6/17/13

By Jason Robert Carey Patterson, last updated Aug 2012 (orig Feb 2001)

e e o o

Modern Microprocessors - A 90 Minute Guide!

Today's robots are very primitive, capable of understanding only a
few simple instructions such as 'go left', 'go right' and 'build car'.

More Than Just Megahertz

www lighterra.com/papers/modernmicroprocessors/

195 MHz
400 MHz
300 MHz
300 MHz
300 MHz
135 MHz

MIPS R10000
Alpha 21164
UltraSPARC
Pentium-II
PowerPC G3
POWER2

SPECint95 SPECfp95

11.0
12.3
121
11.6
14.8
6.2

17.0
17.2
15.5
8.8

114
17.6

— John Sladek

Table of Contents

1/21

http://www.lighterra.com/jason/
http://www.lighterra.com/
http://www.lighterra.com/about/
http://www.lighterra.com/software/
http://www.lighterra.com/articles/
http://www.lighterra.com/search/

6/17/13 Modern Microprocessors - A 90 Minute Guide!

Pipelining & Instruction-Level Parallelism

Fetch Decode Execute Writeback

Instruclions L I 1 |

Clock Cycles

Figure 1 — The instruction flow of a sequential processor.

Fetch Decode Execute Writeback

Instructions L

Clock Cycles

Figure 2 — The instruction flow of a pipelined processor.

lateh latch latch latch lateh

fetch decode exacute writeback
logic * logic ~ logic ~ logic

T

clock 4

-

Figure 3 — A pipelined microarchitecture.

www lighterra.com/papers/modernmicroprocessors/

2/21

6/17/13

fetch 3

Modern Microprocessors - A 90 Minute Guide!

decode
—

execute

[0

T .

writeback

Figure 4 — A pipelined microarchitecture with bypasses.

fetch
e

decode

irt -

>

float -

>

branch .

- mem .
>

writeback ,

Figure 5 — A pipelined microarchitecture in more detail.

1985 CACM article

Deeper Pipelines — Superpipelining

Fatch Decode

Instructions

Execute Writeback

Clock Cycles

Figure 6 — The instruction flow of a superpipelined processor.

www lighterra.com/papers/modernmicroprocessors/

3/21

http://portal.acm.org/citation.cfm?id=214917

6/17/13 Modern Microprocessors - A 90 Minute Guide!

Multiple Issue — Superscalar

—> I |
__! it 3 I.rmleback]
:
o |)
> flaat-1 float-2 float-3 wiriteback
L ¥
M decode & [L L]
dispatch
felch | 5
— —-
> test 3 branch 3
| — | |]
- _ " I
addrass -1 mam-2 writeback
—
Figure 7 — A superscalar microarchitecture.
Fetch Decode Execute Writeback
Instructions

Clock Cycles

Figure 8 — The instruction flow of a superscalar processor.

www lighterra.com/papers/modernmicroprocessors/ 4/21

6/17/13 Modern Microprocessors - A 90 Minute Guide!

Fetch Decode Execute Writeback

Imstructions

Clock Cycles

Figure 9 — The instruction flow of a superpipelined-superscalar processor.

Explicit Parallelism — VLIW

Fetch Decode Execute3 Writeback

Instructions []

Clock Cycles

Figure 10 — The instruction flow of a VLIW processor.

www lighterra.com/papers/modernmicroprocessors/ 5/21

6/17/13 Modern Microprocessors - A 90 Minute Guide!

Instruction Dependencies & Latencies

b * ¢c;
a + 1;

g
]

Branches & Branch Prediction

if (a > 5)
b = c;
else
b =d;

www lighterra.com/papers/modernmicroprocessors/

It can be confusing when the word
latency is used for related, but
different, meanings. Here, I'm
talking about the latency as seen
by a compiler. Hardware engineers
may think of latency as the total
number of cycles required for
execution (the length of the
pipeline). So a hardware engineer
might say that the instructions in a
simple integer pipeline have a
latency of 5 but a throughput of 1,
whereas from a compiler's point of
view they have a latency of 1
because their results are available
for use in the very next cycle. The
compiler view is the more common,
and is generally used even in
hardware manuals.

6/21

6/17/13

Modern Microprocessors - A 90 Minute Guide!

cmp a, 5 ; a>5h?
ble L1
mov ¢, b ; b=c
br L2

Ll: mov d, b ; b =4d

L2:

Now consider a pipelined processor executing this code sequence. By the time the conditional branch
at line 2 reaches the execute stage in the pipeline, the processor must have already fetched and
decoded the next couple of instructions. But which instructions? Should it fetch and decode the if
branch (lines 3 & 4) or the else branch (line 5)? It won't really know until the conditional branch gets
to the execute stage, but in a deeply pipelined processor that might be several cycles away. And it
can't afford to just wait - the processor encounters a branch every six instructions on average, and if
it was to wait several cycles at every branch then most of the performance gained by using pipelining
in the first place would be lost.

So the processor must make a guess. The processor will then fetch down the path it guessed and
speculatively begin executing those instructions. Of course, it won't be able to actually commit
(writeback) those instructions until the outcome of the branch is known. Worse, if the guess is wrong
the instructions will have to be cancelled, and those cycles will have been wasted. But if the guess is
correct the processor will be able to continue on at full speed.

