
Microsoft® Windows
Software Development Kit

Programming 'Ibols

Version2.0

Microsoft Corporation

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software
described in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. The purchaser may make one copy of the software for backup
purposes. No part of this manual may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying and recording, for
any purpose other than the purchaser's personal use without the written permis­
sion of Microsoft Corporation.

c Copyright Microsoft Corporation,�., 1987. All rights reserved.
Simultaneously published in the U.;::, . and Canada.

Microsoft®, the Microsoft logo, and MS-DOS® are registered trademarks of
Microsoft Corporation.

Document No. 050051051-200-101-1087
Part No. 00476

Contents

1 Introduction 1

1 . 1 About This Guide 3
1 .2 Notational Conventions 4

DOS Tools 7

2 Cl, Pascal,
and the Macro Assembler g

2. 1 Introduction 1 1
2 . 2 C-Language Applications 11
2 .3 Pascal-Language Applications 20
2.4 Assembly-Language Applications 20

3 Resource Compiler: Rc

3 . 1 Introduction 25

23

3 .2 Building the Resource Script File 25
3 .3 Compiling Resources 28
3 .4 Single-Line Statements 30
3 . 5 User-Defined Resources 32
3 . 6 RCDATA Statement 33
3 . 7 STRINGTABLE Statement 34
3.8 ACCELERATORS Statement 35
3.9 11ENU Statement 36
3 . 10 DIALOG Statement 40
3 . 1 1 Directives 65

4 Windows Linker: Link4 71

4. 1 Introduction 73
4.2 Creating Module-Definition Files 73
4 .3 Module-Definition Statements 75
4 .4 Linking an Application 85
4.5 Creating Import Libraries 88
4.6 Examining Executable File Headers 89

iii

Contents

5 Symbolic Debugging Utility:
Symdeb 01

5.1 Introduction 95
5 .2 Preparing Symbol Files 96
5 .3 Setting Up the Debugging Terminal 98
5 .4 Starting Symdeb with Windows 100
5 .5 Working with Symbol Maps 104
5 . 6 Starting the Application 107
5.7 Allocation Messages 107
5.8 Quitting Symdeb 1 10
5 .9 Symdeb Commands 1 10

6 A Program Maintainer:
Make 130

6 . 1 Introduction 141
6 .2 Using Make 141
6 .3 Maintaining a Program: an Example 149

7 Assembly-Language Macros 151

7.1 Introduction 153
7 .2 CMACROS.INC File 153
7 . 3 Cmacros Options 153
7.4 Segment Macros 156
7 .5 Using the Cmacros 173

Application Development Tools 177

8 Icon Editor 170

iv

8 . 1 Introduction 181
8 .2 Starting Icon Editor 181
8 .3 Drawing in the Drawing Box 183
8 .4 Starting a New Drawing 183
8 .5 Changing the Pen Color 185
8 . 6 Changing the Pen Size 1 86
8 . 7 Setting the Hotspot 187
8 .8 Changing the Background Color 188
8.9 Displaying the Drawing Grid 188
8 . 10 Opening an Existing

Icon, Cursor, or Bitmap File 188
8 . 1 1 Saving Files 190
8 . 12 Using the Edit Menu 190

9 Font Editor 193

9. 1 Introduction 195
9.2 Starting Font Editor 195
9.3 Opening a Font File 195
9.4 Font Editor Features 197
9 .5 Selecting a Character to Edit 198
9. 6 Changing Pixels in a Character 199
9.7 Canceling Changes to a Character 199
9.8 Changing a Character's Width 200
9.9 Copying a Row of Pixels 200
9. 10 Deleting a Row of Pixels 201
9. 1 1 Copying a Column of Pixels 201
9. 12 Deleting a Column of Pixels 202
9. 13 Clearing the Character Window 203
9. 14 Filling the Character Window

with a Solid Block 203
9. 15 Filling the Character Window

with a Hatched Pattern 204
9. 1 6 Inverting the Character Window 204
9. 17 Reversing the Character Window 205
9 . 18 Copying or Pasting

in the Character Window 205
9. 19 Undoing a Change 206
9.20 Saving Changes to a Character 206
9.21 Resizing the Font 207
9.22 Changing a Font File's

Header Information 209
9.23 Saving a Font File 2 1 1
9.24 Editing Tips 212

10 Dialog Editor 213

10. 1 Introduction 215
10 .2 Starting Dialog Editor 216
10 . 3 Using the Size Window 217
10 .4 Creating a Dialog Box 218
10 .5 Adding and Deleting Controls 219
10 .6 Changing Control Styles

and Memory-Manager Flags 223
10 .7 Defining User Access to Controls 227
10 .8 Modifying a Dialog Box 231
10 .9 Using the Edit Menu 232
10 . 10 Using Files with Dialog Editor 233
10 . 1 1 Saving a Dialog Box 235

Contents

v

Contents

11 Shaker and Heapwalker 237

11.1 Introduction 239
1 1 .2 Testing Movable Memory: Shaker 239
1 1 . 3 Viewing the Global Heap : Heapwalker 241

Appendixes 245

A Diagnostic Messages 24 7

B C Run-time Functions 249

vi

Figures

Figure 8 . 1 Icon Editor Window 182

Figure 8 . 2

Figure 8 .3

Figure 8 .4

Figure 9. 1

Figure 10 . 1

The New Figure Dialog Box 184

Open File Dialog Box 189

Save As Dialog Box 190

Font Editor Window 197

Dialog Editor Window 216

Figure 10 . 2 Size Window 217

Figure 10 .3 Outline of a Dialog Box 219

Figure 10 .4 Pointer Position for Moving a Group of Controls 222

Figure 10.5 Button Control Styles Dialog Box 224

Figure 10 .6 Standard Styles Dialog Box 225

Figure 10 .7 Resource Properties Dialog Box 227

Figure 10 .8 Group/Control Ordering Dialog Box 228

Figure 10.9 View Include Dialog Box 234

Figure 1 1 . 1 Shaker Window with Show State On 240

Figure 1 1 . 2 Heapwalker Window after Walk Command 244

vii

Tables

Table 3 . 1 Window Styles 44

Table 3 .2 Control Classes 59

Table 3 . 3 Control Styles 60

Table 5 . 1 Symdeb Commands 1 10

Table 5.2 Flag Values 1 15

Table 5 .3 Unary Operators 1 17

Table 5 .4 Binary Operators 117

Table 7.1 Memory Options 154

Table 7 .2 Calling Conventions 155

Table 7 .3 Prolog/Epilog Code Options 156

Table 11.1 Shaker Commands 239

Table 11.2 Heapwalker Commands 241

Table A. 1 Diagnostic Messages 247

Table B.1 C Run-time Functions 249

viii

Chapter 1
Introduction

1 . 1 About This Guide 3

1 .2 Notational Conventions 4

1

Introduction

1.1 About This Guide

Microsoft Windows Programming Tools is divided into two parts: "DOS
Tools" and "Application Development Tools ." The "DOS Tools" section
describes programs that perform such actions as compiling and linking
your application's source code and debugging and maintaining application
files. Some of these programs can be run from Windows, but unlike the
Windows development applications, the DOS tools use command lines and
parameters for input . "DOS Tools" includes descriptions of the following
programming tools :

Program

cl

masm

rc

link4

symdeb

make

cmacros

Description

Compiles C-language application source files.

Assembles assembly-language application
source files.

Compiles application resource files.

Links the compiled source files for applications.

Debugs applications.

Maintains assembly- and high-level language pro­
grams.

Creates assembly-language Windows applications that
are compatible with C and Pascal Windows applica­
tions.

Application development tools are used just like other Windows applica­
tions. They have menus with commands that can be chosen, and they have
dialog boxes for input. The "Application Development Tools" section
describes the following programming applications:

Application

Font Editor

Icon Editor

Dialog Editor

Shaker

Heapwalker

Description

Creates fonts for applications.

Creates cursors, icons, and bitmaps for
applications.

Creates dialog boxes for applications.

Shows the effect of memory movement on
applications.

Opens the global heap for examination .

3

Microsoft Windows Programming Tools

1.2 Notational Conventions

The following notational conventions are used throughout this manual:

Convention

bold

italic

[double brackets]

ellipses . . .

4

Description

Bold type is used to indicate commands, func­
tions, statements, directives, options, macros,
registers, data types, structures, and keywords,
which must be used exactly as shown. In the fol­
lowing example, -c, -AS, -Gsw, -Os, and -Zdp
are options of the cl command:

cl-c -AS -Gsw -Os -Zdp test.c

Italic is used for placeholders--descriptive names
that represent parameters, fields, or variables
that the programmer must supply . In the follow­
ing example, text and optionl£st are fields which
must be supplied with specific data that will be
passed to the POPUP statement :

POPUP text optionlist

Double brackets enclose optional fields or param­
eters in syntax statements. In the following exam­
ple, option and executable-file are optional param­
eters of the rc command:

r c [option] filename [executable-file]

Ellipses following an item indicate that more
items that have the same form may appear .
Ellipses may be horizontal or vertical . In the fol­
lowing example, the ellipses at the end indicate
that more than one breakaddress may be specified
for the g command:

g [=startaddress] [breakaddress] . . .

In the following example, the ellipses between the
lines indicate that intervening program lines
occur but are not shown:

acctablename ACCELERATORS
BEGIN �

event, idvalue, [type] [NOINVERT] [SHIFT] [CONTROL]

END

CONTROL+C

Introduction

Keynarnes appear in small capital letters. A plus
sign (+) is used to indicate key combinations . A
key combination requires that you press and hold
down the first key and then press the next key(s) .

5

DOS Tools

2 Cc, Pascal, and the Macro Assembler

3 Resource Compiler: Rc 23
4 Windows Linker: Link4 71
5 Symbolic Debugging Utility: Symdeb 91

6 A Program :Maintainer: :Make 139

7 Assembly-Language :Macros 151

7

Chapter 2
Cl, Pascal,
and the Macro Assembler

2 .1 Introduction 11

2.2 C-Language Applications 1 1

2.2. 1 Small- , Medium-, Compact- ,
and Large-Model Applications 12

2.2.2 Pascal Calling Conventions 13
2.2.3 The WinMain Function 13
2.2.4 Callback Functions 13

2.2 .5 Compiling Windows Application 14

2.2 .6 Segment Names 14

2.2.7 Stack Probes 15

2.2.8 Optimizing for Size 15

2.2.9 Source-Level Debugging 15
2.2 . 10 Packed Structures 15

2.2. 11 Windows and C-Language Libraries 16

2.2.12 Environment and Call Arguments 16

2.2. 13 C Run-time Functions 17
2.2.14 Floating-Point Support 17
2.2. 14. 1 Coprocessor/Emulator :Math Option 18
2.2. 14.2 Alternate :Math Option 18
2.2. 15 Windows Libraries 19

2.3 Pascal-Language Applications 20

2.4 Assembly-Language Applications 20

g

Cl, Pascal, and the Macro Assembler

2 . 1 Introduction

A complete application for the Microsoft Windows presentation manager
begins with the application's program and resource source files. You can
write Windows applications in C, Pascal, or assembly language . You can
add resources for an application, such as icons, cursors, menus, and dialog
boxes, by using the Windows resource compiler (rc) described in Chapter
3 , "Resource Compiler: Rc ."

To create a Windows application, you must follow these steps:

1 . Use a text editor to create your application 's C , Pascal , or
assembly-language source files.

2 . Compile your source files.

• Use the Microsoft C Compiler to compile any application
source files written in C.

• Use the Microsoft Pascal Compiler to compile any application
source files written in Pascal .

• Use the Microsoft Macro Assembler to assemble any application
source files written in assembly language .

3 . Use the development utilities Icon Editor, Font Editor, and Dialog
Editor to create resources for your application .

4. Use a text editor to create a resource script file that lists (or
defines) the resources. The resource script file is described in
Chapter 3, "Resource Compiler: Rc . "

5. Use the Windows resource compiler (rc) to compile your
application 's resource script file.

Once you have completed these steps, you are ready to create a module­
definition file for your application and to link it. Linking is described in
Chapter 4, "Windows Linker: Link4."

This chapter explains how to create source files for Windows applications
and how to compile or assemble them.

2 . 2 C-Language Applications

C-language Windows applications are ordinary C-language programs that
use Windows functions, data types, and programming conventions . You
compile C-language Windows programs using the Microsoft C Compiler
and the cl command. All C-language Windows applications must include
the wz'ndows.h file, which contains definitions for all Windows functions,

11

Microsoft Windows Programming Tools

data types, and constants. To include the file, use the # include directive
at the beginning of each source file.

Example

#inc lude "windows . h"

2.2.1 Small- , Medium-, Compact-,
and Large-Model Applications

Windows applications can use the small, medium, compact, or large pro­
gramming model . You choose a programming model by supplying an
appropriate option when you compile the application source files. You base
your choice on your application 's need for data and code . The following
list describes each programming model and names the compiler option
used to generate that model:

Model

Small

Medium

Compact

Large

Description

This application has one code segment and one data
segment . Small-model applications are usually small
applications that cannot be divided easily into
separate code segments. Use the -AS option, if
desired . (The option is not really needed, since the
compiler generates small-model applications by
default .)
This application can have several code segments, but
only one data segment. Medium-model applications
are large applications that swap code segments to con­
serve memory. Use the -AM option .

This application can have several data segments, but
only one code segment. Compact-model applications
typically have a large number of data and a small
number of program statements. Use the -AC option.

This application can have several code and data seg­
ments. A typical large-model application is a large C
program that uses more than 64 kilobytes of data
storage . Use the -AL option .

Windows requires that all data segments of compact- and large-model
applications be fixed . This means that the following statement must be in
the module-definition file of any compact- or large-model application:

DATA FIXED

12

CI, Pa.sca.l, a.nd the Macro Assembler

See Chapter 4, "Windows Linker: Link4," for information about the
module-definition file .

2.2.2 Pascal Calling Conventions

Windows uses the Pascal calling conventions. Therefore, all functions
within an application that can be called by Windows must be defined with
the pascal keyword . The pascal keyword ensures that the C function
accesses arguments correctly. Functions that can be called by Windows are
the WinMain function, the application 's window functions, and all call­
back functions that an application passes to Windows.

2 .2.3 The WinMain Function

All C-language Windows applications must define a WinMain function .
This function is the entry point , or starting point , for the application . It
contains statements and Windows function calls that create windows and
read and dispatch input intended for the application . The function
definition has the following form:

int PASCAL WinMain (hinstance , hPrevinstance , lpCmdLine , nCmdShow)
HANDLE hinstance ;
HANDLE hPrevinstance ;
LPSTR lpCmdLine ;
int nCmdShow ;
{

}

The WinMain function must be declared with the pascal keyword .
Although Windows calls the function directly, WinMain must not be
defined with the far keyword .

2.2.4 Callback Functions

Callback functions are functions in an application that Windows calls in
order to carry out specific tasks. An example is a window function that
processes messages for an application's windows.

Windows expects callback functions to use the Pascal calling conventions,
so the function must be defined with the pascal keyword . Windows also
uses far function calls to access callback functions. This means that call­
back functions in small- and compact-model Windows applications must
be defined with the far keyword to ensure that the function uses a correct
return address. The following example shows the form of a callback func­
tion :

13

Microsoft Windows Programming Tools

l ong FAR PASCAL Hel l oWndProc (hWnd , message , wParam , lParam)
HWND hWnd ;
unsigned message ;
WORD wParam ;
LONG lParam;
{

}

Callback functions require special code at their beginnings and ends. This
code, called the Windows prolog and epilog, ensures that the correct data
segment is used by the function when it executes. To make sure the Win­
dows prolog and epilog are provided, you must use the -Gw option with
the cl command when you compile any application source files containing
functions that can be called with Windows.

All callback functions must be listed in the EXPORTS statement of the
application 's module-definition file. This identifies the function as a call­
back and permits Windows to insert the proper data-segment address in
the function 's prolog when it loads the application .

Local functions (functions used exclusively by the application and not
called by Windows) do not require the Windows pro log and epilog, and
can use the ordinary C calling conventions.

2.2.5 Compiling Windows Application

You compile Windows application source files by using the cl command.
Since the object files generated by cl must be linked with the Windows
linker (link4), you should use the -c option to prevent cl from attempting
to create a fife that is not executable under Windows. You should give
other options, such as those specifying programming model, packed struc­
tures, and Windows prolog and epilog, when the code to be generated
requires these features.

Example

c l -c -AS -Gsw -Os -Zdp test . c

In this example , the source file test. c is compiled using the recommended
cl options for a small-model Windows application source file .

2.2.6 Segment Names

When compiling medium- , compact- , and large-model source files for
Windows applications, you must specify the name of the code and data

14

Cl, Pascal, and the Macro Assembler

segments to which the given source belongs . You specify the name by
using the -NT and -ND options. If the options are not used, the C com­
piler assumes that the source belongs to the standard code and data seg­
ments,_ TEXT and _DATA.

2.2.7 Stack Probes

Unless the -Gs option is given, the C compiler inserts a stack probe in
each function . A stack probe is code that checks the stack to make sure
that it has sufficient space for the local variables declared within the func­
tion . If the stack would overflow, the code calls the FatalExit function
and terminates Windows. Stack probes can be used in Windows applica­
tions and libraries . Since libraries use the stack of the caller, a stack probe
in a library function checks the caller's stack .

2.2.8 Optimizing for Size

By default, the C compiler optimizes for program speed as it compiles the
application sources. Since Windows is a multitasking environment and the
size of an application affects the number of applications that can run at a
given time, it is better to optimize for size, so you should use the -Os
option to direct the compiler to optimize for code size instead of speed .
If you don ' t want optimizing, use the -Od option .

2.2.9 Source-Level Debugging

Windows applications written in C are easier to debug if line-number
information is added to the object file. Line-number information can be
used by the symbolic debugging utility (symdeb) to display program lines
from the source file when debugging an application . (For more information
on symdeb, see Chapter 5, "Symbolic Debugging Utility: Symdeb . ") To
add line-number information, use the -Zd option .

2.2.10 Packed Structures

All Windows functions that use structures use packed structures. A
packed structure is any structure in which the extra bytes typically used
by the C compiler for padding have been removed . Windows applications
that use structures with Windows must use the -Zp option to direct the
compiler to pack bytes in the structures.

15

Microsoft Windows Programming Tools

2 .2.11 Windows and C-Language Libraries

Mter your application sources have been compiled, you must link the
object files with the appropriate C-language libraries for Windows and
C run-time libraries. The C-language libraries for Windows, slibw. lib,
mlibw. lib, clibw. lib, and llibw. lib-contain code for the Windows application
startup routines and references for the Windows functions . The C run­
time libraries-slibc . lib, mlibc. lib, clibc. lib, and llibc. lib-contain code for
routines called by the Windows startup routines and for any C run-time
functions used by the application . Which C-language libraries you link
with depends on your application 's programming model. For example, a
small-model application must be linked with the small-model library
slibw. lib. Although you must use the Windows linker, link4, to link your
application, the C compiler adds default library information to your
application 's object files, so the only library you need to specify in the
link4 command line is the appropriate C-language library for Windows.
For more information about linking, see Chapter 4, "Windows Linker:
Link4. " You need an additional library, win87em. lib, when you use the
coprocessor/ emulator floating-point option .

�.2.12 Environment and Call Arguments

The startup routines for Windows applications use the _ setargv and
_ setenvp functions to copy your application's command-line arguments
and the current values of the system's variables to the _ _ argc, _ _ argv,
and environ variables . These variables can be used by any application
when you supply the following definitions in the application source:

int _ argc ;
char * __ argv [] ;
char *environ ;

The __ argc, __ argv, and environ variables actually occupy space in
your application 's data segment. If your application does not refer to these
variables, you can prevent _ setargv and _ setenvp from allocating this
space by defining the following functions in your application :

void near _setargv () { }
void near _setenvp () { }

These functions must belong to your application 's-TEXT segment (the
default code segment if the -NT option is not given in the cl command
line) .

16

Cl, Pascal, and the Macro Assembler

Mter using the __ argc, __ argv , and environ variables, an application
can reclaim the space occupied by the variables by using the following
statements:

environ = free (environ) ;
__ argv = free (__ argv) ;
__ argc = 0;

All Windows applications receive a pointer to the environment allocated
for the initial load of win200. bin. This means that the _ _ argv [O] value
always points to a string that contains win200. bin as the filename of the
program being run .

2 .2.13 C Run-time Functions

Windows applications can call C run-time functions to carry out tasks
such as memory allocation and file input and output. However, since the
C run-time library was developed for programs running under DOS, not
Windows, there are some restrictions.

Windows applications can use any input or output function that does not
access the system display or keyboard. Input and output functions such as
fread, fwrite, fclose, fprintf, fscanf, and fgets can be used to read from
and write to disk files, but should not be used to access the keyboard,
system display, or communications ports. Functions that access the stan­
dard input and output files, such as printf and gets, should not be used .
Although you can use the C run-time input and output functions, a better
solution is to develop assembly-language routines that provide raw block
input and output through DOS system calls . No matter how an applica­
tion accesses disk files, it must not keep disk files open for long periods of
time, and must be sure to close a disk file before relinquishing control to
another application .

Although Windows applications can call C run-time memory-allocation
functions, such as malloc and calloc, the linker replaces these calls with
appropriate calls to Windows memory-management functions, such as
LocaWloc. Windows memory-management functions are similar but not
identical to the C run-time functions, so care must be taken when using
the C run-time functions in your applications .

2.2 .14 Floating-Point Support

C-language Windows applications that use floating-point variables must
specify a particular floating-point option during compilation and must
give additional library names on the link4 command line . The examples
in the following sections apply to small applications (-AS), but you can

17

Microsoft Windows Programming Tools

adapt them to the other programming models by changing the initial "s"
in certain library names to "c" , "m" , or "l" , as appropriate . See the M£cro­
soft C Compiler User's Guide for more information about the different
floating-point libraries and options . (Note that the libraries w£n87em. l£b
and w£n87em. exe take the place of em. l£b and 87. l£b, which are used in the
DOS environment .)

2.2.14.1 Coprocessor /Emulator Math Option

You can choose the coprocessor/emulator math option by specifying -FPi
and -FPc on the compiler command line and by linking with slibfw. lib and
w£n87em. l£b on the link4 command line .

Example

c l -c -FPi -AS -Gsw -Os -Zpe sample . c
l ink4 samp l e , /al ign:l6 , /map , win87em s l ibw , sample.de f:

If you link the application with win87em. lib, you can run the application
either with or without a numeric coprocessor {8087/80827 /80387). If there
is a coprocessor present, the application uses it; if there is no coprocessor
present, the application 's floating-point emulator simulates the operation
of the coprocessor . To use the coprocessor/emulator option, you must
have the dynamic- link library win87em. exe either in the current directory
or along the executable search path when the application is loaded. (The
application developer should distribute the win87em. exe library with appli­
cations that use it .) This is a fast option when there is a coprocessor avail­
able .

2.2.14.2 Alternate Math Option

You can choose the alternate math option by specifying -FPa on the
compiler command line and by linking with slibw. lib on the link4 com­
mand line.

Example

c l -c -FPa -AS -Gsw -Os -Zpe sample . c
l ink4 samp l e , ja l ign : l6 , /map, s l ibw , sample . de f ;

This option does not use the coprocessor to perform floating-point opera­
tions. It is faster than the emulator when no coprocessor is present, but
slower than the coprocessor math option when the coprocessor is present .

18

Cl, Pascal, and the Macro Assembler

2.2.15 "Windows Libraries

Windows libraries written in C have slightly different requirements than
do Windows applications written in C. Unlike Windows applications, Win­
dows libraries are not executable programs; that is, although a library is
loaded, it does not run . Instead , the code in a library is made available to
all applications that need to use it, and an application can execute a por­
tion of the library by calling one of the exported functions in the library.
Since a Windows library is not a program, it must not have a WinMain
function . No entry point is required unless the library must carry out some
initial task such as initializing a local heap. If an entry point is required,
the library must define its own . Information about the entry point and the
parameters passed to it can be found in the Mz"crosoft Windows Program­
mer 's L earning Guide.

Exported functions in Windows libraries must have the same attributes as
callback functions in Windows applications. The function must use the far
keyword . Although the Pascal calling convention is optional, it is strongly
recommended in order to remain consistent with the Windows interface.
Exported functions must have the Windows prolog and epilog, so the -Gw
option is required . Exported functions must be listed in the library's
module-definition file .

Since Windows libraries do not use the same startup routine, they should
be linked with the C-language libraries for Windows libraries (swinlibc. l£b,
mwinlibc. lib, cwinlibc. lib, and lwinlibc. lib) instead of the libraries for Win­
dows applications. These libraries contain references to the Windows ker­
nel functions and to the C run-time functions only . It is assumed that a
Windows library does not require access to Windows user or GDI func­
tions. If a library does require access to those functions, it can be linked
with slibw. lib, mlibw. lib, clibw. lib, or llibw.lib, as appropriate; however, this
library must be specified after the corresponding winlibc. lib file on the
link4 command line.

Windows libraries always use the stack of the calling application for
parameters and local variables. This means that the values of the d8 and
88 registers are not equal when the library is executed . Since the C com­
piler generates code that assumes that the ds and ss registers are equal,
Windows libraries may fail unless compiled with the -Aw option . This
option directs the compiler to generate code that does not assume that the
registers are equal . The following example shows the recommended options
for compiling Windows libraries:

cl -c -Aw -As -An -Os -Zdp testlib.c

In this example, the -As and -An options are used to complete the pro­
gramming model specification, since the -AS option cannot be used with
the -Aw option .

19

Microsoft Windows Programming Tools

Code sharing also restricts which C run-time functions a library can use .
Windows libraries must not call C run-time functions that assume that ds
and ss are equal . Appendix B, "C Run-time Functions," contains a list of
functions that indicates which functions can and cannot be used by Win­
dows libraries.

Since Windows libraries use the stack of the caller and cannot determine
the size of that stack, functions should not declare exceptionally large
local variables. Large variables should be declared as static variables
within the library's own data segment.

To avoid problems in Windows libraries that use pointers, either by gen­
erating their own or by receiving them from applications, you should use
the following guidelines:

• Always cast pointers to full 32-bit segment:offset addresses. The
windows.h file contains a variety of type definitions that can be
used to cast pointers .

• Use the -Aw option when you compile to ensure that pointers
receive their proper segment address when cast to 32-bit addresses.

• Make sure functions that receive pointers from an application or
from other functions within the library receive long pointers .

2.3 Pascal-Language Applications

Pascal- language Windows applications are ordinary Pascal- language pro­
grams that use Windows functions, data types, and programming conven­
tions. You compile Pascal- language Windows programs using the Micro­
soft Pascal Compiler.

For information on using Pascal-language Windows applications, see the
Microsoft Pascal Compiler Version ..f..O Update.

2 .4 Assembly-Language Applications

Assembly- language Windows applications are highly structured assembly­
language programs that use high-level-language calling conventions as
well as Windows functions, data types, and programming conventions .
Although you assemble assembly-language Windows programs using the
Microsoft Macro Assembler, the goal is to generate object files that are
similar to object files generated using the C compiler. The following is a
list of guidelines designed to help you meet this goal and create assembly­
language Windows applications:

20

01, Pascal, and the Macro Assembler

1. Include the cmacros. inc file in the application source files. This file
contains high-level- language macros that define the segments, pro­
gramming models, function interfaces, and data types needed to
create Windows applications. For a complete description of the C
macros, see Chapter 7, "Assembly-Language Macros. "

2 . Define the programming model, setting one of the options memS,
memM, memC, or memL to 1. This option must be set before
you specify the statement that includes the cmacros. inc file .

3 . Set the calling convention to Pascal by setting the ?PLM option
to 1. This option must be set before you specify the statement
that includes the cmacros. inc file. Pascal calling conventions are
required only for functions that are called by Windows.

4 . Create the application entry point, WinMain, and make sure that
it is declared a public function . It should have the following form:

cProc WinMain , <PUBLIC> , <si , di>
parmW hinstance
parmW hPrevinstance
parmD lpCmdLine
parmW nCmdShow

cBegin WinMain

cEnd WinMain

sEnd

The WinMain function should be defined within the standard
code segment CODE.

5. Set the Windows prolog and epilog option ?WIN to 1 . This option
must be set before you specify the statement that includes the
cmacros. inc file . This option is required only for callback functions
(or for exported functions in Windows libraries) .

6 . Make sure that your callback functions are declared

cProc TestWndProc , <FAR , PUBLIC> , <si , di>
parmW hWnd
parmW message
parmW wParam
parmD lParam

cBegin TestWndProc

cEnd TestWndProc

21

Microsoft Windows Programming Tools

22

Callback functions must be defined within a code segment.

7 . Link your application with the appropriate C-language library for
Windows and C run-time libraries . To link properly, you may need
to add an external definition for the absolute symbol _ _ acrtused
in your application source file.

Chapter 3
Resource Compiler: Rc

3. 1

3.2

3.2.1

3.2.2

3.2.3

3.3
3.4

3.5

3.6

Introduction 25

Building the Resource Script File

Directives in a Resource Script

Using the #include Directive

Using the Rcinclude Keyword

Compiling Resources 28

Single-Line Statements 30
User-Defined Resources 32
RCDATA Statement 33

3.7 STRlNGTABIE Statement 34

25

27
27

28

3.8 ACCELERATORS Statement 35
3.9 11ENU Statement 36
3.9. 1 Item-Definition Statements 37
3.9. 1 . 1 11ENUITEM Statement 38
3.9. 1 .2 POPUP Statement 39
3. 9 .1 .3 11ENUITEM SEPARATOR Statement 40
3. 10 DIALOG Statement 40

3.10.1 Dialog Option Statements 43

3. 10. 1 . 1 STYLE Statement 43
3. 10. 1 .2 CAPTION Statement 45

3. 10. 1 .3 11ENU Statement 46

3. 10. 1 .4 CLASS Statement 46

3. 10.2

3. 10.2. 1

Dialog Control Statements

LTEXT Statement 47
3. 10.2 .2 RTEXT Statement 48

3. 10.2.3 crEXT Statement 49

47

23

3.10.2.4 CHECKBOX Statement 50
3.10.2.5 PUSHBUTTON Statement 51
3.10.2.6 USTBOX Statement 52
3. 10.2.7 GROUPBOX Statement 53
3. 10.2.8 DEFPUSHBUITON Statement 54
3. 10.2.9 RADIOBUITON Statement 55

3.10.2.10 EDITIEXT Statement 56
3.10.2.11 ICON Statement 57

3. 10.2 .12 CONTROL Statement 58

3. 1 1 Directives 65

3. 1 1 . 1 #include Statement 65

3. 11 .2 #define Statement 66

3. 11 .3 #undef Statement 66

3. 1 1 .4 #ifdef Statement 67

3. 11 .5 #ifndef Statement 67

3. 11 .6 #if Statement 68
3. 1 1 .7 #elif Statement 68
3. 1 1 .8 #else Statement 69

3.11.9 #endif Statement 69

24

Resource Compiler: Rc

3.1 Introduction

Applications for the Microsoft Windows presentation manager typically
use a variety of resources, such as icons, cursors, menus, and dialog boxes.
These resources must be created and then defined in a file called the
resource script file . The resource script file defines the names and attri­
butes of the resources to be added to the application 's executable file . The
file consists of one or more "resource statements" that define the resource
type and original file .

This chapter describes how to create a resource script file and how to com­
pile your application 's resources.

3.2 Building the Resource Script File

To define the resources for the application, you must create the resource
script file. (You can create the script file by using an ordinary text editor.)
The resource script file consists of one or more resource statements that
define the resource's name, type, and details.

The file also contains one or more directives, which are special statements
that define actions to be performed on the script file before it is compiled .
Resource directives can assign values to names, include the contents of
files, and control compilation of the script file. The resource directives are
identical to the directives used in the C programming language .

The resource script file has the extension .rc.

The following is a list of the resource statements:

Type of Statement

Single- line statements

User-defined resources

Multiple- line statements

Statement

CURSOR
ICON
BITMAP
FONT

User-supplied

RCDATA
STRING TABLE
ACCELERATORS
MENU
DIALOG

25

Microsoft Windows Programming Tools

Directives

Example

#inc lude " shapes . h"

include
#define
undef
ifdef
ifndef
if
elif
#else
endif

shapes cursor shapes . cur
shapes icon shapes . ico
shapes menu
begin

pop-up " &Shape "

end

begin
menuitem
menuitem
menuitem
menuitem
menuitem

end

"&Clear " , CLEAR
"&Rectangl e" , 'IRECT
"&Triangle" , TRIANGLE
"&Star " , STAR
"&E l l ipse " , ELLIPSE

In this example , the script file defines the resources for an application
called "Shapes ." The cursor, icon, and menu keywords specify the type
of resource being described. The name of the resource appears on the left .
The file containing the resource appears on the right . If the resource is
defined in the script file (as is the menu resource, above) , its definition fol­
lows the keyword and is enclosed in the keywords begin and end.

You are free to choose any names you like for the resources. However, the
names must be letters and digits . You will use these names in your appli­
cation to identify the resource you want to load . You can place several
resources of the same type in a resource file, but no two resources of the
same type can have the same name.

26

Resource Compiler: Rc

3.2.1 Directives in a Resource Script

The resource directives are special statements that define actions to be
performed on the script file before it is compiled. The directives can assign
values to names, include the contents of files, and control compilation of
the script file .

The resource directives are identical to the directives used in the C pro­
gramming language . They are fully defined in the Microsoft C Reference
Manual.

The script file can contain any number of the following directives:

define
elif
else
endif
if

ifdef
ifndef
include
undef

When you use directives, the number sign (#) must appear in the first
column of the line .

3.2.2 Using the #include Directive

Although resource statements and directives can be in any order in the
resource script file, the # include directive has a slightly different action
depending on what statements are placed before it. If an # include direc­
tive is placed before the first definition statement, the Windows resource
compiler (rc) processes only the # define statements in the specified
include file. 1f the # include directive is placed after the first definition
statement, rc processes all statements in the include file. For example, in
the following resource script file only the # define statements in the files
windows.h and mydefs. h are processed . Other statements in these files are
ignored . But all statements in the file dlgs.rc are processed .

#include "windows . h"
#include "myde fs . h"
myicon icon myicon . ico

#include "dl gs . rc "

27

Microsoft Windows Programming Tools

3.2.3 Using the Rcinclude Keyword

Syntax

rcinclude filename

This keyword copies the contents of the file specified by filename into your
resource script before rc processes the script . The rcinclude keyword
differs from the # include directive in one important aspect : nothing in
the file designated by rcinclude is ignored. In a file named by # include,
anything other than definitions (# define statements) is ignored when the
file is processed. Thus, you should use rcinclude, not # include, to put
resources in files that you will name.

The filename field specifies an ASCII string, enclosed in double quotation
marks, that identifies the DOS filename of the file to be included. A full
pathname must be given if the file is not in the current directory or in the
directory specified by the INCLUDE environment variable . The filename
field is handled as a C string: two backslashes must be �iven wherever one
is expected in the pathname (for example, "root\ \sub") . A single forward
slash(/) can be used instead of double backslashes (for example,
"root/sub") .

Example

#include " style . h"
hand icon hand . ico
name menu

begin
rcinclude menu.rc

end

In this example, the menu. rc file contains the following:

menuitem "&Pause" , IDOK

3.3 Compiling Resources

You can compile your application 's resources by using the Windows
resource compiler, rc. The compiler reads a script file that contains a list
of the resources you wish to compile and add to the resource file. The com­
piler automatically places the resources in the application 's resource file
after compiling them.

28

Resource Compiler: Rc

Syntax

rc [option] filename [executable-file]

The option parameter allows the selection of one of the following options:

Option Description

-r Directs rc to compile the resource file, then saves
the result in a special binary resource file having
the filename extension . res. When -r is specified,
rc does not copy the compiled resource to the
executable file.

-LIM:32

-multinst

Sets rc to compile an application that uses
expanded memory according to the Lotus Intel
Microsoft Expanded Memory Specification,
Version 3 .2 .

Sets rc to compile an application that uses
expanded memory so that multiple instances of
the application will use different EMS banks.

The filename parameter specifies the name of the script file that contains
the names, types, filenames, and descriptions of the resources you want to
add to the file .

The executable-file parameter specifies the name of the executable file to
put the resources into. If no executable file is given , the executable file
having the same name as the script file is used.

Example

rc samp l e . rc
rc samp l e

Both of the commands in the example read the resource script file
sample. rc, create a compiled resource file sample. res, and copy the re­
sources to the executable file sample. exe. When a filename has no exten­
sion, . rc is assumed .

The following command creates the compiled resource file sample. res:

rc -r samp le . rc

When -r is specified, rc does not copy the compiled resource to the execut­
able file.

29

Microsoft Windows Programming Tools

The following command searches the current directory for the compiled
file sample. res. If the file is found, it copies the resources in it to the exe­
cutable file sample. exe. If no . res file is found, rc terminates without
searching for a resource script file.

rc samp l e . res

The following command compiles the script file sample. rc and copies the
result to the executable file run.exe:

rc samp l e run . exe

3.4 Single-Line Statements

The single- line statements define resources that are contained in a single
file, such as cursors, icons, and fonts. The statements associate the file­
name of the resource with an identifying name or number. The resource is
added to the executable file when the application is created, and can be
extracted during execution by referring to the name or number.

The following is the general form for all single- line statements:

name!D resource- type [load-option] [mem-option] filename

The name/D field specifies either a unique name or an integer value identi­
fying the resource. For a font resource, name/D must be a number; it can­
not be a name .

The resource- type field specifies one of the following keywords, which iden­
tify the type of resource to be loaded:

Keyword

CURSOR

ICON

BITMAP

FONT

30

Resource Type

Specifies a bitmap that defines the shape of the
mouse cursor on the display screen .

Specifies a bitmap that defines the shape of the
icon to be used for a given application .

Specifies a custom bitmap that an application is
going to use in its screen display or as an item in
a menu.

Specifies a file that contains a font .

Resource Compiler: Rc

The load-option field takes an optional keyword that specifies when the
resource is to be loaded . It must be one of the following:

PRELOAD

LOADONCALL

Resource is loaded immediately.

Resource is loaded when called .

The default is LOADONCALL.

The optional mem-option field takes the following keyword or keywords,
which specify whether the resource is fixed or movable and whether it is
discardable:

FIXED

MOVEABLE

DISCARD ABLE

Resource remains at a fixed memory location .

Resource can be moved if necessary to compact
memory.

Resource can be discarded if no longer needed .

The default is MOVEABLE and DISCARDABLE for cursor, icon, and
font resources . The default for bitmap resources is MOVEABLE.

The filename field takes an ASCII string that specifies the DOS filename of
the file containing the resource . A full pathname must be given if the file is
not in the current working directory.

Examples

cursor CURSOR point . cur
cursor CURSOR D I SCARDABLE point . cur
10 CURSOR custom . cur

desk
desk
11

disk
disk
1 2

5 FONT

I CON desk . ico
I CON D I SCARDABLE desk . ico
I CON custom . ico

BITMAP disk . bmp
BITMAP DI SCARDABLE disk . bmp
BITMAP custom . bmp

CMROMAN. FON

31

Microsoft Windows Programming Tools

3.5 User-Defined Resources

An application can also define its own resource . The resource can be any
data that the application intends to use . A user-defined resource statement
has the following form:

nameiD type!D [load-option] [mem-option] filename

The name!D field specifies either a unique name or an integer value identi­
fying the resource .

The type!D field specifies either a unique name or an integer value identify­
ing the resource type . If a number is given, it must be greater than 255.
The numbers 1 through 255 are reserved for existing and future predefined
resource types.

The load-option field takes an optional keyword that specifies when the
resource is to be loaded. It must be one of the following:

PRELOAD

LOADONCALL

Resource is loaded immediately.

Resource is loaded when called.

The default is LOADONCALL.

The optional mem-option field takes the following keyword or keywords,
which specify whether the resource is fixed or movable and whether it is
discardable :

FIXED

MOVEABLE

DISCARD ABLE

Resource remains at a fixed memory location .

Resource can be moved if necessary to compact
memory.

Resource can be discarded if no longer needed .

The default is MOVEABLE.

The filename field takes an ASCII string specifying the DOS filename of
the file containing the resource . A full pathname must be given if the file
is not in the current working directory.

Example

array MYRES data.res
14 300 custom . res

32

Resource Compiler: Rc

3.6 RCDATA Statement

Syntax

RCDATA [load-option] [mem-option]
BEGIN
raw-data
END

The RCDATA statement defines one or more more raw data resources
for an application . Raw data resources permit the inclusion of binary data
directly into the executable file.

The load-option field takes an optional keyword that specifies when the
resource is to be loaded. It must be one of the following:

PRELOAD

LOADONCALL

Resource is loaded immediately .

Resource is loaded when called.

The default is LOADONCALL.

The optional mem-option field takes the following keyword or keywords,
which specify whether the resource is fixed or movable and whether it is
discardable :

FIXED

MOVEABLE

DISCARD ABLE

Resource remains at a fixed memory location .

Resource can be moved if necessary to compact
memory.

Resource can be discarded if no longer needed .

The default is MOVEABLE and DISCARDABLE.

The raw-data field specifies one or more integers and strings stated in
standard C-language format . Integers are given in decimal, octal, or
hexadecimal format .

Example

resname RCDATA
BEGIN

END

"Here is a data string\0" ,
1024 ,
Ox029a ,
Oo733 ,
"\0711

/* A string . Note :
I* int
I* hex int
I* octal int

/* octal byte

not nul l -terminated */

*I
*I
*I

*I

33

Microsoft Windows Programming Tools

3.7 STRINGTABLE Statement

Syntax

STRINGTABLE [load-option] [mem-option]
BEGIN
string-definitions
END

The STRING TABLE statement defines one or more more string
resources for an application . String resources are simply null-terminated
ASCII strings that can be loaded when needed from the executable file,
using the LoadString function .

The load-option field takes an optional keyword that specifies when the
resource is to be loaded . It must be one of the following:

PRELOAD

LOADONCALL

Resource is loaded immediately.

Resource is loaded when called.

The default is LOADONCALL.

The optional mem-option field takes the following keyword or keywords,
which specify whether the resource is fixed or movable and whether it is
discardable :

FIXED

MOVEABLE

DISCARD ABLE

Resource remains at a fixed memory location .

Resource can be moved if necessary to compact
memory .

Resource can be discarded if no longer needed .

The default is MOVEABLE and DISCARDABLE.

The string-definitions field specifies one or more ASCII strings, enclosed in
double quotation marks and preceded by an identifier. The identifier must
be an integer.

34

Example

#de fine IDS_HELLO 1
#de fine IDS_GOODBYE 2

S'IRINGTABLE
BEGIN

Resource Compiler: Rc

IDS_HELLO ,
IDS_GOODBYE ,

"Hel l o "
"Goodbye"

END

3.8 ACCELERATORS Statement

Syntax

acctablename ACCELERATORS
BEGIN
event, idvalue, [type] [NOINVERT] [SHIFT] [CONTROL]

END

The ACCELERATORS statement defines one or more accelerators for
an application . An accelerator is a keystroke defined by the application to
give the user a quick way to perform a task. The TranslateAccelerator
function is used to translate accelerator messages from the application
queue into \VM_ COMMAND or WM_ SYSCOMMAND messages.

The acctablename field specifies the name of the accelerator table .

The event field specifies the keystroke to be used as an accelerator. It can
be any one of the following:

Character

" char"

ASCII character

Virtual key character

Description

A single character enclosed in double quotes.
The character can be preceded by a caret
C), meaning that the character is a control
character.

An integer value representing an ASCII
character. The type field must be ASCII.

An integer value representing a virtual key.
The type field must be VIRTKEY.

35

Microsoft Windows Programming Tools

The idvalue field specifies an integer value that identifies the accelerator .

The type field is required only when event is an ASCII character or a vir­
tual key character. The type field specifies either ASCII or VffiTKEY;
the integer value of event is interpreted accordingly.

The NOINVERT option, if given, means that no top-level menu item
is highlighted when the accelerator is used. This is useful when defining
accelerators for actions such as scrolling that do not correspond to a menu
item. If NOINVERT is omitted, a top-level menu item will be high­
lighted (if possible) when the accelerator is used.

The SHIFT option, if given, causes the accelerator to be activated only if
the SHIFT key is down.

The CONTROL option, if given, defines the character as a control char­
acter (the accelerator is only activated if the CONTROL key is down) . This
has the same effect as using a caret C) before the accelerator character in
the event field.

Examples

MainAcc ACCELERATORS
BEGIN

END

" � S " , I D_SAVE , NOINVERT
VK_UP , 6 , VIRTKEY , NOINVERT
7 , ID_BELL , ASCI I
" � g" , I D_BELL
"G" , ID_BELL , CONTROL

Note that the last three definitions are equivalent .

3.9 l\1ENU Statement

Syntax

menuiD MENU [load-option] [mem-option]
BEGIN
item-definitions
END

The 1\fENU statement defines the contents of a menu resource . A menu
resource is a collection of information that defines the appearance and
function of an application menu. A menu is a special input tool that lets
a user select commands from a list of command names.

36

Resource Compiler: Rc

The menuiD field specifies a name or number used to identify the menu
resource .

The load-option field takes an optional keyword that specifies when the
resource is to be loaded. It must be one of the following:

PRELOAD

LOADONCALL

Resource is loaded immediately .

Resource is loaded when called .

The default is LOADONCALL.

The optional mem-option field takes the following keyword or keywords,
which specify whether the resource is fixed or movable and whether it is
discardable :

FIXED

MOVEABLE

DISCARD ABLE

Resource remains at a fixed memory location .

Resource can be moved if necessary to compact
memory.

Resource can be discarded if no longer needed .

The item-definition field specifies special resource statements which define
the items in the menu .

Example

The following is an example of a complete MENU statement.

sample MENU
BEGI N

Menuitem "&Alpha" , 100
POPUP "&Beta "
BEGIN

END
END

Menuitem "&I tem 1 " , 200
MENUITEM " !&tern 2 " , 201 , CHECKED

3.9.1 Item-Definition Statements

The MENUITEM and POPUP statements are used in the item­
definition section of a MENU statement to define the names and attri­
butes of the actual menu items. Any number of statements can be given;
each defines a unique item. The order of the statements defines the order
of the menu items.

The MENUITEM and POPUP statements can only be used within an
item-definition section of a MENU statement .

3 7

Microsoft Windows Programming Tools

3 . 9 . 1 . 1 MENUITEM Statement

Syntax

MENUITEM text, result, optionlist

This optional statement defines a menu item.

The text field takes an ASCII string, enclosed in double quotation marks,
which specifies the name of the menu item.

