for LLMs, however, only very few are directly focused on
compilation tasks.

Language models over IR. While LLMs have found broad adoption for coding tasks, few operate at the
level of compilers. |Gallagher et al. (2022) train a RoBERTA architecture on LLVM-IR for the purpose of code
weakness identification, and Transcoder-IR (Szafraniec et al] [2022)) uses LLVM-IR as a pivot point for source-to-source
translation. Few LLMs include compiler IRs in their training, and of those that do, IRs comprise a tiny fraction of the
data compared to other programming languages. StarCoder 2 [Lozhkov et al|(2024) and DeepSeek-Coder |Guo et al
include 7.7 GB (0.4%) and 0.91 GB (0.1%) of LLVM-IR respectively in their training data. LLM COMPILER is
pretrained on 422 GB of LLVM-IR, and additional LLVM-IR during fine-tuning, and assembly code which makes up
at least 85% of the total training data.

[Paul et al.| (2024) create SLTrans, a 26 B token dataset which pairs high level source code with corresponding
LLVM-IR. Like our dataset, they include different source languages and optimization levels for their IR, however,
their optimization is limited to -Oz and -0O8. They train IRCoder on 800 M tokens of SLTrans and demonstrate how
it improves the code reasoning capabilities of underlying base models. IRCoder and StarCoder 2 present their models
with LLVM-IR. We include both LLVM-IR as well as native assembly code from multiple source languages and for
multiple architecture targets.

With the increasing interest in IR to improve the performance of code generation models, new datasets are emerging.
For example, ComPile (Grossman et al.| [2024)), a 2.4 TB dataset of unoptimized LLVM-IR.

Machine Learning in Compilers. Many works have applied machine learning in compilers (Leather &
|Cummins| [2020; |Ashouri et al., 2022} |(Cummins et al.| |2017; [Phothilimthana et al., [2021} |Seeker et al |2024). Compiler
pass ordering has been exploited for decades. Over the years there have been several approaches using machine
learning (Liang et al., 2023} |Agakov et al., 2006} |Ogilvie et al., [2017; |Jayatilaka et al.,|2021; |Queiroz Jr & da Silval,
[2023} |Grubisic et al., [2024a). Neural machine translation is an emerging field that uses language models to transform
code from one language to another. Prior examples include compiling C to assembly (Armengol-Estapé & O’Boylel,
[2021)), assembly to C (Armengol-Estapé et al., [2024; [Hosseini & Dolan-Gavitt, [2022)), and source-to-source (Lachaux

let al.[, .

7 Discussion

In this paper, we introduced LLM COMPILER, a novel family of large language models specifically designed to address
the challenges of code and compiler optimization. By extending the capabilities of the foundational CODE LLAMA
model, LLM COMPILER provides a robust, pre-trained platform that significantly enhances the understanding and
manipulation of compiler intermediate representations and assembly language.

We release LLM COMPILER under a bespoke commercial license to facilitate widespread access and collaboration,
enabling both academic researchers and industry practitioners to explore, modify, and extend the model according to
their specific needs.

7.1 Limitations

We have shown that LLM COMPILER performs well at compiler optimization tasks and has improved understanding
of compiler representations and assembly code over prior works, but there are limitations. The main limitation is
the finite sequence length of inputs (context window). LLM COMPILER supports a 16k token context windows, but
program codes may be far longer. For example, 67% of MiBench translation units exceeded this context window
when formatted as flag tuning prompts, shown in Table To mitigate this we split larger translation units into
individual functions, though this limits the scope of optimization that can be performed, and still 18% of the split
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translation units remain too large for the model to accept as input. Researchers are adopting ever-increasing context

windows (Ding et al., |2023)), but finite context windows remain a common concern with LLMs.