The key question is how the processor should make the guess. Two alternatives spring to mind. First,
the compiler might be able to mark the branch to tell the processor which way to go. This is called
static branch prediction. It would be ideal if there was a bit in the instruction format in which to
encode the prediction, but for older architectures this is not an option, so a convention can be used
instead (such as backward branches are predicted to be taken while forward branches are predicted
not-taken). More importantly, however, this approach requires the compiler to be quite smart in
order for it to make the correct guess, which is easy for loops but might be difficult for other
branches.

The other alternative is to have the processor make the guess at runtime. Normally, this is done by
using an on-chip branch prediction table containing the addresses of recent branches and a bit
indicating whether each branch was taken or not last time. In reality, most processors actually use
two bits, so that a single not-taken occurrence doesn't reverse a generally taken prediction
(important for loop back edges). Of course, this dynamic branch prediction table takes up valuable
space on the processor chip, but branch prediction is so important that it's well worth it.

Unfortunately, even the best branch prediction techniques are sometimes wrong, and with a deep
pipeline many instructions might need to be cancelled. This is called the mispredict penalty. The
Pentium-Pro/II/III was a good example - it had a 12+ stage pipeline and thus a mispredict penalty of
10-15 cycles. Even with a clever dynamic branch predictor that correctly predicted an impressive
90% of the time, this high mispredict penalty meant about 30% of the Pentium-Pro/II/IIl's
performance was lost due to mispredictions. Put another way, one third of the time the Pentium-
Pro/II/III was not doing useful work but instead was saying "oops, wrong way". Modern processors
devote ever more hardware to branch prediction in an attempt to raise the prediction accuracy even
further, and reduce this cost, but even the best processors still lose quite a lot of performance due to
branch mispredictions.

Eliminating Branches with Predication

Conditional branches are so problematic that it would be nice to eliminate them altogether. Clearly, if
statements cannot be eliminated from programming languages, so how can the resulting branches
possibly be eliminated? The answer lies in the way some branches are used.

Consider the above example once again. Of the five instructions, two are branches, and one of those
is an unconditional branch. If it was possible to somehow tag the mov instructions to tell them to
execute only under some conditions, the code could be simplified...

cmp a, 5 ; a>57?
mov c, b ; b =c
cmovle d, b ; if le, then b = d

Here, a new instruction has been introduced called cmovle, for "conditional move if less than or
equal”. This instruction works by executing as normal, but only commits itself if its condition is true.
This is called a predicated instruction because its execution is controlled by a predicate (a true/false
test).

www lighterra.com/papers/modernmicroprocessors/

7121

6/17/13

Modern Microprocessors - A 90 Minute Guide!

Given this new predicated move instruction, two instructions have been eliminated from the code,
and both were costly branches. In addition, by being clever and always doing the first mov then
overwriting it if necessary, the parallelism of the code has also been increased - lines 1 and 2 can
now be executed in parallel, resulting in a 50% speedup (2 cycles rather than 3). Most importantly,
though, the possibility of getting the branch prediction wrong and suffering a large mispredict penalty
has been eliminated.

Of course, if the blocks of code in the if and else cases were longer, then using predication would
mean executing more instructions than using a branch, because the processor is effectively executing
both paths through the code. Whether it's worth executing a few more instructions to avoid a branch
is a tricky decision - for very small or very large blocks the decision is simple, but for medium-sized
blocks there are complex tradeoffs which the optimizer must consider.

The Alpha architecture had a conditional move instruction from the very beginning. MIPS, SPARC and
x86 added it later. With IA64, Intel went all-out and made almost every instruction predicated in the
hope of dramatically reducing branching problems in inner loops, especially ones where the branches
are unpredictable (such as compilers and OS kernels). Interestingly, the ARM architecture used in
many phones and tablets was the first architecture with a fully predicated instruction set. This is even
more intriguing given that the early ARM processors only had short pipelines and thus relatively small
mispredict penalties.

Instruction Scheduling, Register Renaming & OoO

If branches and long latency instructions are going to cause bubbles in the pipeline(s), then perhaps
those empty cycles can be used to do other work. To achieve this, the instructions in the program
must be reordered so that while one instruction is waiting, other instructions can execute. For
example, it might be possible to find a couple of other instructions from further down in the program
and put them between the two instructions in the earlier multiply example.

There are two ways to do this. One approach is to do the reordering in hardware at runtime. Doing
dynamic instruction scheduling (reordering) in the processor means the dispatch logic must be
enhanced to look at groups of instructions and dispatch them out of order as best it can to use the
processor's functional units. Not surprisingly, this is called out-of-order execution, or just 00O for
short (sometimes written OO0 or OOE).

If the processor is going to execute instructions out of order, it will need to keep in mind the
dependencies between those instructions. This can be made easier by not dealing with the raw
architecturally-defined registers, but instead using a set of renamed registers. For example, a store
of a register into memory, followed by a load of some other piece of memory into the same register,
represent different values and need not go into the same physical register. Furthermore, if these
different instructions are mapped to different physical registers they can be executed in parallel,
which is the whole point of 00O execution. So, the processor must keep a mapping of the instructions
in flight at any moment and the physical registers they use. This process is called register renaming.
As an added bonus, it becomes possible to work with a potentially larger set of real registers in an
attempt to extract even more parallelism out of the code.

