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Abstract

Database systems tend to achieve only
low IPC (instructions-per-cycle) efficiency on
modern CPUs in compute-intensive applica-
tion areas like decision support, OLAP and
multimedia retrieval. This paper starts with
an in-depth investigation to the reason why
this happens, focusing on the TPC-H bench-
mark. Our analysis of various relational sys-
tems and MonetDB leads us to a new set of
guidelines for designing a query processor.

The second part of the paper describes the
architecture of our new X100 query engine
for the MonetDB system that follows these
guidelines. On the surface, it resembles a
classical Volcano-style engine, but the cru-
cial difference to base all execution on the
concept of wector processing makes it highly
CPU efficient. We evaluate the power of Mon-
etDB/X100 on the 100GB version of TPC-H,
showing its raw execution power to be between
one and two orders of magnitude higher than
previous technology.

1 Introduction

Modern CPUs can perform enormous amounts of cal-
culations per second, but only if they can find enough
independent work to exploit their parallel execution
capabilities. Hardware developments during the past
decade have significantly increased the speed difference
between a CPU running at full throughput and mini-
mal throughput, which can now easily be an order of
magnitude.
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One would expect that query-intensive database
workloads such as decision support, OLAP, data-
mining, but also multimedia retrieval, all of which re-
quire many independent calculations, should provide
modern CPUs the opportunity to get near optimal IPC
(instructions-per-cycle) efficiencies.

However, research has shown that database systems
tend to achieve low IPC efficiency on modern CPUs in
these application areas [6, 3]. We question whether
it should really be that way. Going beyond the (im-
portant) topic of cache-conscious query processing, we
investigate in detail how relational database systems
interact with modern super-scalar CPUs in query-
intensive workloads, in particular the TPC-H decision
support benchmark.

The main conclusion we draw from this investiga-
tion is that the architecture employed by most DBMSs
inhibits compilers from using their most performance-
critical optimization techniques, resulting in low CPU
efficiencies. Particularly, the common way to im-
plement the popular Volcano [10] iterator model for
pipelined processing, leads to tuple-at-a-time execu-
tion, which causes both high interpretation overhead,
and hides opportunities for CPU parallelism from the
compiler.

We also analyze the performance of the main mem-
ory database system MonetDB!, developed in our
group, and its MIL query language [4]. MonetDB/MIL
uses a column-at-a-time execution model, and there-
fore does not suffer from problems generated by tuple-
at-a-time interpretation. However, its policy of full
column materialization causes it to generate large data
streams during query execution. On our decision sup-
port workload, we found MonetDB/MIL to become
heavily constrained by memory bandwidth, causing its
CPU efficiency to drop sharply.

Therefore, we argue for combining the column-wise
execution of MonetDB with the incremental material-
ization offered by Volcano-style pipelining.

We designed and implemented from scratch a new
query engine for the MonetDB system, called X100,

1MonetDB is now in open-source, see monetdb.cwi.nl



that employs a wvectorized query processing model.
Apart from achieving high CPU efficiency, Mon-
etDB/X100 is intended to scale up towards non main-
memory (disk-based) datasets. The second part of this
paper is dedicated to describing the architecture of
MonetDB /X100 and evaluating its performance on the
full TPC-H benchmark of size 100GB.

1.1 Outline

This paper is organized as follows. Section 2 provides
an introduction to modern super-scalar (or hyper-
pipelined) CPUs, covering the issues most relevant for
query evaluation performance. In Section 3, we study
TPC-H Query 1 as a micro-benchmark of CPU effi-
ciency, first for standard relational database systems,
then in MonetDB, and finally we descend into a stan-
dalone hand-coded implementation of this query to get
a baseline of maximum achievable raw performance.

Section 4 describes the architecture of our new X100
query processor for MonetDB, focusing on query exe-
cution, but also sketching topics like data layout, in-
dexing and updates.

In Section 5, we present a performance comparison
of MIL and X100 inside the Monet system on the TPC-
H benchmark. We discuss related work in Section 6,
before concluding in Section 7.

2 How CPUs Work

Figure 1 displays for each year in the past decade the
fastest CPU available in terms of MHz, as well as high-
est performance (one thing does not necessarily equate
the other), as well as the most advanced chip manu-
facturing technology in production that year.

The root cause for CPU MHz improvements is
progress in chip manufacturing process scales, that
typically shrink by a factor 1.4 every 18 months (a.k.a.
Moore’s law [13]). Every smaller manufacturing scale
means twice (the square of 1.4) as many, and twice
smaller transistors, as well as 1.4 times smaller wire
distances and signal latencies. Thus one would expect
CPU MHz to increase with inverted signal latencies,
but Figure 1 shows that clock speed has increased even
further. This is mainly done by pipelining: dividing
the work of a CPU instruction in ever more stages.
Less work per stage means that the CPU frequency
can be increased. While the 1988 Intel 80386 CPU
executed one instruction in one (or more) cycles, the
1993 Pentium already had a 5-stage pipeline, to be in-
creased in the 1999 PentiumlIl to 14 while the 2004
Pentium4 has 31 pipeline stages.