A second limitation, common to all LLMs, is the accuracy of model outputs. Users of LLM COMPILER are advised to
assess their models using evaluation benchmarks specific to compilers. Given that compilers are not bug-free, any
suggested compiler optimizations must be rigorously tested. When a model decompiles assembly code, its accuracy
should be confirmed through round trip, manual inspection, or unit testing. For some applications LLM generations
can be constrained to regular expressions (Grubisic et all [2024b), or combined with automatic verification to ensure
correctness (Taneja et al.l [2024).
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B Prompts
B.1 Compiler emulation prompts

Prompt:

[INST] Give the LLVM-IR for the following code when optimized using opt -p ’module(default<0z>)’:

<code>; ModuleID = ’<stdin>’

source_filename = "-"

target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-164:64-f80:128-n8:16:32:64-5128"
target triple = "x86_64-unknown-linux-gnu"

; Function Attrs: minsize nounwind optsize uwtable
define dso_local i32 @add_two(i32 noundef %0, i32 noundef %1) #0 {
%3 = alloca i32, align 4
%4 = alloca i32, align 4
store i32 %0, ptr %3, align 4, !tbaa !5
store i32 %1, ptr %4, align 4, !tbaa !5
%5 = load i32, ptr %3, align 4, !tbaa !5
%6 = load i32, ptr %4, align 4, !'tbaa !5
%7 = add nsw i32 %5, %6

ret i32 7
}
attributes #0 = { minsize nounwind optsize uwtable "min-legal-vector-width"="0" "no-trapping-math"="true"
— "stack-protector-buffer-size"="8" "target-cpu"="x86-64" "target-features"="+cmov,+cx8,+fxsr,+mmx,+sse
~>,+sse2,+x87" "tune-cpu"="generic" }
'1lvm.module.flags = !{!0, !1, '2, 13}
'1lvm.ident = !{!4}
10 = 1{i32 1, !"wchar_size", i32 4}
'1 = 1{i32 8, !"PIC Level", i32 2}
12 = 1{i32 7, !"PIE Level", i32 2}
13 = 1{i32 7, !"uwtable", i32 2}
14 = 1{!"clang version 17.0.6 (git@github.com:fairinternal/CodeGen.git
—~b05db9bbf7a92019267416c1bb9996fe6134e3f1)"}
'5 = !{!6, '6, i64 0}
'6 = !{!"int", !7, i64 0}
17 = t{!"omnipotent char", !8, i64 0}
18 = 1{!"Simple C/C++ TBAA"}
</code>

The input code has instruction count 8 and binary size 65 bytes. [/INST]

Answer:

The LLVM-IR will have instruction count 2 and binary sise 53 bytes:

<code>; ModuleID = ’<stdin>’

source_filename = "-"

target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-164:64-£80:128-n8:16:32:64-5128"
target triple = "x86_64-unknown-linux-gnu"

; Function Attrs: minsize mustprogress nofree norecurse nosync nounwind optsize willreturn memory (none)
~—~uwtable
define dso_local i32 @add_two(i32 noundef %0, i32 noundef %1) local_unnamed_addr #0 {

%3 = add nsw i32 %1, %0

ret i32 %3
}
attributes #0 = { minsize mustprogress nofree norecurse nosync nounwind optsize willreturn memory (none)
<~uwtable "min-legal-vector-width"="0" "no-trapping-math"="true" "stack-protector-buffer-size"="8" "
—target -cpu"="x86-64" "target-features"="+cmov,+cx8,+fxsr,+mmx,+sse,+sse2,+x87" "tune-cpu"="generic" }
!'1lvm.module.flags = !{!0, !1, 12, 13}
'1lvm.ident = !{!4}
10 = 1{i32 1, !"wchar_size", i32 4}
1 = 1{i32 8, !"PIC Level", i32 2}
12 = 1{i32 7, !"PIE Level", i32 2}
13 = 1{i32 7, !"uwtable", i32 2}
'4 = 1{!"clang version 17.0.6 (git@github.com:fairinternal/CodeGen.git
~—+b05db9bbf7a92019267416c1bb9996fe6134e3£f1)"}
</code>

Listing 2: Prompt used for IR — IR compiler emulation.