All of this dependency analysis, register renaming and OoO execution adds a lot of complex logic to
the processor, making it harder to design, larger in terms of chip area, and more power hungry. The
extra logic is particularly power hungry because those transistors are always working, unlike the
functional units which spend at least some of their time idle (possibly even powered down). On the
other hand, out-of-order execution offers the advantage that software need not be recompiled to get
at least some of the benefits of the new processor's design (though typically not all).

Another approach to the whole problem is to have the compiler optimize the code by rearranging the
instructions (called static, or compile-time, instruction scheduling). The rearranged instruction stream
can then be fed to a processor with simpler in-order multiple-issue logic, relying on the compiler to

"spoon feed" the processor with the best instruction stream. Avoiding the need for complex 00O logic
should make the processor quite a lot easier to design, less power hungry and smaller, which means
more cores (or extra cache) could be placed onto the same amount of chip area (more on this later).

The compiler approach also has some other advantages over 000 hardware - it can see further down
the program than the hardware, and it can speculate down multiple paths rather than just one (a big
issue if branches are unpredictable). On the other hand, a compiler can't be expected to be psychic,
so it can't necessarily get everything perfect all the time. Without OoO hardware, the pipeline will
stall when the compiler fails to predict something like a cache miss.

Most of the early superscalars were in-order designs (SuperSPARC, hyperSPARC, UltraSPARC-I/II,
Alpha 21064 & 21164, the original Pentium). Examples of early OoO designs included the MIPS
R10000, Alpha 21264 and to some extent the entire POWER/PowerPC line (with their reservation
stations). Today, almost all high performance processors are out-of-order designs, with the notable

www lighterra.com/papers/modernmicroprocessors/

8/21

6/17/13

The Brainiac Debate

Modern Microprocessors - A 90 Minute Guide!

1993 Microprocessor Report editorial
Alpha Implementations & Architecture

“Brainiacs” Corei Corei’2
Core 2
POWER4 PowerPC G5
PO].FI'I.-JIEPHSGH1OCIOD MIPS R12000
Alpha 21264
POWEHE I'u'IIF’S RE000 p lll".|:'|h||:\r'||:|G|-|l:
Athlon Athlon
PowerPC 604 PowerPC 64: i Bulldozer/Piledriver
SuperSPARC entium- POWER?
K& PowerPC G3/G4
POWER1 Pentium-Pro Pentium-Il Pentium-Ill .
ILP PowerPC 601 PowerPC 603 Cortex-A1S b tium-4
UttraSPARC _ UltraSPARC-III POWERS
Alpha 21164 pgpeat
MIPS R5000 Cortex-A9 Atom
hyperSPARC :
L Alpha 21064 Cortex-AB R
Pentium UltraSPARC-T2

. . UltraSPARC-T1

SPARC microSPARC

MIPS R2000 MIPS R4000 ARM11 “SpeEd'DemonS”

»>
Clock Speed

www lighterra.com/papers/modernmicroprocessors/

Figure 11 — Brainiacs vs speed-demons.

921

http://www.mdronline.com/
http://www.amazon.com/Alpha-Implementations-Architecture-Dileep-Bhandarkar/dp/1555581307

6/17/13 Modern Microprocessors - A 90 Minute Guide!

camp also gradually moved away from brainiac designs over the years, although the reservation
stations in all PowerPC designs do offer a degree of OoO execution between different functional units
even if the instructions within each functional unit's queue are executed strictly in order.

Intel has been the most interesting of all to watch. Modern x86 processors have no choice but to be
at least somewhat brainiac due to limitations of the x86 architecture (more on this soon), and the
Pentium-Pro/II/III embraced that sentiment wholeheartedly. But then with the Pentium-4 Intel went
about as speed-demon as possible for a decoupled x86 microarchitecture, and with IA64 Intel again
bet solidly on the smart-compiler approach, with a simple but very wide design relying totally on
static scheduling. Faced with the enormous power and heat issues of the Pentium-4, Intel then
reversed its position once again and revived the older Pentium-Pro/II/III brainiac design to produce
the Pentium-M and its Core successors.

No matter which route is taken, the key problem is still the same - normal programs just don't have
a lot of fine-grained parallelism in them. A 4-issue superscalar processor requires four independent
instructions to be available, with all their dependencies and latencies met, at every cycle. In reality
this is virtually never possible, especially with load latencies of three or four cycles. Currently, real-
world instruction-level parallelism for mainstream applications is limited to about 2 instructions per
cycle at best. Certain types of applications do exhibit more parallelism, such as scientific code, but
these are generally not representative of mainstream applications. There are also some types of
code, such as pointer chasing, where even sustaining 1 instruction per cycle is extremely difficult. For
those programs, the key problem is the memory system (which we'll get to later).

What About x86?

So where does x86 fit into all this, and how have Intel and AMD been able to remain competitive
through all of these developments in spite of an architecture that's now more than 30 years old?

While the original Pentium, a superscalar x86, was an amazing piece of engineering, it was clear that
the big problem was the complex and messy x86 instruction set. Complex addressing modes and a
minimal number of registers meant that few instructions could be executed in parallel due to
potential dependencies. For the x86 camp to compete with the RISC architectures, they needed to find
a way to "get around" the x86 instruction set.

The solution, invented independently (at about the same time) by engineers at both NexGen and
Intel, was to dynamically decode the x86 instructions into simple, RISC-like micro-instructions, which
can then be executed by a fast, RISC-style register-renaming OoO superscalar core. The micro-
instructions are often called uops (short for micro-ops). Most x86 instructions decode into 1, 2 or 3
uops, while the more complex instructions require a larger number.