The string can contain the escape characters \ t and \a. The \ t character
inserts a tab in the string and is used to align text in columns. Tab charac­
ters should be used only in pop-up menus, not in menu bars . (See Section
3 . 9 . 1 . 2 for information on pop-up menus.) The \a character sets all text
that follows it flush right .

To insert a double quotation mark (") in the string, use two double quota­
tion marks (" ") .
To add a mnemonic to the text string, place the ampersand (&) ahead of
the letter that will be the mnemonic. This will cause the letter to appear
underlined in the control and to function as the mnemonic . To use the
ampersand as a character in a string, insert two ampersands (&&) .
The result field takes an integer value that specifies the result generated
when the user selects the menu item. Menu-item results are always inte­
gers; when the user clicks the menu-item name, the result is sent to the
window that owns the menu.

The optionlist field takes one or more predefined menu options, separated
by commas or spaces, that specify the appearance of the menu item. The
menu options are as follows:

Option

MENUBREAK

CHECKED

INACTIVE

GRAYED

HELP

38

Description

Item is immediately preceded by a new line .

Item has a checkmark next to it .

Item name is displayed , but cannot be selected .

Item name is initially inactive and appears on the
menu in gray or a lightened shade of the menu­
text color.

Item is flush right on the menu bar, with a verti­
cal separator to its left . The Help item cannot be
selected from the keyboard .

Resource Compiler: Rc

The INACTIVE and GRAYED options cannot be used together.

Examples

MENUITEM "&Alpha" , 1 , CHECKED , GRAYED
MENUITEM "&Beta " , 2

3 . 9 . 1 .2 POPUP Statement

Syntax

POPUP text, optionlis t
BEGIN
item-definitions
END

This statement marks the beginning of a pop-up menu definition. A pop­
up menu (which is also known as a drop-down menu) is a special menu
item that displays a sublist of menu items when it is selected .

The text field takes an ASCII string, enclosed in double quotation marks,
which specifies the name of the pop-up.

The optionlist field takes one or more predefined menu options that specify
the appearance of the menu item. The menu options are as follows :

Option

MENUBREAK

MENUBARBREAK

CHECKED

INACTIVE

GRAYED

Description

Item is placed in a new column.

Item is placed in a new column . The old and
new columns are separated with a bar .

Item has a checkmark next to it .

Item name is displayed, but cannot be selected .

Item name is initially inactive and appears on
the menu in gray or a lightened shade of the
menu-text color .

The options can be combined using the bitwise OR operator. The IN­
ACTIVE and GRAYED options cannot be used together.

The item-definitions field can specify any number of MENUITEM state­
ments. POPUP statements in a pop-up menu are not allowed.

39

Microsoft Windows Programming Tools

Example

chem MENU
BEGIN

POPUP " &E l ements "
BEGIN

END

Menuitem "&Oxygen" , 200
Menuitem "&Carbon" , 201 , CHECKED
Menuitem "&Hydrogen" , 202

POPUP "&Compounds " , CHECKED
BEGIN

END

END

Menuitem "&Glucose " , 301
Menuitem " &Sucrose " , 302 , CHECKED
Menuitem "&Lactose" , 303 , MENUBREAK
Menuitem "&Fructose" , 304

3 . 9 . 1 .3 :MENUITEM SEPARATOR Statement

Syntax

MENUITEM SEPARATOR

This special form of the MENUITEM statement creates an inactive
menu item that serves as a dividing bar between two active menu items.
In pop-up menus, the bar is horizontal . In a menu bar, the dividing bar
is vertical.

Example

MENUITEM "&Roman " , 206
MENUITEM SEPARATOR
MENUITEM "&20 Point" , 301

3.10 DIALOG Statement

The DIALOG statement defines a template that can be used by an appli­
cation to create dialog boxes.

40

Resource Compiler: Rc

Syntax

namelD DIALOG [load-option] [mem-option] x, y, width, height
[option-statements]
BEGIN
control-statements
END

This statement marks the beginning of a DIALOG template . It defines
the name of the dialog box, the memory and load options, the box's start­
ing location on the display screen, and its width and height .

The name/D field specifies either a unique name or an integer value that
identifies the resource .

The load-option field takes an optional keyword that specifies when the
resource is to be loaded . It must be one of the following:

PRELOAD

LOADONCALL

Resource is loaded immediately.

Resource is loaded when called .

The default is LOADONCALL.

The optional mem-option field takes the following keyword or keywords,
which specify whether the resource is fixed or movable and whether it is
discardable :

FIXED

MOVEABLE

DISCARD ABLE

Resource remains at a fixed memory location .

Resource can be moved if necessary to compact
memory.

Resource can be discarded if no longer needed .

The default is MOVEABLE.

The x and y fields take integer values that specify the x and y coordinates
of the upper- left corner of the dialog box. The exact meaning of the coor­
dinates depends on the style defined by the STYLE statement . For child­
style dialog boxes, the coordinates are relative to the origin of the parent
window, unless the dialog box has the style DS- ABSALIGN; in that case
the coordinates are relative to the origin of the display screen.

The width and height fields take integer values that specify the width and
height of the box. The width units are 1/4 of the width of a character; the
height units are 1/8 of the height of a character.

41

Microsoft Windows Programming Tools

The option and control statements are described in the following sections.

Example

errmess DIALOG 10 , 10 , 300 , 200

The following is a complete example of a DIALOG statement .

#include "windows . h"

errmess DIALOG 10 , 10 , 300 , 110
STYLE WS_POPUP i WS_BORDER
CAPTI ON "Error ! "
BEGIN

END

CTEXT " Select One : " , 1 , 10 , 10 , 280 , 1 2
RADI OBUTTON " &Retry" , 2 , 75 , 30 , 60 , 12
RADI OBUTTON "&Abort" , 3 , 75 , 50 , 60 , 1 2
RADI OBUTTON "& I gnore" , 4 , 75 , 80 , 60 , 12

Comments

Do not use the WS_ CHILD style with a modal dialog box. The Dialog­
Box function always disables the parent/owner of the newly-created dia­
log box. When a parent window is disabled , its child windows are impli­
citly disabled . Since the parent window of the child-style dialog box is dis­
abled , so is the child-style dialog box itself.

If a dialog box has the DS- ABSALIGN style, the dialog coordinates for its
upper-left corner are relat ive to the screen origin instead of to the upper­
left corner of the parent window. You would typically use this style when
you want the dialog box to start in a specific part of the display no matter
where the parent window may be on the screen.

The name DIALOG can also be used as the class-name parameter to the
Create Window function in order to create a window with dialog-box
attributes.

42

Resource Compiler: Rc

3.10.1 Dialog Option Statements

The dialog option statements, given in the option-statements section of the
DIALOG statement , define special attributes of the dialog box, such as
its style, caption, and menu. The option statements are optional . If there
are no option statements, the dialog box is given a default attribute . Dia­
log option statements include the following:

• STYLE

• CAPTION

• :MENU

• CLASS

The option statements are discussed individually in the following sections.

3.10.1.1 STYLE Statement

Syntax

STYLE style

This optional statement defines the window style of the dialog box. The
window style specifies whether the box is a pop-up or a child window.
The default style has the following attributes:

WS_ POPUP
WS_ BORDER
WS_ SYSMENU

The style field takes an integer value or predefined name that specifies the
window style . It can be any of the window styles defined in the following
Table 3 . 1 .

The style DS_ SYSMODAL can also b e used to create a system modal dia­
log box.

Comments

If the predefined names are used, the # include directive must be used
so that the w£ndows.h file will be included in the resource script .

43

Microsoft Windows Programming Tools

Table 3 . 1

Window Styles

Style

WS_ GROUP

WS_ TABSTOP

WS_ POPUP

WS_ CIDLD

WS_ ICONIC

WS_ OVERLAPPED
WS_ OVERLAPPED WINDOW

WS_ MINIMIZE
WS_ MAXIMIZE
WS_ BORDER
WS_ CAPTION

WS_ DLGFRAME

WS_ SYSMENU

WS_ MINIMIZEBOX
WS-MAXIMIZEBOX
WS_ SIZEBOX

44

Meaning

Specifies the first control of a group of controls
in which the user can move from one control to
the next by using the cursor keys. All controls
defined with the WS_ GROUP style after the
first control belong to the same group. The
next control with the WS_ GROUP style ends
the style group and starts the next group (i .e . ,
one group ends where the next begins) .
Specifies one of any number of controls
through which the user can move by using the
TAB key. The TAB key moves the user to the
next control specified by the WS_ TABSTOP
style.
Creates a pop-up window. Cannot be used
with WS_ CIDLD.
Creates a child window. Cannot be used with
WS_ POPUP.
Creates a window that is initially iconic . For
use with WS_ OVERLAPPED only.
Creates an overlapping window.
Creates an overlapped window having the
styles WS_ OVERLAPPED, WS_ CAPTION,
WS_ SYSMENU, and WS_ SIZEBOX.
Creates a window of minimum size .
Creates a window of maximum size .
Creates a window that has a border.
Creates a window that has a title bar (implies
WS_ BORDER) .
Creates a window with a double border but no
title.
Creates a window that has a system-menu box
in its title bar. Used only for windows with
title bars . If used with a child window, this
style creates a Close box instead of a system­
menu box.
Creates a window that has a Minimize box.
Creates a window that has a Maximize box.
Creates a window that has a Size box. Used
only for windows with a title bar or with
vertical and horizontal scroll bars .

Resource Compiler: Rc

Table 3.1 (continued)

Style Meaning

WS_ VSCROLL Creates a window that has a vertical scroll bar.
WS_ HSCROLL Creates a window that has a horizontal scroll bar.
WS_ CLIPCHILDREN Excludes the area occupied by child windows when

drawing within the parent window. Used when creating
the parent window.

WS_ CLIPSIDLINGS Clips child windows relative to each other; that is ,
when a particular child window receives a WP _ PAINT
message, this style clips all other top-level child
windows out of the region of the child window to be
updated. (If WS_ CLIPSIDLINGS is not given and
child windows overlap, it is possible, when drawing in
the client area of a child window, to draw in the client
area of a neighboring child window.) For use with
WS_ CHILD only.

WS_ VlSIDLE Creates a window that is initially visible . This applies
to overlapping and pop-up windows. For overlapping
windows, the y parameter is used as a Show Window
function parameter.

WS_ DISABLED Creates a window that is initially disabled.
WS_ POPUPWINDOW Creates a pop-up window that has the styles

WS_ PQPUP, WS_ BORDER, and WS_ SYSMENU.
WS_ CHILD WINDOW Creates a child window that has the style WS_ CHILD.

3 .10 .1 .2 CAPTION Statement

Syntax

CAPTION captiontext

This optional statement defines the dialog box's title . The title appears in
the box's caption bar (if it has one) .

The default caption is empty.

The captiontext field specifies an ASCII character string enclosed in double
quotation marks.

Example

CAPTI ON "Error ! "

45

Microsoft Windows Programming Tools

3 .10.1 .3 MENU Statement

Syntax

MENU menuname

This optional statement defines the dialog box's menu . If no statement is
given, the dialog box has no menu.

The menuname field specifies the resource name or number of the menu
to be used .

Example

MENU errmenu

3.10 .1 .4 CLASS Statement

Syntax

CLASS class

This optional statement defines the class of the dialog box. If no statement
is given, the predefined dialog class will be used as the default .

The class field specifies an integer or a string, enclosed in double quotation
marks, that identifies the class of the dialog box.

Example

CLASS "myc l as s "

Comments

The CLASS statement should be used with special cases, since it over­
rides the normal processing of a dialog box. The CLASS statement con­
verts a dialog box to a window of the specified class; depending on the
class, this may give undesirable results. Do not use the predefined control
class names with this statement.

46

Resource Compiler: Rc

3.10.2 Dialog Control Statements

The dialog control statements, given in the control-statements section of
the DIALOG statement, define the attributes of the control windows that
appear in the dialog box. A dialog box is empty unless one or more control
statements are given. Control statements include the following:

• LTEXT

• RTEXT

• CTEXT

• CHECKBOX

• PUSHBUTTON

• LISTBOX

• GROUPBOX

• DEFPUSHBUTTON

• RADIOBUTTON

• EDITTEXT

• ICON

• CONTROL

The control statements are discussed individually in the following sections .
For more information on control classes and styles, see Tables 3 . 2 and 3 .3 .

3 .10.2 .1 LTEXT Statement

Syntax

LTEXT text, id, x, y, un'dth, height, [s tyle]

This statement defines a flush-left text control . It creates a simple rectan­
gle that displays the given text flush-left in the rectangle . The text is for­
matted before it is displayed. Words that would extend past the end of a
line are automatically wrapped to the beginning of the next line .

The text field takes an ASCII string that specifies the text to be displayed.
The string must be enclosed in double quotation marks . To add a
mnemonic to the text string, place the ampersand (&) ahead of the letter
that will be the mnemonic . To use the ampersand as a character in a
string, insert two ampersands (&&) .

47

Microsoft Windows Programming Tools

The id field takes a unique integer value that identifies the control .

The x and y fields take integer values that specify the x and y coordinates
of the upper-left corner of the control . The coordinates are relative to the
origin of the dialog box.

The width and height fields take integer values that specify the width and
height of the control. The width units are 1 /4 of the width of a character;
the height units are 1/8 of the height of a character.

The optional style field contains WS_ TABSTOP and/or WS_ GROUP
styles, which are fully described in Table 3 . 1 . Styles can be combined using
the bitwise OR operator .

Comments

The x, y, width, and height fields can use addition and subtraction opera­
tors (+ and -) for relative positioning. For example, " 15 + 6" can be used
for the x field.

Default style for LTEXT is SS_ LEFT, WS_ GROUP.

Example

LTEXT "Enter Name : " , 3 , 10 , 10 , 40 , 10

3 .10.2.2 RTEXT Statement

Syntax

RTEXT text, id, x, y, width, height, [style]

This statement defines a flush-right text control . It creates a simple rec­
tangle that displays the given text flush-right in the rectangle . The text is
formatted before it is displayed . Words that would extend past the end of
a line are automatically wrapped to the beginning of the next line .

The text field takes an ASCII string that specifies the text to be displayed .
The string must be enclosed in double quotation marks. To add a
mnemonic to the text string, place the ampersand (&) ahead of the letter
that will be the mnemonic. To use the ampersand as a character in a
string, insert two ampersands (&&) .

48

Resource Compiler: Rc

The id field takes a unique integer value that identifies the control .

The x and y fields take integer values that specify the x and y coordinates
of the upper- left corner of the control . The coordinates are relative to the
origin of the dialog box.

The width and height fields take integer values that specify the width and
height of the control . The width units are 1 /4 of the width of a character;
the height units are 1 /8 of the height of a character.

The optional style field contains WS_ TABSTOP and/or WS_ GROUP
styles, which are fully described in Table 3 . 1 . Styles can be combined using
the bitwise OR operator.

Comments

The x, y, width, and height fields can use addition and subtraction opera­
tors (+ and -) for relative positioning. For example, " 15 + 6" can be used
for the x field.

Default style for RTEXT is SS_ RIGHT, WS_ GROUP.

Example

RTEXT "Number o f Messages " , 4 , 30 , 50 , 100 , 10

3 .10.2.3 CTEXT Statement

Syntax

CTEXT text, id, x, y, width, height, [Btyle]

This statement defines a centered text control . It creates a simple rectan­
gle that displays the given text centered in the rectangle . The text is for­
matted before it is displayed . Words that would extend past the end of a
line are automatically wrapped to the beginning of the next line .

The text field takes an ASCII string that specifies the text to be displayed .
The string must be enclosed in double quotation marks. To add a
mnemonic to the text string, place the ampersand (&) ahead of the letter
that will be the mnemonic. To use the ampersand as a character in a
string, insert two ampersands (&&) .

49

Microsoft Winqows Programming Tools

The id field takes a unique integer value that identifies the control .

The x and y fields take integer values that specify the x and y coordinates
of the upper- left corner of the controL The coordinates are relative to the
origin of the dialog box.

The width and height fields take integer values that specify the width and
height of the control . The width units are 1 /4 of the width of a character;
the height units are 1/8 of the height of a character. ,

The optional style field contains WS_ TABSTOP and/or WS_ GROUP
styles, which are fully described in Table 3 . 1 . Styles can be combined using
the bitwise OR operator. '

Comments

The x, y, width, and height fields can use add�tion and subtraction opera­
tors (+ and -) for relative positioning. For example, " 15 + 6" can be used
for the x field.

Default style for CTEXT is SS_ CENTER, WS_ GROUP.

Example

CTEXT "Tit l e " , 3 , 10 , 50 , 40 , 10

3.10.2.4 CHECKBOX Statement

Syntax

CHECKBOX text, id, x, y, width, height, [style]

This statement defines a check-box control belonging to the BUTTON
class. It creates a small rectangle (check box) that is highlighted when · ·

clicked . The given text is displayed just to the right of the check box. The
control highlights the rectangle when .the user clicks the mouse in it, and
removes the highlight on the next click .

'
The text field takes an ASCII string that specifies the text to be displayed .
The string must be enclosed, i n double quotation rnarks . To .add a
mnemonic to the text string, place the ampersand (&) ahead of the letter
that will be the mnemonic. To use the amper�and as a character in a
string, insert two ampersands (&&) .

50

Resource Compiler: Rc

The id field takes a unique integer value that identifies the control .

The x and y fields take integer values that specify the x and y coordinates
of the upper- left corner of the control . The coordinates are relative to the
origin of the dialog box.

The width and height fields take integer values that specify the width and
height of the control . The width units are 1 /4 of the width of a character;
the height units are 1/8 of the height of a character.

The optional style field contains WS_ TABSTOP and/or WS_ GROUP
styles, which are fully described in Table 3 . 1 , and /or BUTTON-class
styles, which are fully described in Table 3 .3 . Styles can be combined using
the bitwise OR operator.

Comments

The x, y, width, and height fields can use addition and subtraction opera­
tors (+ and -) for relative positioning. For example, " 15 + 6" can be used
for the x field .

Default style for CHECKBOX is BS_ CHECKBOX, WS_ TABSTOP.

Example

CHECKBOX "Arabic" , 3 , 10 , 10 , 40 , 10

3 .10.2.5 PUSHBUTTON Statement

Syntax

PUSHBUTTON text, id, x, y, width, height, [style]

This statement defines a rectangle containing the given text. The control
sends a message to its parent whenever the user clicks the mouse inside the
rectangle .

The text field takes an ASCII string that specifies the text to be displayed .
The string must be enclosed in double quotation marks . To add a

'

mnemonic to the text string, place the ampersand (&) ahead of the letter
that will be the mnemonic. To use the ampersand as a character in a
string, insert two ampersands (&&) .

51

Microsoft Windows Programming Tools

The id field takes a unique integer value that identifies the control .

The x and y fields take integer values that specifies the x and y coordinates
of the upper- left corner of the control. The coordinates are relative to the
origin of the dialog box.

The width and height fields take integer values that specify the width and
height of the control . The width units are 1 /4 of the width of a character;
the height units are 1/8 of the height of a chara?ter.

The optional style field contains WS_ TABSTOP, WS_ DISABLED, and/or
WS_ GROUP styles, which are fully described in Table 3 . 1 , and/or
BUTTON-class styles, which are fully described in Table 3 .3 . Styles can be
combined using the bitwise OR operator.

Comments

The x, y, width, and hez"ght fields can use addition and subtraction opera­
tors (+ and -) for relative positioning. For example, "15 + 6" can be used
for the x field .

Default style for PUSHBUTTON is BS_ PUSHBUTTON,
WS_ TABSTOP.

Example

PUSHBUTTON "ON" , 7 , 10 , 10 , 20 , 10

3 .10.2.6 LISTBOX Statement

Syntax

LISTBOX id, x, y, width, height, [s tyle]

This statement defines a list box belonging to the LISTBOX class. It
creates a rectangle that contains a list of strings (such as filenames) from
which the user can make selections.

The id field takes a unique integer value that identifies the control .

The x and y fields take integer values that specify the x and y coordinates
of the upper-left corner of the control. The coordinates are relative to the
origin of the dialog box.

52

Resource Compiler: Rc

The width and height fields take integer values that specify the width and
height of the control . The width units are 1 /4 of the width of a character;
the height units are 1/8 of the height of a character.

The optional style field contains WS_ BORDER and/or WS_ VSCROLL
styles, which are fully described in Table 3 . 1 , and /or LISTBOX-class
styles, which are fully described in Table 3 .3 . Styles can be combined using
the bitwise OR operator.

Comments

The x, y, width, and height fields can use addition and subtraction opera­
tors (+ and -) for relative positioning. For example, " 15 + 6" can be used
for the x field.

Default style for LISTBOX is LBS_ NOTIFY, LBS_ SORT,
WS_ VSCROLL, WS_ BORDER.

For information on the recommended keys for use in list-box controls, see
the Microsoft Windows Application Style Guide.

Example

LI STBOX 666 , 10 , 10 , 50 , 54

3 .10.2.7 GROUPBOX Statement

Syntax

GROUPBOX text, id, x, y, width, height, [style]

This statement defines a group box belonging to the BUTTON class. It
creates a rectangle that groups other controls together. The controls are
grouped by drawing a border around them and displaying the given text in
the upper- left corner.

The text field takes an ASCII string that specifies the text to be displayed.
The string must be enclosed in double quotation marks. To add a
mnemonic to the text string, place the ampersand (&) ahead of the letter
that will be the mnemonic. Selecting the mnemonic moves the input focus
to the next control, in the order set in the resource file. To use the amper­
sand as a character in a string, insert two ampersands (&&).

53

Microsoft Windows Programming Tools

The id field takes a unique integer value that identifies the control .

The x and y fields take integer values that specify the x and y coordinates
of the upper- left corner of the control . The coordinates are relative to the
origin of the dialog box.

The width and height fields take integer values that specify the width and
height of the control . The width units are 1 /4 of the width of .a character;
the height units are 1/8 of the height of a character.

The optional style field contains WS_ TABSTOP or WS_ DISABLED
styles, which are fully described in Table 3 . 1 , and/or BUTTON-class
styles, which are fully described in Table 3 .3 . Styles can be combined using
the bitwise OR operator .

Comments

The x, y, width, and height fields can use addition and subtraction opera­
tors (+ and -) for relative positioning. For example, " 15 + 6" can be used
for the x field . .

Default style for GROUPBOX is BS- GROUPBOX, WS_ TABSTOP.

Example

GROUPBOX "Output" , 42 , 10 , 10 , 30 , 50

3 . 10.2.8 DEFPUSHBUTTON Statement

Syntax

DEFPUSHBUTTON text, £d, x, y, width, hdght, [style]

This statement defines a default pushbutton control that belongs to the
BUTTON class. It creates a small rectangle with a bold outline that
represents the default response for the user. The text is displayed inside
the button . The control highlights the button in the usual way when the
user clicks the mouse in it and sends a message to its parent window.

'

The text field takes an ASCII string that specifies the text to be displayed .
The string must be enclosed in double quotation marks. To add a
mnemonic to the text string, place the ampersand (&) ahead of the letter
that will be the mnemonic. To use the ampersand as a character in a
string, insert two ampersands (&&) .

54

Resource Compiler: Rc

The id field takes a unique integer value that identifies the control .

The x and y fields take integer values that specify the x and y coordinates
of the upper- left corner of the control . The coordinates are relative to the
origin of the dialog box.

The width and he£ght fields take integer values that specify the width and
height of the control. The width units are 1 /4 of the width of a character;
the height units are 1/8 of the height of a character.

The optional style field contains WS_ TABSTOP, WS_ QROUP and/or
WS_ DISABLED styles, which are fully described in Table 3 .1, and/or
BUTTON-class styles, which are fully described in Table 3 . 3 . Styles can be
combined using the bitwise OR operator.

Comments

The x, y, width, and height fields can use addition and subtraction opera­
tors (+ and -) for relative positioning. For example, " 15 + 6" can be used
for the x field .

Default style for DEFPUSHBUTTON is BS- DEFPUSHBUTTON,
WS_ TABSTOP.

Example

DEFPUSHBUTTON " ON" , 7 , 10 , 10 , 2 0 , 10

3 .10.2.9 RADIOBUTTON Statement

Syntax

RADIOBUTTON text, id, x, y, width, hdght, [style]

This statement defines a radiobutton control belonging to the BUTTON
class. It creates a small rectangle that has the given text displayed just to
its right . The control highlights the button when the user clicks the mouse
in it and sends a message to its parent window. The control removes the
highlight and sends a message on the next click .

The text field takes an ASCII string that specifies the text to be displayed .
The string must b e enclosed i n double quotation marks. To add a
mnemonic to the text string, place the ampersand (&) ahead of the letter
that will be the mnemonic. To use the ampersand as a character in a
string, insert two ampersands (&&) .

55

Microsoft Windows Programming Tools

The id field takes a unique integer value that identifies the control .

The x and y fields take integer values that specify the x and y coordinates
of the upper- left corner of the control. The coordinates are relative to the
origin of the dialog box.

The width and height fields take integer values that specify the width and
height of the control. The width units are 1 /4 of the width of a character;
the height units are 1/8 of the height of a character.

The optional style field contains WS_ TABSTOP, WS_ GROUP and/or
WS_ DISABLED styles, which are fully described in Table 3 . 1 , and/or
BUTTON-class styles, which are fully described in Table 3 .3 . Styles can be
combined using the bitwise OR operator.

Comments

The x, y, width, and height fields can use addition and subtraction opera­
tors (+ and -) for relative positioning. For example, " 15 + 6" can be used
for the x field .

Default style for RADIOBUTTON is BS- RADIOBUTTON,
WS_ TABSTOP.

Example

RADI OBUTION "AM 101 " , 10 , 10 , 10 , 40 , 10

3 .10.2.10 EDITTEXT Statement

Syntax

EDITTEXT £d, x, y, width, hez"ght, [style]

This statement defines an EDIT control belonging to the EDIT class. It
creates a rectangle in which the user can enter and edit text . The control
displays a cursor when the user clicks the mouse in it . The user can then
use the keyboard to enter text or edit the existing text . Editing keys
include the BACKSPACE and DELETE keys. The user can also use the mouse
to select the character or characters to be deleted, or to select the place to
insert new characters.

The id field takes a unique integer value that identifies the control.

56

Resource Compiler: Rc

The x and y fields take integer values that specify the x and y coordinates
of the upper- left corner of the control . The coordinates are relative to the
origin of the dialog box.

The width and height fields take integer values that specify the width and
height of the control . The width units are 1 /4 of the width of a character;
the height units are 1/8 of the height of a character.

The optional style field contains WS_ TABSTOP, WS_ GROUP,
WS_ VSCROLL, WS_ HSCROLL, and/or WS_ DISABLED styles, which
are fully described in Table 3 . 1 , and/or EDIT-class styles, which are fully
described in Table 3 .3 . Styles can be combined using the bitwise OR
operator. EDIT-class styles must not conflict .

Comments

The x, y, width, and height fields can use addition and subtraction opera­
tors (+ and -) for relative positioning. For example, " 15 + 6" can be used
for the x field .

Default style for EDITTEXT is WS_ TABSTOP, ES- LEFT,
WS_ BORDER.

Keyboard use is predefined for edit controls . Predefined keys are listed in
the Microsoft Windows Application Style Guide.

Example

EDITTEXT 3 , 10 , 10 , 100 , 10

3 .10.2 . 11 ICON Statement

Syntax

ICON text, id, x, y, width, height, [style]

This statement defines an icon control belonging to the STATIC class. It
creates an icon displayed in the dialog box. The given text is the name of
an icon (not a filename) defined elsewhere in the resource file.

For the ICON statement, the width and height fields are ignored; the icon
automatically sizes itself.

57

Microsoft Windows Programming Tools

The id field takes a unique integer value that identifies the control .

The x and y fields take integer values that specify the x and y coordinates
of the upper-left corner of the control . The coordinates are relative to the
origin of the dialog box .

The width and height fields take integer values that specify the width and
height of the control . The width units are 1 /4 of the width of a character;
the height units are 1/8 of the height of a character.

The optional style field allows only the SS_ ICON style.

Comments

The x, y, width, and height fields can use addition and subtraction opera­
tors (+ and -) for relative positioning. For example, " 15 + 6" can be used
for the x field .

Default style for ICON is SS_ ICON.

3 .10.2 .12 CONTROL Statement

Syntax

CONTROL text, id, class, s tyle, x, y, width, height

This statement defines a user-defined control window.

The text field takes an ASCII string that specifies the text to be displayed .
The string must be enclosed in double quotation marks .

The id field takes a unique integer value that identifies the control .

The class field takes a predefined name, character string, or integer that
defines the class. It can be any one of the control classes; for a list of the
control classes, see Table 3 .2 . If it is a predefined name supplied by the
application , it must be an ASCII string enclosed in double quotation
marks .

The style field takes a predefined name or integer value that specifies the
style of the given control . The exact meaning of style depends on the class
value . Tables 3 .2 and 3 .3 list the control classes and corresponding styles.

The x and y fields take integer values that specify the x and y coordinates
of the upper- left corner of the control. The coordinates are relative to the
origin of the dialog box.

58

Resource Compiler: Rc

The width and height fields take integer values that specify the width and
height of the control . The width units are 1/4 of the width of a character;
the height units are 1/8 of the height of a character.

Comments

The x, y, width, and height fields can use addition and subtraction opera­
tors (+ and -) for relative positioning. For example, " 15 + 6" can be used
for the x field.

Table 3.2 describes the five control classes:

Table 3.2

Control Classes

Class

BUTTON

EDIT

STATIC

LISTBOX

Description

A button control is a small rectangular child window that
represents a "button" that the user can turn on or off by
clicking it with the mouse. Button controls can be used alone or
in groups, and can either be labeled or appear without text .
Button controls typically change appearance when the user
clicks them.
An edit control is a rectangular child window in which the user
can enter text from the keyboard . The user selects the control,
and gives it the input focus, by clicking the mouse inside it or
pressing the TAB key. The user can enter text when the control
displays a flashing caret . The mouse can be used to move the
cursor and select characters to be replaced, or to position the
cursor for inserting characters . The BACKSPACE key can be used
to delete characters .

Edit controls use the fixed-pitch font and display ANSI
characters . They expand tab characters into as many space
characters as are required to move the cursor to the next tab
stop . Tab stops are assumed to be at every eighth character
position .
Static controls are simple text fields, boxes, and rectangles that
can be used to label, box, or separate other controls . Static
controls take no input and provide no output .
List-box controls consist of a list of character strings . The
control is used whenever an application needs to present a list
of names, such as filenames, that the user can view and select.
The user can select a string by pointing to the string with the
mouse and clicking a mouse button . When a string is selected,
it is highlighted, and a notification message is passed to the
parent window. A scroll bar can be used with a list-box control
to scroll lists that are too long or too wide for the control
window.

59

Microsoft Windows Programming Tools

Table 3 .2 {continued}

Class

SCROLLBAR

Description

A scroll-bar control is a rectangle that contains a scroll thumb
and has direction arrows at both ends. The scroll bar sends a
notification message to its parent whenever the user clicks the
mouse in the control. The parent is responsible for updating the
thumb position, if necessary. Scroll-bar controls have the same
appearance and function as the scroll bars used in ordinary
windows. Unlike scroll bars, scroll-bar controls can be
positioned anywhere in a window and used whenever needed to
provide scrolling input for a window.

The scroll-bar class also includes Size-box controls . A Size-box
control is a small rectangle that the user can expand to change
the size of the window.

Table 3 .3 describes the control styles for each of the control classes :

Table 3.3

Control Styles

Style

BUTTON Class

BS_ PUSHBUTTON

BS_ DEFPUSHBUTTON

BS- CHECKBOX

BS_ AUTOCHECKBOX

60

Description

A small elliptical button containing the given text .
The control sends a message to its parent whenever
the user clicks the mouse inside the rectangle.
A small elliptical button with a bold border. This
button represents the default user response . Any
text is displayed within the button . Windows sends
a message to the parent window when the user clicks
the mouse in this button.
A small rectangular button that may be checked; its
border becomes bold when the user clicks the mouse
in it . Any text appears to the right of the button.
Identical to BS_ CHECKBOX except that the
button automatically toggles its state whenever the
user clicks it .

Resource Compiler: Rc

Table 3.3 {continued}

Style Description

BS_ RADIOBUTTON A small circular button whose border becomes
bold when the user clicks the mouse in it. In
addition, to make the border bold, Windows
sends a message to the button's parent notifying
it that a click occurred. On the next click,
Windows makes the border normal again and
sends another message.

BS_AUTORADIOBUTTON Identical to BS_ RADIOBUTTON except that the
button is checked, the application is notified with
BN_ CLICKED, and all other radio buttons in the
group are unchecked.

BS_ LEFTTEXT Causes text to appear on the left side of the radio
button or check-box button . Use this style with
BS_ CHECKBOX, BS_ 3STATE, or
BS_ RADIOBUTTON styles.

BS_ 3STATE Identical to BS_ CHECKBOX except that a
button can be grayed as well as checked or
unchecked . The grayed state is typically used to
show that a check box has been disabled.

BS_AUT03STATE Identical to BS_ 3STATE except that the button
automatically toggles its state when the user
clicks it .

BS_ GROUPBOX A rectangle into which other buttons are grouped.

BS_ USERBUTTON

EDIT Class

ES_ LEFT
ES_ CENTER
ES_ RIGHT

Any text is displayed in the rectangle's upper-left
corner.
A user-defined button. The parent is notified
when the button is clicked. Notification includes
a request to paint, invert, and disable the button.

Flush-left text.
Centered text .
Flush-right text .

61

Microsoft Windows Programming Tools

Table 3 .3 (cont£nued}

Style

ES_ MULTILINE

ES_AUTOVSOROLL

ES_ AUTOHSOROLL

ES_ NOIDDESEL

62

Description

Multiple-line edit control. (The default is single-line.) If
the ES_AUTOVSOROLL style is specified, the edit
control shows as many lines as possible and scrolls
vertically when the user presses the ENTER key. (This is
actually the carriage-return character, which the edit
control expands to a carriage-return/line-feed
combination . A line feed is not treated the same as a
carriage return .) If ES_ AUTOVSOROLL is not given,
the edit control shows as many lines as possible and
beeps if the user presses ENTER when no more lines can
be displayed .

If the ES_AUTOHSOROLL style is specified, the
multiple-line edit control automatically scrolls
horizontally when the caret goes past the right edge of
the control. To start a new line, the user must press
the ENTER key. If ES_ AUTOHSOROLL is not given,
the control automatically wraps words to the beginning
of the next line when necessary; a new line is also
started if the user presses the ENTER. The position of
the wordwrap is determined by the window size. If the
window size changes, the wordwrap position changes,
and the text is redisplayed.

Multiple-line edit controls can have scroll bars . An edit
control with scroll bars processes its own scroll-bar
messages . Edit controls without scroll bars scroll as
described above, and process any scroll messages sent
by the parent window.

Text is automatically scrolled up one page when the
user presses the ENTER key on the last line.

Text is automatically scrolled to the right by 10
characters when the user types a character at the end
of the line. When the user presses the ENTER key, the
control scrolls all text back to position 0.

Normally, an edit control hides the selection when the
control loses the input focus, and inverts the selection
when the control receives the input focus. Specifying
ES_ NOIDDESEL overrides this default action .

Table 3 .3 (continued}

Style

STATIC Class

SS_ LEFT

SS_ CENTER

SS_ RIGHT

SS_ ICON

SS_ BLACKRECT
SS_ GRAYRECT
SS_ WHITERECT
SS_ BLACKFRAME
SS_ GRAYFRAME
SS_ WHITEFRAME
SS_ USERITEM

LISTBOX Class

LBS_ NOTIFY

LBS-�TIPLESEL

Resource Compiler: Rc

Description

A simple rectangle displaying the given text flush left
in the rectangle . The text is formatted before it is
displayed. Words that would extend past the end of a
line are automatically wrapped to the beginning of the
next flush-left line.
A simple rectangle displaying the given text centered in
the rectangle . The text is formatted before it is
displayed . Words that would extend past the end of a
line are automatically wrapped to the beginning of the
next centered line.
A simple rectangle displaying the given text flush right
in the rectangle . The text is formatted before it is
displayed . Words that would extend past the end of a
line are automatically wrapped to the beginning of the
next flush-.right line.
An icon displayed in the dialog box. The given text is
the name of an icon (not a filename) defined elsewhere
in the resource file . For the ICON statement, the width
and height parameters in Create Window are ignored;
the icon automatically sizes itself.
Black-filled rectangle.
Gray-filled rectangle .
White-filled rectangle .
Box with black frame.
Box with gray frame.
Box with white frame.
User-defined item.

The parent receives an input message whenever the
user clicks or double-clicks a string.
The string selection is toggled each time the user clicks
or double-clicks the string. Any number of strings can
be selected.

63

Microsoft Windows Programming Tools

Table 3 .3 (continued}

Style

LBS_ SORT
LBS_ NOREDRAW

SOROLLBAR Class

Description

The strings in the list box are sorted alphabetically.
The list-box display is not updated when changes are
made. This style can be changed at any time by
sending a WM.. SETREDRAW message.

SBS_ VERT Vertical scroll bar. If neither SBS_ RIGHTALIGN nor
SBS_ LEFT ALIGN is specified, the scroll bar has the
height, width, and position given in the
Create Window function .

SBS_ RJGHTALIGN Used with SBS_ VERT. The right edge of the scroll bar
is aligned with the right edge of the rectangle specified
by the x, y, width, and height values given in the
Create Window function . The scroll bar has the
default width for system scroll bars.

SBS_ LEFTALIGN Used with SBS_ VERT. The left edge of the scroll bar
is aligned with the left edge of the rectangle specified
by the x, y, width, and height values given in the
Create Window function . The scroll bar has the
default width for system scroll bars.

SBS_ HORZ Horizontal scroll bar. If neither SBS_ BOTTO:MALIGN
nor SBS_ TOP ALIGN is specified, the scroll bar has
the height, width, and position given in the
Create Window function.

SBS_ TOP ALIGN Used with SBS_ HORZ. The top edge of the scroll bar
is aligned with the top edge of the rectangle specified
by the x, y, w£dth, and height values given in the
Create Window function. The scroll bar has the
default height for system scroll bars.

SBS_ BOTTOMALIGN Used with SBS- HORZ. The bottom edge of the scroll
bar is aligned with the bottom edge of the rectangle
specified by the x, y, width, and height values given in
the Create Window function . The scroll bar has the
default height for system scroll bars.

64

Table 3 .3 {continued}

Style

SBS_ SIZEBOX

SBS_ SIZEBOXTOPLEFTALIGN

Resource Compiler: Rc

Description

Size box. If neither SBS_ SIZEBOX­
BOTTO:MRIGHTALIGN nor
SBS_ SIZEBOXTOPLEFTALIGN is
specified, the Size box has the height,
width, and position given in the
Create Window function .
Used with SBS_ SIZEBOX. The top­
left corner of the Size box is aligned
with the top-left corner of the
rectangle specified by the x, y, width,
and height values given in the
Create Window function. The Size
box has the default size for system
Size boxes .

SBS_ SIZEBOXBOTTOMRIGHTALIGN Used with SBS_ SIZEBOX. The
bottom-right corner of the Size box is
aligned with the bottom-right corner
of the rectangle specified by the x, y,
width, and height values given in the
CreateWindow function . The Size
box has the default size for system
Size boxes .

3 . 1 1 Directives

The resource directives are special statements that define actions to be
performed on the script file before it is compiled . The directives can assign
values to names, include the contents of files, and control compilation of
the script file .

The resource directives are identical to the directives used in the C pro­
gramming language . They are fully defined in the Microsoft C Reference
Manual.

3.11.1 #include Statement

Syntax

include filename

This directive copies the contents of the file specified by filename into your
resource script before rc processes the script .

65

Microsoft Windows Programming Tools

The filename field takes an ASCII string, enclosed in double quotation
marks, that specifies the DOS filename of the file to be included . A full
pathname must be given if the file is not in the current directory or in the
directory specified by the INCLUDE environment variable .

The filename field is handled as a C string, and two backslashes must
be given wherever one is expected in the pathname (for example,
"root\ \sub"). A single forward slash (/) can be used instead of double
backslashes (for example, "root/sub") .

Example

#include "windows . h"

PenSelect MENU
BEGIN

Menuitem "&bl ack pen" , BLACK_PEN
END

3.11.2 # define Statement

Syntax

define name value

This directive assigns the given value to name. All subsequent occurrences
of name are replaced by value.

The value field takes any integer value, character string, or line of text .

Examples

#de fine
#de fine

nonzero
USERCLASS

1
"MyControlCl as s "

3.11 .3 #undef Statement

Syntax

undef name

This directive removes the current definition of name. All subsequent
occurrences of name are processed without replacement.

66

Examples

#unde f nonzero
#unde f USERCLASS

3.11.4 #ifdef Statement

Syntax

ifdef n ame

Resource Compiler: Rc

This directive carries out conditional compilation of the resource file by
checking the specified name. If name has been defined using a # define
directive , # ifdef directs the resource compiler to continue with the state­
ment immediately after # ifdef. If name has not been defined, # ifdef
directs the compiler to skip all statements up to the next # endif direc­
tive .

Example

#i fde f Debug
errbox BITMAP errbox . bmp
#endi f

3.11.5 #ifndef Statement

Syntax

ifndef n ame

This directive carries out conditional compilation of the resource file by
checking the specified name. If name has not been defined or if its
definition has been removed using the # undef directive, # ifndef directs
the resource compiler to continue processing statements up to the next
endif, # else, or # elif directive , then skip to the statement after
endif. If name is defined, # ifndef directs the compiler to skip to the
next # endif, # else, or # elif directive .

Example

#i fnde f Optimize
errbox BITMAP errbox . bmp
#endi f

67

Microsoft Windows Programming Tools

3.11.6 #if Statement

Syntax

if con8tant-expre88ion

This directive carries out conditional compilation of the resource file by
checking the specified constant-expressz"on. If constant-expressz"on is
nonzero, # if directs the resource compiler to continue processing state­
ments up to the next # endif, # else, or # elif directive, then skip to the
statement after # endif. If constant-expressz"on is zero, # if directs the
compiler to skip to the next # endif, # else, or # elif directive .

The constant-expression field specifies a defined name, an integer constant ,
or an expression consisting of names, integers, and arithmetic and rela­
tional operators.

Example

#i f Version<3
errbox BITMAP errbox . bmp
#endi f

3.11 .7 # elif Statement

elif con8tant-expre88ion

This directive marks an optional clause of a conditional compilation block
defined by an # ifdef, # ifndef, or # if directive . The # elif directive car­
ries out conditional compilation of the resource file by checking the
specified constant-expression. If constant-expression is nonzero, # elif
directs the resource compiler to continue processing statements up to the
next # endif, # else, or # elif directive , then skip to the statement after
endif. If constant-expression is zero, # elif directs the compiler to skip
to the next # endif, # else, or # elif directive . Any number of # elif
directives can be used in a conditional block .

The constant- expression field specifies a defined name, an integer constant ,
or an expression consisting of names, integers, and arithmetic and rela­
tional operators.

68

Example

#i f Version<3
errbox BITMAP errbox . bmp
#el i f Version<7
errbox BITMAP userbox . bmp
#endi f

3.11.8 # else Statement

Syntax

else

Resource Compiler: Rc

This directive marks an optional clause of a conditional compilation block
defined by an # ifdef, # ifndef, or # if directive . The # else directive
must be the last directive before # endif.

Example

#i fde f Debug
errbox BITMAP errbox . bmp
#el se
errbox BITMAP userbox . bmp
#endi f

3.11.9 # endif Statement

Syntax

endif

This directive marks the end of a conditional compilation block defined by
an # ifdef directive . One # endif is required for each # ifdef directive .

69

Chapter 4
Windows Linker: Link4

Introduction 73

Creating Module-Definition Files 73

Module Definitions for Applications 73

4. 1

4.2

4.2.1

4.2.2

4.3

4.3. 1

Module Definitions for Libraries 74

Module-Definition Statements 75

NANIE Statement 75
4.3.2 LIBRARY Statement 76
4.3.3 DESCRlPTION Statement 77
4.3.4 HEAPSIZE Statement 77

4.3.5 STACKSIZE Statement 77
4.3.6 CODE Statement 78
4.3. 7 DATA Statement 7g
4.3.8 SEGMENTS Statement 81
4.3. g EXPORTS Statement 82

4.3. 10 IMPORTS Statement 83
4.3. 1 1 STUB Statement 84
4.4 Linking an Application 85
4.4. 1 Link4 Command 85
4.4.2

4.5

4.6

Link4 Options 86

Creating Import Libraries 88

Examining Executable File Headers 8g

71

Windows Linker: Link4

4. 1 Introduction

You create executable Microsoft Windows applications and libraries by
linking your compiled source files using the link4 program. The link4 pro­
gram takes your compiled sources, a list of Windows and other libraries,
and a module-definition file (a text file containing information about your
application or library) and creates a file that you can load and run with
Windows.

This chapter describes how to use link4, how to create module-definition
files, and how to name the libraries to be used with your application
library.

4.2 Creating Module-Definition Files

A module-definition file is an ordinary text file that defines the contents
and system requirements of a Windows application or library. The file con­
tains one or more module statements, each defining a specific attribute
of the application or library, such as its module name, the number and
type of program segments, and the number and names of exported and
imported functions. Every application and library must have a module­
definition file .

You must create the file before linking the application . The file contains
one or more definition statements. Each statement defines some aspect of
the application or library, such as its module name and segment types.
You can choose any filename for the file, but you must use the filename
extension . de f.

4.2.1 Module Definitions for Applications

A module-definition file for an application must contain a NAME
statement that defines the application 's module name . This name is used
by Windows to identify the application . Although this is the only required
statement in the module-definition file, most files contain additional state­
ments, such as the DATA and CODE statements, that define other
aspects of the application .

The following example shows a typical module-definition file for an
application :

; Samp l e Module De finition File
NAME Sample
DESCRIPTI ON ' Sample Window Appl ication '

73

Microsoft Windows Programming Tools

DATA
CODE

MULTIPLE
MOVEABLE

MOVEABLE

HEAPSI ZE 4096
STACKSI ZE 4096

EXPORTS
Samp leWndProc @1

In this example the module name is "Sample . " This module has multiple
data segments lone for each instance) . The data and code segments are
moveable. The heap and stack sizes are 4096 bytes. The window function
named "SampleWndProc" is the procedure exported so that Windows can
call it . The application imports no functions.

It is recommended that applications have at least 4096 bytes of stack
space . Heap space is required if the application uses its local heap . The
application 's data segment must be multiple, since any application can
be invoked more than once . Moveable code and data segments are recom­
mended, since they allow Windows to take best advantage of memory.

The first line of the sample module-definition file is a comment . A com­
ment can appear on a line by itself or on the same line as a definition, as
long as it appears after the definition . A comment must be preceded by
a semicolon (;) .