Pipelines introduce two dangers: (i) if one instruc-
tion needs the result of a previous instruction, it can-
not be pushed into the pipeline right after it, but must
wait until the first instruction has passed through the
pipeline (or a significant fraction thereof), and (i) in
case of IF-a-THEN-0-ELSE- ¢ branches, the CPU must
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Figure 1: A Decade of CPU Performance

predict whether a will evaluate to true or false. It
might guess the latter and put c¢ into the pipeline, just
after a. Many stages further, when the evaluation of
a finishes, it may determine that it guessed wrongly
(i.e. mispredicted the branch), and then must flush
the pipeline (discard all instructions in it) and start
over with b. Obviously, the longer the pipeline, the
more instructions are flushed away and the higher the
performance penalty. Translated to database systems,
branches that are data-dependent, such as those found
in a selection operator on data with a selectivity that
is neither very high nor very low, are impossible to
predict and can significantly slow down query execu-
tion [17].

In addition, super-scalar CPUs? offer the possibility
to take multiple instructions into execution in parallel
if they are independent. That is, the CPU has not one,
but multiple pipelines. Each cycle, a new instruction
can be pushed into each pipeline, provided again they
are independent of all instructions already in execu-
tion. A super-scalar CPU can get to an IPC (Instruc-
tions Per Cycle) of > 1. Figure 1 shows that this has
allowed real-world CPU performance to increase faster
than CPU frequency.

Modern CPUs are balanced in different ways. The
Intel Ttanium?2 processor is a VLIW (Very Large In-
struction Word) processor with many parallel pipelines
(it can execute up to 6 instructions per cycle) with
only few (7) stages, and therefore a relatively low clock
speed of 1.5GHz. In contrast, the Pentium4 has its
very long 31-stage pipeline allowing for a 3.6GHz clock
speed, but can only execute 3 instructions per cycle.
Either way, to get to its theoretical maximum through-
put, an Itanium?2 needs 7x6 = 42 independent instruc-
tions at any time, while the Pentium4 needs 31x3 = 93.
Such parallelism cannot always be found, and there-
fore many programs use the resources of the Itanium2
much better than the Pentium4, which explains why in
benchmarks the performance of both CPUs is similar,
despite the big clock speed difference.

2Intel introduced the term hyper-pipelined as a synonym for
“super-scalar”, to market its Pentium4 CPU.
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Figure 2: Itanium Hardware Predication Eliminates
Branch Mispredictions

Most programming languages do not require
programmers to explicitly specify in their programs
which instructions (or expressions) are independent
Therefore, compiler optimizations have become crit-
ical to achieving good CPU utilization. The most
important technique is loop pipelining, in which an
operation consisting of multiple dependent operations
FO, GO on all n independent elements of an array A
is transformed from:
F(A[01),G(A[0]), F(A[11),G(A[1D),..
into:

F(A[01),F(A[1]1),F(A[2]), G(A[0]),G(A[1]),G(A[2]), F(AL3D),..

F(A[n]),G(A[n])

Supposing the pipeline dependency latency of F()
is 2 cycles, when G(A[0]) is taken into execution, the
result of F(A[0]) has just become available.

In the case of the Itanium2 processor, the impor-
tance of the compiler is even stronger, as it is the
compiler which has to find instructions that can go
into different pipelines (other CPUs do that at run-
time, using out-of-order execution). As the Itanium?2
chip does not need any complex logic dedicated to find-
ing out-of-order execution opportunities, it can contain
more pipelines that do real work. The Itanium2 also
has a feature called branch predication for eliminating
branch mispredictions, by allowing to execute both the
THEN and ELSE blocks in parallel and discard one
of the results as soon as the result of the condition
becomes known. It is also the task of the compiler to
detect opportunities for branch predication.

Figure 2 shows a micro-benchmark of the selection
query SELECT oid FROM table WHERE col < X, where X
is uniformly and randomly distributed over [0:100]
and we vary the selectivity X between 0 and 100. Nor-
mal CPUs like the AthlonMP show worst-case behav-
ior around 50%, due to branch mispredictions. As sug-
gested in [17], by rewriting the code cleverly, we can
transform the branch into a boolean calculation (the
“predicated” variant). Performance of this rewritten
variant is independent of the selectivity, but incurs a
higher average cost. Interestingly, the “branch” vari-
ant on Itanium2 is highly efficient and independent of
selectivity as well, because the compiler transforms the

branch into hardware-predicated code.

Finally, we should mention the importance of on-
chip caches to CPU throughput. About 30% of all
instructions executed by a CPU are memory loads
and stores, that access data on DRAM chips, located
inches away from the CPU on a motherboard. This
imposes a physical lower bound on memory latency of
around 50 ns. This (ideal) minimum latency of 50ns
already translates into 180 wait cycles for a 3.6GHz
CPU. Thus, only if the overwhelming majority of the
memory accessed by a program can be found in an on-
chip cache, a modern CPU has a chance to operate at
its maximum throughput. Recent database research
has shown that DBMS performance is strongly im-
paired by memory access cost (“cache misses”) [3], and
can significantly improve if cache-conscious data struc-
tures are used, such as cache-aligned B-trees [16, 7] or
column-wise data layouts such as PAX [2] and DSM [§]
(as in MonetDB). Also, query processing algorithms
that restrict their random memory access patterns to
regions that fit a CPU cache, such as radix-partitioned
hash-join [18, 11], strongly improve performance.