For these "decoupled" superscalar x86 processors, register renaming is absolutely critical due to the
meager 8 registers of the x86 architecture in 32-bit mode (64-bit mode added another 8 registers).
This differs strongly from the RISC architectures, where providing more registers via renaming only
has a minor effect. Nonetheless, with clever register renaming, the full bag of RISC tricks become
available to the x86 world, with the two exceptions of advanced static instruction scheduling (because
the micro-instructions are hidden behind the x86 layer and thus are less visible to compilers) and the
use of a large register set to avoid memory accesses.

The basic scheme works something like this...

www lighterra.com/papers/modernmicroprocessors/ 10/21

6/17/13

Modern Microprocessors - A 90 Minute Guide!

>
T > >
- axatculion resources
—r
: > |— | -
microgijp':;rratians micro-op L L L L
dispatch [T B B]
” =
tetch decode | o »| [————» | |
& rename >
registers L L = -
-
»> > |— >
-
—
e | || [
—

Figure 12 — A "RISCy x86" decoupled microarchitecture.

Threads — SMT, Hyper-Threading & Multi-Core

www lighterra.com/papers/modernmicroprocessors/

commit
& retire

11/21

6/17/13 Modern Microprocessors - A 90 Minute Guide!

contrast, an SMT processor uses just one physical processor core to present two or more /ogical
processors to the system. This makes SMT much more efficient than a multi-core processor in terms
of chip space, fabrication cost, power usage and heat dissipation. And of course there's nothing
preventing a multi-core implementation where each core is an SMT design.

From a hardware point of view, implementing SMT requires duplicating all of the parts of the
processor which store the "execution state" of each thread - things like the program counter, the
architecturally-visible registers (but not the rename registers), the memory mappings held in the
TLB, and so on. Luckily, these parts only constitute a tiny fraction of the overall processor's
hardware. The really large and complex parts, such as the decoders and dispatch logic, the functional
units, and the caches, are all shared between the threads.

Of course, the processor must also keep track of which instructions and which rename registers
belong to which threads at any given point in time, but it turns out that this only adds a small amount
to the complexity of the core logic. So, for the relatively cheap design cost of around 10% more logic
in the core (and an almost negligible increase in total transistor count and final production cost), the
processor can execute several threads simultaneously, hopefully resulting in a substantial increase in
functional unit utilization and instructions-per-clock (and thus overall performance).

The instruction flow of an SMT processor looks something like...

Fetch Decode Execute Writeback

Thread 1
C—T—T—T] Thread 2

Clock Cycles

Figure 13 — The instruction flow of an SMT processor.

This is really great! Now that we can fill those bubbles by running multiple threads, we can justify
adding more functional units than would normally be viable in a single-threaded processor, and really
go to town with multiple instruction issue. In some cases, this may even have the side effect of
improving single-thread performance (for particularly ILP-friendly code, for example).

So 20-issue here we come, right? Unfortunately, the answer is no.

SMT performance is a tricky business. First, the whole idea of SMT is built around the assumption
that either lots of programs are simultaneously executing (not just sitting idle), or if just one program
is running, it has lots of threads all executing at the same time. Experience with existing
multiprocessor systems shows that this isn't always true. In practice, at least for desktops, laptops
and small servers, it is rarely the case that several different programs are actively executing at the
same time, so it usually comes down to just the one task that the machine is currently being used
for.

Some applications, such as database systems, image & video processing, audio processing, 3D
graphics rendering and scientific code, do have obvious high-level (course-grained) parallelism
available and easy to exploit, but unfortunately even many of these applications have not been
written to make use of multiple threads in order to exploit multiple processors. In addition, many of
the applications which are inherently parallel in nature are primarily limited by memory bandwidth,
not by the processor (eg: image & video processing, audio processing, most scientific code), so
adding a second thread or processor won't help them much - unless memory bandwidth is also
dramatically increased (we'll get to the memory system soon). Worse yet, many other applications
such as web browsers, multimedia design tools, language interpreters, hardware simulations and so
on, are simply not inherently parallel enough to make effective use of multiple processors.

On top of this, the fact that the threads in an SMT design are all sharing just one processor core, and
just one set of caches, has major performance downsides compared to a true multiprocessor (or
multi-core). Within the pipelines of an SMT processor, if one thread saturates just one functional unit
which the other threads need, it effectively stalls all of the other threads, even if they only need
relatively little use of that unit. Thus, balancing the progress of the threads becomes critical, and the
most effective use of SMT is for applications with highly variable code mixtures (so that the threads
don't constantly compete for the same hardware resources). Also, competition between the threads
for cache space may produce worse results than letting just one thread have all the cache space
available - particularly for applications where the critical working set is highly cache-size sensitive,
such as hardware simulators/emulators, virtual machines and high quality video encoding (with a
large motion prediction window).

www lighterra.com/papers/modernmicroprocessors/ 12/21

6/17/13

Modern Microprocessors - A 90 Minute Guide!