4.2.2 Module Definitions for Libraries

A module-definition file for a library must contain a LIDRARY statement
that defines the library's module name. This name is used by Windows to
identify the application . The file must also contain an EXPORT state­
ment that lists the functions to be exported by the library . Functions in
the library are not accessible if not listed .

The following example shows a typical module-definition file for a library:

; Example Module De finition F i l e
LI BRARY Examp l e
DESCRIPTI ON ' Example Window Library '

DATA SINGLE MOVEABLE
CODE MOVEABLE

HEAP S I ZE

EXPORTS

74

4096

Exampleinit @1
Examp l eStart @2
Examp l eEnd @3
ExampleLoad @4
ExampleSave @5

Windows Linker: Link4

In this example the module name is "Example . " This module has single
data segments (only one instance of a library is ever allowed) . The data
and code segments are moveable . The heap size is 4096 bytes . No STACK
statement is given, which means that the library will use the stack of the
calling application . The exported functions are listed by name and ordinal
number. These are the names or numbers that you can put in the
IMPORT statement of an application 's module-definition file to indicate
that the application calls the library .

4.3 Module-Definition Statements

The module-definition file contains one or more of the following module
statements:

Statement

NAME

LffiRARY

DESCRIPTION

DATA

CODE

HEAP SIZE

STACKSIZE

SEGMENTS

EXPORTS

IMPORTS

STUB

Description

Module name

Library name

One-line description of the module

Data-segment attributes

Code-segment attributes

Local-heap size in bytes

Local-stack size in bytes

Additional code segment

Exported functions

Imported functions

Old-style executable

4.3.1 NAME Statement

Syntax

NAME modulename

This statement defines the name of the application 's executable module .
The name is used to identify the module when importing or exporting
functions.

The modulename field specifies one or more ASCII characters.

75

Microsoft Windows Programming Tools

Comments

The modulename field is optional . If the field is not given, the linker uses
the filename �art of the executable file (that is, the name with the exten­
sion removed) .

If neither a NAME nor a LIDRARY statement is given in the definition
file, the linker assumes that a NAME statement without a modulename
field is desired .

Example

NAME Calendar

4.3.2 LIDRARY Statement

Syntax

LffiRARY libraryname

This statement defines the name of a library module. Library modules are
resource modules that contain code, data, and other resources but are not
intended to be executed as an independent program.

The libraryname field specifies one or more ASCII characters that define
the name of the library module.

Comments

The start address of the module is determined by the object files. It is an
internally defined function .

The libraryname field is optional . If the field is not given, the linker uses
the filename �art of the executable file (that is, the name with the exten­
sion removed) .

Example

LI BRARY User

76

Windows Linker: Link4

4.3.3 DESCRIPTION Statement

Syntax

DESCRIPTION ' text'

This statement inserts text into the application 's module . It is useful for
embedding source-control or copyright information .

The text field specifies one or more ASCII characters. The string must be
enclosed in single quotation marks.

Example

DESCRIPTI ON ' Microso ft Windows Temp l ate Appl ication '

4.3.4 HEAPSIZE Statement

Syntax

HEAPSIZE bytes

This statement defines the number of bytes needed by the application for
its local heap . An application uses the local heap whenever it allocates
local memory.

The default heap size is zero.

The bytes field takes an integer value that specifies the heap size in bytes.
It must not exceed 65,536 (the size of a single physical segment) .

Example

HEAPS I ZE 4096

4.3.5 STACKSIZE Statement

Syntax

STACKSIZE bytes

This statement defines the number of bytes needed by the application for
its local stack . An application uses the local stack whenever it calls its own
functions. A minimum stack size of 4096 bytes is recommended .

77

Microsoft Windows Programming Tools

The default stack size is zero, if the application makes no function calls .
Otherwise, it is 4096 .

The bytes field takes an integer value that specifies the stack size in bytes.

Example

STACKSI ZE 4096

4.3.6 CODE Statement

Syntax

CODE [segment-attributes]

This statement defines the attributes of the standard code segment.
The standard code segment is the application segment having the name
_ TEXT and belonging to the class CODE. In C applications, the standard
segment is created automatically if no specific segment name is given in
the C-compiler command line .

The segment-attributes field takes one or more optional keywords that
specify the code-segment attributes. They can be any combination of the
following:

Keyword

FIXED

MOVEABLE

DISCARD ABLE

PRELOAD

LOADONCALL

SHARED

NON SHARED

EXECUTEONLY

EXECUTEREAD

78

Description

Segment remains at a fixed memory location .

Segment can be moved if necessary to compact
memory.

Segment can be discarded if no longer needed .

Segment is loaded immediately.

Segment is loaded when called .

Segment can be shared.

Segment cannot be shared.

Segment can be executed only.

Segment can be read as data as well as executed.

Windows Linker: Link4

Comments

If no CODE statement is given in the module-definition file, the default
attributes for the segment are MOVEABLE, PRELOAD, NON­
SHARED, and EXECUTEREAD.

If a CODE statement is given , the default attributes are FIXED,
LOADONCALL, NONSHARED, and EXECUTEREAD, unless
these are explicitly overridden .

If conflicting options are given in the same statement, link4 uses the over­
riding option to determine the segment attributes. MOVEABLE over­
rides FIXED; PRELOAD overrides LOADONCALL; SHARED over­
rides NONSHARED; and EXECUTEONL Y overrides
EXECUTEREAD.

SHARED, NONSHARED, EXECUTEONL Y, and EXECUTE­
READ are used for 80286 protected-mode programs only.

PURE and Th.fPURE are alternate keywords that can be used in place of
SHARED and NONSHARED, respectively .

Example

CODE MOVEABLE LOADONCALL

4.3. 7 DATA Statement

Syntax

DATA [segment-attr£butes]

This statement defines the attributes of the standard data segment . The
standard data segment is all application segments belonging to the group
DGROUP and the class DATA. In C applications, the standard data seg­
ment is created automatically.

The segment-attrz"butes field takes one or more optional keywords that
specify the attributes of the data segment. They can be any combination
of the following:

Keyword

NONE

SINGLE

Description

There is no data segment .

A single segment is shared by all instances of the
module (valid only for library modules) .

79

Microsoft Windows Programming Tools

MULTIPLE

FIXED

MOVEABLE

DISCARD ABLE

PRELOAD

LOADONCALL

SHARED

NON SHARED

READONLY

READ WRITE

Comments

One segment exists for each instance .

Segment remains at a fixed memory location .

Segment can be moved if necessary to compact
memory.

Segment can be discarded if no longer needed .

Segment is loaded immediately .

Segment is loaded when accessed .

Segment contains data that does not change
during execution .

Segment contains data that may change during
execution .

Segment contents can be read only .

Segment contents can be read and modified .

If no DATA segment is given in the module-definition file, the default
attributes for the segment are MULTIPLE, MOVEABLE, PRELOAD,
NONSHARED, and READWRITE.

If a DATA statement is given , the default attributes are MULTIPLE,
FlXED, LOADONCALL, NONSHARED, and READWRITE,
unless these are explicitly overridden .

If conflicting options are given in the same statement, link4 uses the over­
riding option to determine the segment attributes. MULTIPLE overrides
NONE and SINGLE; SINGLE overrides NONE; MOVEABLE over­
rides FlXED; PRELOAD overrides LOADONCALL; SHARED over­
rides NONSHARED; and READONL Y overrides READWRITE.

The SINGLE option implies SHARED, and vice versa; MULTIPLE
implies NONSHARED, and vice versa. Link4 ignores SHARED if it is
used with MULTIPLE and ignores NONSHARED if it is used with
SINGLE.

SHARED, NONSHARED, READONL Y, and READWRITE are
used for 80286 protected-mode programs only.

PURE and IMPURE are alternate keywords that can be used in place of
SHARED and NONSHARED, respectively.

80

Windows Linker: Link4

Example

DATA MOVEABLE S INGLE

4.3.8 SEGMENTS Statement

Syntax

SEGMENTS segmentname [CLASS ' class-name'] [minalloc] [segment-attributes]

This statement defines the segment attributes of additional code and data
segments.

The segmentname field specifies a character string that names the new seg­
ment. It can be any name, including the standard segment names _ TEXT
and _ DATA that represent the standard code and data segments.

The class-name field takes an optional keyword that specifies the class
name of the given segment. If no class name is given, link4 assumes the
class name CODE by default.

The minalloc field takes an integer value that specifies the minimum allo­
cation size for the segment.

The segment-attributes field takes one or more optional keywords that
specify the attributes of the given segment. They can be any combination
of the following:

Keyword

FIXED

MOVEABLE

DISCARD ABLE

SHARED

NONSHARED

PRELOAD

LOADONCALL

EXECUTEONLY

EXECUTEREAD

READONLY

READ WRITE

Description

Segment remains at a fixed memory location.

Segment can be moved if necessary to compact
memory.

Segment can be discarded if no longer needed .

Segment can be shared.

Segment cannot be shared.

Segment is loaded immediately.

Segment is loaded when accessed or called .

Segment can be executed only.

Segment can be read as data as well as executed .

Segment contents can be read only .

Segment contents can be read and modified .

81

Microsoft Windows Programming Tools

Comments

If no SEGMENTS statement is given in the module-definition file, the
default attributes for nonstandard segments are MOVEABLE, PRE­
LOAD, NONSHARED, and EXECUTEREAD.

If a SEGMENTS statement is given but only a segment name and class
are given , the default attributes are FIXED, LOADONCALL, NON­
SHARED, and EXECUTEREAD or READWRITE, unless these are
explicitly overridden.

If conflicting options are given in the same statement, link4 uses the over­
riding option to determine the segment attributes. MOVEABLE over­
rides FIXED; PRELOAD overrides LOADONCALL; SHARED over­
rides NONSHARED; EXECUTEONL Y overrides EXECUTEREAD;
and READONL Y overrides READWRITE.

SHARED, NONSHARED, EXECUTEONL Y, and EXECUTE­
READ are used for 80286 protected-mode programs only.

PURE and IMPURE are alternate keywords that can be used in place of
SHARED and NONSHARED, respectively.

Example

SEGMENTS
_TEXT F I XED
_INIT PRELOAD DI SCARDABLE
_RES CLASS ' DATA ' PRELOAD DI SCARDABLE

4.3.9 EXPORTS Statement

Syntax

EXPORTS exportname [ord£nal-option] [res-opt£on] [data-opt£on] [parameter-opt£on]

This statement defines the names and attributes of the functions to be
exported to other applications. The EXPORTS keyword marks the
beginning of the definitions. It can be followed by any number of export
definitions, each on a separate line .

The exportname field specifies one or more ASCII characters that defines
the function name . It has the following form:

< entryname> [= t"nternalname]

where the entryname field specifies the name to be used by other applica­
tions to access the exported function, and internalname is an optional field

82

Windows Linker: Link4

that defines the actual name of the function if entryname is not the actual
name.

The optional ordinal-option field defines the function 's ordinal value. It has
the following form:

@ ordinal

where ordinal takes an integer value that specifies the function 's ordinal
value . The ordinal value defines the location of the function 's name in the
application 's string table .

The res-option field takes the optional keyword RESIDENTNAME,
which specifies that the function 's name must be resident at all times.

The data-option field takes the optional keyword NODATA, which
specifies that the function is not bound to a specific data segment. When
invoked, the function uses the current data segment.

The parameter- option field takes an optional integer value that specifies
the number of words the function expects to be passed as parameters.

Example

EXPORTS
SampleRead=read2bin @1 8
Stringin=strl @2 4
CharTest NODATA

4.3 .10 IMPORTS Statement

Syntax

IMPORTS [internal-option� modu/ename [entry-option�

This statement defines the names and attributes of the functions to be
imported from other applications. The IMPORTS keyword marks the
beginning of the definitions. It can be followed by any number of import
definitions, each on a separate line .

The optional internal-option field specifies the name that the application
will use to call the function . It has the following form:

internal-name=

where internal-name is one or more ASCII characters. This name must be
umque .

83

Microsoft Windows Programming Tools

The modulename field specifies the name of the executable module that
contains the function .

The optional entry-option field specifies the function to be imported . It can
be one of the following:

. entryname

. entryordinal

where entryname is the actual name of the function, and entryordinal is
the ordinal value of the function .

Example

IMPORTS
Samp l e . SampleRead
write2hex=Samp le . Sampl eWrite
Read . l

4.3.11 STUB Statement

Syntax

STUB 'filename'

This statement appends the old-style executable file given by filename to
the beginning of the module . The executable stub should display a warn­
ing message and terminate if the user attempts to execute the module
without having loaded Windows. The default file winstub. exe can be used
if no other actions are required.

The filename field specifies the name of the old-style executable file that
will be appended to the module. The name must have the DOS filename
format.

Comments

If the file named by filename is not in the current directory, the linker
searches for the file in the directories specified by the user's PATH
environment variable.

84

Windows Linker: Link4

Example

STUB ' winstub . exe '

4.4 Linking an Application

You can link the compiled application source files, the Windows library,
and the module-definition files by using link4, the Windows linker. The
link4 program combines the code and data of all application files with the
appropriate code for any Windows functions called from within the appli­
cation, and creates a new linked file that is in executable format .

4.4.1 Link4 Command

Syntax

link4 [options] object-files, [exe-file] , [map-file] , [lib-files] , def-file

The options parameter specifies one or more keywords (described in Sec­
tion 4.4 .2) that direct link4 to carry out special operations.

The object-files parameter specifies the filenames of compiled application
source files. If your application has more than one compiled source file, you
must name all of them when you link . This means that you can give more
than one object-file if necessary . Multiple filenames must be separated by
spaces or the plus sign (+) .

The exe-file parameter specifies the name you want the executable file to
have.

The map-file parameter specifies the name you want the map file to have.

The lib-files parameter specifies the names of Windows or standard­
language libraries.

The def-file parameter specifies the filename of the module-definition file .
No application may have more than one def-file.

Commas are required to separate parameters in the command line .

Example

l ink4 sample/A : l6 , sample . exe , sample . map/map/li , slibw , sample . de f

85

Microsoft Windows Programming Tools

The command line in this example links the application object file
sample .obj with the standard Windows library slibw. lib. This command
creates the file sample. exe, which has the module name, segments, and
exported functions defined by the module-definition file sample. def It
also creates the mapping file sample. map, which is used for symbolic
debugging. The command searches the library file slibw. lib to resolve
any external function calls made in the application files. It also searches
any libraries in the object file's default library list .

Note

The link4 program uses default filename extensions if you do not
explicitly provide extensions. Thus, in the preceding example, the file­
name sample is extended to sample. obj. Library names are extended
with the . lib extension .

4.4.2 Link4 Options

The following list describes the link4 options:

Option

/ alignment:size

/help

/linen umbers

86

Description

This option directs link4 to align segment
data in the executable file along the boun­
daries specified by size. The size parameter
specifies a boundary size in bytes; for exam­
ple, "alignment : 1 6" indicates an alignment
boundary of 16 bytes . The recommended
alignment for Windows applications is 1 6
bytes . The size parameter must b e a power
of 2; therefore, 2, 4, 8 , 16 , and so on are
appropriate values. The default is 5 12 bytes.
Minimum abbreviation : fa.

This option directs link4 to display a list of
available options. Minimum abbreviation :
/h.

This option directs link4 to copy line­
number information from the object file to
the map file. The option is typically used to
prepare the map file for use with a source­
level debugger, such as symdeb. Minimum
abbreviation : /li.

/map

/ nofarcalltrans

/ noignorecase

/ packcode [:number]

/pause

/segments: number

/stack: size

/warnfixup

Windows Linker: Link4

This option directs link4 to copy informa­
tion about each symbol in the application to
the map file. The option is typically used to
prepare a map file for use with a symbolic
debugger, such as symdeb.

This option prevents the translation of far
calls within the current segment . Without
this option, far calls are translated into the
following assembler statements:

NOP
PUSH CS
NEAR CALL

Minimum abbreviation : /nof.

This option directs link4 to preserve lower­
case letters when matching symbols during
linking. Minimum abbreviation : /noi.

This option directs link4 to pack contiguous
logical or memory-code segments into one
physical or file segment . The number param­
eter specifies the size limit of the segment in
bytes. If no number is given, the default is
65,536 . Minimum abbreviation : /pac .

This option directs link4 to pause before
copying the executable file to disk . Minimum
abbreviation : /pau.

This option sets the maximum number of
segments link4 will process . The default is
1 28 segments. Minimum abbreviation : /se .

This option directs link4 to set the stack
size to size bytes. This option is typically
used in place of the STACKSIZE state­
ment in the module-definition file . Minimum
abbreviation : /st .

This option causes link4 to display an error
message when an offset fixu p (relative to a
logical segment) that is outside the physical
segment occurs . Minimum abbreviation : /w.

87

Microsoft Windows Programming Tools

Note

There is an additional option, /nodefaultlibrarysearch, which
causes link4 to ignore default libraries. Some language compilers, such
as the Microsoft C Compiler, add default-library information to the
object file . To ensure that the necessary library information is added
to your application 's object files, do not use this option .

4.5 Creating Import Libraries

You can create import libraries for Windows libraries by using the implib
command. The command creates an import- library file that can be speci­
fied in the link4 command line with other libraries . Import libraries are
required for all Windows libraries that can be linked dynamically. When
you create a Windows library, you must create an import library to be
specified on the link4 command line of the applications that use that
library.

Syntax

implib imp-lib-name mod-def-file

The imp-lib-name parameter specifies the name you want the new import
library to have.

The mod-def-file parameter specifies the name of the module-definition file
for the Windows library.

Example

imp l ib myl ib . l ib myl ib . de f

This command creates the import library named mylib. lib from the
module-definition file mylib. def

88

Windows Linker: Link4

4.6 Examining Executable File Headers

You can use the exehdr command to determine whether an executable
file is a Windows application or a library . The command also lets you find
out which functions are exported or imported by a module, determine the
amount of space allocated for a module's heap or stack, and determine
the size and number of the segments a module contains.

Syntax

exehdr exe-filename

The exe-filename parameter specifies the name of any file with a . exe
extension .

Example

exehdr hel l o . exe

This command displays the header for the executable file hello . exe. The
format of this header is closely related to the statements contained in the
application 's module-definition file.

89

Chapter 5
Symbolic Debugging Utility:
Symdeb

5. 1 Introduction 95

5 .2 Preparing Symbol Files 96

5.2. 1 :M.apsym Program 96

5.2 .2 Symbols with C-Language Applications 97
5.2.3 Symbols with Assembly-Language Applications 98
5.3 Setting Up the Debugging Terminal 98
5.3. 1 Setting Up a Remote Terminal 99

5.3.2 Setting Up a Secondary Monitor 99

5.4 Starting Symdeb with Windows 100
5.4. 1 Symdeb Options 100
5.4.2 Specifying Symbol Files 102
5.4.3 Passing the Application to Windows 103
5.4.4 Symdeb Keys 103

5.5 Working with Symbol :M.aps 104

5.5. 1 Listing the Symbol :M.aps 104
5.5 .2 Opening a Symbol :M.ap 105
5.5.3 Display Symbols 106
5.6 Starting the Application 107

5. 7 Allocation Messages 107

5.7. 1 Setting Breakpoints with Symbols 108

5.7.2 Displaying Variables 108
5.7.3 Displaying Application Source Statements 109

5.8 Quitting Symdeb 110

5.9 Symdeb Commands 110

5 .9 .1 Command Arguments 113

91

5.g.2 Address Arguments 116

5 ,g ,3 Expressions 1 17

5,g.4 Assemble Command 1 18

5,g,5 Breakpoint Address Command 1 1g

5.g .6 Breakpoint Clear Command 120
5.9.7 Breakpoint Disable Command 120

5.9.8 Breakpoint Enable Command 120

5.9.g Breakpoint List Command 121

5.9. 10 Breakpoint Set Command 121

5.9. 1 1 Compare Command 121

5,g. 12 Dump Command 122
5.9. 13 Dump ASCII Command 122

5.g.14 Dump Bytes Command 122
5.9. 15 Dump Double-Words Command

5,g .16 Display Global Heap Command

5,g, 17 Display Local Heap Command

123

123

124

5,g. 18 Dump Long Reals Command 124
5.9. 19 Dump Task Queue Command 124
5.9.20 Dump Short Reals Command 125

5,g.21 Dump Ten-Byte Reals Command 125
5.9.22 Dump Words Command 125

5.9.23 Enter Command 125
5.g.24 Enter Address Command 126

5.9.25 Enter Bytes Command 126
5.9.26 Enter Double-Words Command 126

5.g.27 Enter Long Reals Command 127

5.9.28 Enter Short Reals Command 127

5.9.2g Enter Ten-Byte Reals Command 127
5.g.3o Enter Words Command 128

5.g.31 Fill Command 128

5.g.32 Go Command 128

92

5.9.33 Hex Command 129

5.9.34 Input Command 129

5.9.35 Backtrace Stack Command 129

5. 9.36 Backtrace Task Stack Command 129

5.9.37 Load Command 130
5.9.38 Move Command 130
5.9.39 Macro Command 131

5.9.40 Name Command 131

5.9.41 Output Command 131

5.9.42 Program Step Command 132

5. 9.43 Quit Command 132

5.9.44 Register Command 132
5. 9.45 Search Command 133
5.9.46 Set Source Mode Commands 133

5.9.47 Trace Command 133
5.9.48 Unassemble Command 134
5.9.49 View Command 134
5. 9 .50 Write Command 134
5.9.51 Examine Symbol :Map 135

5. 9.52 Open Symbol :Map Command 135
5. 9.53 Set Symbol Value Command 136

5. 9.54 Display Help Command 136
5. 9.55 Display Expression Command 136
5.9.56 Source-Line Display Command 136
5.9.57 Redirect fuput Commands 137
5. 9.58 Redirect Output Commands 137
5. 9.59 Redirect fuput and Output Commands 137
5. 9 .60 Shell &cape Command 137

5.9.61 Comment Command 138

93

Symbolic Debugging Utility: Symdeb

5 . 1 Introduction

The Microsoft Symbolic Debug Utility (symdeb) is a debugging program
that helps you test executable files. You can display and execute program
code, set breakpoints that stop the execution of your program, examine
and change values in memory, and debug programs that use the floating­
point emulation conventions used by Microsoft languages.

The symdeb utility lets you refer to data and instructions by name rather
than by address. The symdeb utility can access program locations
through addresses, global symbols, or line-number references, making it
easy to locate and debug specific sections of code .

You can debug C and Pascal programs at the source-file level as well as at
the machine level . You can display the source statements of a program,
the disassembled machine code of the program, or a combination of source
statements and disassembled machine code.

The symdeb utility accepts source l ine numbers as arguments to com­
mands for displaying and changing data, setting breakpoints, and tracing
execution .

This chapter explains how to use symdeb to debug Windows applications .
In particular, it describes how to do the following:

• Prepare symbol files for an application
• Set up the debugging terminal

• Start symdeb with Windows

• Interpret symdeb's allocation messages

• Display the application 's code and view its source file

• Set breakpoints and interpret backtraces

• Work with multiple instances of the same application

• Kill an application and quit symdeb

95

Microsoft Windows Programming Tools

Note

If you have both a standard and a debugging version of Windows,
symdeb may retrieve the incorrect version of certain files for use in
debugging. To correct this problem, include in your DOS PATH vari­
able the name of the development directory you created when install­
ing the development kit . (If the directory with the standard version of
Windows is in your PATH variable, be sure the development directory
is listed first.) Then symdeb will automatically retrieve files from the
debugging version of Windows.

5 .2 Preparing Symbol Files

Windows applications are difficult to debug without symbolic information
about Windows and the application . To take advantage of symdeb's
symbolic features, you must first prepare a symbol file that symdeb can
use .

The steps for setting up a symbol file depend on the method used to create
the program. The following sections describe those steps for applications
written in C, Pascal, or assembly language .

5 .2.1 Mapsym Program

The mapsym program creates symbol files for symbolic debugging. The
program converts the contents of an application's symbol map (.map) file
into a form suitable for loading with symdeb, copying the result to a
symbol (. sym) file.

Syntax

mapsym [{ / i -} I] [{ / i -} n] mapfilename

Parameter

map filename

9 6

Description

Specifies the filename for a symbol map file that was
created during linking. If you do not give a filename
extension, .map is assumed . If you do not give a full
pathname, the current directory and drive is
assumed . The mapsym program creates a new
symbol file having the same name as the map file
but with the . sym extension .

/1

/n

Symbolic Debugging Utility: Symdeb

Directs mapsym to display information about the
conversion on the screen . The information includes
the names of groups defined in the program, the
program start address, the number of segments, and
the number of symbols per segment.

Directs mapsym to ignore line-number information
in the map file. The resulting symbol file contains
no line-number information .

Example

mapsym /1 fi le . map

In this example, mapsym uses the symbol information in file. map to
create file.sym on the current drive and directory . Information about the
conversion will be sent to the screen .

Note

The mapsym program always places the new symbol file in the
current drive and directory .

To create a map file for mapsym input, you must specify the /map
option when linking. To add line-number information to the map file,
you specify the appropriate option when compiling, and specify the
/linenumbers option when linking.

The mapsym program can process up to 10,000 symbols for each seg­
ment in the application .

5.2.2 Symbols with C-Language Applications

To prepare a symbol file for an application written in the C language ,
follow these steps:

1 . Compile your source file using the -Zd option to produce line
numbers in the object file . Debugging is easier if you disable the
compiler's optimization .

2 . Link the object file to produce an executable version of the pro­
gram. Specify a map filename in the linker's command line and give
the /map and /linenumbers options. Make sure the map file­
name is the same as the application 's module name given in the
module-definition file .

97

Microsoft Windows Programming Tools

3 . Use the mapsym program to produce a symbol file .

Example

c l -d -c -AS -Gsw -Os -Zdp test . c
l ink4 test , test , test/map/l i , s l ibw , test
mapsym test

5.2.3 Symbols with Assembly-Language Applications

To prepare symbol files for Windows applications written in assembly
language, follow these steps:

1 . Make sure that all symbols you may want to use with symdeb are
declared public. Segment and group names should not be declared
public . They are automatically available for debugging.

2. Assemble your source file .

3. Link the object file to produce an executable version of the applica­
tion . Specify a map filename in the linker's command line and give
the /map option . Make sure the map filename is the same as the
app fication 's module name given in the module-definition file .

4 . Use the mapsym program to create a symbol file.

Example

masm test ;
l ink4 test , test , test/map , s l ibw s l ibc l ibh , test
mapsym test

5.3 Setting Up the Debugging Terminal

While it is running, Windows takes complete control of the system con­
sole, making debugging through the console impossible . To debug Win­
dows applications, you can either set up a remote terminal, connected
through the computer's serial port, or set up a secondary monochrome
display adapter and monitor.

98

Symbolic Debugging Utility: Symdeb

5 .3.1 Setting Up a Remote Terminal

To set up a remote terminal for debugging, follow these steps:

1 . Select a serial port on your computer and connect a terminal to it .

2 . Use the DOS mode command to set the baud rate and line proto­
col of the serial line to correct values for use with the terminal .
Line protocol includes the number of stop bits, type of parity
checking, and number of transmission bits used by the terminal .

3 . When you start symdeb, redirect symdeb's input and output to
the remote terminal using the = command to specify a communi­
cations port. For example, the command "=com2" redirects all
subsequent symdeb command input and output to com2.

Note

Debugging through a remote terminal disables the normal function of
the CONTROL+S keys . These keys cannot be used while debugging Win­
dows applications.

5 .3.2 Setting Up a Secondary Monitor

To set up a secondary monitor for debugging, follow these steps:

1 . Install a secondary monochrome display adapter in a free slot of
your computer and connect the monochrome monitor to it .

2 . Set the secondary display adapter switches to the appropriate set­
tings. Follow the display adapter and computer manufacturer's
recommendations.

3 . When you start symdeb, use the /m option to redirect symdeb
output to the secondary monitor.

Note

When the /m option is given , symdeb redirects output to the secon­
dary monitor, but continues to use the system keyboard for input until
the application being debugged is started . While the application is
running, symdeb yields complete control of the keyboard to the appli­
cation . As soon as the application reaches a breakpoint or terminates,
symdeb reclaims the keyboard and permits user input again .

99

Microsoft Windows Programming Tools

5.4 Starting Symdeb with Windows

To start symdeb with Windows, enter the following symdeb command
line at the DOS command prompt :

symdeb [options] [symbolfiles] win. com [arguments]

The options parameter specifies one or more symdeb options. The
symbolfiles parameter specifies the names of symbol files. The arguments
parameter specifies arguments that you want to pass to win. com.

Once started, symdeb displays a startup message followed by the
symdeb command prompt (-) . When you see the prompt you can enter
symdeb commands. The symdeb commands are described in Section 5 . 9 .

Section 5 .4 . 1 describes the elements of the symdeb command line .

5.4.1 Symdeb Options

You can specify one or more symdeb options in the command line . The
symdeb options control the operation of symdeb while debugging Win­
dows applications. Options must appear before win. com on the command
line so that symdeb will not interpret them as program arguments.

The symdeb utility has the following command-line options:

Option

/m

/x

/wnumber

100

Meaning

Redirects symdeb output to a secondary monochrome
monitor and permits debugging of Windows applications
without redirecting input and output to a remote terminal.
The symdeb utility assumes that the necessary display
adapter and monitor are installed .

Disables the "more" feature. Unless this option is specified,
symdeb automatically stops lengthy output and does not
continue the display until the user presses a key. The
symdeb utility stops the output after displaying enough
lines to fill the screen, then prompts the user to continue by
displaying the message " [more] " . If this option is specified,
symdeb continues to display output until the command is
completely executed .

Sets the memory-allocation reporting level . The reporting
level defines what kind of memory allocation and movement
messages symdeb is to display when Windows loads and
moves program segments. The number parameter specifies
the reporting level and can be 0, 1, 2, or 3 . Level 0 specifies
no reporting. Level l , the default level if the /w option is

Symbolic Debugging Utility: Symdeb

not given , generates allocation messages only . Level 2 gen­
erates movement messages only. Level 3 generates both
allocation and movement messages. See Section 5 .7 for
more information about allocation messages.

/@filename Directs symdeb to load macro definitions from the file
specified by filename. Macro definitions define the meaning
of symdeb's ten macro commands. The given file must con­
tain one or more macro definitions in the following form:

/n

/i [bm]

/ffilename

/ commands

m number==command-string

The number parameter specifies the macro, and command­
string specifies one or more symdeb commands separated
by semicolons (;) .

Permits use of non-maskable interrupts on non-IBM
computers. To use non-maskable interrupts, you must have
a system that is equipped with the proper hardware , such
as the following products:

• IBM Professional Debugging Facility

• Software Probe (Atron Corporation)

The symdeb utility requires only the hardware provided
with these products; no additional software is needed. If
you are using one of these products with a non-IBM system,
you must use the /n option to take advantage of the break
capability . Using a non-maskable-interrupt break system is
more reliable than using the interactive break key because
you can always stop program execution regardless of the
state of interrupts and other conditions.

Directs symdeb to use features available on IBM­
compatible computers. The option is not necessary if you
have an IBM PO, because symdeb automatically checks
the hardware on startup. If symdeb does not find that the
hardware is an IBM PO, it assumes that the hardware is a
generic MS-DOS machine. Without the option, symdeb
cannot take advantage of special hardware features such as
the 8259 Interrupt Controller, the IBM-style video display,
and other capabilities of the IBM basic input and output
system (BIOS) .

Prevents association of the named symbol file with the exe­
cutable file that has the same name. This option is rarely
used and is not recommended for debugging Windows
applications.

Directs symdeb to execute commands in the commands list
immediately after starting. Commands in the list must be
separated with semicolons and the entire list must be
enclosed in double quotation marks. The / is required.

101

Microsoft Windows Programming Tools

Note

The option designator can be either a slash (/) or a hyphen (-) , and the
option letter can be given with either uppercase or lowercase fetters.

Files containing a hyphen in the filename must be renamed before use
with symdeb. Otherwise, symdeb will interpret the hyphen as an
option designator.

5.4.2 Specifying Symbol Files

To debug a Windows application symbolically, you should load symbol
files for the following items:

• The application
• Windows kernel, user, and GDI libraries
• Other Windows libraries used by the application

The symbol file for the application is required. The symbol files for the
Windows libraries are optional, but recommended . They are helpful when
trying to trace calls made to routines that are not in the application or to
trace window messages.

You must give the complete filename and extension when naming a symbol
file . If the symbol file is not in the current directory, you must supply a
full pathname. All symbol files must be specified before the win. com file.

You should always name the application 's symbol file before any other
symbol files. This ensures that the application's symbol file is open and
that you can access the application 's symbols when you first start
symdeb.

Example

symdeb \app\test . sym user . sym gdi . sym \app\testlib . sym win . com

102

Symbolic Debugging Utility: Symdeb

Note

The Windows symbol files for the kernel, user, and GDI libraries,
kernel. sym, user.sym, and gdi.sym, are provided as part of the Micro­
soft Windows Software Development Kit .

You can create symbol files for other Windows libraries by using the
same methods you used to create application symbol files.

5.4.3 Passing the Application to Windows

You can pass the name of your application to Windows by placing the full
pathname on the symdeb command line immediately after the win. com
filename . Windows receives the name as an argument when you start
win. com from within symdeb. Windows uses the name to load and run
the application .

Example

symdeb \app\test . sym win . com \app\test . exe

If you do not supply your application 's name as an argument, you can load
and start your application by starting win. com and using the MS-DOS
Executive to load the application .

5 .4.4 Symdeb Keys

The symdeb utility provides a number of special keys for controlling
input and output and program execution . The following is a list of these
keys:

Key

SCROlL LOCK

SYS REQ

Action

Suspends and restores symdeb output . The key is
typically used to temporarily stop the output of
lengthy displays. To suspend output, press the SCROlL

LOCK key. To restore output, press the key again.

Generates an immediate breakpoint that halts pro­
�ram execution and returns control to symdeb.
lAvailable on the IBM PC AT only .)

103

Microsoft Windows Programming Tools

CONTROL+C Cancels the current symdeb command . This key com­
bination does not apply to commands that pass execu­
tion control to the application being debugged .

5 . 5 Working with Symbol Maps

Symbol files that symdeb has loaded for debugging are called symbol
maps. The symdeb utility lets you examine symbol maps and use the
symbols in the maps to set breakpoints and display variables and func­
tions.

Although symbol maps are in memory, symdeb allows access to only one
symbol map at a time . You can display a list of symbol maps at any time,
but to display or use the symbols in a map, you must first open that map .

Note

The symdeb utility requires that the filename part of the application's
. sym file be the same as the application's module name (specified in the
application 's module-definition file) . If these names are not identical,
symdeb will not be able to determine the correct segment addresses
for symbols in the application .

5.5.1 Listing the Symbol Maps

You can display a list of the symbol maps by using the x command with
the asterisk (*) argument . The command displays the names of all maps in
memory, the name of each segment belonging to a map, and the 1 6-bit
paragraph address of each segment. (The x command without an argu­
ment displays only the open map .)

Example

- X *
[0000 TEST]

[0001 !GROUP
0002 DGROUP

0000 TESTLIB

104

0001 _TEXT
0002 DGROUP

Symbolic Debugging Utility: Symdeb

The open map name is enclosed in brackets ([]) . The active segment in
the map is also enclosed in brackets. Segment addresses appear immedi­
ately before the segment names.

Note

Symdeb does not display a segment's actual segment address until the
code or data corresponding to that segment has been loaded. If you list
the symbol maps before loading an application, symdeb displays low­
memory addresses as a warning that the segments are not yet in
memory.

Once an application is loaded, symdeb appends a number to the end of
the data-segment name in the symbol map . This number shows which
instance of the application the data segment belongs to. If you load
multiple instances of an application, symdeb adds a new data-segment
name to the symbol map for that application .

In the following example, symdeb places parentheses around the active
d�ta segment to show which instance of the application is currently run­
mug.

[0000 TEST J
[88FO I GROUP]
(87EO DGROUP)

8944 DGROUPl

5.5.2 Opening a Symbol Map

To access the symbols in a symbol map, you must open the symbol map
using the xo command. For example, to open the symbol map named test,
you would type the following:

-xo test !

The symdeb utility opens the symbol map and lets you examine and use
symbols from the map.

You can use the xo command to open a different symbol map at any time .
Since only one symbol map can be open at a time, the previous symbol
map is closed.

105

Microsoft Windows Programming Tools

Note

When you load multiple symbol maps, symdeb automatically opens
the first one loaded.

5.5.3 Display Symbols

You can use the x? command to display the symbols in the open symbol
map . The command lists each symbol by name and also gives the symbol 's
address offset. For example, to display the symbol "testwndproc, " you
would type the following:

- x? testwndproc
[88EO !GROUP]

OOSA TESTWNDPROC

The command displays the name and address of the segment to which the
symbol belongs . The symbol 's absolute address can be computed using the
segment 's address and the symbol's offset. In the preceding example, the
function "testwndproc" is in the segment IGROUP at address 88E0:005A.

If the symbol is an external symbol (for example, a function or variable
defined outside of the application) , no group name is given and the offset is
always zero, as shown in the following example :

- x? showwindow
0000 SHOWWINDOW

You can use the asterisk (*) as a wildcard character with the x command
to display more than one symbol at a time. For example, the following
command displays all symbols in the IGROUP segment:

-x? igroup : *

The following command displays all symbols in the DGROUP segment
that begin with an underscore (-) :
-x? dgroup : _*

106

Symbolic Debugging Utility: Symdeb

5.6 Starting the Application

You can start the application by using the g command. The command
directs symdeb to pass execution control to the program at the current
code address . (Immediately after starting symdeb with Windows, the
current code address is the start address of the w£n. com file .)
If you have supplied your application 's filename as a win. com argument on
the symdeb command line, w£n. com starts your application automati­
cally. Otherwise, it starts MS-DOS Executive, which you can use to load
and run your application .

5 . 7 Allocation Messages

The symdeb utility displays memory-allocation messages to show that
Windows has created, freed, or moved memory blocks. The messages are
intended to help you locate your application's program code and data in
memory. The messages can also be used to see the effect of the application
on Windows memory management. The symdeb utility actually displays
messages only if the memory-allocation reporting level is set to an
appropriate value (see the fw option i n Section 5 .4 . 1) .
When Windows allocates a new block of memory and the reporting level is
1 or 3, symdeb displays a message of the following form:

module-name ! segment-name=segment-address

The module-name field specifies the name of the application or library to
receive the allocated memory. The segment-name field specifies the name of
the code or data segment within the application or library that will occupy
the memory block . The segment-address field specifies the 1 6-bit paragraph
address of the memory block .

When Windows moves a block of memory and the reporting level is 2 or 3,
symdeb displays a message of the following form:

old-address moved to new-address

The old-address and new-address fields specify the old and new 16-bit para­
graph addresses of the memory block.

When Windows frees a block of memory and the reporting level is 1 or 3 ,
symdeb displays a message of the following form:

segment-address freed

107

:Microsoft Windows Programming Tools

The segment-address field specifies the 1 6-bit paragraph address of the
block to be freed .

Example

TEST ! IGROUP=886F
TEST ! DGROUP=8799
GDI ! Code=1C32
8344 moved to 8 2 30
7C1 2 freed

5. 7.1 Setting Breakpoints with Symbols

You can use the bp command and symbols to set breakpoints in your
application code even before loading the application . The bp command
uses the symbol to compute the instruction address at which to break exe­
cution . If the application has not been loaded, symdeb sets a virtual
breakpoint . A virtual breakpoint has no effect on execution until the appli­
cation is actually loaded. Once an application is loaded, symdeb com­
putes the actual code addresses of all virtual breakpoints and enables the
breakpoints.

For example , to set a breakpoint at the application 's WinMain function,
you would type the following:

-bp winmain

Mter you set the breakpoint, the application breaks and returns control to
symdeb when this address is encountered .

Note

If you do not set breakpoints before starting the application, you can
use an interrupt key to break execution (see Section 5 .4 .4 for more
information on symdeb keys) .

5. 7.2 Displaying Variables

You can use the d command to display the content of the application 's
static variables. The command takes the variable's symbol as an argument
and computes the variable's address using the address of the variable's
segment and its offset . The symbol map containing the symbol must be
open.

108

Symbolic Debugging Utility: Symdeb

Example

- dw hinstance
8882 : 0010 0143 0000 0000 0000 0000 0000 0000 0000

When there are multiple instances of the application being debugged ,
symdeb uses the address of the active data segment to compute a
variable 's address. To display a variable in another instance, you must
supply an absolute segment address. For example, to display the value of
hlnstance in the first instance, the 1 6-bit paragraph address of the first
DGROUP segment must be given explicitly, as shown in the following
example:

- x
[0000 TEST J

[8A12 ! GROUP]
89AO DGROUP

(8882 DGROUPl)
- dw 89AO : hinstance
88A0 : 0010 0 2 35 0000 0000 0000 0000 0000 0000 0000

5. 7.3 Displaying Application Source Statements

You can display the source statements of an application by using the v,
s+, and s& commands. The v command displays the source lines of the
application beginning with the source line corresponding to the current
code address (cs:ip) . The s+ command directs symdeb to display source
lines whenever the u command is used . The s& command directs symdeb
to display both source lines and unassembled code whenever the u com­
mand is used . For more information on these commands, see Section 5 . 9 .

Note

If a symbol file does not contain line-number information, the v, s+,
and s& commands have no effect.

If the application source file is not in the current directory, or the file
does not have the same name as the symbol file, symdeb prompts for
the file's correct name and/or pathname.

109

Microsoft Windows Programming Tools

5 . 8 Quitting Symdeb

You can terminate symdeb at any time by using the q command to return
to the DOS prompt. Before quitting symdeb, however, you may need to
end the current Windows session and restore the console display to its nor­
mal display modes.

Follow these general rules:

• If you have not started Windows, use the q command to quit .

• If you have started Windows and it is still operational, open the
MS-DOS Executive window and choose the Close command from
its system (Control) menu, then use the q command.

Important

When Windows terminates as a result of a fatal exit, symdeb displays
a fatal-exit message and returns the symdeb prompt. Do not attempt
to restart Windows or quit symdeb. You must reboot the system to
continue .

5.9 Symdeb Commands

This section contains a complete listing of commands that can be used
with symdeb. It also describes the arguments and expressions used with
symdeb commands, as well as predefined names used as register and
register-flag names. The following Table 5 . 1 is a summary of symdeb
command syntax and purpose :

Table 5.1

Symdeb Commands

Syntax

a [address]
ba [mode] [s£ze]address[va/ue] [command-string]

be [£d-l£st]

110

Meaning

Assemble
Sets address breakpoint{s)
on 80386 machines .
Clear breakpoint(s)

Table 5 . 1 (continued)

Syntax

bd [id-list�
be [id-list�
bl

bp[id] address [value] [command-string]
c range address
d [range]

da [range]
db [range]
dd [range]
dg

dh

dl [range]

dq
cis [range]

dt [range]
dw [range]
e address [list]
ea address [list]
eb address [list]
ed address [list]
el address [list]
es address [list]
et address [list]
ew address [list]
f range list
g [= address [address] . . .]
h value value
i value
k [value]
kt pdb [value]
I [address [drive record count]]

Symbolic Debugging Utility: Symdeb

Meaning

Disable breakpoint(s)
Enable breakpoint(s)
List breakpoint(s)
Set breakpoint
Compare
Dump memory using
previous type
Dump memory ASCII
Dump memory bytes
Dump memory double-words
Display global heap
Display local heap for
current ds

Dump memory, long floating
point
Display task queue
Dump memory, short
floating point
Dump memory ten-byte reals
Dump memory words
Enter using previous type
Enter ASCII
Enter bytes
Enter double-words
Enter long floating point
Enter short floating point
Enter ten-byte reals
Enter words
Fill
Go
Add hexadecimal
Input from port
Backtrace stack
Backtrace task
Load

111

Microsoft Windows Programming Tools

Table 5 . 1 (continued}

Syntax

m range address
mid[= command-string]
n filename [filename . . .]
o value byte
p [= address] [value]
q
r [register] [[=] value]
s range Hst
s-
s&

s+

t [= address] [value]
u [range]
v [range]
w [address [drive record count]]
x [?] symbol
xo symbol
z symbol value
? expression

< filename
> filename
=filename
{ filename
} filename
- filename
! [dos-command]
* string

112

Meaning

Move
Define or execute macro
Set name
Output to port
Trace program instruction or call
Quit
Register
Search
Set machine debugging only
Set machine and source debugging
Set source debugging only
Trace program instruction
Display unassembled instructions
View source lines
Write to disk
Examine symbols(s}
Open map/segment
Set symbol value
Compute and display expression
Display current source line
Redirect symdeb input
Redirect symdeb output
Redirect symdeb input and output
Redirect program input
Redirect program output
Redirect program input and output
Shell escape
Comment

Symbolic Debugging Utility: Symdeb

Any combination of uppercase and lowercase letters may be used in com­
mands and arguments. If a command takes two or more parameters,
separate them with a single comma (,) or one or more spaces.

Examples

ds _avg L 10
u . 2 2
f DS : lOO , llO ff , fe , Ol , OO

5.9.1 Command Arguments

Command arguments are numbers, symbols, line numbers, or expressions
used to specify addresses or values to be used by symdeb commands. The
following is a list of argument syntax and meaning:

Argument

address

byte

command-str£ng

count

dos-command

dr£ve

expresszon

filename

Description

Specifies absolute, relative, or symbolic address of a
variable or function . The symdeb utility permits a
wide variety of address types. See Section 5 . 9 . 2 for a
complete description of address arguments.

Specifies a value argument representing a byte value.
It must be in the range 0 to 255.

Specifies one or more symdeb commands. If more
than one command is given, they must be separated by
semicolons (;) .
Specifies a value argument representing the number of
disk records to read or write.

Specifies a DOS command.

Specifies a value argument representing a disk drive .
Drives are numbered zero for A, 1 for B, 2 for C, and
so on .

Specifies a combination of arguments and operators
that represents a single value or address. See Section
5 . 9 . 3 for a list and explanation of expression opera­
tors .

Specifies the name of a file or a device. The file­
name must follow the DOS file-naming conventions.

113

Microsoft Windows Programming Tools

id

id-list

l£st

range

record

register

114

Specifies a decimal number representing a breakpoint
or macro identifier. The number must be in the range
0 to 9 .

Specifies one o r more unique decimal numbers
representing a list of breakpoint identifiers . The
numbers must be in the range 0 to 9. If more than one
number is given , they must be separated using spaces
or commas. The wildcard character (*) can be used to
specify all breakpoints.

Specifies one or more value arguments. The values
must be in the range 0 to 65,535. If more than one
value is given, they must be separated using spaces or
commas.