All in all, CPUs have become highly complex de-
vices, where the instruction throughput of a processor
can vary by orders of magnitude (!) depending on
the cache hit-ratio of the memory loads and stores,
the number of branches and whether they can be pre-
dicted /predicated, as well as the amount of indepen-
dent instructions a compiler and the CPU can detect
on average. It has been shown that query execution in
commercial DBMS systems get an IPC of only 0.7 [6],
thus executing less than one instruction per cycle. In
contrast, scientific computation (e.g. matrix multipli-
cation) or multimedia processing does extract average
IPCs of up to 2 out of modern CPUs. We argue that
database systems do not need to perform so badly,
especially not on large-scale analysis tasks, where mil-
lions of tuples need to be examined and expressions
to be calculated. This abundance of work contains
plenty of independence that should be able to fill all
the pipelines a CPU can offer. Hence, our quest is to
adapt database architecture to expose this to the com-
piler and CPU where possible, and thus significantly
improve query processing throughput.

3 Microbenchmark: TPC-H Query 1

While we target CPU efficiency of query processing in
general, we first focus on ezxpression calculation, dis-
carding more complex relational operations (like join)
to simplify our analysis. We choose Query 1 of the
TPC-H benchmark, shown in Figure 3, this query is
CPU-bound because on all RDBMSs we tested. Also,
this query requires virtually no optimization or fancy
join implementations as its plan is so simple. Thus, all
database systems operate on a level playing field and
mainly expose their expression evaluation efficiency.
The TPC-H benchmark operates on a data ware-



house of 1GB, the size of which can be increased with a
Scaling Factor (SF). Query 1 is a scan on the lineitem
table of SF*6M tuples, that selects almost all tu-
ples (SF*5.9M), and computes a number of fixed-point
decimal expressions: two column-to-constant subtrac-
tions, one column-to-constant addition, three column-
to-column multiplications, and eight aggregates (four
SUM()s, three AVG()s and a COUNTY()). The aggre-
gate grouping is on two single-character columns, and
yields only 4 unique combinations, such that it can be
done efficiently with a small hash-table, requiring no
additional I/O nor even CPU cache misses (for access-
ing the hash-table).

In the following, we analyze the performance of
Query 1 first on relational database systems, then on
MonetDB/MIL and finally in a hand-coded program.

TPC-H Query 1 Experiments

DBMS “X” 28.1 1|1 AthlonMP 1533MHz, 609/547
MySQL 4.1 26.6 1|1 AthlonMP 1533MHz, 609/547
MonetDB/MIL | 3.7 1|1 AthlonMP 1533MHz, 609/547
MonetDB/MIL | 3.4 1| 1 Itanium?2 1.3GHz, 1132/1891
hand-coded 0.22 1|1 AthlonMP 1533MHz, 609/547
hand-coded 0.14 1| 1 Itanium2 1.3GHz, 1132/1891
MonetDB/X100 [0.50 1 |1 AthlonMP 1533MHz, 609/547
MonetDB/X100 (0.31 1| 1 Itanium2 1.3GHz, 1132/1891
MonetDB/X100 [0.30 | 100 | 1 Itanium2 1.3GHz, 1132/1891
[ (sec*#CPU)/SF| SF[#CPU, SPECcpu int/fp
OraclelOg 18.1 | 100 |16 Itanium?2 1.3GHz, 1132/1891
OraclelOg 13.2 |1000 |64 Itanium?2 1.5GHz, 1408/2161
SQLserver2000 (18.0 | 100 | 2 Xeon P4 3.0GHz, 1294/1208
SQLserver2000 (21.8 {1000 | 8 Xeon P4 2.8GHz, 1270/1094
DB2 UDB 8.1 9.0 | 100 | 4 Itanium?2 1.5GHz, 1408/2161
DB2 UDB 8.1 7.4 | 100 | 2 Opteron 2.0GHz, 1409/1514
Sybase 1Q 12.5 |[15.6 | 100 | 2 USIII 1.28GHz, 704/1054
Sybase 1Q 12.5 |[15.8 |1000 | 2 USIII 1.28GHz, 704/1054

TPC-H Query 1 Reference Results (www.tpc.org)

Table 1: TPC-H Query 1 Performance

3.1 Query 1 on Relational Database Systems

Since the early days of RDBMSs, query execution
functionality is provided by implementing a physical

SELECT 1_returnflag, 1_linestatus,
sum(l_quantity) AS sum_qty,
sum(1l_extendedprice) AS sum_base_price,
sum(l_extendedprice * (1 - 1l_discount))

AS sum_disc_price,
sum(1l_extendedprice * (1 - 1_discount) *
(1 + 1_tax)) AS sum_charge,

avg(l_quantity) AS avg_qty,
avg(l_extendedprice) AS avg_price,
avg(l_discount) AS avg_disc,
count (*) AS count_order

FROM lineitem

WHERE 1_shipdate <= date ’1998-09-02’

GROUP BY 1_returnflag, 1l_linestatus

Figure 3: TPC-H Query 1

relational algebra, typically following the Volcano [10]
model of pipelined processing. Relational algebra,
however, has a high degree of freedom in its param-
eters. For instance, even a simple ScanSelect(R, b, P)
only at query-time receives full knowledge of the for-
mat of the input relation R (number of columns, their
types, and record offsets), the boolean selection ex-
pression b (which may be of any form), and a list
of projection expressions P (each of arbitrary com-
plexity) that define the output relation. In order to
deal with all possible R,b, and P, DBMS implemen-
tors must in fact implement an expression interpreter
that can handle expressions of arbitrary complexity.