The bottom line is that without care, and even with care for some applications, SMT performance can
actually be worse than single-thread performance and traditional context switching between threads.
On the other hand, applications which are limited primarily by memory latency (but not memory
bandwidth), such as database systems and 3D graphics rendering, benefit dramatically from SMT,
since it offers an effective way of using the otherwise idle time during cache misses (we'll cover
caches later). Thus, SMT presents a very complex and application-specific performance picture. This
also makes it a difficult challenge for marketing - sometimes almost as fast as two "real" processors,
sometimes more like two really lame processors, sometimes even worse than one processor, huh?

The Pentium-4 was the first processor to use SMT, which Intel calls "hyper-threading". Its design
allowed for 2 simultaneous threads (although earlier revisions of the Pentium-4 had the SMT feature
disabled due to bugs). Speedups from SMT on the Pentium-4 ranged from around -10% to +30%
depending on the application(s). Subsequent Intel designs then eschewed SMT during the transition
back to the brainiac designs of the Pentium-M and Core 2, along with the transition to multi-core.
Many other SMT designs were also cancelled around the same time (Alpha 21464, UltraSPARC-V), and
for a while it almost seemed as if SMT was out of favor, before it finally made a comeback with
POWERS5, a 2-thread SMT design as well as being multi-core (2 threads per core times 2 cores per
chip = 4 threads per chip). Intel's Core i and Core i*2 are also 2-thread SMT, as is the low-power
Atom x86 processor. A typical quad-core Core i processor is thus an 8 thread chip. Sun was the most
aggressive of all on the thread-level parallelism front, with UltraSPARC-T1 (aka: "Niagara") providing
8 simple in-order cores each with 4-thread SMT, for a total of 32 threads on a single chip. This was
subsequently increased to 8 threads per core in UltraSPARC-T2, and then 16 cores in UltraSPARC-T3,
for a whopping 128 threads!

More Cores or Wider Cores?

Given SMT's ability to convert thread-level parallelism into instruction-level parallelism, coupled with
the advantage of better single-thread performance for particularly ILP-friendly code, you might now
be asking why anyone would ever build a multi-core processor when an equally wide (in total) SMT
design would be superior.

Well unfortunately it's not quite as simple as that. As it turns out, very wide superscalar designs scale
very badly in terms of both chip area and clock speed. One key problem is that the complex multiple-
issue dispatch logic scales somewhere between quadratically and exponentially with the issue-width.
That is, the dispatch logic of a 5-issue processor is almost twice as big as a 4-issue design, with 6-
issue being 4 times as big, 7-issue 8 times and so on. In addition, a very wide superscalar design
requires highly multi-ported register files and caches. Both of these factors conspire to not only
increase size, but also to massively increase the amount of wiring at the circuit-design level, placing
serious limits on the clock speed. So a 10-issue core would actually be both larger and slower than
two 5-issue cores, and our dream of a 20-issue SMT design isn't really viable due to circuit design
limitations.

Nevertheless, since the benefits of both SMT and multi-core depend so much on the nature of the
target application(s), a broad spectrum of designs might still make sense with varying degrees of
SMT and multi-core. Let's explore some possibilities...

Today, a "typical" SMT design implies both a wide execution core and OoO execution logic, including
multiple decoders, the large and complex superscalar dispatch logic and so on. Thus, the size of a
typical SMT core is quite large in terms of chip area. With the same amount of chip space it would be
possible to fit several simpler, single-issue, in-order cores (either with or without basic SMT). In fact,
it may be the case that as many as half a dozen small, simple cores could fit within the chip area
taken by just one modern OoO superscalar SMT design!

Now, given that both instruction-level parallelism and thread-level parallelism suffer from diminishing
returns (in different ways), and remembering that SMT is essentially a way to convert TLP into ILP,
but also remembering that wide superscalar OoO designs scale very non-linearly in terms of chip
area (and design complexity), the obvious question is where is the sweet spot? How wide should the
cores be made to reach a good balance between ILP and TLP? Right now, many different approaches
are being explored...

www lighterra.com/papers/modernmicroprocessors/

13/21

6/17/13 Modern Microprocessors - A 90 Minute Guide!

Figure 14 — Design extremes: Core i*2 "Sandy Bridge" vs UltraSPARC-T3 "Niagara 3".

Data Parallelism — SIMD Vector Instructions

www lighterra.com/papers/modernmicroprocessors/ 14/21

6/17/13 Modern Microprocessors - A 90 Minute Guide!

| red | green | blue | alpha |
| red | gréen | blue | alpha |
red green blue alpha

Figure 15 — A SIMD vector addition operation.

Caches & The Memory Hierarchy

www lighterra.com/papers/modernmicroprocessors/ 15/21

6/17/13

Modern Microprocessors - A 90 Minute Guide!

instructions depending on the data being loaded. This causes all the other instructions to stall, and
makes it difficult to obtain large amounts of instruction-level parallelism. Things are even worse than
they might first seem, because in practice most superscalar processors can still only issue one, or at
most two, memory instructions per cycle.

The core problem with memory access is that building a fast memory system is very difficult because
of fixed limits, like the speed of light. These impose delays while a signal is transferred out to RAM
and back. Nothing can change this fact of nature — we must learn to work around it.

For example, access latency for main memory, even using a modern SDRAM with a CAS latency of 5,
will typically be around 15 cycles of the memory system clock — 1 to send the address to the chipset
(north bridge), 1 more to get it to the DIMM, RAS-to-CAS delay of 5 (assuming a page miss), CAS
latency of 5, another 1 to get the data to the output buffer of the DIMM, 1 to send the data back to
the chipset, and a final 1 to send the data up to the processor (or E-cache). On a multiprocessor
system, even more bus cycles may be required to support cache coherency.