A list can also be specified as a list of ASCII values.
The list can contain any combination of characters
and must be enclosed in either single or double quota­
tion marks. If the enclosing mark appears within the
list, it must be given twice .

Specifies an address range . Address ranges have two
forms: a start and end address pair and a start address
and object count . The first form consists of two
address arguments, the first specifying the start
address and the second specifying the end address.
The second form consists of an address argument, the
letter 1, and a value argument . The address specifies
the starting address; the value specifies the number of
objects after the address to examine or display . The
size of an object depends on the command. If a com­
mand requires a range but only a start address is given
in the command, the command assumes the range to
have an object count of 128 . This default count does
not apply to commands that require a range followed
immediately by a value or an address argument .

Specifies a value argument representing the first disk
record to be read or written to.

Specifies the name of a CPU register. It can be any one
of the following:

ax
bp
bx
cs

ex
di
ds
dx

es
f
ip
pc

si
sp
ss

The names ip and pc name the same register: the
instruction pointer. The name f is a special name for
the flags register. Each flag within the flags register
has a unique name based on its value . These names

symbol

pdb

value

Symbolic Debugging Utility: Symdeb

can be used to set or clear the flag. Table 5 .2 lists the
flag names:

Table 5 .2

Flag Values

Flag Set Clear

Overflow ov nv
Direction dn (decrement) up (increment)
Interrupt ei (enabled) di (disabled)
Sign ng (negative) pi (positive)
Zero zr nz
Auxiliary Carry ac na
Parity pe (even) po (odd)
Carry cy nc

Identifies the address of a variable, function, or seg­
ment. A symbol consists of one or more characters,
but always begins with a letter, underscore (-) , ques­
tion mark (?), at symbol (@) , or dollar sign ($) .
Symbols are only available when the . sym file that
defines their names and values has been loaded . Any
combination of uppercase and lowercase letters can be
used; symdeb is not case-sensitive . For some com­
mands, the wildcard character (*) may be used as part
of a symbol to represent any combination of charac­
ters .

Specifies a value argument representing the segment
address of a program descriptor block .

Specifies an integer number in binary, octal, decimal,
or hexadecimal format . A value consists of one or more
digits optionally followed by a radix: Y for binary, 0
or Q for octal, T for decimal, or H for hexadecimal. If
no radix is given, hexadecimal is assumed. Symdeb
truncates leading digits if the number is greater than
65,535. Leading zeroes, if any, are ignored. Hexade­
cimal numbers have precedence over symbols . Thus
FAA is a number.

115

Microsoft Windows Programming Tools

5.9.2 Address Arguments

Address arguments specify the location of variables and functions. The
following list explains the syntax and meaning of the various addresses
used in symdeb:

Syntax

segment: offset

name{ + 1 -} offset

. { + I -} number

• [filename:] number

. symbol[{ + ! -} number]

Note

Meaning

Specifies an absolute address . A full address
has both a segment address and an offset,
separated by a colon (:) . A partial address is
just an offset. In both cases, the segment or
offset can be any number, register name, or
symbol . If no segment is given, the a, g, I, p,
t, u, and w commands use the cs register for
the default segment address. All other com­
mands use ds.

Specifies a symbol-relative address. The name
can be any symbol . The offset specifies the
offset in bytes. The address can be specified as
a positive (+) or negative (-) offset .

Specifies a relative line number. The number
is an offset (in lines) from the current source
line to the new line . If + is given , the new line
is closer to the end of the source file . If - is
given, the new line is closer to the beginning .

Specifies an absolute line number. If filename
is given , the specified line is assumed to be in
the source file corresponding to the symbol
file identified by filename. If no filename is
given, the current instruction address (the
current values of the cs and ip registers)
determines which source file contains the line .

Specifies a symbolic line number. The symbol
can be any instruction or procedure label. If
number is given, the number is an offset (in
lines) from the given label or procedure name
to the new line. If + is given, the new line is
closer to the end of the source file. If - is
given, the new line is closer to the beginning.

Line numbers can be used only with programs developed with com­
pilers that copy line-number data to the object file .

116

Symbolic Debugging Utility: Symdeb

5.9.3 Expressions

An expression is a combination of arguments and operators that evaluates
to an 8- , 1 6- , or 32-bit value. Expressions can be used as values in any
command.

An expression can combine any symbol, number, or address with any of
the unary and binary operators in the following Tables 5 .3 and 5 .4 :

Table 5.3

Unary Operators

Operator

+

not
seg
off
by
WO
dw
poi

port
wport

Table 5 .4

Meaning

Unary plus
Unary minus
l 's complement
Segment address of operand
Address offset of operand
Low-order byte from given address
Low-order word from given address
Double-word from given address
Pointer from given address
(same as dw)
bne byte from given port
Word from given port

Precedence

Highest

Lowest

Binary Operators

Operator

*

I
mod

+

and
xor
or

Meaning

Multiplication
Integer division
Modulus
Segment override
Addition
Subtraction
Bitwise Boolean AND
Bitwise Boolean exclusive OR
Bitwise Boolean OR

Precedence

Highest

Lowest

Unary address operators assume ds as the default segment for addresses.
Expressions are evaluated in order of operator precedence. If adjacent
operators have equal precedence, the expression is evaluated from left to
right. Parentheses can be used to override this order.

117

Microsoft Windows Programming Tools

Examples

SEG 0001 : 0002
OFF 0001 : 0002
4+ 2 * 3

Equal s 1
Equa l s 2
Equal s 10 (OAh)
Equal s 10 (OAh)
Equal s 18 (12h)

4+ (2 * 3)
(4+ 2) * 3

5.9.4 Assemble Command

Syntax

a[address]

This command assembles instruction mnemonics and places the resulting
instruction codes into memory at address. If no address is given, the assem­
bly starts at the address given by the current values of the cs and ip regis­
ters. To assemble a new instruction, type the desired mnemonic and press
the ENTER key. To terminate assembly, press the ENTER key only. There
are the following assembly rules :

• Use retf for the far return mnemonic .
• Use movsb or movsw for string-manipulation mnemonics.
• Use the near or far prefix with labels to override default distance.

The ne abbreviation stands for near.

• Use the word ptr or byte ptr prefix with destination operands to
specify size . The wo abbreviation stands for word ptr; by for
byte ptr.

• Use square brackets around constant operands to specify absolute
memory addresses . Constants without brackets are treated as
constants.

• Use the db mnemonics to assemble byte values or ASCII strings
directly in to memory .

• Use 8087 or 80287 instructions only if your system has these math
coprocessors.

80286 protected-mode mnemonics cannot be assembled .

118

Symbolic Debugging Utility: Symdeb

5.9.5 Breakpoint Address Command

Syntax

ba option size address [value] [command-string]

This command, used with 80386 machines, sets an address breakpoint at a
given address. If your program accesses memory at this address, symdeb
will stop execution and display the current values of all registers and flags.
There are three types of breakpoints you can set with the option parame­
ter. Since the breakpoint address is a physical address, breakpoints should
not be set for memory that might be moved (though you can temporarily
lock the segment for the purpose of debugging) . If I is specified, symdeb
takes a breakpoint when the CPU fetches an instruction from the given
address. If R is specified, symdeb takes a breakpoint when the CPU reads
a byte, word, or double-word from the given address. If U is specified,
symdeb takes a breakpoint when the CPU reads or writes a byte, word,
or double-word to the given address.

The size parameter specifies the size of the data that symdeb expects to
find read or written at the given address; the breakpoint will be taken only
if the data has that size . If B is specified (8-bit byte) , the command will
break only at one address (for example, 0 : 10) . If W is specified (1 6-bit
word) , the command will break at one of two addresses within that range
(for exam�le, 0 : 10 or 0 : 1 1 will cause a break within that word) . If D is
specified l32-bit double-word) , the command will break at one of four
addresses within that range (for example, 0 :08, 0 :09, 0 : 10, or 0 : 1 1 will
cause a break within that double-word) .
The address parameter can specify any valid address. The address value
is rounded down if necessary to the nearest byte, word, or double-word
boundary (for example, if a double-word address of 0 : 14 was requested, the
command would access the address of the nearest double-word boundary
below the address, in this case 0 : 1 2) .
The optional value parameter specifies the number of times the breakpoint
is to be ignored before being taken. It can be any 1 6-bit value .

The command-string parameter specifies an optional list of commands to
be executed each time the breakpoint is taken. Each symdeb command in
the list can include parameters and is separated from the next command
by a semicolon .

The be, bd, be, and bl commands can all be used on these breakpoints.

119

Microsoft Windows Programming Tools

5.9.6 Breakpoint Clear Command

Syntax

be id-l£st

This command permanently removes one or more previously set break­
points. If id-list is given, the command removes the breakpoints named in
the list . The id-l£st can be any combination of integer values from 0 to 9 . If
the wildcard character (*) is given, the command removes all breakpoints.

5.9. 7 Breakpoint Disable Command

Syntax

bd id-list

This command disables, but does not delete, one or more breakpoints. If
id-list is given , the command disables the breakpoints named in the list .
The id-list can be any combination of integer values from 0 to 9. If the
wildcard character (*) is given, the command disables all breakpoints.

5.9.8 Breakpoint Enable Command

Syntax

be id-list

This command restores one or more breakpoints that were temporarily
disabled by a bd command. If id-list is given , the command enables the
breakpoints named in the list . The id-list can be any combination of
integer values from 0 to 9. If the wildcard character (*) is given, the com­
mand enables all breakpoints.

120

Symbolic Debugging Utility: Symdeb

5.9.9 Breakpoint List Command

Syntax

bl

This command lists current information about all breakpoints. The com­
mand displays the breakpoint number, the enabled status, the address of
the breakpoint , the number of passes remaining, and the initial number of
passes (in parentheses) . The enable status can be enabled (e) , disabled (d) ,
or virtual lv) . A virtual breakpoint is a breakpoint set at a symbol whose
. exe file has not yet been loaded.

5.9.10 Breakpoint Set Command

Syntax

bp[id] addre88 [value] [command-Btring]

This command creates a "sticky" breakpoint at the given address. Sticky
breakpoints stop execution and display the current values of all registers
and flags. Sticky breakpoints remain in the program until removed using
the be command, or temporarily disabled using the bd command. The
symdeb utility allows up to ten sticky breakpoints (0 through 9). The
optional id parameter specifies which breakpoint is to be created . If no id
is given, the first available breakpoint number is used. The address param­
eter can be any valid instruction address (that is, it must be the first byte
of an instruction) . The optional value parameter specifies the number of
times the breakpoint is to be ignored before being taken. It can be any 1 6-
bit value . The optional command-string parameter specifies a list of com­
mands to be executed each time the breakpoint is taken. Each symdeb
command in the list can include parameters and is separated from the next
command by a semicolon (;) .

5.9.11 Compare Command

Syntax

c range addre88

This command compares the bytes in the memory locations specified by
range with the corresponding bytes in the memory locations beginning
at address. If all corresponding bytes match, the command displays its
prompt and waits for the next command. If one or more corresponding
bytes do not match, the command displays each pair of mismatched bytes .

121

Microsoft Windows Programming Tools

5.9.12 Dump Command

Syntax

d [range]

This command displays the contents of memory in the given range. The
command displays data in the same format as the most recent dump com­
mand. (Dump commands include d, da, db, dd, dg, dh, dl, dq, ds, dt,
and dw.) If no range is given and no previous dump command has been
used , the command displays bytes starting from ds:ip.

5.9.13 Dump ASCIT Command

Syntax

da [range]

This command displays the ASCII characters in the given range. Each line
displays up to 48 characters . The display continues until the first null byte
or until all characters in the range have been shown . Nonprintable charac­
ters, such as carriage returns and line feeds, are displayed as periods (.) .

5.9.14 Dump Bytes Command

Syntax

db [range]

This command displays the hexadecimal and ASCII values of the bytes in
the given range. Each display line shows the address of the first byte in the
line, followed by up to 16 hexadecimal byte values . The byte values are
immediately followed by the corresponding ASCII values. The eighth and
ninth hexadecimal values are separated by a hyphen (-) . Nonprintable
ASCII values are displayed as periods (.) .

122

Symbolic Debugging Utility: Symdeb

5.9.15 Dump Double-Words Command

Syntax

dd [range]

This command displays the hexadecimal values of the double-words (4-
byte values) in the given range. Each display line shows the address of the
first double-word in the line and up to four hexadecimal double-word
values.

5.9.16 Display Global Heap Command

Syntax

dg

This command displays a list of the global memory objects in the global
heap. The list has the following form:

segment-address: size segment-type owner

The segment-address field specifies the segment address of the first byte
of the memory object . The s£ze field specifies the size in paragraphs
(multiples of 16 bytes) of the object . The segment- type field specifies the
type of object . The type can be any one of the following:

Segment Type

CODE

DATA

Meaning

Segment contains program code.

Segment contains program data and possible stack
and local heap .

Segment contains private data. PRIV

FREE Segment belongs to pool of free memory objects ready
for allocation by an application .

SENTINAL Segment marks the beginning or end of the global
heap .

The owner field specifies the module name of the application or library
that allocated the memory object . The name PDB is used for memory
objects that represent program descriptor blocks. These blocks contain
execution information about applications.

123

Microsoft Windows Programming Tools

5.9.17 Display Local Heap Command

Syntax

dh

This command displays a list of the local memory objects in the local heap
{if any) belonging to the current data segment . The command uses the
current value of the ds register to locate the data segment and check for a
local heap. The list of memory objects has the following form:

offset: size { BUSY J FREE }

The offset field specifies the address offset from the beginning of the data
segment to the local memory object . The sz'ze field specifies the size of the
memory object in bytes. If BUSY is given, the object has been allocated
and is currently in use . If FREE is given, the object is in the pool of free
objects ready to be allocated by the application . A special memory object,
SENTINAL, may also be displayed.

5.9.18 Dump Long Reals Command

Syntax

dl [range]

This command displays the hexadecimal and decimal values of the long
{8-byte) floating-point numbers in the given range. Each display line shows
the address of the floating-point number, the hexadecimal values of the
bytes in the number, and the decimal value of the number.

5.9.19 Dump Task Queue Command

Syntax

dq

This command displays a list containing information about the various
task queues supported by the system.

124

Symbolic Debugging Utility: Symdeb

5 .9.20 Dump Short Reals Command

Syntax

ds [range]

This command displays the hexadecimal and decimal values of the short
(4-byte) floating-point numbers in the given range. Each display line shows
the address of the floating-point number, the hexadecimal values of the
bytes in the number, and the decimal value of the number.

5 .9.21 Dump Ten-Byte Reals Command

Syntax

dt [range]

This command displays the hexadecimal and decimal values of the ten­
byte floating-point numbers in the given range. Each display line shows
the address of the floating-point number, the hexadecimal values of the
bytes in the number, and the decimal value of the number.

5.9.22 Dump Words Command

Syntax

dw [range�

This command displays the hexadecimal values of the words (2-byte
values) in the given range. Each display line shows the address of the first
word in the line and up to eight hexadecimal word values .

5.9.23 Enter Command

Syntax

e address [list�

This command enters one or more values into memory. The size of the
value entered depends on the most recently used enter command. (Enter

125

Microsoft Windows Programming Tools

commands are e, ea, eb, ed, el, es, et, and ew.) The default is eb (bytes) .
If no list is given , the command displays the value at address and prompts
for a new value. If list is given , the command replaces the value at address
and at each subsequent address until all values in the list have been used.

5.9.24 Enter Address Command

Syntax

ea address [t£st]

This command enters an ASCII string into memory. If no list is given, the
command displays the byte at address and prompts for a replacement . If
list is given, the command replaces the bytes at address, then displays the
next byte and prompts for a replacement.

5.9.25 Enter Bytes Command

Syntax

eb address [list]

This command enters one or more byte values into memory. If list is given ,
the command replaces the byte at address and bytes at each subsequent
address until all values in the list have been used . If no list is given , the
command displays the byte at address and prompts for a new value . To
skip to the next byte, enter a new value or I?ress the SPACEBAR. To move
back to the previous byte, type a hyphen (-J . To exit from the command,
press the ENTER key.

5.9.26 Enter Double-Words Command

Syntax

ed address [value]

This command enters a double-word value into memory. If no value is
given, the command displays the double-word at address and prompts for
a replacement . If value is given, the command replaces the double-word at
address, then displays the next double-word and prompts for a replace­
ment. Double-words must be typed as two words separated by a colon .

126

Symbolic Debugging Utility: Symdeb

5.9.27 Enter Long Reals Command

Syntax

el address [value]

This command enters a long-real value into memory. If no value is given,
the command displays the long-real value at address and prompts for a
replacement . If value is given, the command replaces the long-real value at
address, then displays the next long-real value and prompts for a replace­
ment .

5.9.28 Enter Short Reals Command

Syntax

es address [value]

This command enters a short-real value into memory. If no value is given ,
the command displays the short-real value at address and prompts for a
replacement . If value is given, the command replaces the short-real value
at address, then displays the next short-real value and prompts for a
replacement .

5.9.29 Enter Ten-Byte Reals Command

Syntax

et address [value]

This command enters a ten-byte real value into memory. If no value is
given, the command displays the ten-byte real value at address and
prompts for a replacement . If value is given, the command replaces the
ten-byte real value at address, then displays the next ten-byte real value
and prompts for a replacement .

127

Microsoft Windows Programming Tools

5.9.30 Enter Words Command

Syntax

ew address [value]

This command enters a word value into memory. If no value is given,
the command displays the word at address and prompts for a replacement .
If value is given, the command replaces the word at address, then displays
the next word and prompts for a replacement.

5.9.31 Fill Command

Syntax

f range list

This command fills the addresses in the given range with the values in list.
If range specifies more bytes than the number of values in the list , the list
is repeated until all bytes in the range are filled . If list has more values
than the number of bytes in the range, the command ignores any extra
values.

5.9.32 Go Command

Syntax

g [=startaddress] [breakaddress] . . .

This command passes execution control to the program at the given start­
address. Execution continues to the end of the program or until break
address is encountered . The program also stops at any breakpoints set
using the bp command . If no startaddress is given , the command passes
execution to the address specified by the current values of the cs and ip
registers . If breakaddress is given, it must specify an instruction address
(that is, the address must contain the first byte of an instruction) . Up to
ten break addresses, in any order, can be given at one time .

128

Symbolic Debugging Utility: Symdeb

5.9.33 Hex Command

Syntax

h valuel value2

This command displays the sum and difference of two hexadecimal
numbers, value1 and value2.

5.9.34 Input Command

Syntax

i value

This command reads and displays one byte from the input port specified
by value. The value parameter can specify any 1 6-bit port address.

5.9.35 Backtrace Stack Command

Syntax

k [value]

This command displays the current stack frame. Each line shows the name
of a procedure , its arguments, and the address of the statement that called
it. The command displays two 2-byte arguments by default . If value is
given, the command displays that many 2-byte arguments. Using the k
command at the beginning of a function (before the function prolog has
been executed) may give incorrect results. The command uses the hp regis­
ter to compute the current backtrace, and this register is not correctly set
for a function until its prolog has been executed .

5 .9.36 Backtrace Task Stack Command

Syntax

kt pdb [value]

This command displays the stack frame of the program specified by pdb.
Each line shows the name of a procedure , its arguments, and the address
of the statement that called it . The command displays two 2-byte argu­
ments by default . If value is given , the command displays that many 2-

129

Microsoft Windows Programming Tools

byte arguments. The pdb parameter must specify the segment address of
the program descriptor block for the task to be traced .

5.9.37 Load Command

Syntax

I [address [drive record count]]

This command copies the contents of a named file or the contents of a
given number of logical disk records into memory. The contents are copied
to address or to a default address, and the bx:cx register pair is set to the
number of bytes loaded .

To load a file, set the filename using the n command (otherwise, symdeb
uses whatever name is currently at location ds:5C) . If address is not given,
symdeb copies bytes to cs: 100.

To load logical records from a disk , set drive to zero (drive A), 1 (drive B),
or 2 (drive C) . Set record to the first logical record to be read (any 1- to 4-
digit hexadecimal number) . Set count to the number of records to read
(any 1- to 4-digit hexadecimal number) . If the named file has a . exe exten­
sion, the I command adjusts the load address to the address given in the
. exe file header . The command strips any header information from a . exe
file before loading. If the named file has a .hex extension, the I command
adds that file's start address to address before loading the file .

5.9.38 Move Command

Syntax

m range address

This command moves the block of memory specified by range to the loca­
tion starting at address. All moves are guaranteed to be performed with­
out data loss .

130

Symbolic Debugging Utility: Symdeb

5.9.39 Macro Command

Syntax

mid[= command-string]

This command defines or executes a symdeb command macro. The id
parameter identifies the macro to be defined or executed . There are ten
macros, numbered 0 through 9. If command-string is specified, the com­
mand assigns the symdeb commands given in the string to the macro. If
no string is given, the command executes the commands currently assigned
to the macro. Macros are initially empty unless the /@ option is used
when symdeb is started . This option reads a set of macro definitions from
a specified file.

5.9.40 Name Command

Syntax

n [filename] [arguments]

This command sets the filename for subsequent 1 and w commands, or
sets program arguments for subsequent execution of a loaded program. If
filename is given, all subsequent 1 and w commands will use this name
when accessing disk files. If arguments is given, the command copies all
arguments, including spaces, to the memory location starting at ds:81 and
sets the byte at ds:80 to a count of the total number of characters copied .
If the first two arguments are also filenames, the command creates file con­
trol blocks at addresses ds:5C and ds:6C and copies the names (in proper
format) to these blocks.

5.9.41 Output Command

Syntax

o value byte

This command sends the given byte to the output port specified by value.
The value parameter can specify any 1 6-bit port address.

131

Microsoft Windows Programming Tools

5.9.42 Program Step Command

Syntax

p [=startaddress] [value]

This command executes the instruction at startaddress, then displays the
current values of all registers and flags . If startaddress is given, the com­
mand starts execution at the given address. Otherwise, it starts execution
at the instruction pointed to by the current cs and ip registers. If value is
given , the command executes value number of instructions before stop­
ping. The command automatically executes and returns from any call
instructions or software interrupts it encounters, leaving execution control
at the next instruction after the call or interrupt .

5.9.43 Quit Command

Syntax

q

This command terminates symdeb execution and returns control to DOS.

5.9.44 Register Command

Syntax

r [rega'ster[[=] va/ue]]

This command displays the contents of CPU registers and allows the con­
tents to be changed to new values.

If no register is specified, the command displays all registers, all flags, and
the instruction at the address pointed to by the current cs and ip register
values. If register is specified , the command displays the current value of
the register and prompts for a new value . If both register and value are
specified, the command changes the register to the specified value .

132

Symbolic Debugging Utility: Symdeb

5 .9.45 Search Command

Syntax

s range list

This command searches the given range of memory locations for the byte
values given in list. The command displays the address of each byte found .

5 .9.46 Set Source Mode Commands

Syntax

s­
s&
s+

These commands set the display mode for commands that display instruc­
tion code . If s- is given , symdeb disassembles and displays the instruction
code in memory. If s& is given, symdeb displays both the actual program
source line and the disassembled code . If s+ is given , symdeb displays
the actual program source line corresponding to the instruction to be
displayed .

To access a source file for the first time, symdeb may display the follow­
ing prompt :

Source fi l e name for mapname (cr for none) ?

In such cases, type the name, including extension, of the source file
corresponding to the symbol file mapname.

5 .9 .47 Trace Command

Syntax

t [=startaddress] [value]

This command executes the instruction at startaddress, then displays the
current values of all registers and flags. If startaddress is given , the com­
mand starts execution at the given address. Otherwise, it starts execution
at the instruction pointed to by the current cs and ip registers . If value is
given, the command continues to execute value number of instructions
before stopping. In source-only mode (s+) , t operates directly on source
lines. The t command can be used to trace instructions in ROM.

133

Microsoft Windows Programming Tools

5.9.48 Unassemble Command

Syntax

u [range]

This command displays the instructions and/or statements of the program
being debugged. The s command sets the display format . If range is given ,
the command displays instructions generated from code within the given
range. Otherwise, the command displays the instructions generated from
the first eight lines of code at the current address. 80286 protected-mode
mnemonics cannot be displayed .

5.9.49 View Command

Syntax

v range

This command displays source lines beginning at the specified range. The
symbol file must contain line-number information .

5.9.50 Write Command

Syntax

w [addre88 [drive record count]]

This command writes the contents of a given memory location to a named
file, or to a given logical record on disk . To write to a file, set the filename
with an n command, and set the bx:cx register pair to the number of
bytes to be written. If no address is given , the command copies bytes start­
ing from the address cs : 100, where cs is the current value of the cs regis­
ter . To write to a logical record on disk , set drive to any number in the
range zero (drive A) to 2 (drive C), set record to the first logical record to
receive the data (a 1- to 4-digit hexadecimal number) , and set count to the
number of records to write to the disk (a 1- to 4-digit hexadecimal
number) . Do not write data to an absolute disk sector unless you are sure
the sector is free .

134

Symbolic Debugging Utility: Symdeb

5.9.51 Examine Symbol Map

Syntax

x [* I ? symbol]

This command displays the name and load-segment addresses of the
current symbol map, segments in that map, and symbols within those
segments.

If no parameter is given , the command displays the current symbol map
name and the segments within that map . If the asterisk (*) is specified, the
command displays the names and load-segment addresses for all currently
loaded symbol maps. If ? is specified, the command displays all symbols
within the given symbol map that match the symbol specification . A
symbol specification has the following form:

[mapname!] [segmentname:] [symbolname]

If mapname! is given , the command displays information for that symbol
map . The mapname parameter must specify the filename (without exten­
sion) of the corresponding symbol file .

If segmentname: is given , the command displays the name and load­
segment address for that segment . The segmentname parameter must
specify the name of a segment named within the explicitly given or
currently open symbol map .

If symbolname is given, the command displays the segment address and
segment offset for that symbol . The symbolname parameter must specify
the name of a symbol in the given segment.

To display information about more than one segment or symbol, enter a
partial segmentname or symbolname ending with an asterisk (*) . The aster­
isk acts as a wildcard character.

5.9.52 Open Symbol Map Corrunand

Syntax

xo [symbol!]

This command sets the active symbol map and/or segment . If symbol! is
given , the command sets the active symbol map to the given map. The
symbol parameter must specify the filename (without extension) of one

135

Microsoft Windows Programming Tools

of the symbol files specified in the symdeb command line . A map file can
be opened only if it was loaded by providing its name in the symdeb com­
mand line.

5.9.53 Set Symbol Value Command

Syntax

z 8ymbol value

This command sets the address of symbol to value.

5.9.54 Display Help Command

Syntax

?

This command displays a list of all symdeb commands and operators .

5 .9 .55 Display Expression Command

Syntax

? expre88ion

This command displays the value of expression. The display includes a full
address, a 16-bit hexadecimal value, a full 32-bit hexadecimal value, a
decimal value (enclosed in parentheses) , and a string value (enclosed in
double quotation marks) . The expression parameter can specify any combi­
nation of numbers, symbols, addresses, and operators .

5 .9.56 Source-Line Display Command

Syntax

This command displays the current source line .

136

Symbolic Debugging Utility: Symdeb

5.9.57 Redirect Input Commands

Syntax

< filename
{ filename

The < command causes symdeb to read all subsequent command input
from the given file. The { command reads all input for the debugged pro­
gram from the given file.

5.9.58 Redirect Output Commands

Syntax

> filename
} filename

The > command causes symdeb to write all subsequent command output
to the given file. The } command writes all output from the debugged pro­
gram to the given file .

5.9.59 Redirect Input and Output Commands

Syntax

=filename
- filename

The = command causes symdeb both to read from and to write to the
device specified in the filename. The - command causes the debugged pro­
gram both to read from and to write to the given device .

5.9.60 Shell Escape Command

Syntax

! [dos- command]

This command passes control to command. com, the DOS command proces­
sor, letting the user carry out DOS commands. The DOS exit command
returns control to symdeb. If dos-command is given, symdeb passes the
command to command. com for execution, then receives control back as
soon as the command is completed.

137

Microsoft Windows Programming Tools

5.9.61 Comment Command

Syntax

* comment

This command echos comment on the screen (or other output device) .

138

Chapter 6
A Program Maintainer:
Make

6. 1 Introduction 141
6.2 Using :Make 141

6.2 .1 Creating a :Make Description File 141

6.2.2 Starting :Make 143

6.2.3 Using :Make Options 144

6.2.4 Using :Macro Definitions 145
6.2.5 Nesting :Macro Definitions 146
6.2.6 Using Special :Macros 147

_---., 6.2.7 Inference Rules 147

6.3 :Maintaining a Program: an Example 149

139

A Program Maintainer: Make

6 . 1 Introduction

The Microsoft Program Maintenance Utility (make) automates the pro­
cess of maintaining assembly-language and high-level-language programs.
The make utility automatically carries out all the tasks that need to be
done in order to update a program after one or more of its source files
have changed .

Unlike other batch-processing programs, make does not assemble, com­
pile, and link all files just because one file has been updated . The make
utility compares the last modification date of the file or files that may need
updating with the modification dates of files on which these target files
depend. The make utility then carries out the given task only if a target
file is out of date. This process saves you time when you are creating pro­
grams that have many source files or that take several steps to complete .

This chapter explains how to use make and illustrates how to maintain a
sample assembly-language program.

6 . 2 Using Make

To use make, you must create a make description file that defines the
tasks you want to accomplish and specifies the files on which these tasks
depend. Once the description file exists, you invoke make and supply the
filename as a parameter; make then reads the contents of the file and
carries out the requested tasks . Sections 6 .2 . 1 and 6 .2 .2 explain how to
create a make description file and how to start make.

6.2.1 Creating a Make Description File

You can create a make description file with a text editor. A make
description file consists of one or more target/dependent descriptions .
Each description has the following general form:

targetfile : dependentfiles
command1
[command2�

141

Microsoft Windows Programming Tools

The targetfile parameter specifies the name of a file that may need updat­
ing. The dependentfiles parameter specifies the name of a file on which the
target file depends.

The names specified by the targetfile and dependentfiles parameters must
be valid filenames. A pathname must be provided for any file that is not on
the same drive and in the same directory as the description file .

Any number of dependent files can be given, but only one target name is
allowed. The names of dependent files must be separated from each other
by at least one space . If you have more dependent filenames than can
fit on one line , you can continue the names on the next line by typing a
backslash (\) followed by a new line .

The command parameter can specify any valid DOS command line, con­
sisting of the name of an executable filename or a DOS internal command.
Any number of commands can be given , but each must begin on a new line
and must be preceded by a tab or by at least one space . The commands
are carried out only if one or more of the dependent files has been modified
since the target file was created .

Think of the make format as an "if/then" statement: if any dependentfile
is newer than the targetfile, or if there is no targetfile, then execute com­
mands.

You can give any number of target or dependent descriptions in a descrip­
tion file . You must make sure , however, that the last line in one descrip­
tion is separated from the first line of the next by at least one blank line .

The number sign (#) is a comment character. All characters after the
comment character on the same line are ignored. When comments appear
in a command-line section, the comment character (#) must be the first
character on the line (no white space should appear before it) . On any
other lines, the comment character can appear anywhere .

Note

142

The order in which you place the target or dependent descriptions is
important . The make utility examines each description in turn and
bases its decision to carry out a given task on the file's current modifi­
cation date. If a command in a later description modifies a file, make
cannot return to the description in which that file is a dependent .

A Program Ma.inta.iner: Ma.ke

Example

startup . obj : startup . asm
masm startup , startup , nu l , nu l

print . obj : print . asm
masm print , print , print , print

print . re f : print . cr f
cre f print , print

print . exe : startup . obj print . obj \ l ib\sysca l . l ib
l ink startup+print , print , printjmap , \ l ib\sysca l ;

print . sym : print . map #make a symbo l file for debugging
#use the - 1 option to print in formation

mapsym - 1 print . map

This example defines the actions needed to create five target files. Each file
has at least one dependent file and one command. The target descriptions
are given in the order in which the target files will be created . Thus,
startup .obj and print. obj are examined and created, if necessary, before
pr£nt. exe.

Notice that a comment appears on the same line as the target description
for print.sym. However, in the command-line section, the comment appears
on a separate line because the comment character (#) must be the first
character on the line .

6.2.2 Starting Make

Syntax

make [options] [macrodefinitions] filename

The opt£ons parameter specifies one or more of the options described in
Section 6 .2 . 3 . The macrodefinit£ons parameter specifies one or more of the
macro definitions described in Section 6 .2 .4 . The filename parameter
specifies the name of a make description file . A make description file, by
convention, has the same filename (but with no extension) as the program
it describes. Although any filename can be used, this convention is pre­
ferred .

Once you start make, it examines each target description in turn . If a
given target file is out-of-date compared to its dependent file or if the tar­
get file does not exist, make executes the given command or commands.
Otherwise, it skips to the next target description .

143

Microsoft Windows Programming Tools

When make finds an out-of-date target file, it displays the command or
commands from the target/dependent description, then executes the com­
mands. If make cannot find a specified file, it displays a message inform­
ing you that the file was not found. If the missing file is a target file, make
continues execution because the missing file will, in many cases, be created
by subsequent commands.

If the missing file is a dependent or command file, make stops execution of
the description file; make also stops execution and displays the exit code
if the command returns an error. (You can override this by using the /i
option . See Section 6 .2 .3 for details .)

When make executes a command, it uses the same environment used to
invoke make. Thus, environment variables such as PATH are available for
these commands.

6.2.3 Using Make Options

The options available with the make command modify its behavior and
are described as follows:

Option

/d

/i

/n

/s

Examples

make /n test

Description

This option causes make to display the last modification
date of each file as the file is scanned .

This option causes make to ignore exit codes (also called
return or "errorlevel" codes) returned by programs called
by the make description file. Despite the errors, make will
continue execution of the next lines of the description file .

This option causes make to display commands that would
be executed by a description file, but the commands are not
actually executed .

This option causes make to execute in "silent" mode . That
is, lines are not displayed as they are executed .

The first example directs make to display commands from the make
description file named test without executing them.

144

A Program Maintainer: Make

make /d test

The second example directs make to execute the instructions from test,
displaying the last modification date of each file as it is scanned .

6.2.4 Using Macro Definitions

Macro definitions allow you to associate a symbolic name with a particular
value . By using macro definitions, you can change values in the description
file without having to edit every line that contains a particular value.

A macro definition has the following form:

name= value

The form for using a previously defined macro definition is as follows:

$ (name)

Occurrences of the pattern $ (name) in the description file are replaced
with the specified value. The name parameter is converted to uppercase :
"flags" and "FLAGS" are equivalent . If you define a macro name but leave
the value parameter blank, value will be a null string.

Macro definitions can be placed in the make description file or given on
the make command line . A name parameter is also considered defined if it
has a definition in the current environment. For example, if the environ­
ment variable PATH is defined in the current environment, occurrences of
"$ (PATH)" in the description file will be replaced with the PATH value .

In the make description file , each macro definition must appear on a
separate line . Any white space (tab and space characters) between name
and the equal sign (=) or between the equal sign and value is ignored. Any
other white space is considered part of value. To include white space in a
macro definition on the command line, enclose the entire definition in
double quotation marks (" ") .
If the same name is defined in more than one place, the following order of
precedence applies:

1 . Command-line definition

2. Description-file definition

3. Environment definition

145

Microsoft Windows Programming Tools

Example

BASE=abc
BUF=/B63

$ (BASE) . obj : $ (BASE) . asm
masm $ (BASE) $ (BUF) , $ (BASE) , $ (BASE) , $ (BASE)

$ (BASE) . exe : $ (BASE) . obj \l ib\math . l ib
l ink $ (BASE) , $ (BASE) , $ (BASE) /map , \l ib\math

The preceding example of a make description file shows macro defini­
tions for the names "BASE" and "BUF" . The make utility replaces each
occurrence of "$ (BASE) '' with "abc" .

If the description file is called assemble, you can give the following
command:

make BASE=de f assemble

This command line enables you to override the definition of "BASE" in the
description file, causing "def" to be assembled and linked instead of "abc" .

If you want to override the 63K buffer size specified by the macro "BUF"
in the make description file and instead use the masm default buffer size
of 32K, you can start make with the following command line :

make BUF=assemble

Since the value for "BUF" is blank, i t will be treated as a null string . How­
ever, since the null string was given from the command line , which has
higher precedence than the definition in the description file, "BUF" will be
expanded to a null string and no option will be passed in the masm com­
mand line.

6.2.5 Nesting Macro Definitions

Macro definitions can be nested . In other words, a macro definition can
include another macro definition . For example, you might have the follow­
ing macro definition in the make description file picture:

LI BS=$ (DLI B) \math . l ib $ (DLIB) \graphics . l ib

You could then start make with the following command line :

make DLI B=d : \l ib

146

A Program Maintainer: Make

In this case, every occurrence of the macro "LIBS" would be expanded to
the following:

d : \l ib\math . l ib d : \l ib\graphics . l ib

Be careful to avoid infinitely recursive macros such as the following:

A = $ (B)
B = $ (C)
C = $ (A)

6.2.6 Using Special Macros

The make utility recognizes three special macro names and will automati­
cally substitute a value for each . The special names and their values are
described as follows:

Name

$ *

$ @

$ * *

Value substituted

Base-name portion of the target (without the extension)
Complete target name

Complete list of dependencies

These macro names can be used in description files, as shown in the follow­
ing example:

test . exe : modl . obj mod2 . obj mod3 . obj
l ink $ * * , $@ ;
mapsym $ *

The preceding example is equivalent to the following:

test : exe : modl . obj mod2 . obj mod3 . obj
l ink modl . obj mod2 . obj mod3 . obj , test . exe ;
mapsym test

6.2. 7 Inference Rules

The make utility allows you to create inference rules that specify com­
mands for target/dependent descriptions even when there is no explicit
command in the make description file. An inference rule tells make how
to produce a file with one type of extension from a file with the same base
name and another type of extension . For example, if you define a rule for
producing . obj files from . asm files, the actual commands do not have to be
repeated in the description file for each target/dependent description .

147

Microsoft Windows Programming Tools

Inference rules take the following form: .

• dependentextension. targetextension :
commandl
[command2]

For lines that do not have explicit commands, make looks for a rule that
matches both the target 's extension and the dependent's extension . If it
finds such a rule, make performs the commands given by the rule .

The make utility looks first for dependency rules in the current descrip­
tion file, but if it does not find an appropriate rule, it will search for the
tools- initialization file, tools. ini, in the current drive and directory (or in
any directories specified with the DOS path command) .
If make finds tools. ini, it looks through the file for a line beginning with
the tag " [make] " . Inference rules following this line will be applied if
appropriate .

Example

. asm . obj :
masm $ * . asm , , ;

testl . obj : testl . asm

test2 . obj : test2 . asm
masm test2 . asm ;

In the preceding sample description file, an inference rule is defined in the
first line . The filename in the rule is specified with the macro name $ * so
that the rule will apply to any base name . When make encounters the
dependency for files test1 . obj and test1 . asm, it looks first for commands on
the next line . When it does not find any, make checks for a rule that may
apply and finds the rule defined in the first lines of the description file.
Then make applies the rule, replacing the $ * macro with test1 when it
executes the following command:

masm testl . asm , , ;

When make reaches the second dependency for the test2 files, it does not
search for a dependency rule because a command is explicitly stated for
this target/ dependent description .

148

A Program Maintainer: Make

6.3 Maintaining a Program: an Example

The make utility is especially useful for programs in development because
it offers a quick way to re-create a modified program after small changes.

Suppose you have a test program named test. asm that you use to debug
the routines in a library file named math. lib. The purpose of test. asm is to
call one or more routines in the library so that you can make a study of
their interaction . Each time test. asm is modified, it has to be assembled, a
cross-reference listing has to be created, the assembled file has to be linked
to the library, and finally a symbol file has to be created for use with the
Microsoft Symbolic Debug Utility (symdeb) .

These tasks will be carried out when the following target/dependent
descriptions are copied to the make description file test:

test . obj : test . asm
masm test , test , test , test

test . re f : test . cr f
cre f test , test

test . exe : test . obj \l ib\math . l ib
l ink4 test , test , test/map , \l ib\math

test . sym : test . map
mapsym /1 test . map

These lines define the actions to be carried out to create four target files:
test. obj, test. rej, test. exe, and test. s'!jm. Each file has at least one dependent
file and one command. The targetjdependent descriptions are given in the
order in which the target files will be created . Thus, test. sym depends on
test. map, which is created by link4; test. exe depends on test. obj, which is
created by masm; and test. ref depends on test. crj, which also is created by
masm.

Once the description file is in place, you can create test. asm using a text
editor, then invoke make to create all other required files. The command
line should have the following form:

make test

The make utility carries out the following steps:

1 . It compares the modification date of test. asm with test. obj. If
test. obj is out-of-date (or does not exist) , make executes the follow­
ing command:

masm test , test , test , test

Otherwise, it skips to the next target description .

149

Microsoft Windows Programming Tools

2 . I t compares the dates of test. ref and test. crf If test. ref is out-of­
date , make executes the following command:

ere f test , test

3 . I t compares test. exe with the dates of test. obj and the library file
math . lib. If test. exe is out-of-date with respect to either file, make
executes the following command:

l ink test , test , test/map , \l ib\math . l ib

4. It compares the dates of test. sym and test. map. If test. sym is out­
of-date, make executes the following command:

mapsym /1 test . map

When test. asm is first created, make will execute all commands because
none of the target files exist . If you invoke make again without changing
any of the dependent files, it will skip all commands. If you change the
library file math. lib but make no other changes, make will execute the
link4 command because test. exe is now out-of-date with respect to
math. lib. It will also execute mapsym because test. map is created by
link4.

150

Chapter 7
Assembly-Language Macros

7. 1 Introduction 153

7.2 CMACROS.INC File 153
7.3 Cmacros Options 153

7.3. 1 Memory-Model Selection 154

7.3.2 Calling Conventions 155

7.3.3 Windows Prolog/Epilog 155
7.3.4 Stack-Checking Option 156
7.4 Segment Macros 156

7.4. 1 Storage-Allocation Macros 160

7.4.2 Function Macros 163
7.4.3 Call Macros 168
7 .4.4 Special-Definition Macros 170
7 .4.5 Error Macros 171
7.5 Using the Cmacros 173
7.5. 1 Overriding Types 173

7.5 .2 Symbol Redefinition 17 4

7.5.3 Cmacros: a Sample Function 174

151

Assembly-Language Macros

7. 1 Introduction

This chapter describes the Cmacro macros, a set of assembly-language
macros that can be used with the Microsoft Macro Assembler (MASM) to
create assembly-language Windows applications. The Cmacros provide a
simplified interface to the function and segment conventions of high-level
languages, such as C and Pascal .

The Cmacros are divided into the following groups:

Segment macros
Storage-allocation macros
Function macros
Call macros
Special-definition macros
Error macros

The following sections describe each group in detail.

7.2 CMACROS.INC File

The file cmacros. inc contains the assembly-language definitions for all
the Cmacro macros. You must include this file at the beginning of the
assembly-language source file by using the INCLUDE directive . The line
has the following form:

INCLUDE cmacros . inc

You must give the full pathname if the macro file is not in the current
directory or in a directory specified on the command line .

7.3 Cmacros Options

The Cmacros provide assembly-time options that define the memory
model and the calling conventions that the application will use . The
options must be selected in the assembly-language source file prior to
the INCLUDE directive .

153

Microsoft Windows Programming Tools

7.3.1 Memory-Model Selection

The memory-model options specify the memory model that the application
will use . The memory model defines how many code and data segments are
in the application . The following is a list of the possible memory models:

Model

Small

Medium

Compact

Large

Huge

Description

One code segment and one data segment

Multiple code segments and one data segment

One code segment and multiple data segments

Multiple code and data segments

Multiple code segments and multiple data seg­
ments with one or more data items larger than
64K

You select a memory model by defining the option name at the beginning
of the assembly-language source file. The following Table 7 . 1 shows the
option names available:

Table 7 . 1

Memory Options

Option Memory Code Data
Name Model Size Size

memS small small small
memM medium large small
memO compact small large
memL large large large
memH huge large large

You can define a name by using the EQU directive . The definition has the
following form:

memM EQU 1

If no option is selected , the default is model is small .

154

Assembly-Language Macros

When you select a memory-model option, two symbols are defined . These
two symbols can be used for code that is dependent on the memory model:

SizeC

SizeD

0 = small code 1 = large code

0 = small data 1 = large data 2 = huge data

7 .3.2 Calling Conventions

The calling-convention option specifies the high-level- language calling con­
vention that the application will use. You can select the calling convention
by defining the value of the symbol ?PLM. The following Table 7 .2 lists
the values and conventions:

Table 7.2

Calling Conventions

?PLM value Convention

0 Standard 0

1 Pascal

Description

The caller pushes the rightmost
argument onto the stack first,
the leftmost last. The caller pops
the arguments off the stack after
control is returned .
The caller pushes the leftmost
argument onto the stack first,
the rightmost last. The called
function pops the arguments off
the stack.

You can set the ?PLM symbol value by using the = directive . The state­
ment has the following form:

?PLM = 1

The default is the Pascal convention .

7 .3.3 Windows Prolog/Epilog

The Windows prolog/epilog option specifies whether or not special prolog
and epilog code should be used with each function . This special code de­
fines the current data segment for the given function and is required for
Windows applications.

155

Microsoft Windows Programming Tools

You select this option by defining the value of the symbol ?WIN. The fol­
lowing Table 7 .3 lists the values:

Table 7.3

Prolog/Epilog Code Options

?WIN value Meaning

0 Disables the special prologjepilog code.
1 Enables the special prologjepilog code.

You can set the ?WIN symbol value by using the = directive . The state­
ment has the following form:

?WIN = 1

The default is to have the prologjepilog enabled .

7.3.4 Stack-Checking Option

You can enable stack checking by defining the symbol ?CHKSTK. When
stack checking is enabled, the prolog code calls the externally defined rou­
tine CHKSTK to allocate local variables.

You can define the ?CHKSTK symbol by using the = directive . The
statement has the following form:

?CHKSTK = 1

Once CHKSTK is defined, stack checking is enabled for the entire file .

The default (when CHKSTK is not defined) is no stack checking.

7.4 Segment Macros

The segment macros give access to the code and data segments that an
application will use . These segments have the names, attributes, classes,
and groups required by Windows.

The Cmacros have two predefined segments, named CODE and DATA,
that any application can use without special definition . Medium- , large- ,
and huge-model applications can define additional segments by using the
createSeg macro.

156

Assembly-Language Macros

Syntax

ereateSeg segName, logName, align, combine, class

This macro creates a new segment that has the specified name and seg­
ment attributes. The macro automatically creates an assumes macro and
an OFFSET macro for the new segment. This macro is intended to be
used in medium-model Windows applications to define non-resident seg­
ments. The segName parameter specifies the actual name of the segment.
This name is passed to the linker.