One of the dangers of such an interpreter, especially
if the granularity of interpretation is a tuple, is that
the cost of the “real work” (i.e. executing the expres-
sions found in the query) is only a tiny fraction of
total query execution cost. We can see this happen-
ing in Table 2 that shows a gprof trace of a MySQL
4.1 of TPC-H Query 1 on a database of SF=1. The
second column shows the percentage of total execu-
tion time spent in the routine, excluding time spent
in routines it called (excl.). The first column is a cu-
mulative sum of the second (cum.). The third column
lists how many times the routine was called, while the
fourth and fifth columns show the average number of
instructions executed on each call, as well as the IPC
achieved.

The first observation to make is that the five oper-
ations that do all the “work” (displayed in boldface),
correspond to only 10% of total execution time. Closer
inspection shows that 28% of execution time is taken
up by creation and lookup in the hash-table used for
aggregation. The remaining 62% of execution time is
spread over functions like rec_get nth _field, that navi-
gate through MySQL’s record representation and copy
data in and out of it. Other factors, such as locking
overhead (pthread mutex unlock, mutex test_and set)
or buffer page allocation (buf_frame align) seem to
play only a minor role in this decision support query.

The second observation is the cost of the Item op-
erations that correspond to the computational “work”
of the query. For example, Item_func_plus::val has a
cost of 38 instructions per addition. This performance
trace was made on an SGI machine with MIPS R12000
CPU3, which can execute three integer or floating-
point instructions and one load/store per cycle, with
an average operation latency of about 5 cycles. A sim-
ple arithmetic operation +(double srcl, double src2)

double in RISC instructions would look like:

LOAD srcl,regl
LOAD src2,reg2

ADD regl,reg2,reg3
STOR dst,reg3

The limiting factor in this code are the three

30mn our Linux test platforms, no multi-threaded profiling
tools seem to be available.



[cum.Jexcl.] calls]ins.] IPCJfunction

11.9] 11.9{ 846M| 6] 0.64[ut_fold_ulint_pair

20.4| 8.50.15M|27K]| 0.71fut_fold_binary

26.2| 5.8 7T7M| 37|0.85memcpy

29.3| 3.1 23M| 64/|0.88|Item_sum_sum::update_field
32.3] 3.0 6M]| 247| 0.83|row_search_for_mysql

35.2| 2.9 17TM| 79|0.70|Item_sum_avg::update_field
37.8] 2.6/ 108M| 11| 0.60|rec_get_bit_field_1

40.3| 2.5 6M]| 213 0.61|row_sel_store_mysql_rec

42.7) 2.4| 48M]| 25| 0.52[rec_get_nth_field

45.1) 2.4 60{19M| 0.69|ha_print_info

47.5 2.4| 5.9M| 195| 1.08|end_update

49.6| 2.1 11M| 89| 0.98|field_conv

51.6| 2.0[ 5.9M| 16|0.77|Field_float::val_real

53.4| 1.8 5.9M| 14| 1.07Item_field::val

54.9| 1.5 42M| 17| 0.51frow_sel_field_store_in_mysql..
56.3| 1.4 36M| 18|0.76/buf_frame_align

57.6| 1.3 17M| 38|0.80[Item_func_mul::val

59.0 1.4{ 25M| 25| 0.62[pthread_mutex_unlock

60.2| 1.2/ 206M| 2[0.75/hash_get_nth_cell

61.4] 1.2 25M| 21|0.65\mutex_test_and_set

62.4] 1.0 102M| 4| 0.62|rec_get_1byte_offs_flag

63.4] 1.0 53M| 9| 0.58|rec_1_get_field_start_offs
64.3| 0.9 42M| 11|0.65[rec_get_nth_field_extern_bit
65.3| 1.0 11M| 38|0.80|Item_func_minus::val
65.8/ 0.5/5.9M| 38|0.80|Item_func_plus::val

Table 2: MySQL gprof trace of TPC-H Ql:
+,-,%,SUM, AVG takes <10%, low IPC of 0.7

load/store instructions, thus a MIPS processor can do
one *(double,double) per 3 cycles. This is in sharp
contrast to the MySQL cost of #ins/Instruction-Per-
Cycle (IPC) = 38/0.8 = 49 cycles! One explanation
for this high cost is the absence of loop pipelining. As
the routine called by MySQL only computes one ad-
dition per call, instead of an array of additions, the
compiler cannot perform loop pipelining. Thus, the
addition consists of four dependent instructions that
have to wait for each other. With a mean instruction
latency of 5 cycles, this explains a cost of about 20
cycles. The rest of the 49 cycles are spent on jumping
into the routine, and pushing and popping the stack.

The consequence of the MySQL policy to execute
expressions tuple-at-a-time, is twofold:

e Ttem func_plus::val only performs one addition,
preventing the compiler from creating a pipelined
loop. As the instructions for one operation are
highly dependent, empty pipeline slots must be
generated (stalls) to wait for the instruction la-
tencies, such that the cost of the loop becomes 20
instead of 3 cycles.

e the cost of the routine call (in the ballpark of 20
cycles) must be amortized over only one opera-
tion, which effectively doubles the operation cost.