23



Prompt:

[INST] Give the assembly for the following code when optimized using opt -p ’module(default<0z>) ’:

<code>; ModuleID = ’<stdin>’

source_filename = "-"

target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-164:64-f80:128-n8:16:32:64-5128"
target triple = "x86_64-unknown-linux-gnu"

; Function Attrs: minsize nounwind optsize uwtable
define dso_local i32 @add_two(i32 noundef %0, i32 noundef %1) #0 {
%3 = alloca i32, align 4
%4 = alloca i32, align 4
store i32 %0, ptr %3, align 4, !tbaa !5
store i32 %1, ptr %4, align 4, !tbaa !5
%5 = load i32, ptr %3, align 4, !'tbaa !5
%6 = load i32, ptr %4, align 4, !'tbaa !5
%7 = add nsw i32 %5, %6

ret i32 7
}
attributes #0 = { minsize nounwind optsize uwtable "min-legal-vector-width"="0" "no-trapping-math"="true"
<~ "stack-protector-buffer-size"="8" "target-cpu"="x86-64" "target-features"="+cmov,+cx8,+fxsr ,+mmx,+sse
—,+sse2,+x87" "tune-cpu"="generic" }
!'1lvm.module.flags = !{!0, !1, '2, 13}
111lvm.ident = !{!4}
10 = 1{i32 1, !"wchar_size", i32 4}
1 = 1{i32 8, !"PIC Level", i32 2}
12 = 1{i32 7, !'"PIE Level", i32 2}
13 = 1{i32 7, !"uwtable", i32 2}
14 = 1{!"clang version 17.0.6 (git@github.com:fairinternal/CodeGen.git
—+b05db9bbf7a92019267416c1bb9996fe6134e3f1)"}
'5 = {16, !'6, i64 0}
16 = t{!"int", 7, i64 0}
17 = '{!"omnipotent char", !8, i64 0}
18 = t{!"Simple C/C++ TBAA"}
</code>

The input code has instruction count 8 and binary size 65 bytes. [/INST]

Answer:

The assembly will have instruction count 2 and binary sise 53 bytes:

<code> .text
.file "-"
.globl add_two # -- Begin function add_two
.type add_two,@function
add_two: # Qadd_two
.cfi_startproc
# %bb.0:

movl %esi, Jeax
addl Yedi, Y%eax
retq
.Lfunc_endO:
.size add_two, .Lfunc_endO-add_two
.cfi_endproc
# -- End function
.ident "clang version 17.0.6 (git@github.com:fairinternal/CodeGen.git
“~—b05db9bbf7a92019267416c1bb9996fe6134e3f1)"
.section ".note.GNU-stack","",Q@progbits
.addrsig
</code>

Listing 3: Prompt used for IR — assembly compiler emulation.
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B.2 Flag tuning prompts

Prompt:

[INST] Tell me how to optimize this LLVM-IR for object file size:

<code>; ModuleID = ’<stdin>’

source_filename = "-"

target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-164:64-f80:128-n8:16:32:64-5128"
target triple = "x86_64-unknown-linux-gnu"

; Function Attrs: minsize nounwind optsize uwtable
define dso_local i32 @add_two(i32 noundef %0, i32 noundef %1) #0 {
%3 = alloca i32, align 4
%4 = alloca i32, align 4
store i32 %0, ptr %3, align 4, !tbaa !5
store i32 %1, ptr %4, align 4, !tbaa !5
%5 = load i32, ptr %3, align 4, !tbaa !5
%6 = load i32, ptr %4, align 4, !'tbaa !5
%7 = add nsw i32 %5, %6

ret i32 %7

}

attributes #0 = { minsize nounwind optsize uwtable "min-legal-vector-width"="0" "no-trapping-math"="true"
< "stack-protector-buffer-size"="8" "target-cpu"="x86-64" "target-features"="+cmov,+cx8,+fxsr,+mmx,+sse
> ,+sse2,+x87" "tune-cpu"="generic" }