Assuming a typical 400 MHz SDRAM memory system (DDR2-800), and assuming a 2.0 GHz processor,
this makes 15*5 = 75 cycles of the CPU clock to access main memory! Yikes, you say! And it gets
worse — a 2.4 GHz processor would take it to 90 cycles, a 2.8 GHz processor to 105 cycles, and even
if the memory system was increased to 666 MHz (DDR3-1333, with CAS latency slipping to 9 in the
process), a 3.3 GHz processor would still wait 115 cycles, and a 4.0 GHz processor a staggering 138
cycles to access main memory!

Furthermore, although a DDR SDRAM memory system transfers data on both the rising and falling
edges of the clock signal (ie: at "double data rate"), the true clock speed of the memory system is
still only half that, and it is the true clock speed which applies for control signals. So the latency of a
DDR memory system is the same as a non-DDR system, even though the bandwidth is doubled (more
on the difference between bandwidth and latency later).

Also note that a small portion of memory latency (2 of the 15 bus cycles) involves the transfer of
data between the processor and the chipset on the motherboard. One way to reduce this is to
dramatically increase the speed of the frontside bus (FSB) between the processor and the chipset
(eg: 800 MHz QDR in Pentium-4, 1.25 GHz DDR in PowerPC G5). An even better approach is to
integrate the memory controller directly onto the processor chip, which allows the 2 bus cycles to be
converted into much faster processor cycles instead. The UltraSPARC-IIi and Athlon 64 were the first
mainstream processors to do this, and now all modern designs feature on-chip memory controllers,
although Intel were late to do so and only integrated the memory controller into their CPUs starting
with Core i & i*2.

Unfortunately, both DDR memory and on-chip memory controllers are only able to do so much - and
memory latency continues to be a major problem. This problem of the large and widening gap
between the processor and memory is sometimes called the memory wall. It was at one time the
single most important problem facing hardware engineers, though today the problem has eased
considerably because processor clock speeds are no longer climbing at the rate they previously did
due to power and heat constraints.

Nonetheless, memory latency is still a huge problem.

Modern processors try to solve this problem with caches. A cache is a small but fast type of memory
located on or near the processor chip. Its role is to keep copies of small pieces of main memory.
When the processor asks for a particular piece of main memory, the cache can supply it much more
quickly than main memory would be able to - if the data is in the cache.

Typically, there are small but fast "primary" level-1 (L1) caches

on the processor chip itself, inside each core, usually around The word cache is pronounced like
8k-64k in size, with a larger level-2 (L2) cache further away but ‘cash"... as in "a cache of
still on-chip (a few hundred KB to a few MB), and possibly an weapons" or "a cache of supplies”.
even larger and slower L3 cache etc. The combination of the on- It means a pIace_for hiding or

chip caches, any off-chip external cache (E-cache) and main ftonng tl1“|ngs“. Itis ",?t pronounced
memory (DRAM) together form a memory hierarchy, with each ca-shay” or "kay-sh".

successive level being larger but slower than the one before it.

At the bottom of the memory hierarchy, of course, is the virtual
memory system (paging/swapping), which provides the illusion of an almost infinite amount of main
memory by moving pages of RAM to and from hard drive storage (which is even slower again, by a

large margin).

It's a bit like working at a desk in a library... You might have two or three books open on the desk
itself. Accessing them is fast (you can just look), but you can't fit more than a couple on the desk at
the same time - and even if you could, accessing 100 books laid out on a huge desk would take
longer because you'd have to walk between them. Instead, in the corner of the desk you might have
a pile of a dozen more books. Accessing them is slower, because you have to reach over, grab one
and open it up. Each time you open a new one, you also have to put one of the books already on the

www lighterra.com/papers/modernmicroprocessors/

16/21

6/17/13

Modern Microprocessors - A 90 Minute Guide!

desk back into the pile to make room. Finally, when you want a book that's not on the desk, and not
in the pile, it's very slow to access because you have to get up and walk around the library looking
for it. However the size of the library means you have access to thousands of books, far more than
could ever fit on your desk.

The amazing thing about caches is that they work really well - they effectively make the memory
system seem almost as fast as the L1 cache, yet as large as main memory. A modern primary (L1)
cache has a latency of just 2 to 4 processor cycles, which is dozens of times faster than accessing
main memory, and modern primary caches achieve hit rates of around 90% for most applications. So
90% of the time, accessing memory only takes a couple of cycles!

Caches can achieve these seemingly amazing hit rates because of the way programs work. Most
programs exhibit /ocality in both time and space — when a program accesses a piece of memory,
there's a good chance it will need to re-access the same piece of memory in the near future
(temporal locality), and there's also a good chance that it will need to access other nearby memory in
the future as well (spatial locality). Temporal locality is exploited by merely keeping recently-
accessed data in the cache. To take advantage of spatial locality, data is transferred from main
memory up into the cache in blocks of a few dozen bytes at a time, called a cache block.

From the hardware point of view, a cache works like a two column table — one column is the memory
address and the other is the block of data values (remember that each cache line is a whole block of
data, not just a single value). Of course, in reality the cache need only store the necessary higher-
end part of the address, since lookups work by using the lower part of the address to index the
cache. When the higher part, called the tag, matches the tag stored in the table, this is a hit and the
appropriate piece of data can be sent to the CPU...