We also tested the same query on a well-known com-
mercial RDBMS (see the first row of Table 1). As we
obviously lack the source code of this product, we can-
not produce a gprof trace. However, the query evalu-
ation cost on this DBMS is very similar to MySQL.

The lower part of Table 1 includes some official
TPC-H Query 1 results taken from the TPC website.

SF=1 [[SF=0.001[| tot | res (BW = MB/s)
ms BW|| us BW ||MB]| size [MIL statement
127 [352 {[150 | 305 || 45 [5.9M [sO := select(I_shipdate).mark
134 [505 ||113 | 608 || 68 |5.9M |s1 := join(s0,l_returnflag)
134 (506 ||113 | 608 || 68 |5.9M [s2 := join(s0,l linestatus)
235 483 |[129 | 887 ||114 |5.9M [s3 := join(s0,l_extprice)
(
(

233|488 |[130 | 881 |[114 [5.9M [s4 := join(s0,l_discount)
232 489 |[127 | 901 |[114 |5.9M [s5 join(s0,l_tax)
134 {507 ||104 | 660 || 68 |5.9M [s6 := join(s0,l_quantity)
290 |155 |[324 | 141 || 45 [5.9M [s7 := group(sl)
320 136 ||368 | 124 || 45 [5.9M [s8 := group(s7,s2)

0| Off O 0| O 4 [s9:= unique(s8.mirror)

206 |440 || 60 [1527 || 91 [5.9M [0 := [+](1.0,s5)
210 [432 || 51 1796 || 91 [5.9M [r1 := [-](1.0,54)
274 498 || 83 [1655 |[137 |5.9M [r2 := [¥](s3,r1)

274 499 || 84 1653 |[137 |5.9M [r3 := [*](s12,r0)

165 [271 [|121 | 378 || 45| 4 |r4 := {sum}(r3,58,59)

165 271 ||125 | 366 || 45| 4 |r5 := {sum}(r2,s8,s9)

163 275 ||128 | 357 || 45| 4 |r6 := {sum}(s3,s8,s9)

163 275 ||128 | 357 || 45| 4 |r7 := {sum}(s4,s8,59)

144 (151 ||107 | 214 || 22| 4 |r8 := {sum}(s6,s8,59)

112 196 ||145 | 157 || 22| 4 [r9 := {count}(s7,s8,59)

724 [2327 _ [TOTAL |

Table 3: MonetDB/MIL trace of TPC-H Query 1

Query 1 is dominated by computations in a full scan
and this scales linearly with table size. The query is
also “embarrasingly parallel” using horizontal paral-
lelism, such that TPC-H results on parallel systems
most likely achieved linear speedup. Thus, we can
compare throughput for different systems, by normal-
izing all times towards SF=1 and a single CPU. We
also provide the SPECcpu int/float scores of the var-
ious hardware platforms used. We mainly do this in
order to check that the relational DBMS results we ob-
tained are roughly in the same ballpark as what is pub-
lished by TPC. This leads us to believe that what we
see in the MySQL trace is likely representative of what
happens in commercial RDBMS implementations.

3.2 Query 1 on MonetDB/MIL

The MonetDB system [4] developed by our group, is
mostly known for its use of vertical fragmentation,
storing tables column-wise, each column in a Binary
Association Table (BAT) that contains [oid,value]
combinations. A BAT is a 2-column table where the
left column is called head and the right column tail.
The algebraic query language of MonetDB is a column-
algebra called MIL [5].

In contrast to the relational algebra, the MIL al-
gebra does not have any degree of freedom. Its al-
gebraic operators have a fixed number of parame-
ters of a fixed format (all two-column tables or con-
stants). The expression calculated by an operator is
fixed, as well as the shape of the result. For example,
the MIL join(BAT[#;,t.] A, BAT[f.,t.] B) : BAT[f,t,]
is an equi-join between the tail column of A and head
column of B, that for each matching combination of
tuples returns the head value from A and tail value
from B. The mechanism in MIL to join on the other
column (i.e. the head, instead of the tail) of 4, is



to use the MIL reverse(A) operator that returns a
view on A with its columns swapped: BAT[t.,t;]. This
reverse iS a zero-cost operation in MonetDB that
just swaps some pointers in the internal representa-
tion of a BAT. Complex expressions must be exe-
cuted using multiple statements in MIL. For example,
extprice * (1 - tax) becomes tmpl := [-](1,tax);
tmp2 := [*] (extprice,tmpl), where [*]1() and [-]1Q)
are multiplex operators that “map” a function onto an
entire BAT (column). MIL executes in column-wise
fashion in the sense that its operators always consume
a number of materialized input BATs and materialize
a single output BAT.