'1lvm.module.flags = !{!'0, !1, !2, 13}

!1lvm.ident = !{!4}

10 = 1{i32 1, !"wchar_size", i32 4}

11 = 1{i32 8, !"PIC Level", i32 2}

12 = 1{i32 7, !'"PIE Level", i32 2}

13 = 1{i32 7, !"uwtable", i32 2}

14 = 1{!"clang version 17.0.6 (git@github.com:fairinternal/CodeGen.git
“—b05db9bbf7a92019267416c1bb9996fe6134e3f1)"}

'5 = 1{16, !'6, i64 0}

'6 = t{!"int", 7, i64 0}

17 = t{!"omnipotent char", !8, i64 0}

18 = 1{!"Simple C/C++ TBAA"}</code> [/INST]

Answer:

The code has object file size of 65 which can be reduced to 53 by running:
‘opt -p ’module(default<0z>)’¢

This will produce code:

<code>; ModuleID = ’<stdin>’

source_filename = "-"

target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-164:64-f80:128-n8:16:32:64-5128"
target triple = "x86_64-unknown-linux-gnu"

; Function Attrs: minsize mustprogress nofree norecurse nosync nounwind optsize willreturn memory (none)
~—uwtable
define dso_local i32 @add_two (i32 noundef %0, i32 noundef %1) local_unnamed_addr #0 {

%3 = add nsw i32 %1, %0

ret i32 %3
¥
attributes #0 = { minsize mustprogress nofree norecurse nosync nounwind optsize willreturn memory(none)
~—~uwtable "min-legal-vector-width"="0" "no-trapping-math"="true" "stack-protector-buffer-size"="8" "
—>target -cpu"="x86-64" "target-features"="+cmov,+cx8,+fxsr,+mmx,+sse,+sse2,+x87" "tune-cpu"="generic" }
!'1lvm.module.flags = !{!0, !1, !2, 13}
'1lvm.ident = !{!4}
10 = 1{i32 1, !"wchar_size", i32 4}
1 = 1{i32 8, !"PIC Level", i32 2}
12 = 1{i32 7, !"PIE Level", i32 2}
13 = 1{i32 7, !"uwtable", i32 2}

'4 = 1{!"clang version 17.0.6 (git@github.com:fairinternal/CodeGen.git
~—>b05db9bbf7a92019267416c1bb9996fe6134e3f1)"}</code>

Listing 4: Prompt used for flag tuning.
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Prompt:

[INST] Tell me how to optimize this LLVM-IR for object file size:

<code>; ModuleID = ’<stdin>’

source_filename = "-"

target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-164:64-f80:128-n8:16:32:64-5128"
target triple = "x86_64-unknown-linux-gnu"

; Function Attrs: minsize mustprogress nofree norecurse nosync nounwind optsize willreturn memory (none)
—uwtable
define dso_local i32 @add_two(i32 noundef %0, i32 noundef %1) local_unnamed_addr #0 {

%3 = add nsw i32 %1, %0

ret i32 %3
}
attributes #0 = { minsize mustprogress nofree norecurse nosync nounwind optsize willreturn memory (none)
~~uwtable "min-legal-vector-width"="0" "no-trapping-math"="true" "stack-protector-buffer-size"="8" "
—>target -cpu"="x86-64" "target-features"="+cmov,+cx8,+fxsr,+mmx ,+sse,+sse2,+x87" "tune-cpu"="generic" }
!'1lvm.module.flags = !{!0, !1, '2, 13}
11lvm.ident = !{!4}
10 = 1{i32 1, !"wchar_size", i32 4}
'1 = 1{i32 8, !"PIC Level", i32 2}
12 = 1{i32 7, !'"PIE Level", i32 2}
13 = 1{i32 7, !"uwtable", i32 2}

14 = 1{!"clang version 17.0.6 (git@github.com:fairinternal/CodeGen.git
—b05db9bbf7a92019267416c1bb9996fe6134e3f1)"}</code> [/INST]

Answer:

The code has object file size of 53 which cannot be reduced further

Listing 5: Prompt and answer format for flag tuning task when no improvement can be made.