The logName parameter specifies the logical name of the segment . This
name is used in all subsequent sBegin, sEnd, and assumes macros that
refer to the segment .

The align parameter specifies the alignment type. It can be any one of the
following:

BYTE
WORD
PARA
PAGE

The combine parameter specifies the combine type for the segment. It can
be any one of the following:

PUBLIC
STACK
MEMORY
COMMON

If no combine type is given, a private segment is assumed .

The class parameter specifies the class name of the segment . The class
name defines which segments must be loaded in consecutive memory.

Example

createSeg _INIT , INITCODE , BYTE , PUBLI C , CODE

sBegin I NITCODE
assumes CS : INITCODE

mov ax , initcodeOFFSET sample

sEnd INI TCODE

157

Microsoft Windows Programming Tools

Comments

The alignment, combine type , and class name are described in detail in the
M£crosoft Macro Assembler Reference Manual.

Syntax

sBegin segName

This macro opens up a segment . It is similar to the SEGMENT assem­
bler directive .

The segName parameter specifies the name of the segment to be opened . It
can be one of the predefined segments, CODE or DATA, or the name of
a user-defined segment .

Examples

sBegin DATA
sBegin CODE

Syntax

sEnd [segName]

This macro closes a segment . It is similar to the ENDS assembler direc­
tive .

The optional segName parameter specifies a name used for readability. If it
is given , it must be the same as the name given in the matching sBegin
macro.

Examples

sEnd
sEnd DATA

Syntax

assumes segReg, segName

This macro makes all references to data and code in the segment
segName relative to the segment register given by segReg. It is similar
to the ASSUME assembler directive .

158

Assembly-Language Macros

The segReg parameter specifies the name of a segment register.

The segName parameter specifies the name of a predefined segment,
CODE or DATA, or a user-defined segment.

Examples

assumes CS , CODE
assumes DS , CODE

Syntax

dataOFFSET arg

This macro generates an offset relative to the start of the group to which
the DATA segment belongs . It is similar to the OFFSET assembler
operator, but automatically provides the group name. For this reason,
it should be used instead of OFFSET.

The arg parameter specifies a label name or offset value .

Example

mv ax , dataOFFSET l abel

Syntax

eodeOFFSETarg

This macro generates an offset relative to the start of the group to which
the CODE segment belongs. It is similar to the OFFSET assembler
operator, but automatically provides the group name. For this reason,
it should be used instead of OFFSET.

The arg parameter specifies a label name or offset value .

Example

mv ax , codeOFFSET l abel

159

Microsoft Windows Programming Tools

Syntax

segNameOFFSET arg

This macro generates an offset relative to the start of the group to which
the user-defined segment segName belongs . It is similar to the OFFSET
assembler operator, but automatically provides the group name. For this
reason, it should be used instead of OFFSET.

The arg parameter specifies a label name or offset value .

Ex ample

mv ax , initcodeOFFSET l abel

7 .4 . 1 Storage-Allocation Macros

These macros allocate static memory (either private or public) , declare
externally defined memory and procedures, and allow the definition of
public labels .

Syntax

staticX name, [initia/Value] , [replication]

This macro allocates private static-memory storage .

The X parameter specifies the size of storage to be allocated . It can be any
one of the following:

Type

B

w

D

Q
T

CP

DP

Description

Byte

Word

Double-word

Quad-word

Ten bytes

Code pointer (one word for small and compact models)
Data pointer (one word for small and medium models)

The name parameter specifies the reference name of the allocated memory.

160

Assembly-Language Macros

The optional initialValue parameter specifies an initial value for the
storage . If no value is specified, the default is zero .

The optional replication parameter specifies a count of the number of
times the allocation is to be duplicated . This parameter generates the
DUP assembler operator.

Examples

staticW flag, 1
staticB string, , 30

Syntax

globalX name, [initia/Value] , [replication]

This macro allocates public static-memory storage .

The X parameter specifies the size of the storage to be allocated . It can be
any one of the following:

Type

B

w

D

Q
T

CP

DP

Description

Byte

Word

Double-word

Quad-word

Ten bytes

Code pointer (one word for small and compact models)

Data pointer (one word for small and medium models)

The name parameter specifies the reference name of the allocated memory.

The optional initialValue parameter specifies an initial value for the
storage . If no value is specified, the default is zero.

The optional replication parameter specifies a count of the number of
times the allocation is to be duplicated. This parameter generates the
DUP assembler operator.

Examples

gl obalW
gl obal B

f l a g , 1
string , O , 30

161

Microsoft Windows Programming Tools

Syntax

externX < namelist>

This macro defines one or more names that will be the labels of external
variables or functions.

The X parameter specifies the storage size or function type. It can be any
one of the following:

Type

B

w

D

Q
T

CP

DP

NP

FP

p

Description

Byte

Word

Double-word

Quad-word

Ten bytes

Code pointer (one word for small and compact models)

Data pointer (one word for small and medium models)

Near function pointer

Far function pointer

Near for small and compact models; far for other models

The namelist parameter specifies the list of the names of the variables or
functions.

Examples

externB <DataBase>
externFP <Sampl eRead>

Syntax

labelX < namelist>

This macro defines one or more names that will be the labels of public
(global) variables or functions.

The X parameter specifies the storage size or function type. It can be any
one of the following:

162

Assembly-Language Macros

Type

B

w

D

Q
T

CP

DP

NP

FP

p

Description

Byte

Word

Double-word

Quad-word

Ten bytes

Code pointer (one word for small and compact models)
Data pointer (one word for small and medium models)
Near function pointer

Far function pointer

Near for small and compact models; far for other models

The namelist parameter specifies the list of the names of the external vari­
ables or functions.

Examples

l abel B <DataBase>
l abelFP <SampleRead>

7 .4 .2 Function Macros

The function macros define the names, attributes, parameters, and local
variables of functions.

Syntax

cProc procName, < attributes>, < autoS ave>

This macro defines the name and attributes of a function .

The procName parameter specifies the name of the function .

The attributes parameter specifies the function type. It can be a combina­
tion of the following:

163

Microsoft Windows Programming Tools

Type Description

NEAR A near function . It can only be called from the segment in
which it is defined.

FAR A far function . It can be called from any segment.

PUBLIC A public function . It can be externally declared in other
source files.

The default attribute is NEAR and private (i . e . , cannot be declared exter­
nally in other source files) . The NEAR and FAR attributes cannot be
used together. If more than one attribute is selected, the angle brackets
are required .

The autoSave parameter specifies a list of registers to be saved when the
function is invoked, and restored when exited . Any of the 8086 's registers
can be specified .

Comments

The C calling conventions require that the si and di registers be saved
before altering their contents.

The bp register is always saved, regardless of whether it is present in the
autoSave list .

Examples

cProc procl , <FAR , ds , es>
cProc proc2 , <NEAR , PUBL I C>
cProc proc3 , , ds

Syntax

parmX < namelist>

This macro defines one or more function parameters. The parameters
provide access to the arguments passed to the function . Parameters must
appear in the same order as the arguments in the function call .

The X parameter specifies the storage size . It can be any one of the follow­
ing:

164

�'

Assembly-Language Macros

Type

B

w

D

Q
T

CP

DP

Description

Byte (allocated on a word boundary on the stack)

Word (allocated on a word boundary)

Double-word (allocated on a word boundary)

Quad-word (aligned on a word boundary)

Ten-byte word (aligned on a word boundary)

Code pointer (one word for small and compact models)

Data pointer (one word for small and medium models)

The namelist parameter specifies the list of the parameter names.

Comments

The parmD macro creates two additional symbols, OFF_ name
and SEQ_ name. OFF_ name is the offset portion of the parameter;
SEG_ name is the segment portion .

Only the parameter name is required when referring to the corresponding
argument . Write your code like this:

mov a l , varl

Not like this :

mov a l , byte ptr varl [bp]

Examples

parmW varl
parmB <var 2 , var 3 , var4>
parmD <var5>

Syntax

locaiX < namelist> , size

This macro defines one or more frame variables for the function . To keep
the words in the stack aligned, the macro ensures that the total space allo­
cated is an even number of bytes.

165

Microsoft Windows Programming Tools

�he X parameter specifies the storage size . It can be any one of the follow­
mg:

Type Description

B Byte (allocates a single byte of storage on the stack)
w Word (allocated on a word boundary)
D Double-word (allocated on a word boundary)
v Variable size (allocated on a word boundary)
Q Quad-word (aligned on a word boundary)
T Ten-byte word (aligned on a word boundary)
CP Code pointer (one word for small and compact models)
DP Data pointer (one word for small and medium models)
The namelist parameter specifies the list of the names of the frame vari­
ables for the function.

The size parameter specifies the size of the variable. It is used with localV
only .

Comments

B-type variables are not necessarily aligned on word boundaries .

The localD macro creates two additional symbols, OFF_ name
and SEG_ name. OFF_ name is the offset portion of the parameter;
SEG_ name is the segment portion.

Only the name is required when referencing a variable. Write your code
like this:

mov al , varl

Not like this:

mov al , byte ptr varl [bp]

166

--'

Assembly-Language Macros

Examples

l ocalB <Ll , L2 , L3>
l ocalW L4
l ocalD <LS>
l ocalV L6 , % (size struc)

Syntax

cBegin [procName]

This macro defines the actual entry point for the function procName.
The macro creates code that sets up the frame and saves registers.

The optional procName parameter specifies a function name . If it is given,
it must be the same as the name given in the cProc macro immediately
preceding the cBegin macro.

Syntax

cEnd [procName]

This macro defines the exit point for the function procName. The macro
creates code that discards the frame, restores registers, and returns to the
caller.

The optional procName parameter specifies a function name . If it is given,
it must be the same as the name given in the cBegin macro immediately
preceding the cEnd macro.

Once a function has been defined using cProc, any formal parameters
should be declared with the parmX macro and any local variables with
the localX macro. The cBegin and cEnd macros must be used to de­
lineate the code for the function .

The following is an example of a complete function definition :

167

Microsoft Windows Programming Tools

Example

cProc strcpy , <PUBLIC> , <si , di>
parmW dst
parmW src
l ocalW cnt

cBegin
c l d
mov
mov
push
pop
xor

si , src
di , dest
ds
es

mov
loop :

ex , ex
cnt , cx

Iodsb
stosb
inc cnt
cmp a l , O
j nz loop
mov ax , cnt

cEnd

7 .4.3 Call Macros

The call macros can be used to call cProc functions and high-level­
language functions . These macros pass arguments according to the call­
ing convention defined by the ?PLM option .

Syntax

eCall procName, [< argList>] , [<underscores>]

This macro pushes the arguments in argList onto the stack, saves registers
(if any) , and calls the function procName.

The procName parameter specifies the name of the function to be called .

The optional argList parameter specifies a list of the names of arguments
to be passed to the function . This list is not required if the Arg macro is
used before cCall.

The optional underscores parameter specifies whether or not an underscore
should be added to the beginning of procName. If this argument is blank,
an underscore is added.

168

Assembly-Language Macros

Comments

The arguments of an Arg macro are pushed onto the stack before any
arguments in the argList parameter of a cCall macro.

Byte-type parameters are passed as words. There is no sign extension or
zeroing of the high-order byte.

Immediate arguments are not supported.

Examples

cCa l l

Arg
Arg
cCa l l

Syntax

there , <pExt , ax , bx , pResult>

pExt
ax
there , <bx , pResult>

Save < regLz'8t>

This macro directs the next cCall macro to save the specified registers
on the stack before calling a function , and to restore the registers after
the function returns. The macro can be used to save registers that are
destroyed by the called function .

The Save macro applies to one cCall macro only; each new cCall must
have a corresponding Save macro. If two Save macros appear before a
cCall, only the second macro is recognized .

The regList parameter specifies a list of registers to be saved .

Examples

Save <cl , bh , si>
Save <ax>

Syntax

Arg < namelz'8t>

This macro defines the arguments to be passed to a function by the next
cCall macro. The arguments are pushed onto the stack in the order given .
This order must correspond to the order of the function parameters .

169

Microsoft Windows Programming Tools

More than one Arg macro can be given before each cCall . Multiple Arg
macros have the same effect as a single macro.

The namelist parameter specifies a list of argument names to be passed to
the function . All names must have been previously defined.

Comments

Byte-type parameters are passed as words. There is no sign extension or
zeroing of the high-order byte .

Immediate arguments are not supported .

Examples

Arg
Arg
Arg
Arg

7.4.4

varl
var2
var 3
<varl , var 2 , var 3>

Special-Definition Macros

The special-definition macros inform the Cmacros about user-defined
variables, function-register use, and register pointers.

Syntax

Def X < namelz'st>

This macro registers the name of a user-defined variable with the Cmac­
ros. Variables that are not defined using the static.X, global.K, extern.X,
parm.X, or localX macros cannot be referred to in other macros unless
the name is registered, or the variable was defined with the DW assembler
directive .

The X parameter specifies the storage size of the variable . It can be any
one of the following:

Type Description

B Byte

w Word

D Double-word

Q Quad-word

170

Assembly-Language Macros

T Ten-byte word

CP Code pointer (one word for small and compact models)
DP Data pointer (one word for small and medium models)
The namelist parameter specifies a list of variable names to be defined .

Example

maxSize db
De fB

dest equ
De fW

Syntax

132
maxSize
wordptr es : [di]
dest

FarPtr name, segment, offset

This macro defines a 32-bit pointer value that can be passed as a single
argument in a cCall macro. In the FarPtr macro, the segment and offset
values do not have to be in registers.

The namf parameter specifies the name of the pointer to be created.

The segment parameter specifies the text that defines the segment portion
of the pointer.

The offset parameter specifies the text that defines the offset portion of
the pointer.

Example

F arPtr destPtr , es , <wordptr 3 [si] >
cCal l proc , <destPtr , ax>

7 .4 .5 Error Macros

The error macros allow assertions to be coded into an assembly-language
source program. This lets you code optimum instruction sequences for
some operations based on the variable allocation or bit position of flag
in a word , and assert that the assumptions made are true .

Error macros generate an error message to the console and an error mes­
sage in the listing. Both the text that caused the error and the result of its
evaluation are displayed in the generated error message .

171

Microsoft Windows Programming Tools

Syntax

errnz < expression>

This macro evaluates a given expression. If the result is not zero, an error
is displayed .

The expression parameter specifies the expression to be evaluated . The
angle brackets are required if there are any spaces in the expression .

Examples

X
y

db
db

?
?

ax , word ptr x mov
errnz < (OFFSET y) - (OFFSET x) -1>

If, during assembly, x and y receive anything but sequential storage loca­
tions, errnz displays an error message .

tablel struc

tab l el l en
tab l el ends

table2 struc

table2 l en
table2 ends

equ $ - tabl el

equ $ - table2

errnz table1Len-table2Len

If, during assembly, the length of two tables is not the same, errnz
displays an error message .

Syntax

errn$ label, [bias]

This macro subtracts the offset of label from the offset of the location
counter, then adds bias to the result . If this result is not zero, then an
error message is displayed .

The label parameter specifies a label corresponding to a memory location .

172

Assembly-Language Macros

The optional bias parameter specifies a signed bias value . A plus or minus
sign is required.

Example

end o f previous code
errn$ function!

function! :

If a function that was originally located immediately after another piece of
code is ever moved, errn$ displays an error message.

7. 5 Using the Cmacros

This section explains the assembly-language statements generated by some
of the Cmacros and illustrates their use with an example of a Cmacros
function called BITBLT.

7.5.1 Overriding Types

Parameters and local variables created using the parmX and localX mac­
ros actually correspond to expressions of the following form:

l ocalB x
parmB y

=>
=>

x equ byte ptr [bp+nn]
y equ byte ptr [bp+nn]

In this example, the nn parameter specifies an offset from the current bp
register value .

These expressions let you use the names without having to explicitly type
in "type ptr" and " [bp+offset] " operators . This means that "x" can be
referred to as follows:

mov a l , x

and that "y" can be referred to as follows:

mov ax , y

A problem arises if the type must be overridden . The assembler creates an
error message if it encounters the following line :

mov ax , word ptr x

173

Microsoft Windows Programming Tools

This can be solved by enclosing the name in parentheses:

mov ax , word ptr (x)

One exception to this pattern is the localV macro. The expression gen­
erated by this macro does not have a type associated with it . Therefore
it can be overridden without the parentheses. For example :

l ocalV horse , lO => horse equ [bp+nn]

7 .5 .2 Symbol Redefinition

Any symbol defined by a parmX macro in one function can be redefined as
a parameter in any other function . This allows different functions to refer
to the same parameter by the same name, regardless of its location on the
stack .

7 .5 .3 Cmacros: a Sample Function

The following example defines the assembly function BITBLT. BITBLT
is a FAR and PUBLIC type function . When BITBLT is invoked, the si
and di registers are automatically saved, and automatically restored upon
exit . Note that the bp register is always saved.

BITBLT is passed seven double-word pointers on the stack. Space will be
allocated on the stack for eight frame variables (one structure, five bytes,
and two words) .

The cBegin macro defines the start of the actual code. The pExt parame­
ter is loaded, and some values are loaded into registers. The ds and si
registers are saved on the following cCall.

Another C function, THERE, is invoked by the cCall macro. Four argu­
ments are passed to THERE: pDestBitmap, the 32-bit pointer in ds:si,
register ax, and register bx. The cCall macro places the arguments on the
stack in the correct order.

When THERE returns, the arguments placed on the stack are automati­
cally removed, and the ds and si registers are restored .

When cEnd i s reached, the frame variables are removed, any autosave
registers are restored, and a return of the correct type (near or far) is
performed .

174

Assembly-Language Macros

Example

cProc BITBLT , <FAR , PUBLIC> , <si , di>

parmD
parmD
parmD
parmD
parmD
parmD
parmD

l ocalV

l ocalB
l ocal B
l ocalB

l ocalW
l ocalW

l ocalB
l ocalB

cBegin

lds
mov
mov

RegPtr
Save

cCa l l

mov
mov

cEnd

pDestBitmap
pDestOrg
pSrcBitmap
pSrcOrg
pExt
pRop
pBrush

n0ps , 4

phaseH
PatRow
direction

startMask
l astMask

firstFetch
stepDirection

si , pExt
ax , extentX [si]
bx , extentY [si]

dest , ds , si
<ds , si>

; - - > to dest bitmap descriptor
; - - > to dest origin (a point)
; - - > to source bitmap descriptor
; - - > to source origin
; - - > to rectangl e extent
; - - > to rasterop descriptor
; - - > to a physical brush'

; # o f each operand used

; Horizontal phase (rotate count)
; Current row for patterns [0 . . 7]
; Increment/decrement fl ag

; mask for first dest byte
; mask for l ast dest byte

; Number o f first fetches needed
; Direction o f move (l e ft , right)

THERE , <pDestBitmap , dest , ax , bx>

extentX [si] , cx
extentY [si] , dx

175

Application Development Tools

�'
8 Icon Editor 179

9 Font Editor 195

10 Dialog Editor 215

1 1 Shaker and Heapwalker 239

177

Chapter 8
Icon Editor

8. 1 Introduction 181

8.2 Starting Icon Editor 181

8.3 Drawing in the Drawing Box 183

8.4 Starting a New Drawing 183

8.4. 1 Choosing the Drawing Type 184

8.4.2 Choosing Resolution 184

8.4.3 Working with Bitmaps 185
8.4.4 Driver Dependence 185

8.5 Changing the Pen Color 185

8.6 Changing the Pen Size 186
8.6. 1 Small 186
8.6.2 Medium, Large, and Extra Large 187
8. 7 Setting the Hotspot 187
8.8 Changing the Background Color 188

8. g Displaying the Drawing Grid 188

8. 10 Opening an Existing
Icon, Cursor, or Bitmap File 188

8. 11 Saving Files 190
8. 12 Using the Edit Menu 190

179

Icon Editor

8.1 Introduction

You can create customized icons, cursors (pointers) , and bitmaps for your
applications by using the :Microsoft Windows Icon Editor. Icon Editor lets
you work on a large-scale icon, cursor, or bitmap while it displays the
normal-scale replica of your work .

Every application needs an icon to show that i t is present, even if its win­
dow is not open . Every application needs a cursor to show that the mouse
is active when moved into the application 's window. Although Windows
provides predefined icons and cursors, Icon Editor lets you create your own
unique icons and cursors for your applications.

The following sections explain how to use Icon Editor .

Note

Icon Editor must be used with a mouse or similar pointing device .

8.2 Starting Icon Editor

Icon Editor is a Windows application . To start it, open the 1\.18-DOS Exec­
utive window and double-click the filename iconedit. exe. Windows loads
Icon Editor.

Figure 8 . 1 shows the Icon Editor window:

181

Microsoft Windows Programming Tools

type • • • • • : I COit
e�1ting • • : Med-res 32x32
uiewing • • : Med-res 32x32

Figure 8 .1 Icon Editor Window

The Icon Editor window has three main parts: the menu bar, which con­
tains menu names; the display box; and the drawing box.

The menu bar lists the menu names at the top of the window. You can
select a menu by pointing to the name and clicking the left mouse button .
Icon Editor has the following menus:

File
Edit
Options
Color
Pensize
Exit

The display box is the box at the left of the screen . It contains the name of
the current editing mode, information on resolution for editing and view­
ing, and a normal-scale replica of your work . Initially, the drawing type is
set to Icon .

The drawing box is the large square box at the right of the screen . This
box is the workspace where you will draw your icons, cursors, and bit­
maps. The box is a magnified view of a small part of the screen . Each pixel
in this box is many times larger than a pixel on the actual screen, so that
you can see the individual pixels while doing your work . The box has an
optional grid that you can use to help align pixels as you draw them.

182

Icon Editor

8.3 Drawing in the Drawing Box

To draw an icon or cursor, you simply move the mouse pointer into the
drawing box and use the left and right mouse buttons to color and erase
pixels:

• To color a pixel, point to the pixel and click the left mouse button .
The pixel takes on the current pen color.

• To color several pixels, use the left mouse button to drag the
cursor over each pixel you want to color. The pixels take on the
current pen color.

• To erase a pixel, point to the pixel and click the right mouse
button . The pixel takes on the current background color.

• To erase several pixels, use the right mouse button to drag the
cursor over each pixel you want to erase. The pixels take on the
current background color.

Pen size affects the way you color pixels. See Section 8 . 6 for information
on the different pen sizes.

Initially, the pen color is black and the background color is gray. You can
change this by using the commands from the Color and Options menus,
described in Sections 8.5 and 8 .8 , respectively . When you are drawing a
bitmap, the pen color and background color work slightly differently than
in the preceding list; see Section 8 .4 .3 for information on drawing bitmaps.

You can draw straight lines by using the Options menu and selecting the
Draw Straight command.

8.4 Starting a New Drawing

You can remove the current contents of the drawing box (and the display
box) by using the New command.

To clear the drawing box, choose the New command from the File menu .
A new, empty file is opened and the drawing box and display box are
cleared. The New Figure dialog box will appear. (If you made changes to
the current file that you did not save, you will see a dialog box asking you
whether you want to save them. If you want to save the changes, choose
Yes; otherwise, choose No.) Figure 8 .2 shows the New Figure dialog box:

183

Microsoft Windows Programming Tools

Hew Figure

Choose a figure , then set actiue fields as
desired .

Figure : e[Jf.jf� 0 Cursor 0 Bit111ap
0 Deuice dependent 0 Piscardabl e

Resolution :

0 I o-res (l2ll16)
0 111ed-res (l2ll32)
e h:i-res (611ll64)

Enter

D Width l 1 - 99 Jlillels)
D lfeight (1 - 99 pillels)

(Esc=Cancel)

Figure 8.2 The New Figure Dialog Box

8.4.1 Choosing the Drawing Type

Icon Editor has three modes or drawing types: Icon, for drawing and edit­
ing icons; Cursor, for drawing and editing cursors; and Bitmap, for draw­
ing and editing patterns. You can choose the drawing type by selecting it
from the New Figure dialog box.

To draw an icon, cursor, or bitmap, choose the Icon, Cursor, or Bitmap
radio button from the dialog box. Icon Editor will change the label in the
display box to reflect the new drawing type. It will also clear the drawing
box and re-display the drawing grid .

8.4.2 Choosing Resolution

When you select the drawing type, you will also have the opportunity
to select the resolution for editing and viewing Icons and Cursors. The
"lo-res" setting refers to CGA-compatible displays, the "med-res" setting
corresponds to EGA-compatible displays, and "hi-res" is provided for
displays that have a higher resolution than the EGA displays. You cannot
select resolution unless you 're in device-dependent mode . When you 're not
in device-dependent mode, the resolution is set at 64X 64 for icons and
32X 32 for cursors.

Icon Editor's 64X 64-pixel display format for icons is based on a
1024X 1024-pixel display screen . If your screen has fewer pixels than this,
Icon Editor will automatically adjust the full-scale image of your work
(shown in the display box) to an image appropriate for your display­
screen type .

184

Icon Editor

For example, on 640X 200-pixel monitors commonly used with the IBM
PC, the 64X 64-pixel icon is reduced to a 32X 1 6-pixel block . Icon Editor
simply deletes every other column and three of every four rows. As a
result, the icon that appears in the display box is not necessarily an exact
replica of your work .

8.4.3 Working with Bitmaps

When you select the Bitmap drawing type, Icon Editor changes the label
on the display box to Bitmap. If appropriate , it also clears the drawing
box and re-displays the drawing grid .

You will need to specify a width and a height for the bitmap . The drawing
box can be any size from lX 1 to 99X 99 pixels.

When you are drawing bitmaps, the background in the drawing box is set
to white and cannot be affected by any choices from the Options menu; the
pen color is set to black and cannot be affected by any choices from the
Color menu .

You can choose the Discardable checkbox to make your bitmap discard­
able . This means that if the application needs more memory to run, it can
discard the bitmap . Keep in mind that if the application does discard the
bitmap, the bitmap will have to be loaded again if it's needed again.

8.4.4 Driver Dependence

If you know precisely which display device the resource that you 're creat­
ing is going to be used on, then choose the Device dependent checkbox.
You can then choose the appropriate resolution, and you can be sure that
the icon , cursor, or bitmap that you draw will look the same on the user's
screen as it looks in the display box now. However, since most Windows
applications will be used on a variety of display devices, you will probably
not want to limit yourself by choosing Device dependent.

8. 5 Changing the Pen Color

You can change the color of the pen in Icon Editor by using the Color
menu . The current pen color defines what color Icon Editor gives to an
icon or cursor pixel when you color it by using the left mouse button .

The Color menu lists four pen colors: White, Black, Screen, and Inverse
Screen. An icon or cursor pixel with Screen color has the same color as the
screen pixel underneath it . Inverse Screen is the inverted color; an icon or

185

Microsoft Windows Programming Tools

cursor pixel with Inverse Screen color has the color that is the opposite of
the screen color . For example, if the screen is white, the pixel is black; if
the screen is light gray, the pixel is dark gray.

For icons and cursors, you can use all four colors . For drawing bitmaps,
the pen is set to black .

To change the pen color, choose the desired color from the Color menu .

8.6 Changing the Pen Size

You can change the size of the pen by using the Pensize menu . The pen
size determines the number of pixels you can color at once . The Pensize
menu lists four pen sizes: Small, Medium, Large, and Extra Large .

To change the pen size, choose the size you want from the Pensize menu .

The Small pen size works differently from the Medium, Large, and Extra
Large .

8.6.1 Small
When you choose Small, the mouse pointer looks like a pencil when it's in
the drawing box. The left mouse button toggles between the pen color and
its inverse color; the right mouse button toggles between the screen color
and its inverse color.

For instance, if the pen color is black and the screen color is light grey,
this is what happens when you 're using the Small pen size :

• Pointing to a pixel and clicking the left mouse button turns the
pixel black . Clicking the same pixel again turns it white .

• Pointing to a pixel and clicking the right mouse button turns the
pixelight gray. Clicking the same pixel again turns it dark gray .

Small is the default pen size . When you start Icon Editor, the pen size is
set to Small.

When you are drawing a bitmap, the left and right mouse buttons have
the same effect in the Small pen size : either button will turn a black pixel
white or a white pixel black .

186

Icon Editor

8.6.2 Medium, Large, and Extra Large

When you choose the Medium, Large, or Extra Large pen size, the pointer
looks like a thin brush when it's in the drawing box. The mouse buttons
do not toggle . For example, if the pen color is set to black and the back­
ground color is set to light gray, this is the effect when you 're using the
Medium, Large , or Extra Large pen size :

• Pointing to a pixel and clicking the left mouse button turns that
pixel and the pixels around it black . Clicking the same pixel again
has no effect .

• Pointing to a pixel and clicking the right mouse button turns that
pixel and the pixels around it light gray . Clicking the same pixel
again has no effect .

When you are drawing a bitmap, the left mouse button always colors the
pixel black and the right mouse button always colors the pixel white.

8. 7 Setting the Hotspot

In an icon, the hotspot is the pixel that Windows uses to determine where
(column and row) to place a window that you have dragged into the work
area. In a cursor, the hotspot is the pixel from which Windows will take
the cursor's current screen coordinates . To set the hotspot in an icon or
cursor, follow these steps:

1 . Choose the Hotspot command from the Edit menu. A checkmark
appears next to the command name . Information about the current
location of the hotspot appears inside the display box.

2 . Move the mouse pointer to the location in the icon or cursor where
you want to place the hotspot, and click the mouse button . The
row and column information now indicates the location where you
placed the hotspot . If you do not set the hotspot , Icon Editor
places it by default in the center (row 16 , column 16 for cursors;
row 32, column 32 for icons) .

Only one hotspot per icon or cursor is allowed . You can change the hot­
spot by dragging the pointer to a new location in the cursor or icon .

If you want to continue drawing the icon or cursor after you have set the
hotspot, you must again choose the Hotspot command from the Edit
menu . When you do so, the checkmark next to Hotspot is removed and
the row and column information disappears .

187

Microsoft Windows Programming Tools

8.8 Changing the Background Color

You can change the background color of the drawing box and the display
box by using the Options menu. The Options menu lists four background
colors: Black, White, Gray, and Light Gray. To change the background
color, choose the desired color command from the Options menu. Icon Edi­
tor re-displays the drawing box and display box with the new background.

It is important to understand that the background color is used only for
viewing. Changing the background color does not change what is stored in
the icon, cursor, or bitmap file . Thus, you use the background color to see
how an icon or cursor will look on a different background. For example,
some icons may not look good on a gray background. By using the back­
ground colors, you can test this before adding the icon to your application .

When you open a new icon or cursor file, all the pixels in the file are
Screen pixels . You create an icon or cursor by drawing pixels in the pen
color. For icons and cursors, you have a choice of four pen colors: White ,
Black, Screen, and Inverse Screen . To see how these look on different back­
grounds, you can choose any of the four background colors.

Bitmaps, however, can have only white or black pixels. When you open a
new bitmap, all the pixels are white. Since there cannot be any Screen or
Inverse Screen pixels in bitmaps, the background color does not matter.
The background color is shown only in the display box, outside the area
of the bitmap itself; the background color is never part of the bitmap .

8. 9 Displaying the Drawing Grid

The drawing grid is a grid of lines displayed in the drawing box to help
you locate the individual pixels of an icon or cursor.

To display the grid , choose the Grid command from the Options menu.
To remove the grid , choose Grid again.

8 . 10 Opening an Existing
Icon, Cursor, or Bitmap File

You can open an existing icon , cursor, or bitmap file by using the Open
command in the File menu . Follow these steps:

188

Icon Editor

1 . Choose the Open command from the File menu . You will see the
dialog box shown in Figure 8.3 :

Open File

Use .uuse to choose file , or type filenaae .

Current directory • . . : C : \PUG

Filenaae I�
Auailable files • • • • • : � r��T .. . u . u

-8-�-c-
. .]

..

I "'

(Open) (Esc=Cancel) (F1 -Help

I

)

Figure 8 .3 Open File Dialog Box

The list box displays files with the extension . ico, . cur, or . bmp,
depending on whether Icon Editor is currently in Icon , Cursor, or
Bitmap mode .

2 . Open the file using any of the following methods:

•

•

•

Double-click the filename in the list box. (If the file you want
to open is in another directory or on another disk, double-click
the directory name or the disk name. The filenames in that
directory or on that disk that have the appropriate extension
will be displayed in the list box, and you can then double-click
the name of the file you want .)
Select the name in the list box, then choose the Open command
or press the ENTER key.

Type the name in the text box, then choose the Open command
or press the ENTER key. (If the file you want to open is in an­
other directory or on another disk , type the full pathname in
the text box.)

If you want to view a listing of files of a different drawing type, use
the wildcard character and the appropriate filename extension in
the text box. For instance, to view the listing of bitmap files in the
current directory, type *. bmp in the text box, then press ENTER.

If you decide not to open a file, choose the Cancel button or press
the ESCAPE key.

Icon Editor opens the given file. If you have made changes to a file but
haven 't saved them, Icon Editor displays a dialog box that asks whether
you want to save the changes.

189

Microsoft Windows Programming Tools

8.11 Saving Files

You can save an icon, cursor, or bitmap in a file by using either the Save
or the Save As command in the File menu. To save a file under the current
filename, choose the Save command from the File menu. (If you attempt to
save a file that doesn 't have a filename, you will see the Save As dialog
box, described in the following paragraphs.)
To save a file if there is no current filename, or if you want to save it
under a new filename, follow these steps:

1 . Choose Save As from the File menu . You will see the dialog box
shown in Figure 8 .4 :

Saue File

Type filena� to saue figure as .

Current directory • • : C : \PUG

Filena� • • • • • • • • • • • • lr-------,1
(S<tl.o<!) (Esc=Cancel) (F1 =Help

Figure 8 .4 Save As Dialog Box

2 . Type a valid filename in the text box. I f you do not type an exten­
sion , Icon Editor automatically supplies an extension based on the
current drawing type : . £co for Icon , . cur for Cursor, and . bmp for
Bitmap .

3 . Choose the Save button, or press the ENTER key.

Icon Editor saves the icon , cursor, or bitmap in the named file.

8 .12 Using the Edit Menu

You can cut selected areas, copy to the Clipboard, and paste from the
Clipboard by using the commands in the Edit menu .

If the Clipboard contains data, you can use the Paste command in the
Edit menu to paste the material into the drawing box. This allows you to
use drawings created with Microsoft Windows Paint, and other Windows
applications. The area to be pasted in must be no larger than the current
drawing area (in pixels) .

190

Icon Editor

You can also select areas of the current drawing and cut or copy them to
the Clipboard . To select an area to cut or copy, you must choose either the
Select or the Select All command.

The Select command allows you to select an area of the current drawing.
To select an area, do the following:

1 . Point to a corner of the area you want to select .

2 . Drag the mouse pointer diagonally to the opposite corner of the
area you want to select, and release the mouse button .

The Select All command selects the entire current drawing for cutting or
copying to the Clipboard .

191

Chapter 9
Font Editor

9.1 Introduction 195

9.2 Starting Font Editor 195

9.3 Opening a Font File 195

9.4 Font Editor Features 197

9 .5 Selecting a Character to Edit 198

9 .6 Changing Pixels in a Character 199
9.7 Canceling Changes to a Character 199

9.8 Changing a Character's Width 200
9.9 Copying a Row of Pixels 200
9 .10 Deleting a Row of Pixels 201

9 . 1 1 Copying a Column of Pixels 201

9. 12 Deleting a Column of Pixels 202
9. 13 Clearing the Character Window 203
9 . 14 Filling the Character Window

with a Solid Block 203

9 .15 Filling the Character Window
with a Hatched Pattern 204

9 .16 Inverting the Character Window 204
9 . 17 Reversing the Character Window 205

9 . 18 Copying or Pasting
in the Character Window 205

9. 19 Undoing a Change 206
9.20 Saving Changes to a Character 206
9.21 Resizing the Font 207

193

g,22 Changing a Font File's
Header Information 20g

g ,23 Saving a Font File 211
g,24 Editing Tips 212

194

Font Editor

9 . 1 Introduction

The Microsoft Windows Font Editor lets you create your own font files to
use with your applications. A font file consists of a header, which contains
information about the font, and a collection of character bitmaps that
represent the individual letters, digits, and punctuation characters that
can be used to display text on a display surface . This chapter describes
how to use the Windows Font Editor to create fonts.

Application writers who want to use fonts in their applications must add
the new font files to a font resource file. For a description of how to make
a font resource file, see the Microsoft Windows Programmer 's Reference.

Note

Font Editor can be used only to create and edit raster fonts. Vector
font files are created as described in the Microsoft Windows Pro­
grammer 's Reference.

Font R_ditor must be used with a mouse or similar pointing device .

9.2 Starting Font Editor

Font Editor is a Windows application . To start it, open the MS-DOS Exec­
utive window and double-click the filename fontedit. exe. Windows loads
Font Editor .

When you start Font Editor for the first time, it displays a dialog box,
which lets you select the font file you want to edit. The dialog box is
described in Section 9 . 3 .

9.3 Opening a Font File

Font Editor does not allow you to create fonts from scratch . Instead, you
open an existing font file, then make changes to it and , if you wish, save it
under a new name as a new font . You can open a font file by using the
Open command in the File menu. To do so, follow these steps:

195

Microsoft Windows Programming Tools

1 . Choose Open from the File menu.

Font Editor displays a dialog box that contains a directory listing
and a text box for entering a filename.

2. Select the font file you want to open by using one of the following
methods:

•

•

•

Double-click the filename in the list box. (If the file you want
to open is in another directory or on another disk , double-click
the directory name or the disk name. The filenames in that
directory or on that disk that have the .fnt extension will be
displayed in the list box, and you can then double-click the
name of the file you want .)
Select the name in the list box, then choose the Open command
or press the ENTER key.

Type the name in the test box, then choose the Open command
or press the ENTER key. (If the file you want to open is in an­
other directory or on another disk, type the full pathname in
the text box.)

Note

Font Editor displays an error message if you try to load a file that
does not contain a font .

Once a font fi le is opened, you will see the font 's characters displayed in
the font window and one of the characters displayed in the character
window, as shown in Figure 9 . 1 :

196

Font windo111

Character-viewing window

Char=65
Width=21
Height=18

Figure 9.1 Font Editor Window

Font Editor

Main window

9.4 Font Editor Features

Font Editor has the following features:

Feature

Main window

Character window

Character-viewing
window

Description

This window contains Font Editor's working
windows. The menu bar contains the following
menus: File , Edit, Font , Fill, Width, Row, and
Column .

This window appears immediately below the
menu bar and contains a copy of the character
you want to edit . The window is divided by a grid
into several rectangles. Each rectangle in the grid
represents a single character pixel . You edit a
character by turning these pixels on or off, or by
adding or deleting pixels .

This small window appears to the right of the
character window; it contains two normal-scale
copies of the character in the character window.
The character-viewing window lets you examine
the effect of the changes you make to the charac­
ter. It also lets you see the character 's leading
(the amount of vertical separation between lines) .
Below the character-viewing window is a list of

197

Microsoft Windows Programming Tools

important information about the character, such
as its ANSI value and its width and height in
pixels.

Font window This window appears at the bottom of the main
window; it contains a font-viewing area and a
scroll bar. The font-viewing area displays
normal-scale copies of the characters in the font .
The scroll bar lets you scroll the font-viewing
area whenever there are more characters in the
font than can fit.

9.5 Selecting a Character to Edit

You can select and edit any character in the currently loaded font . To
select a character, follow these steps:

1 . Move the mouse pointer into the font-viewing area of the font
window.

2 . Click the character you want to edit .

Font Editor highlights your selection and copies it to the character
window.

Warning

198

When you make a new selection, Font Editor saves the old selection
by copying it back to the font buffer. If you do not want to save the
changes you 've made to the old selection, make sure you cancel these
changes, using the Refresh command in the Edit menu, before you
make the new selection . See Section 9 . 7 for more information on the
Refresh command.

While you are editing a font , Font Editor keeps a copy of the font in
memory. Changes to individual characters are saved in the buffer, but
the font as a whole-including these changes-is not saved until you
use the Save command or the Save As command to save it to the font
file . See Section 9 .23 for more information about saving a font .

Font Editor

9.6 Changing Pixels in a Character

You can change the pixels in a character by turning them off if they're on,
or on if they're off. The "on" pixels make up the character shape or face
and appear in the current text foreground color. The "off'' pixels make up
the character background and appear in the current background color.
Changing the pixels changes the shape of the character. Use the mouse
button to turn pixels on or off:

• To turn a background pixel on , point to the pixel and click the
mouse button .

• To turn several background pixels on, point to a background pixel,
then drag the mouse pointer over the pixels you want to change .

• To turn a foreground pixel off, point to the pixel and click the
mouse button .

• To turn several foreground pixels off, point to a foreground pixel ,
then drag the mouse pointer over the pixels you want to change .

9.7 Canceling Changes to a Character

You can cancel all changes you have made to a character by using the
Refresh command in the Edit menu . The command replaces the current
character in the character window with a copy from the font window.

Warning

You cannot cancel changes to a character by selecting a new character.
Selecting a new character, or even reselecting the current character,
causes Windows to save all changes in the font buffer. Only the Refresh
command cancels changes.

If you have made changes you do not want, do not save the character.

lUU

Microsoft Windows Programming Tools

9.8 Changing a Character's Width

You can change the width of a character belonging to a variable-pitch font
by using the Width menu. The Width menu changes the number of col­
umns in the character's bitmap by letting you choose one of the following
commands:

Command

Wider (left)
Wider (right)

Wider (both)
Narrower (left)
Narrower (right)
Narrower (both)

Action

Adds a blank column to the left side of the character.

Adds a blank column to the right side of the
character.

Adds a blank column to each side of the character.

Deletes a column from the left side of the character.

Deletes a column from the right side of the character.

Deletes a column from each side of the character.

To change a character's width, choose the desired command from the
Width menu. Font Editor changes the character window to show the new
width.

Note

The width of a character can be changed only on variable-pitch fonts.

Characters in a variable-pitch font cannot be wider than the maximum
character width. If you try to make a character cell wider than the
maximum character width, a dialog box will appear, warning you that
the maximum character width will be increased.

9. 9 Copying a Row of Pixels

You can make a copy of a whole or partial row of pixels by using the Add
command in the Row menu. This command inserts a new row between the
selected row and the row immediately below it . The pixels in the new row
are turned on or off in the same pattern as in the selected row.

200

Font Editor

To copy a row, follow these steps:

1 . Choose Add from the Row menu.

2 . Move the mouse pointer to a pixel i n the row you want to copy.
To copy the entire row, point to the pixel at the far right . To copy
a partial row, point to the right-most pixel you want to copy.

3 . Click the mouse button .

When you copy a whole row, all rows below the selected row are pushed
down one row, and the row at the bottom of the character window is
pushed off the end . When you copy a partial row, only the selected pixel
and the pixels to the left of the selected pixel are copied . The pixels in
the rows below the copied pixels are pushed down as the new pixels are
inserted, but the pixels to the right remain unchanged .

9 . 10 Deleting a Row of Pixels

You can delete a whole or partial row of pixels by using the Delete com­
mand in the Row menu. This command deletes a selected row and causes
rows below it to move up one row.

To delete a row, follow these steps:

1 . Choose Delete from the Row menu .

2 . Move the mouse pointer to a pixel in the row you want to delete .
To delete the entire row, point to the pixel at the far right . To
delete a partial row, point to the right-most pixel you want to
delete .

3 . Click the mouse button.

When you delete a whole row, all rows below the selected row move up
one row, and a blank row appears at the bottom of the character window.
When you delete a partial row, only the selected pixel and the pixels to
the left of the selected pixel are deleted . The pixels in the rows below the
deleted pixels move up, but the pixels to the right remain unchanged.

9 .11 Copying a Column of Pixels

You can make a copy of a whole or partial column of pixels by u,sing the
Add command in the Column menu. This command inserts a new column
between the selected column and the column immediately to the right .

201

Microsoft Windows Programming Tools

The pixels in the new column are turned on or off in the same pattern as
those in the selected column.

To copy a column, follow these steps:

1 . Choose Add from the Column menu .

2 . Move the mouse pointer to a pixel i n the column you want to copy.
To copy the entire column, point to the pixel at the bottom. To
copy a partial column, point to the lowest pixel you want to copy.

3 . Click the mouse button .

When you copy a whole column, all columns to the right of the selected
column are pushed right one column, and the column at the far right of
the character window is pushed off the side. When you copy a partial col­
umn, only the selected pixel and the pixels above it are copied . The pixels
in the columns to the right of the copied pixels are pushed right as the new
pixels are inserted, but the pixels below remain unchanged .

9.12 Deleting a Column of Pixels

You can delete a whole or partial column of pixels by using the Delete
command in the Column menu. This command deletes a selected column
and causes columns below it to move one row to the left .

To delete a column, follow these steps:

1 . Choose Delete from the Column menu.

2 . Move the mouse pointer to a pixel i n the column you want to
delete . To delete the entire column, point to the pixel at the bot­
tom. To delete a partial column, point to the lowest pixel you
want to delete.

3. Click the mouse button .

When you delete a whole column, all columns to the right of the selected
column move left one column, and a blank column appears at the right
side of the character window. When you delete a partial column, only the
selected pixel and the pixels above it are deleted . The pixels in the col­
umns to the right of the deleted pixels move left , but the pixels below
remain unchanged .

202

Font Editor

9. 13 Clearing the Character Window

You can remove a block of foreground pixels from the character window
by using the Clear command in the Fill menu . Follow these steps:

1 . Choose Clear from the Fill menu .

2 . Move the mouse pointer to a pixel i n the character window.

3 . Press and hold down the mouse button . This creates an anchor
point (displayed in gray) that represents a corner of the block you
want to clear.

4. Drag the pointer to another pixel .

5 . Release the mouse button .

Font Editor uses the anchor point and the second pixel as diagonally oppo­
site corners of the block you want to clear . All pixels within the block are
cleared. If you drag the mouse pointer in a horizontal or vertical line, all
pixels in the line are cleared.

9 .14 Filling the Character Window
with a Solid Block

You can fill the character window with a solid block of foreground pixels
by using the Solid command in the Fill menu. Follow these steps:

1 . Choose Solid from the Fill menu.

2 . Move the mouse pointer to a pixel in the character window.

3 . Press and hold down the mouse button . This creates an anchor
point (displayed in gray) that represents a corner of the block you
want to fill .

4 . Drag the pointer to another pixel .

5 . Release the mouse button .

Font Editor uses the anchor point and the second pixel as diagonally
opposite corners of the block you want to fill . All pixels within the block
become foreground pixels. If you drag the mouse pointer in a horizontal
or vertical line, all pixels in the line become foreground pixels .