We used the MonetDB/MIL SQL front-end to
translate TPC-H Query 1 into MIL and run it. Ta-
ble 3 shows all 20 MIL invocations that together span
more than 99% of elapsed query time. On TPC-H
Query 1, MonetDB/MIL is clearly faster than MySQL
and the commercial DBMS on the same machine, and
is also competitive with the published TPC-H scores
(see Table 1). However, closer inspection of Table 3
shows that almost all MIL operators are memory-
bound instead of CPU-bound! This was established
by running the same query plan on the TPC-H dataset
with SF=0.001, such that all used columns of the
lineitem table as well as all intermediate results fit
inside the CPU cache, eliminating any memory traf-
fic. MonetDB/MIL then becomes almost twice as fast.
Columns 2 and 4 list the bandwidth (BW) in MB/s
achieved by the individual MIL operations, counting
both the size of the input BATs and the produced out-
put BAT. On SF=1, MonetDB gets stuck at 500MB/s,
which is the maximum bandwidth sustainable on this
hardware [1]. When running purely in the CPU cache
at SF=0.001, bandwidths can get above 1.5GB/s. For
the multiplexed multiplication [*] (), a bandwidth of
only 500MB/s means 20M tuples per second (16 bytes
in, 8 bytes out), thus 75 cycles per multiplication on
our 1533MHz CPU, which is even worse than MySQL.

Thus, the column-at-a-time policy in MIL turns out
to be a two-edged sword. To its advantage is the fact
that MonetDB is not prone to the MySQL problem
of spending 90% of its query execution time in tuple-
at-a-time interpretation “overhead”. As the multiplex
operations that perform expression calculations work
on entire BATs (basically arrays of which the layout is
known at compile-time), the compiler is able to employ
loop-pipelining such that these operators achieve high
CPU efficiencies, embodied by the SF=0.001 results.

However, we identify the following problems with
full materialization. First, queries that contain com-
plex calculation expressions over many tuples will ma-
terialize an entire result column for each function in
the expression. Often, such function results are not
required in the query result, but just serve as inputs
to other functions in the expression. For instance, if
an aggregation is the top-most operator in the query

plan, the eventual result size might even be negligible
(such as in Query 1). In such cases, MIL material-
izes much more data than strictly necessary, causing
its high bandwidth consumption.

Also, Query 1 starts with a 98% selection of the
6M tuple table, and performs the aggregations on the
remaining 5.9M million tuples. Again, MonetDB ma-
terializes the relevant result columns of the select()
using six positional join()s. These joins are not re-
quired in a Volcano-like pipelined execution model. It
can do the selection, computations and aggregation all
in a single pass, not materializing any data.

While in this paper we concentrate on CPU effi-
ciency in main-memory scenarios, we point out that
the “artificially” high bandwidths generated by Mon-
etDB/MIL make it harder to scale the system to
disk-based problems efficiently, simply because mem-
ory bandwidth tends to be much larger (and cheaper)
than I/O bandwidth. Sustaining a data transfer of e.g.
1.5GB/s would require a truly high-end RAID system
with a very large number of disks.
static void tpch_queryl(int n, int hi_date,

unsigned char*__restrict__ p_returnflag,
unsigned char*__restrict__ p_linestatus,
double*__restrict__ p_quantity,

double*__restrict__ p_extendedprice,
double*__restrict__ p_discount,

double*__restrict__ p_tax,
int*__restrict__ p_shipdate,
aggr_tlx__restrict__ hashtab)

{
for(int i=0; i<n; i++) {
if (p_shipdate[i] <= hi_date) {
aggr_t1 *entry = hashtab +
(p_returnflag[i]<<8) + p_linestatus[i];

double discount = p_discount[i];
double extprice = p_extendedpricel[il];
entry->count++;
entry->sum_qty += p_quantityl[i];
entry->sum_disc += discount;
entry->sum_base_price += extprice;
entry->sum_disc_price += (extprice *= (1-discount));
entry->sum_charge += extpricex(l-p_tax[i]);
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Figure 4: Hard-Coded UDF for Query 1 in C

3.3 Query 1: Baseline Performance

To get a baseline of what modern hardware can do
on a problem like Query 1, we implemented it as a
single User Defined Function (UDF) in MonetDB, as
shown in Figure 4. The UDF gets passed in only those
columns touched by the query. In MonetDB, these
columns are stored as arrays in BAT[void,Tls. That
is, the oid values in the head column are densely as-
cending from 0 upwards. In such cases, MonetDB uses
voids (“virtual-oids”) that are not stored. The BAT
then takes the form of an array. We pass these arrays
as __restrict__ pointers, such that the C compiler knows
that they are non-overlapping. Only then can it apply



loop-pipelining!

This implementation exploits the fact that a
GROUP BY on two single-byte characters can never
yield more than 65536 combinations, such that their
combined bit-representation can be used directly as an
array index to the table with aggregation results. Like
in MonetDB/MIL, we performed some common subex-
pression elimination such that one minus and three
AVG aggregates can be omitted.

Table 1 shows that this UDF implementation (la-
beled “hand-coded”) reduces query evaluation cost to
a stunning 0.22 seconds. From the same table, you
will notice that our new X100 query processor, that is
the topic of the remainder of this paper, is able to get
within a factor 2 of this hand-coded implementation.

4 X100: A Vectorized Query Processor

The goal of X100 is to (i) execute high-volume queries
at high CPU efficiency, (i) be extensible to other ap-
plication domains like data mining and multi-media
retrieval, and achieve those same high efficiencies on
extensibility code, and (74) scale with the size of the
lowest storage hierarchy (disk).