Address

Figure 16 — A cache lookup.

It is possible to use either the physical address or the virtual address to do the cache lookup. Each
has pros and cons (like everything else in computing). Using the virtual address might cause
problems because different programs use the same virtual addresses to map to different physical
addresses - the cache might need to be flushed on every context switch. On the other hand, using the
physical address means the virtual-to-physical mapping must be performed as part of the cache
lookup, making every lookup slower. A common trick is to use virtual addresses for the cache
indexing but physical addresses for the tags. The virtual-to-physical mapping (TLB lookup) can then
be performed in parallel with the cache indexing so that it will be ready in time for the tag
comparison. Such a scheme is called a virtually-indexed physically-tagged cache.

The sizes and speeds of the various levels of cache in modern processors are absolutely crucial to
performance. The most important by far is the primary L1 data cache. Some processors go for small
data caches (Pentium-Pro/II/III, Pentium-4E and Bulldozer have 16k D-caches, earlier Pentium-4s and
UltraSPARC-T1/T2/T3 are even smaller at just 8k), most have settled on 32k as the sweet spot, and a
few are larger at 64k (Athlon, UltraSPARC-III/IV, Athlon 64/Phenom). For such caches, load latency is
usually 3 cycles but occasionally shorter (2 cycles in UltraSPARC-III/IV, Pentium-4 & UltraSPARC-
T1/T2/T3) or longer (4 cycles in Pentium-4E, Core i & i*2, Cortex-A9 & A15, Bulldozer). Increasing the
load latency by a cycle can seem like a minor change but is actually a serious hit to performance,
and is something rarely noticed or understood by end users. For normal, everyday pointer-chasing
code, a processor's load latency is a major factor in real-world performance.

Most modern processors also have a large second or third level of on-chip cache, usually shared
between all cores. This cache is also very important, but its size sweet spot depends heavily on the
type of application being run and the size of that application's active working set. The difference
between 2 MiB of L3 cache and 8 MiB will be barely measurable for some applications, while for
others it will be enormous. Given that the relatively small L1 caches already take up to half of the
chip area for many modern processor cores, you can imagine how much area a large L2 or L3 cache

www lighterra.com/papers/modernmicroprocessors/

1721

6/17/13 Modern Microprocessors - A 90 Minute Guide!

Cache Conflicts & Associativity

[Way 4
[Way 3
[Way 2
A Way 1
Lines
(sels)
Tag & Data Block

Y

Figure 17 — A 4-way set-associative cache.

www lighterra.com/papers/modernmicroprocessors/ 18/21

6/17/13

Modern Microprocessors - A 90 Minute Guide!

Usually, set-associative caches are able to avoid the problems that occasionally occur with direct
mapped caches due to unfortunate cache conflicts. Adding even more ways allows even more
conflicts to be avoided. Unfortunately, the more highly associative a cache is, the slower it is to
access, because there are more comparisons to perform during each access. Even though the
comparisons themselves are performed in parallel, additional logic is required to select the
appropriate hit, if any, and the cache may also need to update the marker bits appropriately within
each way. More chip area is also required, because relatively more of the cache's data is consumed
by tag information rather than data blocks, and extra datapaths are needed to access each individual
way of the cache in parallel. Any and all of these factors may negatively affect access time. Thus, a
2-way set-associative cache is slower but smarter than a direct mapped cache, with 4-way and 8-way
being slower and smarter again.

In most modern processors the instruction cache is usually highly set-associative, since its latency
can be hidden by fetching and buffering. The data cache, on the other hand, is usually set-associative
to some degree but often not overly so to keep down latency (2-way in Athlon, PowerPC G5, Athlon
64/Phenom, Cortex-A15; 4-way in Pentium-Pro/II/III, UltraSPARC-III/IV, Pentium-4, UltraSPARC-T1 &
T2, Cortex-A8 & A9, Bulldozer; 8-way in PowerPC G4e, Pentium-M, Core 2, Core i, Core i*2). As the
last resort before heading off to far away main memory, the large on-chip L2/L3 cache is also usually
highly set-associative, although external E-cache is sometimes direct mapped for flexibility of
implementation.

The concept of caches also extends up into software systems. For example, main memory is used to
cache the contents of the filesystem to speed up file I/0O, and web caches (also known as proxy
caches) cache the contents of remote web servers on a more local server. With respect to main
memory and virtual memory (paging/swapping), it can be thought of as being a smart, fully
associative cache, like the ideal cache mentioned initially (above). After all, the virtual memory
system is managed by the (hopefully) intelligent software of the operating system kernel.

Memory Bandwidth vs Latency

Since memory is transferred in blocks, and since cache misses are an urgent "show stopper" type of
event with the potential to halt the processor in its tracks (or at least severely hamper its progress),
the speed of those block transfers from memory is critical. The transfer rate of a memory system is
called its bandwidth. But how is that different from /atency?

A good analogy is a highway... Suppose you want to drive in to the city from 100 miles away. By
doubling the number of lanes, the total number of cars that can travel per hour (the bandwidth) is
doubled, but your own travel time (the latency) is not reduced. If all you want to do is increase cars-
per-second, then adding more lanes (wider bus) is the answer, but if you want to reduce the time for
a specific car to get from A to B then you need to do something else - usually either raise the speed
limit (bus & DRAM speed), or reduce the distance, or perhaps build a regional mall so that people
don't need to go to the city as often (a cache).