Provide your answer as a list of command line options to opt version 17.0.6, using the format:
"$ opt -p ’<passes>’"

Where <passes> is a list of passes for the new pass manager, e.g. "function(dce) ,module(default<0z>),
—function(load-store-vectorizer)".

Only include the passes list. Do not include file paths or other flags such as -o. Terminate the opt
<~ command line options with a newline.

Then report the optimized code that will be produced, delimited by <code> and </code> tags.

Finally, report the binary size the code before and after optimization using the template:

"Before optimization: X bytes. After optimization: Y bytes."

Where X and Y are placeholders for integer binary sizes in bytes. Binary size is the summation of the .
<—>text and .data segment sizes of the object file generated by ‘clang-17 output.bc -c‘, as reported by

<>the ‘size‘ tool.

Include no other text in your response.

Listing 6: Additional suffix appended to flag tuning prompts when evaluating GPT-4 and CODE LLAMA - INSTRUCT. We found
that this additional context helped improve the coherence of model responses.
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B.3 Disassembly prompts

Prompt:

[INST] Disassemble this code to LLVM-IR:

<code> .text
.file "-"
.globl add_two # -- Begin function add_two
.type add_two,@function
add_two: # Qadd_two
.cfi_startproc
# %bb.0:

movl Y%edi, -4(%rsp)
movl Y%esi, -8(%rsp)
movl -4(%rsp), %eax
addl -8(%rsp), ‘%eax

retq
.Lfunc_endO:
.size add_two, .Lfunc_end0O-add_two
.cfi_endproc
# -- End function
.ident "clang version 17.0.6 (git@github.com:fairinternal/CodeGen.git
—>b05db9bbf7a92019267416c1bb9996fe6134e3£1)"
.section ".note.GNU-stack","",@progbits
.addrsig
</code> [/INST]
Answer:
<code>; ModuleID = ’<stdin>’
source_filename = "-"
target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-164:64-f80:128-n8:16:32:64-5128"
target triple = "x86_64-unknown-linux-gnu"

; Function Attrs: minsize nounwind optsize uwtable
define dso_local i32 @add_two(i32 noundef %0, i32 noundef %1) #0 {
%3 = alloca i32, align 4
%4 = alloca i32, align 4
store i32 %0, ptr %3, align 4, !tbaa !5
store i32 %1, ptr %4, align 4, !tbaa !5
%5 = load i32, ptr %3, align 4, !tbaa !5
%6 = load i32, ptr %4, align 4, !'tbaa !5
%7 = add nsw i32 %5, %6

ret i32 7
}
attributes #0 = { minsize nounwind optsize uwtable "min-legal-vector-width"="0" "no-trapping-math"="true"
— "stack-protector-buffer-size"="8" "target-cpu"="x86-64" "target-features"="+cmov,+cx8,+fxsr,+mmx,+sse
~>,+sse2,+x87" "tune-cpu"="generic" }
'1lvm.module.flags = !{!0, !1, '2, !3}
'1lvm.ident = !{14}
10 = 1{i32 1, !"wchar_size", i32 4}
'1 = 1{i32 8, !"PIC Level", i32 2}
12 = 1{i32 7, !"PIE Level", i32 2}
13 = 1{i32 7, !"uwtable", i32 2}
14 = 1{!"clang version 17.0.6 (git@github.com:fairinternal/CodeGen.git
“—b05db9bbf7a92019267416c1bb9996fe6134e3f1)"}
'5 = 1{!6, !6, i64 0}
'6 = !{!"int", !7, i64 0}
17 = t{!"omnipotent char", !8, i64 0}
18 = 1{!"Simple C/C++ TBAA"}
</code>

Listing 7: Prompt used for disassembly.

Use LLVM version 17.0.6. Provide the IR enclosed by <code> and </code> tags.

Include no other text.

Listing 8: Additional suffix appended to disassembly prompts when evaluating GPT-4 and CODE LLAMA - INSTRUCT. We found
that this additional context helped improve the coherence of model responses.
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C Optimization Passes

Table 9: List of opt 17.0.6 transformation passes used to generate data for code optimization self-training and flag-tuning tasks.