In order to achieve our goals, X100 must fight bot-
tlenecks throughout the entire computer architecture:

Disk the ColumnBM I/0O subsystem of X100 is geared
towards efficient sequential data access. To re-
duce bandwidth requirements, it uses a vertically
fragmented data layout, that in some cases is en-
hanced with lightweight data compression.

RAM like I/O, RAM access is carried out through ex-
plicit memory-to-cache and cache-to-memory rou-
tines (which contain platform-specific optimiza-
tions, sometimes including e.g. SSE prefetching
and data movement assembly instructions). The
same vertically partitioned and even compressed
disk data layout is used in RAM to save space and
bandwidth.

Cache we use a Volcano-like execution pipeline based
on a wvectorized processing model. Small (e.g.
1000 values) vertical chunks of cache-resident data
items, called “vectors” are the unit of operation
for X100 execution primitives. The CPU cache is
the only place where bandwidth does not mat-
ter, and therefore (de)compression happens on
the boundary between RAM and cache. The
X100 query processing operators should be cache-
conscious and fragment huge datasets efficiently
into cache-chunks and perform random data ac-
cess only there.

CPU vectorized primitives expose to the compiler that
processing a tuple is independent of the previous
and next tuples. Vectorized primitives for projec-
tions (expression calculation) do this easily, but

we try to achieve the same for other query process-
ing operators as well (e.g. aggregation). This al-
lows compilers to produce efficient loop-pipelined
code. To improve the CPU throughput further
(mainly by reducing the number of load/stores in
the instruction mix), X100 contains facilities to
compile vectorized primitives for whole expression
sub-trees rather than single functions. Currently,
this compilation is statically steered, but it may
eventually become a run-time activity mandated
by an optimizer.

To maintain focus in this paper, we only sum-
marily describe disk storage issues, also because the
ColumnBM buffer manager is still under development.
In all our experiments, X100 uses MonetDB as its stor-
age manager (as shown in Figure 5), where it operates
on in-memory BATsSs.

SQL X100 algebra
\ code
SQL\frontend patterns

signature
makefile

Algebra
Operators

‘MonetDB/MIL’

Figure 5: X100 Software Architecture

4.1 Query Language

X100 uses a rather standard relational algebra as query
language. We departed from the column-at-a-time
MIL language so that the relational operators can pro-
cess (vectors of) multiple columns at the same time,
allowing to use a vector produced by one expression
as the input to another, while the data is in the CPU
cache.

4.1.1 Example

To demonstrate the behavior of MonetDB/X100, Fig-
ure 6 presents the execution of a simplified version of
a TPC-H Query 1, with the following X100 relational
algebra syntax:

Aggr(
Project(
Select (



Table(lineitem),
< (shipdate, date(’1998-09-03°))),
[ discountprice = *( -( £1t(’1.0’), discount),
extendedprice) 1]),
[ returnflag ],
[ sum_disc_price = sum(discountprice) 1J)

Execution proceeds using Volcano-like pipelining,
on the granularity of a vector (e.g. 1000 values).
The Scan operator retrieves data vector-at-a-time from
Monet BATs. Note that only attributes relevant to the
query are actually scanned.

A second step is the Select operator, which cre-
ates a selection-vector, filled with positions of tuples
that match our predicate. Then the Project opera-
tor is executed to calculate expressions needed for the
final aggregation. Note that ”discount” and ”extend-
edprice” columns are not modified during selection.
Instead, the selection-vector is taken into account by
map-primitives to perform calculations only for rele-
vant tuples, writing results at the same positions in
the output vector as they were in the input one. This
behavior requires propagating of the selection-vector
to the final Aggr. There, for each tuple its position in
the hash table is calculated, and then, using this data,
aggregate results are updated. Additionally, for the
new elements in the hash table, values of the group-
ing attribute are saved. The contents of the hash-table
becomes available as the query result as soon as the un-
derlying operators become exhausted and cannot pro-
duce more vectors.

4.1.2 X100 Algebra

Figure 7 lists the currently supported X100 algebra op-
erators. In X100 algebra, a Table is a materialized rela-
tion, whereas a Dataflow just consists of tuples flowing
through a pipeline.

Order, TopN and Select return a Dataflow with the
same shape as its input. The other operators define a
Dataflow with a new shape. Some peculiarities of this
algebra are that Project is just used for expression
calculation; it does not eliminate duplicates. Dupli-
cate elimination can be performed using an Aggr with
only group-by columns. The Array operator generates
a Dataflow representing a N-dimensional array as an
N-ary relation containing all valid array index coordi-
nates in column-major dimension order. It is used by
the RAM array manipulation front-end for the Mon-
etDB system [9].

Aggregation is supported by three physical opera-
tors: (i) direct aggregation, (ii) hash aggregation, and
(iii) ordered aggregation. The latter is chosen if all
group-members will arrive right after each other in the
source Dataflow. Direct aggregation can be used for
small datatypes where the bit-representation is lim-
ited to a known (small) domain, similar to the way
aggregation was handled in the “hand-coded” solution
(Section 3.3). In all other cases, hash-aggregation is
used.

! !
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Figure 6: Execution scheme of a simplified TPC-H
Query 1 in MonetDB /X100

X100 currently only supports left-deep joins. The
default physical implementation is a CartProd operator
with a Select on top (i.e. nested-loop join). If X100
detects a foreign-key condition in a join condition, and
a join-index is available, it exploits it with a Fetch1Join
or FetchNJoin.