203

Microsoft Windows Programming Tools

9.15 Filling the Character Window
with a Hatched Pattern

You can fill a block of the character window with a hatched pattern (alter­
nate foreground and background) by using the Hatched command in the
Fill menu. Follow these steps:

1 . Choose Hatched from the Fill menu.

2 . Move the mouse pointer to a pixel in the character window.

3 . Press and hold down the mouse button . This creates an anchor
point (displayed in gray) that represents a corner of the block you
want to fill .

4 . Drag the pointer to another pixel .

5. Release the mouse button .

Font Editor uses the anchor point and the second pixel as diagonally oppo­
site corners of the block you want to fill . Every other pixel within the
block becomes a foreground pixel, all others become background. If you
drag the mouse pointer in a horizontal or vertical line, every other pixel in
the line becomes a foreground pixel; all others become background pixels .

9.16 Inverting the Character Window

You can invert the pixels in a block in the character window by using
the Inverted command in the Fill menu. (Foreground pixels become back­
ground, background pixels become foreground .) Follow these steps:

1 . Choose Inverted from the Fill menu .

2 . Move the mouse pointer to a pixel in the character window.

3 . Press and hold down the mouse button . This creates an anchor
point (displayed in gray) that represents a corner of the block you
want to invert.

4 . Drag the pointer to another pixel .

5. Release the mouse button .

Font Editor uses the anchor point and the second pixel as diagonally oppo­
site corners of the block you want to invert. All foreground pixels within
the block become background pixels; all background pixels become fore­
ground pixels. If you drag the mouse pointer in a horizontal or vertical
line, the pixels in the line are inverted .

204

Font Editor

9. 17 Reversing the Character Window

You can reverse the pixels in a block in the character window by using the
Left=Right or Top=Bottom commands in the Fill menu . The Left=Right
command reverses the block by "flipping" the contents of a block along
a vertical line in the center of the block. The Top=Bottom command
reverses the block by flipping the contents of a block along a horizontal
line in the center of the block.

To reverse a block, follow these steps:

1 . Choose either Left=Right or Top=Bottom from the Fill menu .

2 . Move the mouse pointer to a pixel in the character window.

3 . Press and hold down the mouse button . This creates an anchor
point (displayed in gray) that represents a corner of the block you
want to reverse .

4. Drag the pointer to another pixel .

5 . Release the mouse button .

Font Editor uses the anchor point and the second pixel as diagonally
opposite corners of the block you want to reverse. If you drag the mouse
pointer in a horizontal or vertical line, the pixels in the line are reversed .

9. 18 Copying or Pasting
in the Character Window

You can copy a block of pixels to the Clipboard or fill a block with pixels
from the Clipboard by using the Copy or Paste commands in the Fill
menu. The Copy command copies the pixels in the block to the Clipboard.
The Paste command fills the block with pixels from the Clipboard .

To copy or paste a block, follow these steps:

1 . Choose Copy or Paste from the Fill menu .

2 . Move the mouse pointer to a pixel in the character window.

3. Press and hold down the mouse button . This creates an anchor
point (displayed in gray) that represents a corner of the block you
want to copy or paste .

4. Drag the pointer to another pixel.

5 . Release the mouse button .

205

Microsoft Windows Programming Tools

Font Editor uses the anchor point and the second pixel as diagonally oppo­
site corners of the block you want to copy or paste. If you drag the mouse
pointer in a horizontal or vertical line, the pixels in the line are copied or
pasted .

Be sure that the area in the character window that you want to paste into
is the same size as the block on the Clipboard that you want to paste. If
you try to paste a block into an area that is larger or smaller than that
block, Font Editor will try to stretch or squeeze the block to fit , and the
results will be distorted .

Note

You can copy or paste the entire character window by using the Copy
and Paste commands in the Edit menu .

9.19 Undoing a Change

You can recover from an editing mistake by using the Undo command in
the Edit menu . This command restores the character window to what it
was before the last change in the window.

To recover from a mistake, choose the Undo command from the Edit
menu . Font Editor restores the character window to its state before the
last change . (If you chose Undo again , it returns the window to its changed
state again .)
The Undo command reverses changes made by the Fill, Row, Column,
Width, Refresh , and Undo commands. It can also reverse changes made
to individual pixels using the mouse .

The Undo command cannot undo changes made to a character that has
been saved in the buffer (that is, returned to the font) .

9.20 Saving Changes to a Character

You can save the changes you have made to a character by following these
steps:

206

Font Editor

1 . Move the mouse pointer into the font-viewing area of the font
window.

2 . Click the character you are currently editing (i t i s the h ighlighted
character) .

Font Editor saves your selection by copying it back in the font . The font­
viewing window is updated to show the new character.

Note

You can also save a character by making a new selection . Font Editor
saves the old selection into the font buffer before copying the new
selection to the character window. This is useful if you want to con­
tinue editing characters in the same font .

9.21 Resizing the Font

You can change the height, width, and character mapping (ANSI value)
of the font by using the Size command in the Font menu . The command
displays a dialog box that contains the following options :

Option

Character Pixel
Height

Maximum Width
(variable-width
tonts only)

Character Pixel
Width (fixed-pitch
fonts only)

First Character

Last Character

Action

Defines the height (in pixels) of the characters in
the font .

Defines the width (in pixels) of the widest possible
character in the variable-pitch font .

Defines the width (in pixels) of all characters in
the fixed-pitch font . In fixed-pitch fonts, all char­
acters have equal width.

Defines the character value (for example, the
ANSI value) of the first character in the font .
The first character is the character to the far left
when you scroll the contents of the font-viewing
window all the way to the right .

Defines the character value (for example, the
ANSI value) of the last character in the font .
The last character is the character to the far
right when you scroll the contents of the font­
viewing window all the way to the left .

207

Microsoft Windows Programming Tools

Pitch Defines the kind of font . Fixed and Variable are
mutually exclusive. If Fixed is selected, the font
is fixed-pitch . If Variable is selected , the font is
variable-pitch .

Weight Lists options that define the font weight , ranging
from thin to heavy. Each option represents the
specific degree of heaviness (i . e . , thickness of
stroke) of the font . The options are mutually
exclusive .

Important

You can change a font from fixed-pitch to variable-pitch by selecting
Variable in the Size dialog box. You cannot change a variable-pitch
font to fixed-pitch .

To make a change to one of the height , width, first-character, or last­
character options, follow these steps:

1 . Choose the Size command from the Font menu . Font Editor dis­
plays the Size dialog box, which contains the size options .

2 . Select the contents of the text box for the option you want to
change . The text box contains a number representing the current
choice .

3 . Type a new number.

4. Choose the OK button or press the ENTER key.

Font Editor immediately makes the changes you have requested. Once
the changes are complete, the new font is displayed in the font-viewing
window.

To change the pitch or weight of a font, follow these steps:

1 . Choose the appropriate radio button .

2. Choose the OK button or press the ENTER key.

When you change the width or height of a font , Font Editor stretches or
compresses the existing characters to make new characters that have the
given size . The resulting characters can then be corrected by hand, if
necessary, to achieve the desired appearance.

208

Font Editor

9.22 Changing a Font File's
Header Information

You can change the information in the font file's header by using the
Header command in the Font menu . The header contains everything about
the font except the bitmap . The Header command displays a dialog box
that contains a listing of the information in the header. The list consists
of the following items:

Item

Face Name

File Name

Copyright

Nominal Point Size

Height of Ascent

Nominal Vert.
Resolution

Nominal Horiz .
Resolution

External Leading

Internal Leading

Definition

This character string is the name used to distin­
guish the font from other fonts. It is not neces­
sarily the same as the font filename . It can be up
to 32 characters.

This character string is the name of the font file
being edited .

This character string is either a copyright notice
or additional information about the font . It can
be up to 60 characters .

This number defines the point size of the charac­
ters in the font . One point is equal to approxi­
mately 1/72 of an inch .

This number defines the distance (in pixels) from
the top of an ascender to the basel ine.

This number defines the vertical resolution at
which the characters were digitized .

This number defines the horizontal resolution at
which the characters were digitized .

This number defines the pixel height of the font 's
external leading. External leading is the vertical
distance (in rows) from the bottom of one charac­
ter cell to the top of the character cell below it .
(The character-viewing window shows two copies
of the character, one above the other, so that you
can see the effect of leading.)
This number defines the pixel height of the font 's
internal leading. Internal leading is the vertical
distance (in rows) within a character cell above
the top ol the tallest letter; only marks such as
accents, umlauts, and tildes for capital letters
should appear within the space designated as
internal leading.

209

Microsoft Windows Programming Tools

Default Character

Break Character

ANSI or OEM

Font Family

Italic

Underline

Strikeout

210

This number defines the character value (for
example , the ANSI value) of the default charac­
ter. The default character is used whenever an
attempt is made to display a character whose
character value is less than that of the font's
first character or greater than that of the font 's
last character.

This number defines the character value of the
break character. The break character is used to
pad lines that have been justified . The break
character is typically the space character. (For
examfle, in the ANSI character set, the value
is 32.

These options define the character set . The ANSI
character set (value zero) is the default Windows
character set . The OEM character set (value 255)
is machine-specific . The number to the right of
these options defines the character set . It can be
any value from zero to 255, but only zero and 255
have a predefined meaning.

These options define the family to which the font
belongs. Font families define the general charac­
teristics of the font as follows:

Family Name

Roman

Modern

Swiss

Decorative

Script

Dontcare

Description

Proportionally-spaced fonts
with serifs (Times Roman,
Century Schoolbook, Bodoni,
etc.)
Fixed-pitch fonts (Pica, Elite ,
Courier, etc .)
Proportionally-spaced fonts
without serifs (Helvetica,
Univers, Swiss, etc .)
Novelty fonts

Cursive or script fonts

Custom font

This option defines an italic font .

This option defines an underlined font .

This option defines a font whose characters
have been struck out.

Font Editor

To make a change to this information, follow these steps:

1 . Choose Header from the Font menu. Font Editor displays the
Header dialog box, which contains the font options .

2 . Select the character string, number, or option you want to change.

3. For character strings and numbers, type a new string or number.

4 . Choose the OK button or press the ENTER key.

9.23 Saving a Font File

You can save the changes you have made to a font by using the Save As
command in the File menu . Follow these steps:

1 . Choose Save As from the File menu. Font Editor displays a dialog
box that contains a text box where you can enter a filename .

2 . Enter the name of the file in which you want save the font . This
can be a new file or an existing file. Use one of the following
methods:

• Enter the font filename by typing it in the text box of the
dialog box. Choose the OK button or press the ENTER key.

• If the filename you want is shown in the text box, just choose
the OK button or press the ENTER key.

Once a font file is saved with your changes, you can continue editing the
same font or load another font and edit it .

While you are editing a font, Font Editor keeps a copy of the font in
memory. No changes to the font file are made until you save the font by
using the Save or Save As command.

Note

Use the .fnt filename extension for all font filenames.

211

Microsoft Windows Programming Tools

9.24 Editing Tips

When you are creating a new font, the closer the font you start working
with is to the font you want to create, the better the results will be . For
example, if you want the ANSI character set , make sure you start with an
ANSI font .

You cannot change a variable-pitch font to fixed-pitch , so if you want to
create a fixed-pitch font , make sure you start with a fixed-pitch font .

I f you want to make several different sizes in the same kind of font , create
the smallest font first . You get much better results making a small font
larger than making a large font smaller.

212

Chapter 10
Dialog Editor

10. 1 Introduction 215

10.2 Starting Dialog Editor 216

10.3 Using the Size Window 217

10.4 Creating a Dialog Box 218

10.4. 1 Clearing the Display 218

10.4.2 Drawing the Border 218

10.4.3 Expanding/Shrinking a Dialog Box 219

10.5 Adding and Deleting Controls 219
10.5. 1 Adding Controls 221

10.5.2 Adding Text to Controls 221

10.5.3 Moving a Control 222
10.5.4 Moving a Group of Controls 222
10.5.5 Changing a Control's Size 223
10.5 .6 Deleting Controls 223
10.6 Changing Control Styles

and Memory-Manager Flags 223
10.6. 1 Changing Class Styles 224

10.6.2 Changing Standard Styles 224

10.6.3 Including a System-Menu Box,
a Size Box, or Scroll Bars 226

10.6.4 Setting Memory-Manager Flags 226
10.7 Defining User Access to Controls 227
10.7. 1 Changing the Order of Controls 228
10.7.2 Setting a Tab Stop 229

10.7.3 Deleting a Tab Stop 229

10.7.4 Adding a Group Marker 230

10.7.5 Deleting a Group l\1arker 230

213

10.8 Modifying a Dialog Box 231

10. g Using the Edit Menu 232

10. 10 Using Files with Dialog Editor 233

10. 10. 1 Include File 233

10.10.2 Creating an Include File 234

10. 10.3 Editing an Include File 235

10. 1 1 Saving a Dialog Box 235

214

Dialog Editor

10. 1 Introduction

The Microsoft Windows Dialog Editor lets you design a dialog box on
the display screen and save a definition of the box in a resource file . The
definition of the dialog box can be added to other resource definitions in
your application's resource script file.

When you create a dialog box, you create the box outline , put controls
and text for the controls in it, and define the way the user will use the
controls .

This chapter describes how to use Dialog Editor to create and modify dia­
log boxes for your applications. It explains how to do the following:

• Start the editor and create the outline of a dialog box

• Add dialog controls, which the user will use to interact with the
program

• Set control styles and memory-manager flags

• Define how a user can use the controls

• Edit an existing dialog box

• Create and modify the include file

Note

Dialog Editor must be used with a mouse or similar pointing device;
some keystrokes can be used, however, and these will be noted .

The Windows Dialog Editor creates dialog boxes . It does not edit other
components of a resource file, such as strings, icons, and so forth. Before
you use Dialog Editor, it is a good idea to create a . rc (resource script) file
defining those components and to use the Windows resource compiler rc
to create a . res file (a binary version of the resource file) . You can then use
Dialog Editor to ed1t the . res file, adding dialog boxes . When you are fin­
ished creating dialog boxes, use the # include directive in the . rc file to
name the include file for the dialog boxes. Use the rcinclude keyword
to name the . dig files.

For more information about the resource script file, see Chapter 3 ,
"Resource Compiler: Rc . " For more information about the . dlg and
. res files, see Section 10. 10 .

215

Windows Programming Tools

10. 2 Starting Dialog Editor

To start Dialog Editor, open the MS-DOS Executive window and double­
click the filename dialog. exe. Windows loads Dialog Editor and displays
the window shown in Figure 10 . 1 :

� I ' . ' ' ' .(Jo '\}'
Fib Edit S.tyles Controls I nclude Options

X =B
y = •

ex = B
CIJ = II

Work l'lode
Dl'r:illlal Mode

Figure 10.1 Dialog Editor Window

Dialog Editor's menu bar contains the following menus:

Menu

File

Edit

Styles

Control

Include

Options

216

Contents

Commands that create, open, and save the files that con­
tain dialog boxes . There is also a command that allows you
to view existing dialog boxes .

Commands that allow you to perform common editing
functions such as cutting and pasting. There are also com­
mands for creating a new dialog box, renaming an existing
one, and defining the units by which the mouse moves.

Commands that allow you to control the styles, text, and
ID values for the dialog-box controls. There is also a com­
mand for defining memory management.

Commands that let you define the type of controls to be
placed in the dialog box.

Commands that you use to create , modify, or view an
include file .

A command that allows you to define the order in which
controls are accessed, and a command that allows you
to test your dialog box .

Dialog Editor

10.3 Using the Size Window

When you start Dialog Editor, you will notice a small window labeled
"Size" in the lower-right corner of the screen. The Size window stays on
your screen as you edit a dialog box and supplies you with information
about the dialog box and the controls in it. When you make a change to
the dialog box or controls, the change is reflected in the Size window. If
necessary, the Size window can be moved out of the way of a dialog box
you are working on . Figure 10 .2 illustrates the Size window:

Control type
Control ID ualue

Figure 10.2 Size Window

The Size window displays the information shown in the following list . All
size/position values are in dialog units. (A dialog unit is a horizontal or
vertical distance. One horizontal dialog unit is equal to 1/4 of the width of
a character in the system font . One vertical dialog unit is equal to 1/8 of
the height of a character in the system font .)

Field

X

y

ex

cy

Work/Test Mode

Description

Displays the position on the x-axis (vertical posi­
tion) of the upper-left corner of the dialog box or
control you have selected .

Displays the position on the y-axis (horizontal posi­
tion) of the upper-left corner of the dialog box or
control you have selected .

Displays the height of the dialog box or control you
have selected .

Displays the width of the dialog box or control you
have selected .

Indicates whether Dialog Editor is in Work mode,
in which you can edit the dialog box, or Test mode,
in which you can try out the controls in the dialog
box.

217

Windows Programming Tools

Decimal/Hex Mode Indicates whether the ID values for the controls are
shown in decimal or hexadecimal numbers.

Control Type Shows the type of control you have selected (for
example , Radio Button or Check Box) . If the dialog
box was selected, this part of the Size window will
read "Dialog. "

Control ID Value Shows the ID value of the control you have selected .
If the dialog box was selected, no ID value is shown .

10.4 Creating a Dialog Box

The first step in creating a dialog box is to create and size the outline of
the box.

10.4.1 Clearing the Display

You should always clear Dialog Editor's display before starting a new
dialog box . To clear the display, choose the New command from the File
menu .

Dialog Editor clears the display, removing any existing dialog box. If you
have previously made changes to the existing box, you will see a dialog box
asking whether you want to save the changes. The New command opens a
new file called sample, which is initially empty.

10.4.2 Drawing the Border

To create the border for a dialog box, use the Edit menu . Follow these
steps:

218

Dialog Editor

1 . Choose the New Dialog command from the Edit menu . You will be
asked to enter a name for the new dialog box.

2 . Type a name for the box.

3 . Choose the OK button or press the ENTER key. This puts an empty
dialog box on your screen .

10.4.3 Expanding/Shrinking a Dialog Box

To increase or decrease the size of the dialog box, use one of the eight
"handles" (small, filled rectangles) on the boundaries, as shown in
Figure 10 .3 :

THandle for sizing

Figure 10.3 Outline of a Dialog Box

To change the size of a dialog box, follow these steps:

1 . Select the dialog box by clicking inside it . When a dialog box is
selected, handles appear on its boundaries.

2. Move the mouse pointer to a handle on the side you want to move.
The pointer will change to a small box (similar to the handle.)

3 . Drag the border in the desired direction . When you release the
mouse button, the dialog box will retain its new border. You can
size the box in vertical and horizontal directions simultaneously
by using a corner handle.

10.5 Adding and Deleting Controls

Controls in a dialog box allow the user to interact with the application .
Once you have created the border for the dialog box, you can enter any
number of the following controls :

219

Windows Programming Tools

Control

Check box

Radio button

Push button

Group box

Horizontal scroll bar

Vertical scroll bar

List box

Edit

Text

Frame

Rectangle

Icon

220

Action

Creates a check box, a small square with a label
to its right . Check boxes are independent of one
another, although two or more often appear next
to each other to give the user a choice of selec­
tions. Any number of check boxes can be turned
on or off at a given moment .

Creates a radio button, a small circle with a label
to its right . Radio buttons are typically used in
groups to give the user a choice of selections.
Only one radio button in a group can be selected
at a time .

Creates a push button, a small, rounded rectangle
that contains a label. Push buttons are used to
let the user choose an immediate action, such as
canceling the dialog box.

Creates a simple rectangle that has a label on its
upper edge . Group boxes are used to enclose a
collection or group of other controls, such as a
group of radio buttons.

Creates a horizontal scroll bar. Scroll bars let the
user scroll data and are usually associated with
another control or window that contains text or
graphics.

Creates a vertical scroll bar.

Creates a simple rectangle that has a vertical
scroll bar on its right edge . List boxes are used to
display a list of strings, such as file or directory
names.

Creates an edit control, a rectangle in which the
user can enter and edit text . Edit controls are
used both to display numbers and text and to let
the user type in numbers and text .

Creates a static text control . Static text controls
are used as labels for other controls, such as edit
controls .

Creates a rectangle that you can use to frame a
control or group of controls .

Creates a filled rectangle .

Creates a rectangular space in which you can
place an icon . (Do not size the icon space; icons
automatically size themselves.)

Dialog Editor

10.5 .1 Adding Controls

To add controls to a dialog box, use the Controls menu . Follow these
steps:

1 . Select the control you want from the Controls menu. The mouse
pointer changes to a plus sign (+) .

2 . Position the pointer where you want to place the control.

3. Click the mouse button . The control appears in the dialog box
where you placed it. If it has text associated with it , the word
"text" is included . To add text, see Section 10 .5 .2 .

10.5.2 Adding Text to Controls

To add or change the text in a control, follow these steps:

1 . Select the control by clicking inside it .

2 . Choose Class Styles from the Styles menu. You will see a dialog
box showing style information about the control .

3 . In the Window Text text box, type the text you want to have
appear in the control. You can type more text than will fit in the
text box. If you want to edit what you have typed, you can use the
DIRECTION keys to move the insertion point , and then add text at
the insertion point. To delete characters, use the BACKSPACE key.

4. Choose the OK button or press the ENTER key to confirm your
entry. (The Class Styles dialog box has other uses, which are
described in Section 10. 6 . 1 .)

Note

When you add an Icon control to a dialog box, the text should be the
name that was defined for the icon in the . rc file. For example, assume
that the . rc file contains the following entry :

myicon icon my . ico

To use the icon in a dialog box, you would create an Icon control and
type the name "myicon" in the Window Text section.

221

Windows Programming Tools

10.5.3 Moving a Control

You can reposition a control in a dialog box either by using the mouse to
drag it to a new location or by using the DIRECTION keys for fine adjust­
ments . To move a control , follow these steps:

1 . Select the control . The mouse pointer changes to a plus sign (+) .

2 . Drag the control to its new location .

To move a control one dialog unit at a time, use the DIRECTION keys . In
this way, you can move a control a few positions over (or up or down)
without affecting its position on the other axis . This is helpful when you
want to line up the controls .

10.5.4 Moving a Group of Controls

You can move a group of controls from one location in a dialog box to
another . This can be useful if you decide to rearrange the layout of con­
trols in the box and you have two or more controls that you want to keep
together. To move a group of controls, follow these steps :

222

1 . Press and hold down the CONTROL key.

2 . While holding down the CONTROL key, select each control you want
to keep in the group by using the mouse button . Each control will
be outlined with a gray line; the group of controls will also have a
gray border around it . (If you change your mind, you can reverse a
selection by clicking it again with the mouse button . You must still
be holding down the CONTROL key .)

3 . While still holding down the CONTROL key, point to a location
inside the group border, but not inside any of the controls' borders,
as shown in Figure 10 .4 :

Figure 10.4 Pointer Position for Moving a Group of Controls

4 . Press and hold down the mouse button, then release the CONTROL
key.

5 . Drag the group of controls to the desired location and release the
mouse button . The group of controls is placed in the new location .

Dialog Editor

Note

You must select all the controls you want to move, even if one control
encloses another. For instance, to move several radio buttons and the
group box that encloses them, you must select each radio button and
the group box.

10.5.5 Changing a Control's Size

To increase or decrease the size of a control, use one of the eight handles
(small rectangles) on the boundaries . Follow these steps:

1 . Select the control . Handles appear on the boundaries of the
control .

2 . Move the mouse pointer to a handle. The pointer changes to a
small box, similar to the handle .

3 . Drag the border in the desired direction . When you release the
mouse button , the control boundary retains the new size .

10.5.6 Deleting Controls

To delete a control from a dialog box, follow these steps:

1 . Select the control .

2 . Choose Clear Control from the Edit menu . The control i s deleted.

10.6 Changing Control Styles
and Memory-Manager Flags

The Styles menu allows you to set control styles and memory-manager
flags.

Control styles dictate such things as whether a control can be grayed,
or whether a button is a default push button . You set the control styles
available to a given class of controls by using the Class Styles command.
Control styles that are available to all controls and to the dialog box itself
are set using the Standard Styles command.

Memory-manager flags determine whether a code segment is moveable,
whether it is discardable, and whether it will be preloaded.

223

Windows Programming Tools

10.6 .1 Changing Class Styles

The Class Styles command in the Styles menu allows you to change the
control styles that govern a control . You can also use this command to
enter or change text in a control and to change the control's ID value .
(If an include file was loaded, you may symbolically refer to the control 's
1D value. For more information on include files, see Section 10 . 10 . 1 .)

To change a control style for a specific control, follow these steps:

1 . Select the control .

2 . Choose Class Styles from the Styles menu. You will see a dialog
box that relates to the control you selected, similar to the dialog
box shown in Figure 10 .5 :

Button Control Styles

0 Push Button 0 Radio Button
0 Def Push Button 0 3 State

• !.!;:!\�£.!L:�9..�l 0 Auto 3 State
0 Auto Check Box 0 Group Box

Window Text : I Text

ID Sylllbol : j 2

(Dk) (Cancel)

I
I

Text box for control text

Text box for control ID
sylllbol

Figure 10.5 Button Control Styles Dialog Box

3 . Select the desired options. Control-style options are described in
Chapter 3 , "Resource Compiler: Rc ."

4 . Choose the OK button or press the ENTER key.

10.6.2 Changing Standard Styles

The Standard Styles command in the Styles menu generates a dialog box
that lists control styles that are available to all controls and to the dialog
box itself. These are known as global window styles. You can use the Stan­
dard Styles command to do such things as add a group marker or a tab
stop for a control .

224

Dialog Editor

To set global window styles, follow these steps:

1 . Select the appropriate control, or the dialog box itself.

2 . Choose Standard Styles from the Styles menu. The Standard Styles
dialog box will appear, as shown in Figure 10. 6 :

Global Window Styles
D Close Box I Sys Menu Box DLif.i!f�:�y
D Horz Scroll Style D Caption
D Uert Scroll Style D Group Bit
D Dialog Frallll! 1Z1 Tab Stop Bit
D Size box 0 Uisible Bit

Window Text : I T ext I Text box for dialog
caption

(Ok) (Cancel)

Figure 10.6 Standard Styles Dialog Box

3 . Turn on the check boxes for the styles you want to add (or turn
off the ones for the styles you want to delete) .

4 . Add or delete text in the Window Text text box if desired.

5 . Choose the OK button or press the ENTER key.

Note

If the Visible Bit check box is turned on, the dialog box will be dis­
played whenever it is called by the program. This may not be desirable
in some cases. For example, if you have a command with an accelera­
tor, you may not want to display a dialog box when the accelerator is
used . You can prevent the display of a dialog box by leaving the Visi­
ble Bit check box turned off. Generally, it is best to leave the Visible
Bit check box turned off unless you want the dialog box to be seen in
all cases.

225

Windows Programming Tools

10.6.3 Including a System-Menu Box,
a Size Box, or Scroll Bars

You can include a system-menu (Control-menu) box, size box, or vertical
or horizontal scroll bars as part of a dialog box. (These scroll-bar options
are part of the dialog box; they are not separate controls. For more infor­
mation on scroll-bar controls, scrolling functions, or window messages
resulting from scrolling, see the M£crosoft Wz'ndows Programmer 's Refer­
ence.) For example, a mode- less dialog box must have a system menu so
the user can close the box.

To include a system-menu box, a size box, or scroll bars in a dialog box,
follow these steps:

1 . Select the dialog box by clicking a blank area inside it .

2 . Choose Standard Styles from the Styles menu .

3 . Turn on the appropriate check box(es) .

4 . Turn on the Border check box. (Each of these options requires that
you turn on the Border check box. When you do so, the Caption
check box is automatically turned on .)

5 . Choose the OK button or press the ENTER key to confirm your
selections.

10.6.4 Setting Memory-Manager Flags

The Resource Properties command in the Styles menu allows you to set
memory-manager flags for your dialog box. Memory-manager flags deter­
mine how the code for a dialog box is treated by the application and by
Windows with regard to memory. You can set options to specify when a
resource is to be loaded into memory, as well as whether the resource is
fixed or moveable and whether it is discardable .

To set memory-manager flags, follow these steps:

226

1 . Select the dialog box you are working on.

2 . Choose the Resource Properties command from the Styles menu.
You will see the dialog box shown in Figure 10 .7 :

Me�ry Manager Flag s -­

IXI Moueable
lXI Pure
0 Preload
lXI Discard

Dialog Editor

Figure 10.7 Resource Properties Dialog Box

3 . Turn on (or off) the check boxes corresponding to the memory­
manager Hags you want . �These options are described in Chapter 4,
"Windows Linker: Link4. ')

4. Choose the OK button or press the ENTER key.

10.7 Defining User Access to Controls

The way a dialog box reacts to the keyboard or mouse interface is based
in part on the sequential order of the controls and the location of tab
stops. You set these options by using the Order Groups command from
the Options menu. Using this command, you can define the following:

• The sequential order of the controls .
• Which groups the controls are in and the sequential order of the

groups. (A group is a collection of controls . Within a group of con­
trols, the user makes selections using the DIRECTION keys.)

• The location of tab stops (the control that receives the input focus
when the user presses the TAB key) .

When you choose the Order Groups command from the Options menu, you
will see the Group/Control Ordering dialog box shown in Figure 10 .8 :

227

Windows Programming Tools

Control I D ualue

Group Marker push button Control-group ���arker

- (Group Marker) - H Tab Stop J

(Ok)

Tab Stop push button

Group I Con rol Ordering

+ + + + + + + + + + + +

;;--;;r;-;d-b-;;;-:;--,--.---------;:,:-:;:-.,-
* check box 2 I 1 I Check 8

------------------------------------• radio button I 7 I Radio 8
• group box I GRP80X1 I Group B
• push button I 2 I Push Bu

I I

't

I
"'

I control text I Control

Tab-sto set tin p g

t ype

Figure 10.8 Group/Control Ordering Dialog Box

10.7 .1 Changing the Order of Controls

By default, the controls you place in a dialog box receive the input focus
(and thus are selected by the user) in the order in which they were placed
in the box. For example, the first control you put in the box will receive
the focus first, no matter where you subsequently move it in the dialog
box. To change the sequential order, you must use the Order Groups com­
mand and rearrange the controls in the list it displays .

When you rearrange the order of the controls in the Group/Control
Ordering dialog box, the control statements in the . dlg file are rearranged
correspondingly . Thus, the first control listed in the . dlg file is the first to
receive the input focus, the second listed is the second to receive the focus,
and so on.

To change the sequence of the controls in a dialog box, follow these steps:

228

1 . Choose Order Groups from the Options menu. You will see the
dialog box shown in the preceding Figure 10 .8 .

2 . In the list box, select the control you want to move .

3 . Place the mouse pointer where you want the control to appear in
the list box. Notice that as you move it, the pointer changes from
an arrow to a short, horizontal bar. The bar appears only in places
where you are allowed to insert the control .

4 . To insert the control, click the mouse button .

5 . Repeat steps 2 through 4 for any other controls you want to move .

Dialog Editor

Note
If you decide to choose a different control to move, you can do so
whenever the pointer appears as an arrow. Just point to the desired
control and click the mouse button . The new selection will replace
the old .

10.7 .2 Setting a Tab Stop

Tab stops determine where the pointer will move when the user presses
the TAB key. Normally, tab stops are set for individual controls or, in the
case of a group, for the first control in the group. To set a tab stop, follow
these steps:

1 . Choose Order Groups from the Options menu.

2 . In the list box, select the control at which you want to place the
tab stop .

3 . Select the Tab Stop button in the Group/Control Ordering dialog
box.

4 . Choose the OK button . An asterisk appears next to the control,
which indicates that a tab stop has been placed there.

Note
You can also set a tab stop by selecting the control, choosing Standard
Styles from the Styles menu , and then turning on the Tab Stop Bit
check box.

10.7 .3 Deleting a Tab Stop

To delete a tab stop, follow these steps:

1 . Choose Order Groups from the Options menu.

2. In the list box, select the control that has the tab stop . The Tab
Stop button in the Group/Control Ordering dialog box will change
to read ((Delete Tab ."

3 . Select the Delete Tab button . The asterisk next to the selected
control disappears.

4 . Choose the OK button or press the ENTER key.

229

Windows Programming Tools

Note

You can also delete a tab stop by selecting the control, choosing Stan­
dard Styles from the Styles menu, and turning off the Tab Stop Bit
check box .

10.7 .4 Adding a Group Marker

To designate the beginning and end of a group, you add a "group marker"
to the list of controls in the group. (The group marker appears in the list
box of the Group/Control Ordering dialog box as a horizontal line of
hyphens, as shown in the preceding Figure 10 .8 .) You need to place a
group marker both before the first control and after the last control in
a group . To add a group marker, follow these steps:

1 . Choose Order Groups from the Options menu .

2 . In the list box, select the control that appears just below where you
want to place the group marker.

3 . Select the Group Marker button . The horizontal line indicates that
the group marker has been inserted .

4 . Repeat steps 2 and 3 until all markers have been placed .

5 . Choose the OK button .

Note

You can also add a group marker by using the Standard Styles com­
mand from the Styles menu. Select the control, then turn on the Group
Bit check box. A group marker will be placed just above the control
you selected .

10.7 .5 Deleting a Group Marker

To delete a group marker, follow these steps:

230

1 . Choose Order Groups from the Options menu .

2 . In the list box, select the group-marker line. The Group Marker
button in the Group/Control Ordering dialog box will change to
read "Delete Marker ."

Dialog Editor

3 . Select the Delete Marker button .

4. Choose the OK button .

Note

You can also delete a group marker by selecting the control, choosing
Standard Styles from the Styles menu, and turning off the Group Bit
check box.

10.8 Modifying a Dialog Box

To modify an existing dialog box, you open the . res file containing the
dialog box, then use the procedures listed in this chapter to make the
changes . To open the . res file and the dialog box for editing, follow these
steps:

1 . Choose Open from the File menu. You will see a dialog box listing
the available . res files in the current directory. The . res files con­
tain the application 's dialog boxes. If the . res file you want is in
another directory, type the full pathname of the file in the text
box.

2 . Open the appropriate . res file . You will see a second dialog box,
this one listing the available include files (.h extension) .

3 . I f you want to open an include file, do so. I f not, choose the Cancel
button . You will see a third dialog box, this one listing the dialog
boxes in the . res file.

4. Open the desired dialog box by double-clicking the name or by
selecting the name and choosing the OK button . The dialog box
you choose will appear on the screen and you can begin editing it .

If you want to work on another dialog box in the same . res file, choose
View Dialog from the File menu . You will again see the list of dialog-box
names you can choose from.

231

Windows Programming Tools

10.9 Using the Edit Menu

The commands in the Edit menu will help you create or modify dialog
boxes. The following list shows the command names and the result of
each command:

Command

Restore Dialog

Cut Dialog

Copy Dialog

Paste Dialog

Clear Dialog/Control

New Dialog

Rename Dialog

Grid

232

Result

Allows you to restore the dialog box to its previ­
ous saved state .

Deletes the currently displayed dialog box and
puts it on the Clipboard . (It cuts both the dialog
format and the bitmap format, both of which can
be edited with Paint .)

Puts a copy of the currently displayed dialog box
(both the dialog format and the bitmap format)
on the Clipboard .

Puts the contents of the Clipboard on the screen
if the contents are in dialog format .

Deletes the selected dialog box or control . If it
is a dialog box, a confirmation message will be
displayed .

Puts the currently displayed dialog box back into
the . res file and places a new, empty dialog box
on the screen . Requests the name of the new dia­
log box.

Requests a new name for the dialog box currently
displayed .

Determines the location of the upper-left corner
of a control. The grid is defined in multiples of
dialog units. For example, when the grid is set
at 20 horizontal (dx) units and 20 vertical {dy)
units, the numbers defining the position of the
control's upper- left corner will be in multiples of
20. Default settings are one dialog unit each in
both horizontal and vertical directions.

Dialog Editor

10.10 Using Files with Dialog Editor

The menus and strings that make up the user interface for a Windows
application are generally defined in the resource script file, a text file that
has the .rc extension . The application 's dialog boxes are defined in a text
file that has the . dig extension . These files are processed by rc, the Win­
dows resource compiler, producing a binary resource file that has the .res
extension . Ultimately, this .res file is linked to the application 's executable
. exe file .

When you use Dialog Editor, you modify the .res file that contains the
binary form of the definitions for the dialog boxes . A typical use of Dialog
Editor would be to open a .res file, create or modify dialog boxes, then
save the results. Saving your results overwrites both the original .res file
and any existing . dig files. The new .res file contains the new dialog defini­
tions, plus everything else that was included in the original .res file . This
new .res file can be linked immediately to the application source file . The
new . dig file is created as a backup in case you ever need to re-create the
.res file using rc . (For example, if you wanted to change or add to the
menus and strings in the .rc file, you would have to do this manually, so
the resource file would need to be recompiled .) The . dig file must be put
into the .rc file, either manually or by using the rcinclude keyword, before
recompiling.

One additional file, the include file, is associated with the dialog boxes
that you created by using Dialog Editor . The include file is described in
Section 10 . 10 . 1 .

10.10.1 Include File

The include file contains control ID definitions (# define directives) . These
are used to define internal control numbers as symbolic constants. The
symbolic constants can then be used in the application source code. For
example, if a dialog box contains an OK push button, you can define the
button 1D as a constant, giving it a symbolic name such as CTLOK. Then
you can use the symbolic name, CTLOK, in your application source code.

When assigning ID values to controls, you can assign any numbers you
want ; however, there are some guidelines you should keep in mind. To
use the ENTER and ESCAPE keys in standard ways, you need to create an
include file and assign meaningful values to the corresponding controls .
ID values 1 and 2 have special meanings. You should use these numbers as
described in the following paragraphs so as not to confuse the user with
controls that do not respond as expected. If you decide not to follow these
guidelines, you should not use ID values of 1 and 2 .

233

Windows Programming Tools

ID Value of 1

When the ENTER, CANCEL, or ESCAPE key is pressed, Windows automati­
cally sends a response message to the dialog-input function . If the dialog
box has a default button (for example, the OK button) , pressing the ENTER
key sends a W1L C011MAND message , along with the ID value of 1 .
Thus, if you have a default OK button, you should assign i t an ID value
of 1, so that it will be activated when the user presses the ENTER key. This
is consistent with the recommended guidelines for creating a Windows
application . (For information on application guidelines, see the Microsoft
Windows Application Style Guide.)

ID Value of 2

When the CANCEL or ESCAPE key is pressed , Windows automatically sends
a W1L C011MAND message , along with the ID value of 2. Thus, if you
have a Cancel button in a dialog box, it should have an ID value of 2 .

10.10.2 Creating an Include File

To create an include file, follow these steps:

234

1 . I n the dialog box you are working on, select the control that you
want to define in an include file .

2 . Choose View Include from the Include menu. You will see a dialog
box similar to the one shown in Figure 10 .9 .

Sylllbol nallll! : I CHKBX1 I
10 Ualue : �

GRPBX1 3 -t (Add) :
CHKBX2 5 mr (Delete)

(Change)
w
.. (OK)

Figure 10.9 View Include Dialog Box

3 . In the Symbol name text box, type the symbolic name you are giv­
ing to the control ID.

4. In the ID Value text box, type the number you are assigning as the
ID value .

Dialog Editor

5 . Choose t h e Add button .

6 . Choose t h e OK button o r press t h e ENTER key.

7. Choose Save from the Include menu .

10.10.3 Editing an Include File

You can make changes to the symbols listed in an include file by using
the View Include command from the Include men u . For example, you may
want to change the name of a symbol or delete one of the symbols . To edit
the include file, follow these steps:

1 . Choose View Include from the Include menu . You will see a dialog
box, similar to the one in Figure 10.9 , that lists the symbols in the
file .

2. Select the symbol you want to change or delete .

3 . To change a symbol 's name o r I D value , make t h e change in the
appropriate text box, then select the Change button . To delete
the symbol, select the Delete button .

4. Choose the OK button or press the ENTER key .

10. 1 1 Saving a Dialog Box

Once you h ave created a dialog box or made changes to it , save the new
dialog box by choosing Save from the File menu. By default , the file will
h ave the n ame sample. res. If you want to give it a different n ame, choose
S ave As and enter the new name in the resulting dialog box.

235

Chapter 1 1
Shaker and Heapwalker

1 1 . 1 Introduction 239

1 1.2 Testing Movable Memory: Shaker 239
1 1 .3 Viewing the Global Heap: Heapwalker 241

237

Shaker and Heapwalker

1 1 . 1 Introduction

The Microsoft Windows Shaker and Heapwalker applications let you
examine different aspects of system memory and see the effect your appli­
cation has on them. This chapter explains how to use Shaker and Heap­
walker.

11 .2 Testing Movable Memory: Shaker

The Shaker application lets you see the effect of memory movement on
your application . Shaker randomly allocates and frees chunks of global
memory with the intention of forcing the system to move moveable data
or code segments in your application . Shaker is useful for making sure that
your application locks code and data segments properly when it tries to
access them.

To start Shaker, open the MS-DOS Executive window and double-click
the filename shaker. exe. Windows loads the application and displays the
Shaker window.

Table 1 1 . 1 shows the Shaker commands:

Table 1 1 . 1

Shaker Commands

Command

Parameters Menu

Allocation Granularity

Time Interval

Action

Sets the minimum size of the objects to be allocated .
Each object is some multiple of this size; for example, if
the granularity is 128, Shaker allocates objects that
have byte sizes of 128, 256, 384, and so on . The smaller
the granularity, the more likely it is that the allocated
objects will fit in the spaces between global objects .
Sets the time interval, in system-timer ticks, between
allocations . Shaker allocates a new object after each
interval elapses . If the maximum number of obj ects has
been allocated, it reallocates one it has already allocated .

239

Windows Programming Tools

Table 11 . 1 (continued}
Command

Max Objects

State Menu

On
Off

Shake Menu

Start
Stop
Step

Action

Sets the maximum number of objects to be allocated.

Displays the obj ect handles and the allocation sizes .
Removes display of object handles and allocation sizes.

Starts the allocation .
Stops the allocation.
Allocates one obj ect and stops. This command can be
used when Shaker is otherwise stopped .

Figure 1 1 . 1 shows the screen that is displayed when you choose the On
command from the State menu :

Figure 11 . 1 Shaker Window with Show State On

240

Shaker and Heapwalker

1 1 . 3 Viewing the Global Heap: Heapwalker

The Heapwalker application lets you examine the global heap . It displays
information about all objects in system memory and is useful for seeing
what effect your application has when it allocates memory for its own use .

To start Heapwalker, open the MS-DOS Executive window and double­
click the filename heapwalk. exe. Windows loads the application and dis­
plays the Heapwalker window.

The global heap consists of all of available system memory. The heap
contains global objects-areas of memory that have been allocated for
some specific use . Some of these objects are free and can be allocated the
next time an application calls the GlobaWloc or GlobalRealloc func­
tion . Some of the objects have already been allocated and contain data
segments, code segments, resources, etc .

Table 1 1 .2 shows the Heapwalker commands:

Table 11 .2

Heapwalker Commands

Command

Walk Menu

Walk Heap

GC(O) and Walk

Action

Displays the current state of memory and
identifies each obj ect. Each display line
identifies one global object . The display shows
the following:

• The segment address of the object
(actually the segment of the arena
header; the object starts one
paragraph later)

• The size of the object in bytes
• The lock count (for example, L2)
• Discardable flag, D
• The object's owner
• The object type (code, data, resource,

shared)
• Additional information for that obj ect

(segment number or name for code,
type of resource)

Performs a global compact, asking for zero
bytes, then displays the heap .

241

Windows Programming Tools

Table 1 1 .2 (continued}
Command

GC(-1) and Walk

GC(-1) and Hit A:
Allocate all of memory

Free allocated memory

Free xK of allocated memory

Segmentation Test

Sort Menu

Address
Module
Size
Label Segments

Obj ect Menu

Show

Show Bits

242

Action

Allocates all of memory (causing all discardable
objects to be thrown out) , then displays the
heap.
Used for internal testing.
Allocates all of free memory, which is useful for
testing out-of-memory conditions in
applications.
Frees the memory allocated by the Allocate all
of memory command.
Frees x kilobytes of memory. This command
applies only to memory allocated by the
Allocate all of memory command.
Dumps the heap to file hw6.xx and does a
global compact (-1) . This command is available
whenever Heapwalker is in the system, even if
it is not the active application .

Sorts the display by address .
Sorts the display by module name.
Sorts the display by allocation size .
Directs Heapwalker to use . sym files in the
current directory in order to substitute
segment names for segment numbers.

Displays the contents of the selected object in
hexadecimal and ASCII . An object can be
selected by clicking the object display.
Displays the bitmap (if any) in the selected
GDI object. An object can be selected by
clicking the object display.

Table 1 1 .2 (continued)

Command

LocalWalk

LC(-1) and LocalWalk

GDI LocalW alk

File Menu

Save

Exit
About Heapwalker

Shaker and Heapwalker

Action

Displays the objects in the currently selected
local heap (data object) . This display shows
the following:

• The offset in the ds register of the
object

• The size in bytes of the obj ect
• Allocation status (Busy or Free)
• The object type (Fixed or Movable)

The first object in the local heap is allocated
by the memory manager, so there are always at
least two objects in a local heap. LocalWalk
has a File menu with a Save command that
saves to a file named hwl.xx, where the
extension . xx is an incremental number
appended by the program.
Compacts the selected local heap, then
displays the heap . LocalWalk has a File menu
with a Save command that saves to a file
named hwl.xx, where the extension . xx is an
incremental number appended by the program.
Does a local walk of the GDI local heap and
provides expanded information on the objects
in the heap . LocalWalk has a File menu with a
Save command that saves to a file named
hwl.xx, where the extension .xx is an
incremental number appended by the program.

Displays the global heap and writes the results
to a file named hwg.xx. The extension . xx is an
incremental number appended by the program.
Quits the Heapwalker application .
Displays information about the current version
of Heapwalker.

243

Windows Programming Tools

Figure 1 1 .2 shows the screen that is displayed when you choose the Walk
Heap command from the Walk menu :

25472 KERNEL CODE
4 032 I nitTask TASK i ii
2464 MSDOS DATA ··!=:
1 2 8 C D I SHARED ;!ii! 1 6 11 SYSTEM DATABASE
9 6 11 SYSTEM CODE
1 92 KEYBOARD DATABASE I 8 0 1 KEYBOARD DATA
896 KEYBOARD CODE 1
1 9 2 MOUSE DATABASE
784 MOUSE DATA

811 6 08 MOUSE CODE 1
1 426 576 D I SPLAY DATABASE 1:111 1 44A 41 6 D I SPLAY DATA
1 464 7 041 D I SPLAY CODE
1 6 1 C 256 SOUND DATABASE
1 6 2 C 1 6 11 SOUND CODE 2

Figure 1 1 .2 Heapwalker Window after Walk Command

244

Appendixes

A Diagnostic Messages 247

B C Run-time Functions 249

245

Diagnostic Messages

Appendix A

Diagnostic Messages

The debugging version of Microsoft Windows generates diagnostic mes­
sages whenever it encounters an error that would otherwise cause the sys­
tem to fail . Each diagnostic message has a unique number that identifies
the cause of the message and potential failure . Table A. l lists most of the
diagnostic message numbers and explains the meaning of each message .