Pass Name Level ‘ Pass Name Level ‘ Pass Name Level
00 Module no-op-cgscc CGSCC Icssa Function
O1 Module inline CGSCC loop-data-prefetch Function
02 Module coro-split CGSCC loop-load-elim Function
03 Module function-attrs CGSCC loop-fusion Function
Os Module aa-eval Function loop-distribute Function
Oz Module adce Function loop-versioning Function
always-inline Module add-discriminators Function | pa-eval Function
attributor Module aggressive-instcombine Function place-safepoints Function
annotation2metadata Module assume-builder Function reassociate Function
openmp-opt Module assume-simplify Function redundant-dbg-inst-elim Function
openmp-opt-postlink Module alignment-from-assumptions Function reg2mem Function
called-value-propagation Module annotation-remarks Function scalarize-masked-mem-intrin Function
canonicalize-aliases Module bdce Function scalarizer Function
constmerge Module break-crit-edges Function separate-const-offset-from-gep Function
coro-early Module callsite-splitting Function sccp Function
coro-cleanup Module consthoist Function sink Function
cross-dso-cfi Module count-visits Function | slp-vectorizer Function
deadargelim Module constraint-elimination Function | slsr Function
elim-avail-extern Module chr Function speculative-execution Function
extract-blocks Module coro-elide Function strip-gc-relocates Function
forceattrs Module correlated-propagation Function tailcallelim Function
globalopt Module dce Function vector-combine Function
globalsplit Module dfa-jump-threading Function | tlshoist Function
hotcoldsplit Module div-rem-pairs Function declare-to-assign Function
inferattrs Module dse Function early-cse Function
inliner-wrapper Module fix-irreducible Function | ee-instrument Function
inliner-wrapper-no-mandatory-first Module flattencfg Function hardware-loops Function
iroutliner Module make-guards-explicit Function | lower-matrix-intrinsics Function
lower-global-dtors Module gvn-hoist Function loop-unroll Function
lower-ifunc Module gvn-sink Function simplifycfg Function
lowertypetests Module infer-address-spaces Function loop-vectorize Function
mergefunc Module instcombine Function instcombine Function
name-anon-globals Module instsimplify Function mldst-motion Function
partial-inliner Module irce Function gvn Function
recompute-globalsaa Module float2int Function sroa Function
rel-lookup-table-converter Module libcalls-shrinkwrap Function loop-flatten Loop
rewrite-statepoints-for-gc Module inject-tli-mappings Function loop-interchange Loop
rewrite-symbols Module instnamer Function loop-unroll-and-jam Loop
rpo-function-attrs Module lower-expect Function canon-freeze Loop
scc-oz-module-inliner Module lower-guard-intrinsic Function loop-idiom Loop
strip Module lower-constant-intrinsics Function loop-instsimplify Loop
strip-dead-debug-info Module lower-widenable-condition Function loop-deletion Loop
strip-dead-prototypes Module guard-widening Function loop-simplifycfg Loop
strip-debug-declare Module load-store-vectorizer Function loop-reduce Loop
strip-nondebug Module loop-simplify Function | indvars Loop
strip-nonlinetable-debuginfo Module loop-sink Function loop-unroll-full Loop
synthetic-counts-propagation Module lowerswitch Function loop-predication Loop
wholeprogramdevirt Module mem?2reg Function guard-widening Loop
module-inline Module memcpyopt Function loop-bound-split Loop
pseudo-probe-update Module mergeicmps Function loop-reroll Loop
globaldce Module mergereturn Function loop-versioning-licm Loop
ipscecp Module move-auto-init Function simple-loop-unswitch Loop
embed-bitcode Module nary-reassociate Function loop-rotate Loop
argpromotion CGSCC newgvn Function licm LoopMssa
attributor-cgscc CGSCC jump-threading Function Inicm LoopMssa
openmp-opt-cgsce CGSCC partially-inline-libcalls Function

28



Frequency

8 9 10 11 12 13 14 15 16

Pacc lict lanath

Figure 9: Length of autotuned pass lists.