When it comes to memory systems, there are often subtle tradeoffs between latency and bandwidth.
Lower latency designs will be better for pointer-chasing code, such as compilers and database
systems, whereas bandwidth-oriented systems have the advantage for programs with simple linear
access patterns, such as image processing and scientific code.

The two major memory technologies of recent times, standard SDRAM and Rambus RDRAM, differ
slightly in this respect - for any given level of chip technology, SDRAM should have lower latency but
RDRAM should have higher bandwidth. This is due to the "snake-like" physical structure of RDRAM
memory systems, which reduce signal reflections by avoiding splitting the wires that normally go to
each memory module in parallel, and instead go "through" each module in sequence - allowing
RDRAM to run at higher clock speeds but with a longer average physical length to the memory
modules.

Of course, it's reasonably easy to increase bandwidth — simply adding more memory banks and
making the busses wider can easily double or quadruple bandwidth. In fact, many high-end systems
do this to increase their performance, but it comes with downsides as well. In particular, wider
busses mean a more expensive motherboard, restrictions on the way RAM can be added to a system
(install in pairs or groups of 4) and a higher minimum RAM configuration.

Unfortunately, latency is much harder to improve than bandwidth - as the saying goes: "you can't
bribe god". Even so, there have been some good improvements in effective memory latency in past
years, chiefly in the form of synchronously-clocked DRAM (SDRAM) which uses the same clock as the
memory bus. The main benefit of SDRAM is that it allows pipelining of the memory system, because
the internal timing aspects and interleaved structure of SDRAM chip operation are exposed to the
system and can thus be taken advantage of. This reduces effective latency because it allows a new
memory access to be started before the current one has completed, thereby eliminating the small

www lighterra.com/papers/modernmicroprocessors/ 19/21

6/17/13 Modern Microprocessors - A 90 Minute Guide!

Acknowledgements
1989 ASPLOS
research paper POWER & PowerPC
Computer Architecture: A
Quantitative Approach Computer Organization and Design

More Information?

o Intel's Sandy Bridge Microarchitecture

e AMD's Bulldozer Microarchitecture

¢ Inside Nehalem: Intel's Future Processor and System
e Intel's Next Generation Microarchitecture Unveiled

e Niagara II: The Hydra Returns

e Inside the IBM PowerPC 970 Part II
e The Pentium 4 and the PowerPC G4e Part II
e Into the K7 Part II

e The AMD Opteron Microprocessor
e A Look at Centrino's Core: The Pentium M

e Crusoe Explored

e Designing an Alpha Microprocessor

e Things CPU Architects Need To Think About

www lighterra.com/papers/modernmicroprocessors/ 20/21

http://portal.acm.org/citation.cfm?id=68207
http://www.amazon.com/Power-PC-Shlomo-Weiss/dp/1558602798
http://www.amazon.com/Computer-Architecture-Quantitative-Approach-4th/dp/0123704901
http://www.amazon.com/Computer-Organization-Design-Fourth-Architecture/dp/0123744938
http://www.realworldtech.com/page.cfm?ArticleID=RWT091810191937
http://www.realworldtech.com/page.cfm?ArticleID=RWT082610181333
http://www.realworldtech.com/page.cfm?ArticleID=RWT040208182719
http://www.realworldtech.com/page.cfm?ArticleID=RWT030906143144
http://www.realworldtech.com/page.cfm?ArticleID=RWT090406012516
http://arstechnica.com/old/content/2002/10/ppc970.ars/1
http://arstechnica.com/cpu/03q1/ppc970/ppc970-0.html
http://arstechnica.com/old/content/2001/05/p4andg4e.ars
http://arstechnica.com/old/content/2001/11/p4andg4e2.ars
http://arstechnica.com/cpu/3q99/k7_theory/k7-one-1.html
http://arstechnica.com/cpu/3q99/k7_theory/k7-two-1.html
http://stanford-online.stanford.edu/courses/ee380/040107-ee380-100.asx
http://arstechnica.com/old/content/2004/02/pentium-m.ars
http://arstechnica.com/old/content/2000/01/crusoe.ars
http://www.computer.org/portal/web/csdl/abs/mags/co/1999/07/r7027abs.htm
http://stanford-online.stanford.edu/courses/ee380/040218-ee380-100.asx

6/17/13 Modern Microprocessors - A 90 Minute Guide!
Ars Technica

AnandTech

Microprocessor Report

Real World Tech

e o o o

Cool Photo Speed Dial= 5% P~

Turn your iPhone into the grapHital e Sle ettt
visual phone it truly wants to bf'f T T =T

Lighterra > Articles & Papers > Modern Microprocessors - A 90 Minute Guide!

Copyright © 2001-2012 Lighterra. All rights reserved.
Contact | Privacy | Legal

www lighterra.com/papers/modernmicroprocessors/ 21/21

http://arstechnica.com/
http://www.anandtech.com/
http://www.mdronline.com/
http://www.realworldtech.com/
http://www.lighterra.com/coolphotospeeddial/
http://www.lighterra.com/
http://www.lighterra.com/articles/
http://www.lighterra.com/papers/modernmicroprocessors/#
http://www.lighterra.com/about/contact.html
http://www.lighterra.com/legal/privacy.html
http://www.lighterra.com/legal/