Table A.l

Diagnostic Messages

Number (Hex)

0001
0002
0003
0004
0005
0007
0008
0010
0013
0014
0015
0016
0100
0140
0180
01CO
01FO
0200
0240
0280
02CO
02FO
0300
0301
0302
0303
0400
0401

Description

Insufficient memory for allocation
Error reallocating memory
Memory cannot be freed
Memory cannot be locked
Memory cannot be unlocked
Window handle not valid
Cached display contexts are busy
Clipboard already open
Mouse module not valid
Display module not valid
Unlocked data segment should be locked
Invalid lock on system queue
Local memory errors
Local heap is busy
Invalid local handle
LocalLock count overflow
LocalUnlock count underflow
Global memory errors
Critical section problems
Invalid global handle
GlobalLock count overflow
GlobalUnlock count underflow
Task schedule errors
Invalid task ID
Invalid exit system call
Invalid bp register chain
Dynamic loader /linker errors
Error during boot process

247

Microsoft Windows Programming Tools

248

Table A.l (continued}
Number (Hex)

0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
04FF
0500
0501
0502
0503
0504
0505
0600
0700

Description

Error loading a module
Invalid ordinal reference
Invalid entry name reference
Invalid start procedure
Invalid module handle
Invalid relocation record
Error saving forward reference
Error reading segment contents
Error reading segment contents
Insert disk for specified file
Error reading non-resident table
INT 3F handler unable to load segment
Resource manager /user profile errors
Missing resource table
Bad resource type
Bad resource name
Bad resource file
Error reading resource
Atom manager errors
Input/output package errors

�

C Run-time Functions

Appendix B
C Run-time Functions

Table B. l lists all C run-time functions and indicates whether t h e func­
t ion code assumes that the ds and ss registers are equal. Only C run-time
functions that assume that ds and ss are not equ al can be used in Win­
dows libraries.

Table B.l

C Run-time Functions

Function ds !=ss Function ds !=ss

_ clear87 yes bessel yes
_ control87 yes bsearch yes
_ exit no cabs yes
_ expand yes calloc yes
_ ffree yes ceil yes
_ fmalloc yes cgets yes
_ fmsize yes chdir yes
_ fpreset yes chmod yes
_ freect yes chsize no
_ memavl yes clearerr yes
_ msize yes close yes
_ nfree yes cos yes
_ nmalloc yes cosh yes
_ nmsize yes cprintf no
_ status87 yes cputs yes
abort no creat no
abs yes cscanf no
access yes ctime yes
a cos yes dieeetomsbin yes
alloca yes difftime yes
asctime yes dmsbintoiees yes
asin yes dosexterr yes
a tan yes dup yes
atan2 yes dup2 yes
atof yes ecvt yes
atoi yes eof yes
atol yes ex eel no
bdos yes execle no

249

Microsoft Windows Programming Tools

Table B.l (continued}

Function ds !=ss Function ds !=ss

execlp no getw yes
execlpe no gmtime yes
execv no halloc yes
execve no hfree yes
execvp no hypot yes
execvpe no inp yes
exit no int86 yes
exp yes int86x yes
fabs yes intdos yes
fclose yes intdosx yes
fcloseall yes isatty yes
fcvt yes itoa yes
fdopen yes kbhit yes
fgetc yes labs yes
fgetchar yes ldexp yes
fgets yes lfind yes
fieeetomsbin yes local time yes
filelength yes locking yes
fllush yes log yes
floor yes loglO yes
flush all yes longjmp yes
fmod yes lsearch yes
fmsbintoieee yes I seek yes
fopen yes ltoa yes
fprintf no malloc yes
fputc yes math err yes
fputchar yes memccpy yes
fputs yes memchr yes
fread yes memcmp yes
free yes memcpy yes
freopen yes memicmp yes
frexp yes memset yes
fscanf no mkdir yes
fseek yes mktemp yes
fstat yes modf yes
ftell yes movedata yes
ftime yes on exit yes
fwrite yes open yes
gcvt yes outp yes
getch yes perror yes
getche yes pow yes
getcwd yes printf no
getenv yes putch yes
getpid yes putenv yes
gets yes puts yes

250

C Run-time Functions

Table B.l (continued}

Function ds !=ss Function ds ! =ss

putw yes strerror yes
qsort yes stricmp yes
rand yes strlen yes
read yes strlwr yes
realloc yes strncat yes
remove yes strncmp yes
rename yes strncpy yes
rmdir yes strnicmp yes
rmtmp yes strnset yes
sbrk yes strpbrk yes
scanf no strrchr yes
segread yes strrev yes
setbuf yes strset yes
setjmp yes strspn yes
setmode yes strstr yes
setvbuf yes strtod yes
signal yes strtok yes
sin yes strtol yes
sinh yes strupr yes
so pen yes swab yes
spawnl no system yes
spawnle no tan yes
spawnlp no tanh yes
spawnlpe no tell yes
spawnv no tempnam yes
spawnve no time yes
spawnvp no tmpfile no
spawnvpe no tmpnam yes
sprintf no to lower yes
sqrt yes toupper yes
srand yes tzset yes
sscanf no ultoa yes
stackavail yes umask yes
stat yes ungetc yes
strcat yes ungetch yes
strchr yes unlink yes
strcmp yes utime yes
strcmpi yes vfprintf no
strcpy yes vprintf no
strcspn yes vsprintf no
strdup yes write yes

251

Index

& (ampersand)
dialog-control statement, use in

47-51 , 53-55
1\1ENUITEM statement, use in, 38

* (asterisk)
argument (symdeb) , 104
command, 112, 138
parameter (x? command), 135
wildcard character, 106, 135

= command, 99, 101, 1 12, 137, 155-156
! command, 112 , 137
* command, 112, 138
< command, 112, 137
> command, 112, 137
{ command, 112, 137
} command, 112 , 137
- command, 112, 137
. (dot) command, 112, 136
- (hyphen) , symdeb option designator,

102
I@ option, 101, 131
� (question mark)

command, 112, 136
parameter (x? command), 135

/ tslash) , symdeb option designator,
101-102

$ * , special macro name, 147
$ **, special macro name, 147
$ @ , special macro name, 147

a (assemble) command, 110, 118
/a (escape character) , 38
About Heapwalker command, 243
-AC option, 12
Accelerator, 35

See al6o ACCELERATORS
ACCELERATORS

acctablename field, 35, 36
resource, 35
resource statement, 25, 35, 36

_ _ acrtused symbol, 22
Add command, 200-201
Add hexadecimal (h command), 111 ,

129
Address argument (symdeb), 1 16-119
Address command argument (symdeb) ,

113
Address command (Heapwalker), 242

Address parameter
a command, 118
ba command, 119
bp command, 121
c command, 121
e command, 125
ea command, 126
eb command, 126
ed command, 126
el command, 127
es command, 127
et command, 127
ew command, 128
l command, 130
m command, 130
w command, 134

-AL option, 12
Align parameter, createSeg macro

(Cmacro) , 157
/alignment option, 86
Allocate all of memory command

(Heapwalker) , 242
Allocation granularity command

(Shaker) , 239
Allocation message, 107
Allocation status, system memory, 243
-AM option, 12
Ampersand (&) See & (ampersand)
-An option, 19
Anchor point, 203-205
ANSI character set, 210
Application

allocating memory, 241
assembling, 11
assembly-language, 20
C-language, 11
code size, 15
compiling, 11 , 14
creating, 11
debugging, 95
development language, 11
development tools, 3
Dialog Editor, 215
entry point, 13
executable See Linking
Font Editor, 195
Heapwalker, 239, 241
import library, 88
library, 16
linking, 73, 85

253

Microsoft Windows Programming Tools

Application (contz'nued)
memory-movement, 239
model, 12
module-definition file, 73
module name, 73
Pascal calling convention, 13
Pascal language, 20
program, 11
programming model, 12-13, 16
recommendation, 74
requirement, 74
resource, 11, 25
resource need, 181
resource script file, 215
Shaker, 239
source code, 233
source file, 11
starting, 107
symbol file, 102
Windows library, 19-20
WinMain function, 13

Arg, 169
Arg parameter (Cmacro)

codeOFFSET macro, 159
dataOFFSET macro, 159
segNameOFFSET macro, 160

_ _ argc variable, 16
Argument

symdeb address, 116-117
symdeb command, 113-115, 1 16-117
symdeb expression, 117

Arguments parameter
n command, 131
symdeb command, 100

_ _ argv variable, 16
-As option, 19
-AS option, 12, 19
Assemble (a command), 1 10, 118
Assembly language, 11

application, 20
Cmacro, 153
routine, 17
symbol file, 98

assumes macro (Cmacro) , 157, 158-159
Attributes parameter, cProc macro

(Cmacro) , 163
Autosave parameter, cProc macro

(Cmacro), 164
-Aw option, 19

ba (breakpoint address) command, 1 10,
119

Background color (Icon Editor) , 188
Backtrace stack (k command) , 111 , 129
Backtrace task (kt command), 111 ,

129-130

254

Batch-processing program, 141
be (breakpoint clear) command

110, 120, 121
bd (breakpoint disable) command, 111 ,

120, 121
be (breakpoint enable) command, 111 ,

120
Bias parameter, errn$ macro (Cmacro) ,

173
Binary operator (symdeb) , 117
Binary resource file (Dialog Editor), 233
BITBL T (Cmacro) , 173
Bitmap

background color, 188
creating, 181
opening existing file, 188
opening new file, 183-184
saving file, 190

BITMAP
keyword, 30
resource, 30
resource statement, 25, 30

bl (breakpoint list) command, 111 , 121
Border, 44
Border check box, 226
bp (breakpoint set) command, 108,

111 , 121
Brackets

double ([�) , 4
single ([' l) , 105

Breakadd.ress parameter (g command) ,
128

Breakpoint address (ba) command,
110, 119

Breakpoint clear (be) command, 110,
120, 121

Breakpoint disable (bd) command, 111 ,
120, 121

Breakpoint enable (be) command, 111 ,
120

Breakpoint list (bl) command, 111 , 121
Breakpoint set (bp) command, 108,

111 , 121
Breakpoint

interrupt key, 108
setting, 108
sticky, 121
virtual setting, 108

BS_ 3STATE, 61
BS_ AUT03STATE, 61
BS_ AUTOCHECKBOX, 60
BS_AUTORADIOBUTTON, 61
BS_ CHECKBOX, 60, 61
BS_ DEFPUSHBUTTON, 60
BS_ GROUPBOX, 60
BS- LEFTTEXT, 61

BS_ PUSHBUTTON, 60
BS_ RADJOBUTTON, 61
BS_ USERBUTTON, 61
BUTTON control

checkbox, 50
class, 59
style, 51-52, 54-56, 60-61

Byte command argument (symdeb) ,
113

Byte parameter (o command), 131
Bytes field

HEAPSIZE statement, 77
STACKSIZE statement, 78

c (compare) command, 111 , 121
C compiler, 11

default option, 15
option, 14

C language, 11
application, 11
debugging, 95
library, 16, 19, 22
Pascal calling convention, 13
program, debugging, 95
run-time function, 17, 19-20, 249-251
run-time library, 16, 17, 22
symbol file, 97

-c option; 14
Call macro (Cmacro), 168
Callback function, 13, 19, 21
Calling convention

cmacro, 155
high-level language, 21
Pascal, 13, 21

calloc function, 17
Cancel button (Dialog Editor) , 231, 234
Cancel command (symdeb)

See CONTROL+C key
CANCEL key, assigning ID value, 234
Caption check box, 226
CAPTION statement, 43, 45
Caption text field (CAPTION

statement), 45
cBegin (Cmacro) , 167
cCall (Cmacro) , 168

Arg, use of, 169
FarPtr, use of, 171
Save, use of, 169

cEnd (Cmacro) , 167
Change button (Dialog Editor) , 235
Character

See also Font Editor
escape, 38
variable-pitch font, width restriction,

200

Index

Character set, 210
Character window

clearing, 203
Font Editor, 197

Character-viewing window (Font
Editor), 197

Check box
Border, 226
Caption1 226
descriptiOn, 220
dialog-box control, 220
Group Bit, 230
Tab Stop Bit, 229-231
Visible Bit, 225

CHECKBOX statement, 47, 50-51
CHECKED option

MENUITEM statement, 38
POPUP statement, 39

Child window, clipping, 43, 45
?CHKSTK (Cmacro) , 156
cl command, 3, 11 , 14
Class field

CLASS statement, 46
CONTROL statement, 58

Class-name field (SEGMENTS
statement) , 81

Class parameter, createSeg macro
(Cmacro) , 157

CLASS statement, 43, 46
Class style, 223-224

See also Resource compiler
Class Styles command

dialog box, 223
dialog-box control, 223
Dialog Editor, 221, 224

Clear breakpoint command
See be command

Clear command (Font Editor), 203
Clear Control command (Dialog

Editor) , 223
Clear Dialog/Control command (Dialog

Editor) , 232
Clipboard, 205
Clipping, child window, 43, 45
Close command, 110
Cmacro

Arg, 169, 170
assumes, 157, 158-159
BITBLT, 173
call, 168
calling convention, 155
calling cProc function, 168
calling high-level language function,

168
cBegin, 167
cCall, 168

255

Microsoft Windows Programming Tools

Cmacro (continued)
cEnd, 167
codeOFFSET, 159
cProc , 163, 164
createSeg, 156, 157
dataOFFSET, 159
defined, 153
Def.X, 170, 171
described, 3
errn$, 172, 173
errnz, 172
Error, 171
example, 173-17 4
externX, 162
FarPtr, 171
function, 163
globalX, 161
INCLUDE command, 153
include file, 215, 231, 133-235
labelX, 162, 163
localX, 165, 166, 173
memory-model option, 21, 154
OFFSET, 157, 159, 160
options, 153
overriding type, 173, 174
parnU(, 164, 173-174

namelist parameter, 165
X parameter, 164

?PLM, 155, 168
Save, 169
sBegin, 158
segment, 156
segNameOFFSET, 160
sEnd, 158
special-definition, 170
stack-checking option, 156
staticX, 160

initialValue parameter, 161
name parameter, 160
replication parameter, 161
X parameter, 160

storage allocation, 160
symbol redefinition, 174
?WIN, 156
Windows prologjepilog, 155-156

Cmacros .inc file, 21 , 153
Code, 15
CODE segment (Cmacro) , 156
Code segment, _ TEXT, 15-16
CODE statement, 78
Code swapping, 12
codeOFFSET macro (Cmacro) , 159
Color command (Icon Editor), 185
Color menu (Icon Editor), 182
Column command (Font Editor), 206
Column menu (Font Editor), 201-202

256

Combine parameter, createSeg macro
(Cmacro), 157

Command
* {comment) , 112, 138
? (compute and display expression) ,

112 , 136
. (dot) command, 112, 136
< (redirect program input) , 112, 137
{ (redirect program input) , 112, 137
- (redirect program input and

output), 112, 137
} (redirect program output), 112, 137
= (redirect symdeb input and

output), 99, 101, 112, 137
> (redirect symdeb output) , 112,

137
! (shell escape), 112, 137
a (assemble) , 110, 118
About Heapwalker, 243
Add (Font Editor), 200-201
Address (Heapwalker) , 242
Allocate all of memory (Heapwalker) ,

242
Allocation granularity (Shaker) , 239
ba �breakpoint address) , 110, 119
be breakpoint clear) , 110, 120, 121
bd breakpoint disable), 111 , 120,

121
be (breakpoint enable), 111 , 120
bl (breakpoint list) , 1 11 , 121
bp (breakpoint set) , 108, 111, 121
c (compare) , 1 1 1 , 121
cl , 9, 11 , 14
Class Styles (Dialoi Editor), 221 , 224
Clear (Font Editor , 203
Clear Control (Dia og Editor), 223
Clear Dialog/Control (Dialog Editor) ,

232
Close, 108
Color (Icon Editor), 185
Column (Font Editor) , 206
compiler, 18
Copy (Font Editor), 205
Copy bialoq (Dialog Editor), 232
Cut Dialo� tDialog Editor) , 232
d (display) , 108
d (dump memory using previous

type), 111 , 122
da �dump memory ASCII) , 111 , 122
db dump memory bytes) , 111 , 122
dd dump memory double words) ,

111, 123
Delete (Font Editor) , 201-202
dg (display global heap) , 111 , 123
dh (display local heap J , 111 , 124

Command (continued)
dl (dump memory, long floating

point) , 111 , 124
DOS, 99, 137, 148
dot (.) , (display current source line) ,

112, 136
dq (display task queue) , 111 , 124
Draw Straight (Icon Editor) , 183
ds (dump memory, short floating

point) , 111 , 125
dt (dump memory, ten-byte reals),

111 , 125
dw (dump memory words) , 111, 125
e (enter) , 111 , 125-126
ea �enter address), 111 , 126
eb enter bytes , 111 , 126
ed enter doub{e-words), 111 , 126
el (enter long floating point), 111 ,

127
EQU, 154
es (enter short floating point) , 111 ,

127
et (enter ten-byte reals), 111 , 127
ew (enter words) , 111 , 128
exehdr, 89
exit (DOS), 137
Exit (Heapwalker) , 243
f (fill1, 111 , 128
Fill {Font Editor), 206
Font Editor, 195
Free allocated memory (Heapwalker) ,

242
Free xK of allocated memory

(Heapwalker) , 242
g (go) , 107, 111 , 128
GC!O) and Walk (Heapwalker) , 241
GC -1) and Hit A: (Heapwalker) , 242
GC -1) and Walk (Heapwalker) , 242
GD LocalWalk (Heapwalker) , 243
Grid �Dialog Editor), 232
Grid Icon Editor), 188
h (ad hexadecimal), 111 , 129
Hatched (Font Editor) , 204
Header (Font Editor), 209, 211
Heapwalker, 241
Hotspot (Icon Editor) , 187-188
i (input from port), 111, 129
Icon Editor, 182-183
implib , 88
include, 12
INCLUDE, 153
Inverted (Font Editor), 204
k (backtrace stack), 111 , 129
kt (backtrace task), 111, 129-130
l (load), 111, 130
Label Segments (Heapwalker) , 242

Index

Command {continued)
LC(-1) and LocalWalk (Heapwalker) ,

243
Left= Right (Font Editor) , 205
link4, 73, 85, 150
LocalWalk (Heapwalker) , 243
m]macro) , 112, 131
m move) , 112, 130
m e, 143
mapsym, 96, 150
Max objects (Shaker) , 240
mode (DOS) , 99
Module (Heapwalker) , 242
n (name), 112, 131
Narrower (Font Editor) , 200
New gDialog Editor) , 218
New Icon Editor), 183-184
New ialog (Dialog Editor) , 219, 232
o (output to port), 112, 131
Off (Shaker) , 240
On (Shaker) , 240
Open �Dialog Editor) , 231
Open Font Editor) , 195
Open Icon Editor) , 188
Order Groups (Dialog Editor)

227-230
p (pro�am step), 112, 132
Paste Font Editor), 205
Paste Icon Editor) , 190
Paste ialog (Dialog Editor) , 232
path (DOS), 148
q (quit), 110, 112, 132
r (register) , 112, 132
rc, 11, 28-29
redirection, 99, 101, 112, 137
Refresh (Font Editor), 198-199
Rename bialog (Dialog Editor) , 232
Resource Properties (Dialog Editor),

226
Restore Dialog (Dialog Editor) , 232
Row (Font Editor), 206
s (search), 112, 133
s& (set machine and source

debugging) , 109, 112, 133
s- (set machine debugging only) , 112 ,

133
s+ (set source debugging only) , 109,

112, 133
Save !Dialog Editor), 235
Save Font Editor), 198, 211
Save Heapwalker) , 243
Save Icon Editorl, 190
Save As �Dialog Editor) , 235
Save As Font Editor) , 198, 211
Save As Icon Editor), 190
Segmentation Test (Heapwalker) ,

242

257

Microsoft Windows Programming Tools

Command (continued}
Select {Icon Editor) , 191
Select All {Icon Editor), 191
Shaker, 239
Show (Hea�alker) , 242
Show Bits Heapwalker), 242
Size (Font itor) , 207-208
Size (Heapwalker) , 242
Solid {Font Editor), 203
Standard Styles (Dialog Editor), 224,

226, 229-231
Start (Shaker) , 240
Step (Shaker), 240
Stop (Shaker) , 240
symdeb, 100
t {trace program instruction) , 112,

133
Time interval (Shaker) , 239
Top= Bottom (Font Editor), 205
u {display unassembled instruction),

109, 112, 134
Undo (Font Editor) , 206
v (view source lines) , 109, 112, 134
View Dialog (File menu) , 231
View Include {Dialog Editor)

234-235
w {write to disk), 112, 134
Walk Heap (Heapwalker) , 241
Wider (Font Editor) , 200
Width (Font Editor), 206
x (examine symbol map), 104, 106,

112, 135
x? (examine symbol), 106, 112, 135
xo (open symbol map), 105, 112,

135-136
z {set symbol value), 112, 136

Command argument (symdeb) , 113
address, 113
byte, 113
command-string, 113
count, 113
dos-command, 113
drive, 113
expression, 113
filename, 113
id, 114
id-list, 114
list, 114
pdb, 115
range, 114
record, 114
register, 114-115
symbol, 115
value, 115

Command parameter, make description
file, 142

258

Command-string command argument
(symdeb) , 113

Command-string parameter
ba command, 119
bp command, 121
m {macro) command, 131
macro definition (symdeb program) ,

101
Commands parameter (symdeb

command), 101
Comment (* command), 112, 138
Communications port, selecting, 99
Compact model

application, 12
callback function, 13
description, 12
fixed data segment, 12
use, 12

compare (c command), 111, 121
Compiler

Pascal, 11 , 20
resource, 215

Compiling
application, 14
resource, 25, 28

Oom,I?ute and display expression
l? command), 112, 136

Constant-expression field, 68
Control

changing order in dialog box, 228
check-box, 50
default push-button, 54
dialog box, 219
Dialog editor, 218

See also Dialog Box
edit, 56
group box, 53
icon, 57
list box, 52
push button, 51
radio button, 55
text

centered, 49-50
left-justified, 47-48
right-justified, 48-49

user access, 227-230
user-defined, 58

CONTROL+C key, 104
Control class

BUTTON, 59, 60-61
description, 59-60
EDIT, 59, 61-62
LISTBOX, 59, 63-64
SOROLLBAR, 60, 64-65
STATIO, 59, 63

Control ID Value field (Dialog Editor) ,
218

Control menu, 110, 216, 221
CONTROL option

(ACCELERATORS), 36
CONTROL+S key, 99
Control statement

CHECKBOX, 50
CONTROL, 58
CTEXT, 49
DEFPUSHBUTTON, 54
Dialog resource statement, 47, 58-59
EDITTEXT, 56
general form, 47
GROUPBOX, 53
ICON, 57
LISTBOX, 52
LTEXT, 47
PUSHBUTTON, 51
RADIOBUTTON, 55
RTEXT, 48

Control style
all classe.,.s,� 43
BUTTOl'l , 60-61
description, 60-65
dialog box, 223
dialog-box control, 224, 226
EDIT, 61-62
LISTBOX, 63-64
SCROLLBAR, 64-65
STATIC, 63

Control type (Dialog Editor), 218
See also Diatog Box

Control window, user-defined, 58
Convention, notational, 4
Copy command (Font Editor), 205
Copy Dialog command, 232
Count command argument (symdeb),

113
Count parameter

l command, 130
w command, 134

cProc macro, 163
createSeg macro, 156
Create Window function, 42, 63, 64-65
Creating resources, 11 , 25, 181
Creating resource script files, 25
Creating symbol files l mapsym

program), 96
CTEXT statement (DIALOG resource

statement) , 47, 49-50
Cursor

background color, 188
creating, 181
editing, 181
hotspot, 187- 188
mode, 184
opening existing files, 188

Index

Cursor (continued)
opening new files, 183-184
resolution, 184
saving files, 190

CURSOR
keyword, 30
resource, 30
resource statement, 25, 30

Cut Dialog command, 232
Ox field, Size window (Dialog Editor),

217
Cy field, Size window (Dialog Editor) ,

217

d command
display, 108
dump memory using previous type,

111 , 122
D (DOUBLE WORD accessed) option

(ba command) 119
/_d option (makej , 144
da (dump memory ASCII) command,

111 , 122
_ DATA data segment, 13
Data object, type, 242
Data segment

_ DATA, 15
fixed, 12

DATA segment (Cmacro) , 156
DATA statement, 79
dataOFFSET macro, 159
Data-option field (EXPORTS

statement), 83
db (dump memory bytes) command,

111 , 122
dd (dump memory double-words)

command, 111 , 123
Debugging

allocation message, 107
application, 95, 98
application source statement display,

109
breakpoint setting, 108
C-language program, 95
command summary, 110-112
disabling more feature, 100
displaying

application source statement, 109
symbol, 106
variable, 108-109

executable file, 95
external symbol, 106
fatal exit, 110
ffiM-compatible, 101
line number information , 13

259

Microsoft Windows Programming Tools

Debugging {continued)
listing symbol map, 104-105
macro definition, 101
memory-allocation

message, 107
reporting level, 100-101
setting, 100-101

multiple instance, 105
nonmaskable interrupt, 101
opening symbol map, 105-106
Pascal program, 95
quitting, 1 10
redirecting input, 99
redirecting output, 99
remote terminal, 98
secondary monitor, 98, 100
setting

breakpoints, 108
memory allocation, 100-101
memory allocation reporting level,

100-101
starting, 100
starting the application, 107
static variable, 108-109
symbol

displaying, 106
file, 96
map, 104-106

symbolic (mapsym program), 96
symdeb program, 95
terminal, setting up, 98
win .com argument, 100, 102, 103
x command, 104

Decimal mode (Dialog Editor), 218
Decorative font (Font Editor) , 210
DEF file See Module-definition file
Default push-button control, 54
Def-file parameter Oink4 command), 85
define directive, 233

See also # define statement
Define or execute macro (m command),

112, 131
define resource directive, 26, 27
define statement, 66
Definition statement (module-

definition file), 73
DEFPUSHBUTTON statement, 47,

54-55
DefX (Cmacro) , 170
Delete button (Dialog Editor) , 235
Delete command (Font Editor)

201-202
Delete Marker button (Dialog Editor),

230
Delete Tab button (Dialog Editor) , 229

260

Dependent-files parameter (make
description file), 142

.dependentextension parameter, 148
Description file (make) , 141
DESCRIPTION statement, 77
Development, language, 11
Development program, 11
dg (display global heap) command, 111 ,

123
dh (display local heap) command, 111 ,

124
Diagnostic message, 247-248
Dialog box

adding controls, 219, 221
adding text in controls, 221
Cancel button, 234
Change button, 235
class style, 223-224
Class Styles command, 223
control

adding, 219, 221
style, 223-224, 226
type, 219

creating, 215, 218, 232
See also Dialog Editor; DIALOG

resource statement
Delete button, 235
deleting controls, 219, 223
drawing borders, 218
editing, 215

See also Dialog Editor
Group/Control Ordering, 227-230
group marker, 230
handle, 219
memory-manager flag, 223, 226
modifying, 231-232
moving controls, 222
moving groups of controls, 222
order of controls, 228
saving changes, 235
scroll bar, 226
Size box, 226
sizing, 219
sizing controls, 223
standard style, 223-224, 226
Standard Styles command, 223
System-menu box, 226
tab stop, 229
visible bit, 225
window style, 43

Dialog-box control, 220-221
Dialog-control statement, 47-65

CHECKBOX, 47, 50
CONTROL, 47, 58
CTEXT, 47, 49
DEFPUSHBUTTON, 47, 54

Dialog-control statement (continued}
EJ)I�, 47, 56
GROUPBOX, 47, 53
ICON, 47, 57
LISTBOX, 47, 52
LTEXT, 47
PUSHBUTTON, 47, 51
RADIOBUTTON, 47, 55
RTEXT, 47, 49

Dialog Editor, 11 , 215-235
access to controls, 227-230
adding controls, 219, 221
adding text in controls, 221
binary resource file, 233
Class Styles command, 221, 224
Clear Control command, 223
Clear Dialog/Control command (Edit

menu) , 232
clearing diSplay, 218
control

adding, 219, 221
style, 223
type, 218-219

Control menu, 216, 221
Copy Dialog command (Edit menu) ,

232
creating dialog box, 218
Cut Dialog command (Edit menu),

232
Decimal mode, 218
deleting a control, 219, 223
described, 3, 215

See also Dialog box
dialog unit, 217
.dlg file, 233
Edit menu, 216, 218, 223, 232
file, 233
File menu, 216, 218, 231, 235
Grid command (Edit menu), 232
group marker, 230
handle, 219
Hex mode, 218
include file, 215, 231, 233-235
Include menu, 216, 234-235
memory-manager flag, 223, 226
mouse requirement, 215
moving controls, 222
moving groups of controls) 222
New command (File menu , 218
New Dialog command (Ed1t menu) ,

219, 232
Open command (File menu), 231
Options menu, 216, 227-230
Order Groups command (Options

menu), 227-230
order of controls, 228

Index

Dialog Editor (continued)
Paste Dialog command (Edit menu),

232
purpose , 215
Rename Dialog command (Edit

menu), 232
.res file, 231 , 233
resource file, 215, 233
Resource Properties command

(Styles menu) , 226
resource script file, 233
Restore Dialog command (Edit

menu), 232
sample file, 218
Save As command (File menu), 235
Save command (File menu) , 235
Save command (Include menu) , 235
saving changes, 235
scroll bar, 226
Size box, 226
Size window, 217, 218
sizing

control, 223
dialog box, 219
handle, 223

Standard Styles command (Styles
menu) , 224, 226, 229-231

starting, 216
Styles menu, 216, 221, 223-224, 226,

229-231
System-menu box, 226
tab stop, 229
Test mode, 217
text, adding, 221
View Dialog command (File menu) ,

231
View Include command (Include

menu), 234-235
Work mode, 217

Dialog-option statement, 43
CAPTION, 43, 45
CLASS, 43, 46
MENU, 43, 46
STYLE, 41, 43

DIALOG resource, 25, 40
DIALOG resource statement, 25, 40

control class, 59-60
dialog-control statement, 47-65

CHECKBOX, 47, 50
CONTROL, 47, 58
CTEXT, 47-49
DEFPUSHBUTTON, 47, 54
EJ)ITTEXT, 47, 56
GROUPBOX, 47, 53
ICON, 47, 57
LISTBOX, 47, 52

261

Microsoft Windows Programming Tools

DIALOG resource statement
(conh"nued}

dialog-control statement {continued}
LTEXT, 47
PUSHBUTTON, 47, 51
RADIOBUTTON, 47, 55
RTEXT, 47, 48

dialog-option statement, 43
CAPTION, 43, 45
CLASS, 43, 46
MENU, 43, 46
STYLE, 41, 43

load-option field, 41
mem-option field, 41
syntax, 41

DIALOG statement See DIALOG
resource; DIALOG resource
statement

DIALOG template, 40-41
Dialog unit, described, 217
Dialog-box control
DialogBox function, 42
Directive, 65-68

define, 26, 27, 66, 67, 233
description, 65
elif, 67, 68
else, 67, 68, 69
endif, 67, 68, 69
if, 68, 69
ifdef, 67, 68, 69
ifndef, 67, 68, 69
include, 10, 25
resource, 26, 27
undef, 66-67

Disable breakpoint (bd command), 111 ,
120, 121

DISCARDABLE keyword
DIALOG resource statement, 41
MENU resource statement, 37
RCDATA resource statement, 33
single-line resource statement, 31
STRINGTABLE resource statement,

34
user-defined resource statement, 32

Disk file, 17
Display box (Icon Editor) , 182
Display current source line

See dot (.) command
Display expression command

See ? command
Display global heap (dg command),

111, 123
Display local heap (dh command), 111 ,

124
Display static variable (d command),

108

262

Display task queue (dq command) , 111 ,
124

Display unassembled instructions
(u command), 109, 112, 134

Display symbol See x? command
Disylay symbol map See x command
dl tdump memory, long floating point)

command, 111 , 124
.dlg file (Dialog Editor), 233
Dontcare font (Font Editor) , 210
DOS

command.com, 137
commands, 99
exit command, 137
filename format, 84
mode command, 99
path command, 148
program, 17
tools, 3

See also specific tool
Dos-command

command argument (s�mdeb), 113
parameter (! command), 137

dot (.) command, 112 136
dq (dump task queue) command, 1 11 ,

124
Drawing, new 183-184
Drawing box (Icon Editor) , 182-183
Drawing grid (Icon Editor), 188
Drive command argument (symdeb),

113
Drive parameter

l command, 130
w command, 134

ds (dump memory, short floating
point) command, 111 , 125

DS_ ABSALIGN, 41, 42
DS_ SYSMODAL, 43
ds register, 19, 249-251
dt (dump memory ten-byte reals)

command, 111 , 125
Dump ASCII command

See da command
Dump bytes command

See db command
Dump command See d command
Dump double-words command

See dd command
Dump long reals command

See dl command
Dump memory ASCII (da command),

111, 122
Dump memory bytes (db command),

111, 122
Dumy memory double words

tdd command), 111 , 123

Dum,P. memory, long floating point
ldl command), 111, 124

Dum,P. memory, short floating point
lds command), 111 , 125

Dum,P. memory ten-byte reals
ldt command), 111 , 125

Dum,P. memory usmg previous type
ld command), 111, 122

Dump memory words (dw command),
111 , 125

Dump short reals command
See ds command

Dump task queue command
See dq command

Dump ten-byte reals command
See dt command

Dump words command
See dw command

dw (dump memory words) command,
111 , 125

Dynamic linking, 88
Dynamic-link library, 18

e (enter using previous type) command,
111 , 125-126

ea �enter address) command, 111 , 126
eb enter bytes command, 111 , 126
ed enter doub�e-words) command, 111 ,

126
EDIT class

control style, 61-62
default style, 57

Edit control, 56
dialog box, 220

EDIT control class, 59
Edit menu

Icon Editor, 182, 187
commands (Dialog Editor), 232
Dialog Editor, 216, 218, 223
Font Editor, 198-199, 206

Editing
bitmaps See Icon Editor
cursors See Icon Editor
dialog box, 215

See al8o Dialog Editor
font, 212

See al8o Font Editor
icon See Icon Editor
include file, 235

EDITTEXT statement, 47, 56-57
el (enter long floating point) command,

1 1 1 , 127
elif resource directive, 26, 27
elif statement, 67, 68
else resource directive, 26, 27

Index

else statement, 67, 68, 69
Enable breakpoint (be command) , 111 ,

120
endif resource directive, 26, 27
endif statement, 67, 68, 69
Enter address command

See ea command
Enter memory ASCTI (ea command) ,

111 , 126
Enter memory bytes (eb command) ,

111 , 126
Enter command See e command
Enter double words (ed command),

111 , 126
ENTER key, 62, 233-234
Enter long floating point (el command),

111 , 127
Enter long reals command

See el command
Enter short floating point

(es command), 111 , 127
Enter short reals command

See es command
Enter ten-byte reals (et command) ,

111 , 127
Enter using previous type

(e command), 111 , 125-126
Enter words (ew command), 111 , 128
Entry-option field (IMPORTS

statement) , 84
Entry point, application, 13
Entryname field (EXPORTS

statement) , 82
entryname option, 84
entryordinal option, 84
environ variable, 16
Epilog (Windows) , 14 , 19 , 21 , 155
EQU command (Cmacro), 154
Error (Cmacro) , 171
erm$, 172
errnz , 172
es (enter short floating point)

command, 111 , 127
ES_ AUTOHSCROLL, 62
ES_ AUTOVSCROLL, 62
ES_ CENTER, 61
ES_ LEFT, 57, 61
ES_ MULTILINE, 62
ES_ NOmDESEL, 62
ES_ RIGHT, 61 .
Escape character, l\1ENUITEM

statement, 38
ESCAPE key, assigning ID value, 233-234
et (enter ten-byte reals) command, 111 ,

127
Event field (ACCELERATORS) , 35

263

Microsoft Windows Programming Tools

ew (enter words) command, 111 , 128
Examine symbol (x? command), 106,

112, 135
Examine symbol map (x command) ,

104, 106, 112, 135
Executable file

debugging, 95
examining header, 89
testing, 95

Executable file header, 89
Executable-file parameter

(rc command), 29
Exe-file parameter (link4 command), 85
Exe-filename .I?arameter (exehdr

command), 89
exehdr command, 89
Exit command (Heapwalker) , 243
Exit menu (Icon Editor), 182
Exported function 19
Exportname field (EXPORTS

statement) , 82
EXPORTS statement, 14, 7 4, 82-83
Expression (symdeb) , 117

command argument, 113
parameter

? command, 136
errnz macro, 172

ExternX (Cmacro) , 162

f (fill) command, 111 , 128
/f option, 101
Far call, 13
Far keyword, 13, 19
FarPtr (Cmacro) , use with cCall, 171
Fatal exit, 1 10
Fatal message, 247-248
Fatal-exit message, 110
FatalExit function, 15
fclose function, 17
fgets function, 17
File

Bitmap, 183-184, 188
cmacros.inc, 21, 153
Cursor, 183-184, 188
description (make), 141-143
disk, 17
font See Font Editor
fontedit .exe, 195
header, executable, 89
heapwalk .exe, 241
Icon, 183-184, 188
iconedit .exe, 181
include, 215, 231, 233-235
inference rules (make), 147
maintaining, 141

264

File (continued)
map, 96-98
module-definition, 11
.res , 231
resource, 25, 231, 233
resource script, 11, 25-26, 27, 215

See also Resource script file
sample (Dialog Editor) , 218
script, 11, 27

See also Resource script file
shaker.exe, 239
source, 11 , 14
symbol, 96-98, 100, 101, 102-103

See also Symbol file
symbol map, 104-106
tools .ini, 148
updating, 141
windows.h, 11, 20, 43

File format
module-definition file, 75
resource file, 25

File header, executable, 89
File menu, 182, 183, 188-190

Dialog Editor, 216, 218, 231, 235
Font Editor, 195-197, 211
Heapwalker, 243

Filename
command argument (symdeb), 113
field

include statement, 65
single-line resource statement, 31
STUB statement, 84
user-defined resource statement, 32

format (DOS) , 84
parameter

j@ option (symdeb command),
101

make command, 143
n command, 131
rc command, 29

Fill (f command), 111 , 128
Fill menu (Font Editor) , 203-205
FIXED keyword

DIALOG resource statement, 41
MENU resource statement, 37
RCDATA resource statement, 33
single-line resource statement, 31
STRINGTABLE resource statement,

34
user-defined resource statement, 32

Fixed-pitch font, 207-208, 212
Flag, memory-manager, 223, 226-227
Flag name (symdeb) , listing, 115
Floating-pomt option

alternate math, 18
coprocessor/emulator math, 16, 18

.fnt filename extension, 211
Font

decorative, 210
Dontcare, 210
family name, 210, 211
fixed-pitch, 207-208, 212
italic, 210
modern, 210
raster, 195
resizing, 207-208
Roman, 210
script, 210
strikeout, 210
swiss, 210
underline, 210
variable-pitch, 200, 207-208, 212
vector, 195

Font Editor, 11 , 195-212
Add command (Row menu) , 200, 201
ANSI character set, 210
break character, 210
canceling changes, 206
changing font header, 209, 211
character

canceling change, 199
changing width, 200
editing, 198
saving, 198
saving changes, 206-207
selecting, 198

character pixel height, 207
character set, 210
character-viewing window, 197
character window, 197

clearing, 203
filling, 203-204
hatch pattern, 204
inverting, 204
reversing, 205

Clear command (Font Editor) , 203
Clipboard, 205
Column menu, 201-202
Copy command (Fill menu) , 205
copyright, 209
decorative font, 210
default character, 210
Delete command (Column menu) ,

202
Delete command (Row menu) , 201
described, 3, 195
dontcare font, 210
Edit menu, 198-199, 206
editing tips, 212
external leading, 209
face name, 209
features, 197

Index

Font Editor (continued}
File menu, 195-197, 211
filename, 209
Fill menu, 203-205
filling character window

hatched pattern, 204
solid block, 203

first character, character value, 207
fixed-pitch font, 207, 208
font family, 210
Font menu, 207-209, 211
font window, 198
fontedit .exe file, 195
Hatched command (Fill menu) , 204
Header command (Font menu) , 209,

211
Header dialog box, 209
height of ascent, 209
internal leading, 209
Inverted command (Fill menu) , 204
italic font, 210
last character, character value, 207
Left= Right command (Fill menu) ,

205
loading, 195
loading font files, 195
main window, 197
modern font, 210
mouse requirement, 195
Narrower command (width menu) ,

200
nominal horizontal resolution, 209
nominal point size, 209
nominal vertical resolution, 209
OEM character set, 210
Open command (File menu) , 195
Paste command (Fill menu) , 205
pitch, 208
pixel

coloring, 199
copying columns, 201-202
copying rows, 200-201
deleting columns, 202
deleting rows, 201

Refresh command (Edit menu)
198-199

resizing fonts, 207-208
roman font, 210
Row menu, 200-201
Save As command (File menu) , 198,

211
Save As dialog box, 211
Save command (File menu) , 198, 211
saving font files, 211
script font, 210
Size command (Font menu) , 207-208

265

Microsoft Windows Programming Tools

Font Editor (cont£nued}
Size dialog box, 208
Solid command (Fill menu), 203
starting, 195
strikeout font, 210
swiss font, 210
Top= Bottom command (Fill menu) ,

205
underline font, 210
Undo command (Edit menu) , 206
undoing changes, 206
variable-pitch font, 207, 208
weight, 208
Wider command (Width menu), 200
Width menu, 200
window, 197

Font file
See also Font Editor
creating, 195
editing, 195
header, 209, 211

FONT keyword (single-line resource
statement) , 30

Font menu (Font Editor), 207-209, 211
FONT resource, 30
FONT resource statement, 25, 30
Font window (Font Editor) , 198
Fontedit .exe file, 195
-FPa command, 18
-FPc command, 18
-FPi command, 18
fprintf function, 17
Frame control (dialog box) , 220
fread function, 17
Free allocated memory command

(Heapwalker) , 242
Free xK of allocated memory command

(Heapwalker) , 242
fscanf function, 17
Function

C language, 17
C run-time, 17, 19-20, 249-251
callback, 13, 19, 21
calloc , 17
CreateWindow, 42, 63, 64-65
DialogBox, 42
exported, 19
FatalExit, 15
fclose, 17
fgets, 17
fprintf, 17
fread, 17
fscanf, 17
fwrite, 17
gets, 17
GlobalAlloc , 241

266

Function (cont£nued)
GlobalLock, 247
GlobalRealloc , 241
GlobalUnlock, 247
kernel, 19
LoadString, 34
local, 14
Local Alloc, 17
LocalLock, 247
LocalUnlock, 247
malloc, 17
memory-allocation, 17
memory-management, 17
printf, 17
run-time, 251-253
_ setargv, 16
_ setenvp, 16
TranslateAccelerator, 35
Windows, 13
WinMain, 13, 21, 108

Function macro (Cmacro), 163
fwrite function, 17

g (go) command, 107, 111 , 128
g (start ap.Plication) command

See g tgo) command)
GC(O) and Walk command

(Heapwalker) , 241
GC(-1) and Hit A: command

(Heapwalker) , 242
GC(-1) and Walk command

(Heapwalker) , 242
GDI library, symbol file, 102
GDI LocalWalk command

(Heapwalker) , 243
gets function, 17
Global heap, viewing, 241
Global window style, 224
GlobalAlloc function, 241
GlobalLock function, 247
GlobalRealloc function, 241
GlobalUnlock function, 247
GlobalX macro (Cmacro) , 161
Go (g command), 107, 111 , 128
GRAYED option

:MENUITEM statement, 38
POPUP statement, 39

Grid command
Dialog Editor, 232
Icon Editor, 188

Group Bit check box, 230
Group box

BUTTON class, 53
dialog-box control, 220

Group box control, 50

Group box (dialog box) , 220
Group marker, 230
Group Marker button (Dialog Editor),

230
GROUPBOX statement, 47, 53-54
Group/Control Ordering dialog box

(Dialog Editor) , 227-230
-Gs option, 15
-Gw option, 14, 19

h (add hexadecimal) command, 111 ,
129

/h See /help option
Handle

dialog box, 219
Dialog Editor, 223

Hatch pattern, 204
Hatched command (Font Editor), 204
Header (Font file), 209, 211
Header command (Font Editor), 209,

211
Header dialog box (Font Editor), 209
Heap space, application, 74
HEAPSIZE statement, 77
Heapwalk .exe file, 241
Heapwalker

About Heapwalker command, 243
Address command, 242
Allocate all of memory command,

242
application, 241
commands, 241
described, 3
Exit command, 243
File menu, 243
Free allocated memory command,

242
Free xK of allocated memory

command, 242
GC!O) and Walk command, 241
GC -1) and Hit A: command, 242
GC -1) and Walk command, 242
GD LocalWalk command, 243
Label Segments command, 242
LC(-1) and LocalWalk command,

243
LocalWalk command, 243
Module command, 242
Object menu, 242, 243
overview, 239
Save command, 243
Segmentation Test command, 242
Show Bits command, 242
Show command, 242
Size command, 242

Index

Heapwalker (continued)
Sort menu, 242
starting, 241
Walk Heap command, 241
Walk menu, 241 , 242
window, 241

Height field
CHECKBOX statement, 51
CONTROL statement, 59
CTEXT statement, 50
DEFPUSHBUTTON statement, 55
DIALOG resource statement, 41
EDITTEXT statement, 57
GROUPBOX statement, 54
ICON statement, 58
LISTBOX statement, 53
LTEXT statement, 48
PUSHBUTTON statement, 52
RADIOBUTTON statement, 56
RTEXT statement, 49

HELP option (MENUITEM statement),
38

/help option, 86
Hex command See h command
Hexadecimal mode (Dialog Editor) , 218
Horizontal scroll bar (dialog box) , 220
Hotspot command (Icon Editor)

187-188

i (input from port) command, 111 , 129
I (instruction fetch) option

(ba command), 119
/i option (make) , 144
/ibm option, 101
Icon

background color, 188
creating, 181
dialog-box control, 22(}.221
hotspot, 187-188
mode, 184
opening existing file, 188
opening new file, 183-184
resolution, 184
saving file, 190