29

17 18

19 20 21

22

23 24 25



iroutliner
[o}8
oz

jump-t threadmg
ributor

g
simplifycfg
scc-oz moduleinliner

S
attributor-c SCC
instcombine
mergefunc
newgvn

tailcallelim
regzmem

looj tate
load-store vectorizer
globalopt

03

sink

globaldce

early-cse

elim-avaiexter

constmerge

breakcnt edges

inliner-wrapper

yopt

slp-vectorizer
separate-const-offset-from-g

loop-reduce

o)
3

reassociate
inliner-wrapper-no-mandatory-first
inline

module-inline

ipsccp

gun-hoist

rgpromotion

currelated pmpagauon
function-attrs

vars
implify
specu\atlve executmn

pllfycfg

vettnr combine

fix-irreducible
nstcombine
scalarizer

deadargelim
constraint- ellmlnatlon

midst-motion
consthoist

irce
flattencfg
lower-expect
sccp
div-rem-pairs
nary-reassociate
bdce
artial-inliner

P
loop-instsimplify
o0p-deletion

lo0p-fusion
cans.te -splitting
-simplity

loop-unroll
op-load-elim
Je-loop-unswitch
lower-constant-intrinsics
00

icmps

Joop-vectorize

1o0p-unroll-full

ways-inline

canonicalize-aliases

strip-noniinetable-gebuginto

t2int

cross-dso-cfi

pa-eval

partially-inline-libcalls

rip

loop-flatten

scalarize-masked-mem-intrin
p-opt-Cy

ada- msmmmamrs

ro-elide

pseudo- probe-update

ip-debug-declare
alignment.from-assamptions
name-anon-globals
coro-cleanup
called-value-propagation
loop-reroll

loop-idiom

0-early

strip-dead-debug-info
synthetic-counts-propagation
loop-data-prefetch

t tion-remarks
rel-lookup-table-converter
‘openmp-opt

assume-builder
embed-bitcode

lower-guard-intrinsic
wer-func

lower-widensle condition
uard-widening

rpo- fun(tlon -attrs
lowertypetests

recomuute globalsaa
hardware-loops
inject-tli-mappings
openmp-opt-postlink
loop-versioning-licm
strip- nondebug

libcalls- shrmkwrap

rceattrs

mcve aulc -init

-instrument

make-guards-expicit
assume-simpli

redundant-dbg-inst-elim

Ishoist

strip-dead-prototypes
Sink

dfa-jump- threadmg

lower- mamx intrinsics
write-symbols
fobalsplit
loop-unroll-an
rewrite- statepomts ~for- gc
lace- safepomts
mer
split
loop-t bound -split
unt-visits
infer-address-spaces
wholeprogramdevirt
strip-gc-relocates
declare-to-assign
-0p-Cgscc
loop-interchange
extract-blocks
Inicm

10° 10°
Frequency (log)

Figure 10: The frequency of passes in the best pass lists generated by the autotuner on our training programs.
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D Benchmarks

Table 10: MiBench benchmarks used for flag tuning task evaluation.

Without split With split
Binary size  Translation units Truncated prompts Translation units Truncated prompts

adpcm 816.7 kB 2 2

basicmath 931.7 kB 4 4

bitcount 821.1 kB 8 8

blowfish 830.6 kB 7 3 (43%) 7 2 (29%)
cre32 818.4 kB 1 1

dijkstra 946.0 kB 1 1

fft 844.8 kB 3 3

ghostscript 1.9 MB 296 222 (75%) 1,052 162 (15%)
gsm 58.8 kB 23 12 (52%) 37 10 (27%)
ispell 91.5 kB 12 8 (67%) 39 6 (15%)
jpeg_c 112.5 kB 54 39 (72%) 170 22 (13%)
jpeg_d 151.7 kB 54 39 (72%) 164 18 (11%)
lame 289.2 kB 32 22 (69%) 92 24 (26%)
patricia 949.3 kB 2 1 (50%) 3

qsort 944.3 kB 1 1

rsynth 151.4 kB 19 10 (53%) 27 3 (11%)
sha 5.3 kB 2 1 (50%) 3

stringsearch 821.5 kB 4 4

susan 911.4 kB 1 1 (100%) 13 7 (54%)
tiff2bw 442.1 kB 34 19 (56%) 134 24 (18%)
tiff2rgba 492.7 kB 34 19 (56%) 134 23 (17%)
tiffdither 441.2 kB 34 19 (56%) 133 23 (17%)
tiffmedian 453.0 kB 34 19 (56%) 139 26 (19%)
typeset 2.0 MB 51 43 (84%) 227 89 (39%)
Total 713 477 (67%) 2,398 439 (18%)
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Table 11: MiBench benchmarks used for disassembly task evaluation.

Translation units Truncated prompts

adpcm 3

basicmath 2

bitcount 8

blowfish 3

crc32 1

dijkstra 2

fft 1

ghostscript 1,264 2
gsm 35

ispell 45

jpeg_c 24

jpeg_d 177

lame 87 1
patricia 3

qsort 1

rsynth 33 1
sha 3

stringsearch 5

susan 7

tiff2bw 3

tiff2rgba 5

tiffdither 2

tiffmedian 158

typeset 143

Total 2015 4
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E Model card

Model details

Model Developers

Meta Al

LLM COMPILER comes in two model sizes: 7B and 13B parameters. Both variations

Variations have been trained on the same data. LLM COMPILER FTD, available in the same sizes,
extends these with further training.

Input Models input text only.

Output Models output text only.

Model Architecture

LLM COMPILER and its variants are autoregressive language models using optimized
transformer architectures. All models were fine-tuned with up to 16K tokens.

Model Dates

LLM CoMPILER and its variants have been trained between January and May 2024.

Status

This is a static model trained on an offline dataset.

Licence

Where to send com-
ments

A custom commercial license is available at: ai.meta.com/resources/
models-and-libraries/llama-downloads/.

Instructions on how to provide feedback or comments on the model can be found
in the model README, or by opening an issue in the GitHub repository (https;

//github.com/facebookresearch/llmcompiler/).

Intended Use

Intended Use Cases

LLM CoOMPILER and its variants are intended for commercial and research use in English
and relevant programming languages. The foundation model LLM COMPILER can be
adapted for a variety of code optimization and understanding tasks.

Out-of-Scope Uses

Use in any manner that violates applicable laws or regulations (including trade compliance
laws). Use in languages other than English. Use in any other way that is prohibited by
the Acceptable Use Policy and Licensing Agreement for LLM COMPILER and its variants.

Hardware and Software

Training Factors

We used custom training libraries. The training and fine-tuning of the released models
have been performed on Meta’s Research Super Cluster.

Carbon Footprint

In aggregate, training all 4 LLM COMPILER models required 264K GPU hours of
computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total
emissions were 64.12 tCO2eq, 100% of which were offset by Meta’s sustainability program.

Training Data

All experiments reported here and the released models have been trained and fine-tuned using the same data as
CODE LLaMA with different weights (see Section [2] and Table [1)).

Evaluation Results

See evaluations for the main models and detailed ablations Section |5l

Ethical Considerations and Limitations

LLM COMPILER and its variants are a new technology that carries risks with use. Testing conducted to date
has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all
LLMs, LLM COMPILER ’s potential outputs cannot be predicted in advance, and the model may in some
instances produce inaccurate or objectionable responses to user prompts. Therefore, before deploying any
applications of LLM COMPILER, developers should perform safety testing and tuning tailored to their specific
applications of the model. Please see the Responsible Use Guide available available at https://ai.meta.com/
llama/responsible-user-guide.

Table 12: Model card (Mitchell et al., |2019) for LLM CoMPILER and LLM CoMPILER FTD.
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