Icon (dialog box), description, 220
Icon control, 57
Icon Editor, 9, 181-191

background, 188
bitmap mode, 184
clearing drawing box, 183
Color menu, 182, 185
commands, 182
cursor mode, 184
default pen color, 183
default pen color, bitmap, 185

267

Microsoft Windows Programming Tools

Icon Editor {continued}
described, 3, 181
display box, 182
display format, 184
Draw Straight command (Options

menu) , 183
drawing, 183

box, 182-183
grid, 188

Edit menu, 187, 190
File menu, 183-184, 188, 190
file opening, 183-184, 188
Grid command (Options menu) , 188
hotspot, 187-188
icon mode, 184
menu, 182
menu bar, 182
Mode menu, 188
mouse requirement, 181
New command (File menu)\ 183-184
Open command (File menu) , 188
opening existing file, 188
opening new file, 183-184
Options menu, 183, 188
Paste command (Edit menu), 190
pen color, 185
pen size, 186
Pensize menu, 186
resolution, 184
Save As command (File menu), 190
Save command (File menu), 190
saving files, 190
Select All command {Edit menu), 191
Select command (Edit menu), 191
starting, 181
window, 182

ICON keyword (single-line resource
statement) , 30

ICON resource, 30
ICON resource statement, 25, 30
ICON statement, 47, 57-58
iconedit .exe file, 181
ld command argument (symdeb) , 114
ld field

CONTROL statement, 58
CTEXT statement, 50
CHECKBOX statement, 51
DEFPUSHBUTTON statement, 55
EDITTEXT statement, 56
GROUPBOX statement, 54
ICON statement, 58
LISTBOX statement, 52
LTEXT statement, 48
PUSHBUTTON statement, 52
RADIOBUTTON statement, 56
RTEXT statement, 49

268

Id-list command argument (symdeb) ,
114

Id-list parameter, 120
ld parameter

bp command, 121
m command, 131

ID value (dialog-box control), 233
ldvalue field (ACCELERATORS) , 36
if

resource directive, 26, 27
statement, 68, 69

ifdef
resource directive, 26, 27
statement, 67, 68, 69

ifndef
resource directive, 26, 27
statement, 67, 68, 69

Immediate breakpoint (symdeb)
See SYS REQ key

implib command, 88
Imp-lib-name parameter (implib

command), 88
IMPORTS statement, 83-84

entry-option field, 84
entryname parameter, 84
entryordinal parameter, 84
internal-option field, 83
modulename field, 84
syntax, 83

INACTIVE option
MENUITEM statement, 38
POPUP statement, 39

include
file, 215, 231, 233-235
menu (Dialog Editor) , 234-235

include
directive, 12, 215

resource directive, 26, 27, 28
STYLE statement, use in, 43

statement, 65-66
INCLUDE

command (Cmacro) , 153
environmental variable, 28, 66

Inference rule, 147
lnitialValue (>arameter, globalX macro

(CmacroJ, 161
lnitialValue (>arameter, staticX macro

(CmacroJ, 161
Input, redirecting, 99
Input command See i command
Input from port (i command), 111, 129
Internal-option field (IMPORTS

statement), 83
Internalname field (EXPORTS

statement), 82

Interrupt, nonmaskable, use in
debugging, 101

Interrupt key, breaking execution of
application, 108

Inverse Screen color 185
Inverted command (Font Editor) , 204
Italic font (Font Edttor) , 210
Item-definition field (MENU resource

statement) , 37
Item-definitions field (POPUP

statement) , 39

k (backtrace stack) command, 111 , 129
Kernel

function, 19
library, symbol file, 100

Key
CONTROL+C, 104
SCROLL LOCK, 103
symdeb, 103-104
SYS REQ, 103

Keyword
BITMAP, 30
CURSOR, 30
DISCARD ABLE

DIALOG resource statement, 41
MENU resource statement, 37
RCDATA resource statement, 33
single-line resource statement, 31
STRINGTABLE resource

statement, 34
user-defined resource statement, 32

far, 13, 19
FIXED

DIALOG resource statement, 41
MENU resource statement, 37
RCDATA resource statement, 33
single-line resource statement, 31
STRINGTABLE resource

statement, 34
user-defined resource statement, 32

FONT, 30
ICON, 30
LOADONCALL

DIALOG resource statement, 41
MENU resource statement, 37
RCDATA resource statement, 33
single-line resource statement, 31
STRINGTABLE resource

statement, 34
user-defined resource statement, 32

MOVEABLE
DIALOG resource statement, 41
MENU resource statement, 37
RCDATA resource statement, 33

Index

Keyword (continued)
MOVEABLE (continued}

single-line resource statement, 31
STRINGTABLE resource

statement, 34
user-defined resource statement, 32

Pascal, 13
PRELOAD

DIALOG resource statement, 41
MENU resource statement, 37
RCDATA resource statement, 33
single-line resource statement, 31
STRINGTABLE resource

statement, 34
user-defined resource statement, 32

rcinclude, 28, 215, 233
kt (backtrace task stack) command,

111 , 129-130

l (load) command, 111 , 130
/1 option, 97
label parameter, errn$ macro

(Cmacro), 172
Label Segments command

(Heapwalker) , 242
Labe'IX macro (Omacro) , 162
Language

assembly, 141
assembly language, 20
development, 11
high-level, 141
Pascal, 11 , 20

Large model, 12-13
LBS_ MUL TIPLESEL, 63
LBS_ NOREDRAW, 64
LBS- NOTIFY, 53, 63
LBS_ SORT, 53, 64
LC(-1) and LocalWalk command

(Heapwalker) , 243
Leading, 209
Left= Right command (Font Editor) ,

205
/li (linenumbers option), 86, 97
lib-files parameter (link4 command),

85
Library

C language, 16, 19, 22
C run-time, 17, 22
�amic linking, 18, 88
EXPORTS statement, 7 4
GDI, symbol file, 102
import, 88
kernel, symbol file, 102
LffiRARY statement, 74
linking, 18, 73, 88

269

Microsoft Windows Programming Tools

Library (continued)
module-definition file, 7 4
pointer, 20
run-time, 16
symbol file, 102
Windows, 16, 19-20, 22, 73

Library module, 76
LIDRARY statement, 74, 76
-LIM32 option (rc command), 29
/linenumbers option, 86, 97
link4, 11 , 16, 18

j alignment option, 86
C language library, 16
command, 73, 85, 150
def-file parameter, 85
described, 3
dynamic linking, 86
exe-file parameter, 85
filename extension, default, 86
/help option, 86
1mport library, 86
lib-files parameter, 85
library, 86
/linenumbers option, 86
/map option, 87
map-file parameter, 85
module-definition file, 76
/nodefaultlibrarysearch (not used),

88
/nofarcalltrans option, 87
/noignorecase option, 87
object-files parameter, 85
options, 86-88
options parameter, 85
jpackcode option, 87
/pause option, 87
/segments option, 87
/stack option, 87
S,Yntax, 85
;warnfixup option, 87

Linking
application, 73, 85
dynamic, 88
library, 73, 88
link4 option, 86-88
module-definition file, 73

List box, 52
List box (dialog box) , description, 220
List-box control, 52
List breakpoint (bl command), 111 , 121
List command argument (symdeb) , 114
List parameter

e command, 125, 126
ea command, 126
eb command, 126
f command, 128

270

List parameter {continued}
s command, 133

LISTBOX class
control style, 63-64
style, 53

LISTBOX control class, 59
LISTBOX control style, 63-64
LISTBOX statement, 47, 51-52
Load (1 command), 111 , 130
Loading (Font Editor) , 195
LOADONCALL keyword

DIALOG resource statement, 41
MENU resource statement, 37
RCDATA resource statement, 33
single-line resource statement, 31
STRINGTABLE resource statement,

34
user-defined resource statement, 32

Load-option field
DIALOG resource statement, 41
MENU resource statement, 37
RCDATA resource statement, 33
single-line resource statement, 31
STRINGTABLE resource statement,

34
user-defined resource statement, 32

LoadString function, 34
Local Alloc function, 17
Local function, definition, 14
Local variable, 20
LocalLock function, 247
LocalUnlock function, 247
LocalWalk command (Heapwalker) ,

243
LocalX (Cmacro) , 165, 173
LogName parameter, createSeg macro

(Cmacro) , 157
Long pointer, 20
LTEXT statement, 47-48

m (macro) command, 112, 131
m (move) command, 112, 130
/m' option, 100
Macro

Cmacro, 153
macro definitions, make, 145
nesting, 146
special name, 147

Macro Assembler, 11 , 20
Cmacro, use of, 153
described, 3

Macro command See m (macro)
command

Macrodefinitions parameter (make
command), 143

Main window (Font Editor) , 197
Maintaining programs, 141
make

/_d option, 144
dependent file, 142-143
described, 3, 141
description file, 141-143

command parameter, 142
dependent-files parameter, 142
format requirement, 142, 145
targetfile parameter, 142

example, 149-150
/i option, 144
mference rule, 147, 148
macro definition, 145

name parameter, 145
nesting, 146
value parameter, 145

message, 144
/n option, 144
/s option, 144
special macro names ($ *• $ **, $ @) ,

147
starting, 143
target file, 142-143

make command, 143-144
malloc function, 17
Map See Map file; Symbol map
/map option, 87, 97, 98
Map file, 96
Map-file parameter (link4 command),

85
Mapfilename .l?arameter (mapsym

command), 96
Map name parameter, symbol

specification (x? command), 135
mapsym command, 96, 150
mapsym program, 96-97
Masm, 3, 11
Max objects command (Shaker) , 240
Maximize box, 44
Medium model

application, 12, 13
description, 12
use, 12

Mem-option field
DIALOG resource statement, 41
MENU resource statement, 37
RCDATA resource statement, 33
single-line resource statement, 31
STRINGTABLE resource statement,

34
user-defined resource statement, 32

memO option �Cmacro� , 21, 154
memH option Cmacro , 154
memL option Cmacro , 21, 154

Index

memM option (Cmacro) , 21, 154
Memory

allocation
applications, 241
setting reporting level, 100

movable (Shaker) , 239
movement, 239
system, allocation status, 239

Memory-allocation function, 17
Memory-allocation message, 107, 108

See also jw option
Memory-management function, 17
Memory-manager flag, 223, 226
Memory-model option, compact

See memO option
Memory-model option, huge

See memH option
Memory-model option, large

See memL option
Memory-model option, medium

See memM option
Memory-model option, small

See memS option
memS option (Cmacro) , 21 , 154
Menu

Color (Icon Editor) , 182, 185
Column (Font Editor) , 201-202
Control, 108
Control (Dialog Editor), 216, 221
Edit (Diatog Editor) , 216, 218, 223,

232
Editlont Editor) , 198-199, 206
Edit Icon Editor), 182, 187, 190
Exit con Editor) , 182
File ialog Editor) , 216, 218, 231,

35
File�ont Editor) , 195, 211
File Heapwalker) , 244
File Icon Editor}, 182-184, 188, 190
Fill ont Editor) , 203-205
Font (Font Editor) , 207-209, 211
Icon Editor, 182
Include (Dialog Editor) , 216, 234-235
Mode (Icon Editor) , 188
Object (Heapwalker) , 242

GDI LocalW alk command, 244
LC(-1) and LocalWalk command,

244
LocalWalk command, 242
Show Bits command, 242
Show command, 242

Options (Dialog Editor) , 216, 227-230
Options (Icon Editor) , 182-183, 188
Parameter (Shaker), 239

Allocation granularity command,
239

271

Microsoft Windows Programming Tools

Menu (continued}
Parameter (Shaker) (continued)

Max objects command, 240
Time interval command, 239

Pensize (Icon Editor), 182, 186
Row (Font Editor) , 200-201
Shake (Shaker) , 240
Show State (Shaker) , 240
Sort (Heapwalker), 242
Styles (Dialog Editor), 216, 221, 223,

224, 226, 229-231
Walk (Heapwalker) , 241 , 242
Width (Font Editor) , 200

MENU resource, 36-40
See also MENU resource statement
MENUITEM SEPARATOR

statement, 40
MENUITEM statement, 38-39
POPUP statement, 39-40

MENU resource statement, 25, 36-40
item-definition field

MENUITEM statement, 37
POPUP statement, 37, 39

load-option field, 37
mem-option field, 37
menuiD field, 37
syntax, 36

MENU statement (DIALOG resource
statement), 46

MENUBARBREAK option (POPUP
statement) , 39

MENUBREAK option
MENUITEM statement, 38
POPUP statement, 39

MenuiD field (MENU resource
statement), 37

MENUITEM statement, 37, 38-39
MENUITEM SEPARATOR statement,

40
Menuname field (MENU statement) ,

43, 46
Message

allocation, 107
diagnostic , 247-248
fatal, 247-248
fatal-exit, 1 10
hexadecimal library, 247-248
listing, 247-248
make, 144
memory-allocation, 107
WM_ COMMAND, 35, 234
WM_ SYSCOMMAND, 35

Minialloc field (SEGMENTS
statement) , 81

Minimize box, 44

272

Mod-clef-file parameter (implib
command) , 88

Mode
cursor, 184
Decimal (Dialog Editor), 218
Hexadecimal (Dialog Editor) , 218
icon, 184
Test (Dialog Editor), 217
Work (Dialog Editor) , 217

mode command, 99
Mode menu, 188
Modern font (Font Editor) , 210
Module command (Heapwalker) , 242
Module-definition file, 1 1

application, 73
CODE statement, 78-79
creating, 73
DATA statement, 79-80
definition, 73
DESCRIPTION statement, 77
EXPORTS statement, 74, 82-83
HEAPSIZE statement, 77
IMPORTS statement, 83-84
library, 74
LIBRARY statement, 7 4, 76
module statement, description, 75
NAME statement, 73, 75-76
SEGMENTS statement, 81-82
STACKSIZE statement, 77-78
STUB statement, 84-85

Module name (application) , 73
Module-name field, memory-allocation

message (symdeb), 107
Module statement (module-definition

file), description, 75
Modulename field

IMPORTS statement, 84
NAME statement, 75

Monitor, secondary, 98-99
More feature, disabling, 100
Mouse requirement

Dialog Editor, 215
Font Editor, 195
Icon Editor, 181

Move (m command) , 112, 130
MOvEABLE keyword

DIALOG resource statement, 41
MENU resource statement, 37
RCDATA resource statement, 33
single-line resource statement, 31
STRINGTABLE resource statement,

34
user-defined resource statement, 32

Movable memory (Shaker), 239
MS-DOS See DOS

MS-DOS Executive, starting
application, 107

MS-DOS Executive window, 195, 216
quitting symdeb, 110
starting Heapwalker, 241
starting Shaker 239

-multinst option (rc command), 29
Multiple-line resource statement, 25

ACCELERATORS, 35
DIALOG, 40
MENU, 36
RCDATA, 33
STRINGTABLE, 34

n (name) command, 112, 131
/n option, 97, 101, 144
Name command See n command
Name field, 66, 67
Name parameter

FarPtr macro (Cmacro)\ 171
globalX macro (CmacroJ , 161
staticX macro (Cmacro), 160
macro definition (make), 145

NAME statement, 73, 75-76
NameiD field

DIALOG resource statement, 41
single-line resource statement, 30
user-defined resource statement, 32

Namelist parameter
Arg macro (Cmacro) , 170
DefX macro (Cmacro) , 171
externX macro (Cmacro) , 162
labelX macro (dmacro) , 163
localX parameter (Cmacro) , 166
parmX macro (Cmacro) , 165

Naming
modules, 73
resources, 26-29
symbol files, 102

Narrower command (Font Editor), 200
-ND option, 15
New-address field, memory-allocation

message (symdeb) , 107
New command

Dialog Editor, 218
Icon Editor, 183-184

New Dialog command (Dialog Editor) ,
219, 232

NODATA keyword (EXPORTS
statement), 83

/nodefaultlibrarysearch option (not
used) , 88

/nof See jnofarcalltrans option
/nofarcalltrans option, 87
/noi See noignorecase option

/noignorecase option, 87
NOINVERT option

(ACCELERATORS) , 36
Nonmaskable interrupt, use in

debugging, 101
Notational convention

bold type, 4
double brackets ([]) , 4
ellipsis (. . .), 4
italic type, 4
small capital letters, 5

-NT option, 15

Index

Number parameter
macro definition (symdeb program),

101
jpackcode option, 87
/segments option, 87
jw option (symdeb command), 100

o (output to port) command, 112, 131
Object menu (Heapwalker) , 242-243
Object-files parameter (link4

command) , 85
-Od option, 13
OEM character set, 210
Off command (Shaker) , 240
Offset field (dh command), 124
OFFSET macro (Cmacro) , 157, 159,

160
Offset parameter, FarPtr macro

(Cmacro) , 171
Old-address field, memory-allocation

message (sxmdeb), 107
On command l?haker) , 240
Open command

Dialog Editor, 231
Font Editor, 195
Icon Editor, 188

Open map/segment (xo command),
105, 112, 135-136

Opening symbol map (symdeb)
See xo command

Operator
binary, 117
symdeb, 117-118
unary, 117

Option
j@ ' 101, 131
-AC, 12
-AL, 12
/alignment, 86
-AM, 12
-An, 19
-As, 19
-AS , 12, 19

273

Microsoft Windows Programming Tools

Option (continued)
-Aw, 19
-c , 14
C compiler, 14
Cmacro, memory-model, 154
/d, 144
designator, 102
/_f, 101
floating-point

alternate math, 18
coprocessor/emulator math, 16, 18

-Gs, 15
-Gw, 14-19
/help, 86
/i, 144
/ibm, 101
/1, 97
/linenumbers, 86, 97
link4, listing, 86-88
jm, 100
/map, 87, 97, 98
memO, 21 , 154
memH, 154
mernL, 21, 154
meroM, 21, 154
memS, 21 , 154
/n, 97, 101 , 1 14
-ND, 15
/nodefaultlibrarysearch (not used),

88
/nofarcalltrans, 87
/noignorecase, 87
-NT, 15
-Od, 15
-Os, 15
jpackcode, 87
jpause, 87
?PLM, 19
-r, 29
js, 144
/segments, 87
/stack, 87
stack-checking (Cmacro) , 156
startup command, 101
symdeb, 100-102
f.w, 100-101
jwarnfixup, 87
?WIN, 21
jx, 101
-Zd, 15, 97
-Zp, 15

Option parameter
ba command, 119
rc command, 29

Optionlist field
MENUITEM statement, 38

274

Optionlist field (continued)
POPUP statement, 39

Options menu, 182
Dialog Editor, 217, 227-230
Icon Editor, 188

Options parameter
link4 command, 85
make command, 143
symdeb command, 100

Order Groups command (Dialog
Editor) , 227-230

Ordinal-option field (EXPORTS
statement), 83

-Os option, 15
Output, redirecting, 99, 100
Output command See o command
Output to port (o command), 112, 131
Owner field (dg command), 123

p (program step) command
112, 132

jpac See jpackcode option
/packcode option, 87
Packed structure, definition, 15
Parameter, 29
Parameter menu (Shaker), 239
Parameter-option field (EXPORTS

statement) , 83
ParmX (Cmacro) , 164, 173-174
Pascal

calling convention , 21
compiler, 11 , 20
keyword, 13
language, 11 , 20
program, debugging, 95

Paste command
Font Editor, 205
Icon Editor, 190

Paste Dialog command, 232
Path command (make program), 148
PATH environmental variable, 84
jpau See jpause option
/pause optiOn, 87
Pdb

command argument (symdeb), 115
value (kt command) , 129

Pen color
bitmap default , 185
default, 183
Icon Editor, 185

Pen size (Icon Editor) , 186
Pensize menu (Icon Editor), 186
Pixel

coloring in Font Editor, 199

Pixel {continued}
copying

column, 201-202
row, 200-201

deleting
column, 202
row, 201

filling character window, 204
foreground, clearing, 203
inverting, 204
reversing, 205

?PLM
Cmacro, 155, 168
option, 21

Pointer
in Windows library, 20
long, 20

Pointing device See Mouse
requirement

Popup menu, 39
POPUP statement, 37, 39-40
PRELOAD keyword

DIALOG resource statement, 41
1v!ENU resource statement, 37
RCDATA resource statement, 33
single-line resource statement, 31
STRINGTABLE resource statement,

34
user-defined resource statement, 32

printf function, 17
ProcName parameter

cBegin macro (Cmacro) , 167
cEnd macro (Cmacro) , 167
cProc macro (Cmacro) , 163

Program
assembly-language, maintained with

make, 141
batch-processing, 141
cl, 3, 11 , 14
cmacros, 3
Dialog Editor See Dialog Editor
DOS, 17
DOS Tools See specific tool
Font Editor See Font Editor
Heapwalker, 3, 241
high-level language, maintained with

make, 141
Icon Editor See Icon Editor
include, 12
link4, 3, 14, 16, 85
make See make
mapsym, 96-97
masm, 3, 11
Pascal, 3
rc , 3, 9, 25, 233
resource compiler, 233

Index

Program (continued}
Shaker See Shaker
source file, 9
symdeb, 3, 15

See also symdeb program
use, 1 1
Windows, 3

Program maintainer See make
Program step command

See p command
Programming model, 12-13, 16, 21
Prolog (Windows) , 14, 19, 21
Public symbol, 98
Push button

control, 51
dialog-box control, 220

PUSHBUTTON statement, 47, 51-52

q (quit) command, 110, 112, 132
quit (q command), 110, 1 12, 132

r (register) command, 112, 132
-r option (rc command), 29
R (read only) option (ba command),

119
Radio button

control, 55
dialog-box control, 220

RADIOBUTTON statement, 47, 55-56
Range command argument (symdeb) ,

114
Range parameter

c command, 121
d command, 122
da command, 122
db command, 122
dd command, 123
dl command, 124
ds command, 125
dt command, 125
dw command, 125
f command, 128
m command, 130
s command, 133
u command, 134
v command, 134

Raster font, 195
Raw-data field (RCDATA resource

statement) , 33
Raw-data resource, 31

See also RCDATA resource
statement

rc command, 11 , 28-29
.rc extension See Resource script file

275

Microsoft Windows Programming Tools

.rc file See Resource script file
rc program, 3, 11 , 25

See also Resource compiler
RCDATA resource, 33
RCDATA resource statement, 25, 33
rcinclude keyword, 28, 215, 233
Record command argument (symdeb) ,

1 14
Record parameter

l command, 130
w command, 134

Rectangle (dialog-box control) , 220
Redirect program input ({ command),

1 12, 137
Redirect program input and output

C command), 112, 137
Redirect program output

(} command) , 1 12, 137
Redirect symdeb input (< command),

112, 137
Redirect symdeb input and output

(= command) , 99, 101 , 1 12, 137
Redirect symdeb output

(> command), 112, 137
Redirecting input, 99
Redirecting output, 99, 100
Redirection (=) command, 99, 101, 112,

137
Refresh command (Font Editor)

198-199
Register

ds, 19, 249-251
r command, 112, 132
ss, 19, 249-251
symdeb argument, 114-115

Register command argument (symdeb) ,
1 14-115

Register parameter (r command), 132
Reglist parameter, Save macro

(Cmacro) , 169
Remote terminal

debugging, 98
setting up, 99

Rename Dialog command, 232
Replication parameter (Cmacro) , 161
Reporting level (memory allocation) ,

setting, 100
.res file (Dialog Editor) See resource

file
RESIDENTNAME keyword

(EXPORTS statement) , 83
Res-option field (EXPORTS

statement) , 83
Resource

adding, 11
bitmap, 181

276

Resource (continued)
compiling, 25, 28
creating, 11 , 25, 181
cursor, 181
defining, 11
dialog box, 215
directive, 26, 27
file, 25, 215, 231, 233
font file, 195
icon, 181
listing, 11
naming, 26-29
raw data, definition, 33
rc command, 11 , 28-29
script file, 11, 25-26, 27, 215

compiling, 11
creating, 11
directive, 27

source file, 1 1
statement, 25
string, definition, 32

Resource compiler (rc) , 3, 11 , 25, 215
Resource directive, 26, 27
Resource file, 25, 215, 231, 233
Resource Properties command (Dialog

Editor) , 226
Resource script file

compiling, 11 , 27
creating, 11 , 25
Dialog Editor, 233
directive, 27
include directive, 27
naming a resource, 26-29
.rc extension, 25
rcinclude keyword, 28, 215, 233
resource statement, 25

Resource statement
ACCELERATORS, 25, 35

acctablename field, 35
CONTROL option, 36
CURSOR, 25, 30
event field, 35
idvalue field, 36
NOINVERT option, 36
SHIFT option, 36
type field, 36

DIALOG, 25, 40
dialog control statement, 47-65
dialog option statement, 43
height field, 41
load-option field, 41
mem-option field, 41
nameiD field, 41
width field, 41
x field, 41
y field, 41

Resource statement (continued)
directive, 25
listing, 25
MENU, 36-40

MENliTTEM SEPARATOR
statement, 40

MENUITEM statement, 37, 38-39
POPUP statement, 37, 39-40

multiple-line, 25
RCDATA, 25, 31
resource, 30
resource script file, 25
single-line , 25, 30
STRINGTABLE, 25, 34
user-defined, 32
user-defined resource, 25

Resource-type field (single-line resource
statement) , 30

Restore Dialog command, 232
Restore output (symdeb) See SCROLL

LOCK keY-
Result field (MENUITEM statement) ,

38
Roman font (Font Editor) , 210
Routine

assembly-language, 17
startup, 16

Row command (Font Editor) , 206
Row menu (Font Editor) , 200-201
RTEXT statement, 47-48
Run-time function (C language) , 17,

19-20, 249-251
Run-time library, 16, 17, 22

s (search) command, 112, 133
s& command, 109, 112, 133
s+ command, 109, 112, 133
s- command, 132-133
Is option (make), 144
Save As command

Dialog Editor, 235
Font Editor, 198, 211
Icon Editor, 190

Save As dialog box (Font Editor), 211
Save command

Dialog Editor, 235
Font Editor, 198, 211
Heapwalker, 243
Icon Editor, 190

Saving
See also Save As command; Save

command
character changes, 206
dialog-box changes, 235
font file, 211

Index

sBegin macro (Cmacro) , 158
SBS_ BOTTOMALIGN, 64
SBS_ HORZ, 64
SBS_ LEFTALIGN, 64
SBS_ RIGHTALIGN, 64
SBS_ SIZEBOX, 65
SBS_ SIZEBOXBOTTOMRIGHTALIGN,

65
SBS_ SIZEBOXTOPLEFTALIGN, 65
SBS_ TOPALIGN, 64
SBS_ VERT, 64
Screen color, 185
Script file, 11 , 25-26, 27, 215

See also Resource scriJ?t file
Script font (Font Editor) , 210
Scroll bar

dialog box (Dialog Editor) , 220
horizontal, 45
vertical, 45
with a dialog box, 226

SCROLL LOCK key (restore/suspend
output) , 103

SCROLLBAR
class, control style, 64
control class, 60
control styles, 64-65

/se See /segments option
Search (s command), 112 , 133
Secondary monitor, setting up, 99
Segment, 157
Segment-address field

dg command, 123
memory-allocation message

(symdeb) , 107
Segment-attributes field

CODE statement, 78
DATA statement, 79
SEGMENTS statement, 81

Segment macro (Cmacro) , 156
Segment-name field, memory-allocation

message (symdeb), 107
Segment names, specifying, 15
Segment:offset address argument

(symdeb), 1 16
Segment parameter, FarPtr macro

(Cmacro), 171
Segment-type field (dg command), 123
Segmentation Test command

(Heapwalker) , 242
Segmentname field (SEGMENTS

statement), 81
Segmentname parameter, symbol

specification (x? command), 135
/segments option, 87
SEGMENTS statement, 81

277

Microsoft Windows Programming Tools

SegName parameter
assumes macro (Cmacro) , 159
createSeg macro (Cmacro) , 157
sBegin macro (Cmacro) , 158
sEnd macro (Cmacro), 158

SegNameOFFSET (Cmacro), 160
SegReg parameter, assumes macro

(Cmacro), 159
Select All command (Icon Editor) , 191
Select command (Icon Editor) , 191
sEnd macro (Cmacro) , 158
Serial port, 98, 99
Set address breakpoint (ba command),

1 10, 119
Set breakpoint (bp command) , 108,

111 , 121
Set breakpoint address (ba command),

1 10, 119
Set machine and source debugging

(s& command), 109, 112, 133
Set machine debugging only

(s- command), 1 12, 133
Set name (n command) , 112 , 131
Set source debugging only

(s+ command), 109, 112, 133
Set source mode command See s&

command; s- command; s+
command

Set symbol value (z command), 112,
136

_ setargv function, 16
_ setenvp function, 16
Setting a virtual breakpoint, 108
Shake menu (Shaker) , 240
Shaker

application, 239
commands, 239
described, 3
overview, 239
Parameter menu

Allocation granularity command,
239

Max objects command, 240
Time interval command, 239

Shake menu, 240
State menu, 240
starting, 239
window, 239

Shaker.exe file, 239
Shell escape (! command), 112, 137
SHIFT option (ACCELERATORS), 36
Show Bits command (Heapwalker), 242
Show command (Heapwalker) , 242
Single-line resource statement, 25, 30,

31
Size box, 44, 65

278

Size box {continued}
control, 60
with dialog box, 226

Size command (Font Editor) , 207-208
Size command (Heap walker) 242
Size dialog box (Font Editor) , 208
Size field

dg command, 123
dh command, 124

Size parameter
/alignment option, 86
ba command, 119
localX macro (Cmacro), 166
/stack option, 87

Size window
described, 217
Dialog Editor, 217, 218

f(slash) , use in rcinclude keyword, 28
Small model

application, 12, 16
callback function, 13
description, 12
use, 12

Solid command (Font Editor) , 203
Sort menu (Heapwalker) , 242
Source file , 11 , 14
Source-line display command See dot

(.) command
Special-definition macro (Cmacro) , 170
SS register, 19, 249-251
SS_ BLACKFRAME, 63
SS_ BLACKRECT, 63
SS_ CENTER, 50, 63
SS_ GRA YFRAME, 63
SS_ GRA YRECT, 63
SS_ ICON, 58, 63
SS_ LEFT, 48, 63
SS_ RIGHT, 48, 63
SS_ USERITEM, 63
SS_ WHITEFRAME, 63
SS_ WHITERECT, 63
fst See /stack option
Stack, 15
Stack-checking option (Cmacro) , 156
fstack option, 87
Stack probe, definition, 15
Stack size, recommended minimum, 74
STACKSIZE statement, 75, 77-78
Standard style

changing, 224
dialog-box control, 223-224, 226

Standard Styles command (Dialog
Editor), 223, 224, 226, 229-231

Start application See �o (g command)
Start command (Shaker) , 240

Startaddress parameter
g command, 128
p command, 132
t command, 133

Starting
debugging, 100
Dialog Editor, 216
Font Editor, 195
Heapwalker, 241
Icon Editor, 181
make, 143
Shaker, 239
symdeb, 100-104

Starting application
See g command

Starting point See Entry point
Startup command option, 101
Startup routine, 16
State menu (Shaker) , 240
Statement

ACCELERATORS, 25, 35
BITMAP, 25, 30
CAPTION, 43, 45
CHECKBOX, 47, 50
CLASS, 43, 46
CODE, 78
CONTROL, 47, 58
CTEXT, 47, 49
CURSOR, 25, 30
DATA, 79
DEFPUSHBUTTON, 47, 54
DESCRIPTION, 77
DIALOG, 25, 40
EDITTEXT, 47, 56
EXPORTS, 14, 72, 82
FONT, 25, 30
GROUPBOX, 47, 53
HEAPSIZE, 77
ICON, 25, 30, 47, 57
IMPORTS, 83
LIBRARY, 7 4, 76
LISTBOX, 47, 52
LTEXT, 47
�NU, 36-40, 43, 46
�NUI�, 37, 38
�NUl� SEPARATOR, 40
NAME, 73, 75
POPUP, 37, 39
PUSHBUTTON, 47, 51
RADIOBUTTON, 47, 55
RCDATA, 25, 31
resource, 25
resource script files, 25
RTEXT, 47, 49
SEG�NTS, 81
STACKSIZE, 75, 77

Statementfcontinued)
STUB, 8
STYLE, 41, 43

STATIC
class, control style, 59
control class, 57
control style, 63

Static-memory storage
private, 160
public , 161

Static variable, 20, 108
StaticX (Cmacro) , 160
Step command (Shaker) , 240
Sticky breakpoints, 121
Stop command (Shaker) , 240
Storage, static-memory

Index

private, 160
public , 161

Storage-allocation macro (Cmacro) , 160
Strikeout font (Font Editor) , 210
String-definitions field (STRINGTABLE resource

statement) , 34
String resource, 34

See also RCDATA resource;
STRINGTABLE resource;
STRINGTABLE resource
statement

STRINGTABLE resource, 34
STRINGTABLE resource statement,

25, 34
Structure, packed, 15
STUB statement, 84
Style

BUTTON class, 50, 53, 54, 55
default

CHECKBOX statement, 51
CTEXT statement, 50
DEFPUSHBUTTON statement, 55
EDITTEXT statement, 57
GROUPBOX statement, 54
ICON statement, 58
LISTBOX statement, 53
L TEXT statement, 48
PUSHBUTTON statement, 52
RADIOBUTTON statement, 56
RTEXT statement, 49

DS_ ABSALIGN, 41, 42
DS- SYSMODAL, 43
EDIT class, 57, 61-62
global window, 224
LISTBOX class, 52, 63-64
STATIC class, 57, 63
window

global, 224
listing, 44-45

279

Microsoft Windows Programming Tools

Style (continued)
window (contmued}

WS_ BORDER, 43, 53
WS_ CHILD, 42
WS_ DISABLED, 52, 54-57
WS_ GROUP, 48-52, 55-57
WS_ HSCROLL, 57
WS_ POPUP, 43
WS_ SYS:MENU, 43
WS_ TABSTOP, 48-52, 54-57
WS_ VSCROLL, 53, 57

Style field
CHECKBOX statement, 51
CONTROL statement, 58
CTEXT statement, 50
DEFPUSHBUTTON statement, 55
EDITTEXT statement, 57
GROUPBOX statement, 54
ICON statement, 58
LISTBOX statement, 52
LTEXT statement, 48
PUSHBUTTON statement, 52
RADIOBUTTON statement, 56
RTEXT statement, 48
STYLE statement, 43

STYLE statement, 43
include directive, use of, 43
style field, 43
syntax, 43
window style, listing, 44-45

Styles menu (Dialog Editor) , 216, 221,
223-224, 226, 229-231

Suspend output (symdeb) See SCROLL
LOCK key

Swiss font (Font Editor), 210
Symbol

absolute (- _ acrtused) , 22
public , 98

Symbol command argument (symdeb),
115

Symbol file, 96-98, 102-103
application, 102
assembly-language application, 98
C-language application, 97-98
debugging, 96-97
library, 102
naming, 102
Pascal application, 94
recommended, 102
setting up, 96
symbol map, 104

Symbol map, 104-106
data segment, instance number, 105
displaying symbols, 106
listing, 104
open, displaying, 105

280

Symbol map (continued}
opening, 105
symdeb, 104

Symbol map (open) See Examine
symbol (x? command)

Symbol parameter
xo command, 135-136
z command, 136

Symbol redefinition (Cmacro) , 174
Symbol specification, 135
Symbolfiles parameter, 100
Symbolname parameter, symbol

specification (x? command), 135
symdeb

address argument, listing, 116-119
command, 100

See also symdeb commands
command argument, listing, 114-115
described, 3
displaying open symbol map, 105
expression, 117-118
fatal exit, 1 10
flag name, listing, 115
flag register, 115
key, 103, 104
opening a symbol map, 105-106
operator, 117
option designator, 102
option listing, 100-102
starting, 100
symbol examining, 104
symbol map, 104
variable displaying, 108-109

symdeb address
argument listing, 116
argument syntax, 116
symdeb command, 100, 101

See also symdeb commands
symdeb commands

* {comment), 112, 138
? (compute and display expression) ,

112, 136 { (redirect program input) , 112, 137
(redirect program input and

output), 112, 137
} (redirect program output) , 112, 137
< (redirect symdeb input) , 112, 137

= (redirect symdeb input and
output) , 99, 101 , 112, 137

> (redirect symdeb output), 112,
137

! (shell escape) , 112, 137
. (view source lines), 112, 136
a (assemble), 110, 118
ba (breakpoint address), 1 10, 119
be (breakpoint clear) , 1 10, 120, 121

symdeb commands (continued)
bd (breakpoint disable), 111 , 120,

121
be (breakpoint enable) , 1 11 , 120
bl (breakpoint list) , 111 , 121
bp (breakpoint set) , 108, 111, 121
c \compare) , 11 1 , 121
d display static variable) , 108
d dump memory using previous

type) , 1 1 1 , 122
da �dump memory ASCII) , 111 , 122
db dump memory bytes), 111, 122
dd dump memory double-words) ,

111 , 123
dg (display global heap), 111, 123
dh {display local heap J, 111 , 124
dl (dump memory, long floating

point) , 1 11 , 124
dq (dump task queue), 111 , 124
ds (dump memory, short floating

point), 1 11 , 125
dt (dump memory, ten-byte reals) ,

1 11 , 125
dw (dump memory words) , 111 , 125
e (enter) , 111 , 125-126
ea �enter address), 11 1, 126
eb enter bytes , 111 , 126
ed enter doub�e-words) , 111 , 126
el (enter long floating point) , 1 11 ,

127
es (enter short floating point), 111 ,

127
et (enter ten-byte reals) , 111 , 127
ew (enter words) , 111 , 128
f (fil�, 1 1 1 , 128
g go , 107, 111 , 128
h �a d hexadecimal), 111 , 129
i (mput from port) 111 , 129
k (backtrace stack) , 1 1 1 , 129
kt (backtrace task} , 1 10, 129-130
1 (load), 1 11 , 130
listing, 110-112
m (define or execute macro) , 112, 131
m (move) , 112 , 130
n !name) , 112 , 131
o output to port), 112, 131
p proqram step), 112, 132
q quit) , 110, 112 , 132
r register) , 112, 132
s search), 112, 133
s& (set machine and source

debugging) , 109, 112 , 133
s- (set machine debugging only), 112,

133
s+ (set source debugging only) , 109,

112, 133

Index

symdeb commands (continued}
t (trace program instruction) , 112 ,

133
u (display unassembled instructions) ,

109, 112, 134
v (view source lines), 109, 112, 134
w (write to disk) , 112, 134
x (examine symbol map), 104, 106,

112 , 135
x? (examine symbol), 106, 112 , 135
xo (open symbol), 105, 112, 135-136
z (set symbol vafue) , 112, 136

symdeb program, 13, 95
allocation message, 107-108
breakpoint setting, 108
command See symdeb commands;

specific command
incorrect file retrieval, prevention of,

96
macro definition, 101
memory-allocation message, 107
opening symbol map, 105-106
starting application, 107

symdeb utility See symdeb program
SYS REQ key (interactive breakpoint),

103
System-memory allocation, 241
System menu box, 44, 226

t (trace program instruction)
command, 1 12, 133

Tab stop, 229
Tab Stop Bit check box, 229-231
Tab Stop button (Dialog Editor) , 229
.targetextension parameter, 148
Targetfile parameter (make description

file) , 142
Template, DIALOG, 40-41
Terminal, 98-99
Test mode (Dialog Editor) , 217
Testing, executable files, 95
_ TEXT code segment, 15-16
Text control

centered, 49-50
dialog box, 220
left-justified, 47-48
right-justified, 48-49

Text editor
creating

make description file , 141
resource script file, 25

use, 1 1
Text field

CHECKBOX statement, 50
CONTROL statement, 58

281

Microsoft Windows Programming Tools

Text field (continued}
CTEXT statement, 49
DEFPUSHBUTTON statement, 54
DESCRIPTION statement, 77
GROUPBOX statement, 53
LTEXT statement, 47
MENUITEM statement, 38
POPUP statement, 39
PUSHBUTTON statement, 51
RADIOBUTTON statement, 55
RTEXT statement, 48

Time interval command (Shaker) , 239
Title bar, 44
Tools

Application Development, 3
cl, 3, 11 , 14
cmacros, 3
Dialog Editor See Dialog Editor
DOS, 3
Font Editor See Font Editor
Heapwalker See Heapwalker
Icon Editor See Icon Editor
include, 12, 215
link4, 11, 16, 18
make, 3, 141
mapsym, 96-97
masm, 3, 11
Pascal, 3, 95
rc, 3, 1 1 , 25
resource compiler, 3, 11, 25, 215, 233
Shaker, 3, 239
symdeb, 3, 15, 95-138
use, 1 1
Windows, 3

tools.ini file (make program) , 148
Top= Bottom command (Font Editor) ,

205
Trace command See t command
Trace program instruction or call

command See p command
Trace program instruction

(t command) , 112, 133
TranslateAccelerator function, 35
Type field (ACCELERATORS) , 36
TypeiD field (user-defined resource

statement) , 32

u (display unassembled instructions)
command 109, 112, 134

U (read/writej option (ba command) ,
119

Unary operator (symdeb) , 117
Unassemble command

See u command
undef directive, 66-67

282

undef resource directive, 25
undef statement, 66
Underline font (Font Editor) , 210
Undo command (Font Editor) , 206
Updating files, 141
User-defined control window, 58
User-defined resource, 32
User-defined resource statement, 25, 32
User library, symbol file, 102
Utility See Program; Tools

v (view source lines) command, 109,
112, 134

Value command argument (symdeb) ,
115

Value field (# define statement) , 66
Value parameter

ba command, 119
bp command, 121
ed command, 126
el command, 127
es command, 127
et command, 127
ew command, 128
i command, 129
k command, 129
kt command, 129-130
macro definition (make) , 145
o command, 131
p command, 132
r command, 132
t command, 133
z command, 136

Valuel parameter (h command) , 129
Value2 parameter (h command) , 129
Variable

_ _ argc, 16
_ _ argv, 16
displaying, 108-109
environ, 16
environmental

INCLUDE, 28, 66
PATH, 84

local, 20
static , 20, 108

Variable-pitch font, 207-208, 212
Vector font, 195
View command See v command
View Dialog command (Dialog Editor) ,

231
View Include command (Dialog Editor) ,

234-235
View source lines (v command) , 109,

112, 134
Visible bit, dialog box, 225

Visible Bit check box, 225

w (write to disk) command, 112, 134
/w option (symdeb) , 100-101
'W (WORD accessed) option (ba

command) , 119
Walk Heap command (Heapwalker) ,

241
Walk menu (Heapwalk

·

e� , 241-242
/warnfixup option (link4 , 87
Wider command (Font ditor) , 200
Width command (Font Editor), 206
Width field

CHECKBOX statement, 51
CONTROL statement, 59
CTEXT statement, 50
DEFPUSHBUTTON statement, 55
DIALOG resource statement, 41
EDITTEXT statement, 57
GROUPBOX statement, 54
ICON statement, 58
LISTBOX statement, 53
LTEXT statement, 48
PUSHBUTTON statement, 52
RADIOBUTTON statement, 56
RTEXT statement, 49

Width menu (Font Editor) , 200
?WIN option (Cmacro) , 19, 156
Window

application, Pascal-language, 11
child, 43 , 44, 45
debugging applications, 95
Dialog Editor, 216
disabled, 45
epilog, 14, 19, 21 , 155
fatal exit, 110
Font Editor

character, 197
character viewing, 197
font, 198
main, 197

function, 13
Heapwalker, 241
iconic , 44
import library, 88
kernel function, 19
library, 16, 19-20, 22, 73
linker, 11

See also link4
MS-DOS Executive, 1 10, 195, 216,

239, 241
overlapping, 45
parent, 42
pop-up, 43, 44, 45
presentation manager, 25

Index

Window (continued}
prolog, 14, 19, 21 , 155
resource compiler (rc) , 28, 215, 233
Shaker, 239
visible, 45

Window border, 44
Window style

dialog box, 43
listing, 44-45

windows.h file, 11 , 20, 43
WinMain function, 13, 21 , 108
W1vL COMMAND message, 35, 234
W1vL SYSCOMMAND message, 35
Work mode (Dialog Editor) , 217
Write command See w command
Write to disk (w command), 112, 134
WS_ BORDER, 43, 44, 53, 57
WS_ CAPTION, 44
WS_ CHILD, 42, 44
WS_ CHILD WINDOW, 45
WS_ CLIPCHILDREN, 45
WS_ CLIPSIBLINGS, 45
WS_ DISABLED, 45, 52, 54-57
WS_ DLGFRAME, 44
WS_ GROUP, 44, 48-52, 55-57
WS_ HSCROLL, 45, 57
WS_ ICONIC, 44
WS_ MAXIMIZE, 44
WS_ MAXIMIZEBOX, 44
WS_ MINIMIZE, 44
WS_ :MINIMIZEBOX, 44
WS_ OVERLAPPED, 44
WS_ OVERLAPPEDWlNDOW, 44
WS_ POPUP, 43, 44
WS_ POPUPWlNDOW, 45
WS_ SIZEBOX, 44
WS_ SYSMENU, 43, 44
WS_ TABSTOP, 44, 48-52, 54-57
WS_ VISIBLE, 45
WS_ VSCROLL, 45, 53, 57

x (examine symbol map) command,
104, 106, 112, 135

/x option, 101
x? (examine symbol) command, 106,

112, 135
X field

CHECKBOX statement, 51
CONTROL statement, 58
CTEXT statement, 50
DEFPUSHBUTTON statement, 55
DIALOG resource statement, 41
EDITTEXT statement, 57
GROUPBOX statement, 54
ICON statement, 58

283

Microsoft Windows Programming Tools

X field (continued)
LISTBOX statement, 52
LTEXT statement, 48
PUSHBUTTON statement, 52
RADIOBUTTON statement, 56
RTEXT statement, 49
Size window (Dialog Editor) , 217

X parameter
Def.X macro (Cmacro), 170
externX macro�Cmacro) , 162
globalX macro CmacroJ , 161
labelX macro (macro) , 162
localX macro (CmacroJ 166
parmX macro (Cmacro) , 164
staticX macro (Cmacro), 160

xo (open symbol map) command, 105,
112 , 135-136

Y field
CHECKBOX statement, 51
CONTROL statement, 58
CTEXT statement, 50
DEFPUSHBUTTON statement, 55
DIALOG resource statement, 41
EDITTEXT statement, 57
GROUPBOX statement, 54
ICON statement, 58
LISTBOX statement, 52
LTEXT statement, 48
PUSHBUTTON statement, 52
RADIOBUTTON statement, 56
RTEXT statement, 49
Size window (Dialog Editor), 217

z (set symbol value) command, 112, 136
-Zd option, 15, 97
-Zp option, 15

284