The inclusion of these fetch-joins in X100 is no co-
incidence. In MIL, the “positional-join” of an oid into
a void column has proven valuable on vertically frag-
mented data stored in dense columns. Positional joins
allow dealing with the “extra” joins needed for vertical
fragmentation in a highly efficient way [4]. Just like
the void type in MonetDB, X100 gives each table a vir-
tual #rowId column, which is just a densely ascending
number from 0. The FetchiJoin allows to positionally
fetch column values by #rowId.

4.2 Vectorized Primitives

The primary reason for using the column-wise vector
layout is not to optimize memory layout in the cache
(X100 is supposed to operate on cached data anyway).
Rather, vectorized execution primitives have the ad-
vantage of a low degree of freedom (as discussed in
Section 3.2). In a vertically fragmented data model,
the execution primitives only know about the columns
they operate on without having to know about the
overall table layout (e.g. record offsets). When compil-



Table(ID) : Table

Scan( Table) : Dataflow

Array(List<Exp<int>>) : Dataflow

Select(Dataflow, Exp<bool>) : Dataflow

Join(Dataflow, Table, Exp<bool>, List<Column>) : Dataflow
CartProd(Dataflow, Table, List<Column>)
FetchlJoin(Dataflow, Table, Exp<int>, List<Column>)
FetchNJoin(Dataflow, Table, Exp<int>,

Exp<int>, Column, List<Column>>)

Project(Dataflow, List<Exp<*>>) : Dataflow

Aggr(Dataflow, List<Exp<*>>, List<AggrExp>) : Dataflow
OrdAggr(Dataflow, List<Exp<*>>, List<AggrExp>)
DirectAggr(Dataflow, List<Exp<*>>, List<AggrExp>)
HashAggr(Dataflow, List<Exp<*>>, List<AggrExp>])

TopN (Dataflow, List<OrdExp>, List<Exp<*>>, int):Dataflow

Order(Table, List<OrdExp>, List<AggrExp>) : Table

Figure 7: X100 Query Algebra

ing X100, the C compiler sees that the X100 vectorized
primitives operate on restricted (independent) arrays
of fixed shape. This allows it to apply aggressive loop
pipelining, critical for modern CPU performance (see
Section 2). As an example, we show the (generated)
code for vectorized floating-point addition:

map_plus_double_col_double_col(int n,
double*__restrict__ res,
double*__restrict__ coll, double*__restrict_
int*__restrict__ sel)

col2,

{
if (sel) {
for(int j=0;j<n; j++) {
int i = sel[jl;
res[i] = col1[i] + col2[il;
}
} else {
for(int i=0;i<n; i++)
res[i] = col1[i] + col2[il;
}}

The sel parameter may be NULL or point to an
array of n selected array positions (i.e. the “selection-
vector” from Figure 6). All X100 vectorized primitives
allow passing such selection vectors. The rationale is
that after a selection, leaving the vectors delivered by
the child operator intact is often quicker than copying
all selected data into new (contiguous) vectors.

X100 contains hundreds of vectorized primitives.
These are not written (and maintained) by hand, but
are generated from primitive patterns. The primitive
pattern for addition is:

any::1 +(any::1 x,any::1 y) plus = x + y

This pattern states that an addition of two values
of the same type (but without any type restriction)
is implemented in C by the infix operator +. It pro-
duces a result of the same type, and the name identi-
fier should be plus. Type-specific patterns later in the
specification file may override this pattern (e.g. str
+(str x,str y) concat = str_concat(x,y)).

The other part of primitive generation is a file with
map signature requests:

+(double*, doublex)
+(double, doublex)
+(double*, double)
+(double, double)

This requests to generate all possible combinations
of addition between single values and columns (the
latter identified with an extra *). Other extensible
RDBMSs often only allow UDFs with single-value pa-
rameters [19]. This inhibits loop pipelining, reducing
performance (see Section 3.1). 4

We can also request compound primitive signatures:

/(square(-(doublex*, doublex)), doublex)

The above signature is the Mahanalobis distance,
a performance-critical operation for some multi-media
retrieval tasks [9]. We found that the compound prim-
itives often perform twice as fast as the single-function
vectorized primitives. Note that this factor 2 is simi-
lar to the difference between MonetDB/X100 and the
hand-coded implementation of TPC-H Query in Ta-
ble 1. The reason why compound primitives are more
efficient is a better instruction mix. Like in the exam-
ple with addition on the MIPS processor in Section 3.1,
vectorized execution often becomes load/store bound,
because for simple 2-ary calculations, each vectorized
instruction requires loading two parameters and stor-
ing one result (1 work instruction, 3 memory instruc-
tions). Modern CPUs can typically only perform 1 or
2 load/store operations per cycle. In compound prim-
itives, the results from one calculation are passed via a
CPU register to the next calculation, with load/stores
only occurring at the edges of the expression graph.

Currently, the primitive generator is not much more
than a macro expansion script in the make sequence
of the X100 system. However, we intend to implement
dynamic compilation of compound primitives as man-
dated by an optimizer.

A slight variation on the map primitives are the
select_* primitives (see also Figure 2). These only
exist for code patterns that return a boolean. Instead
of producing a full result vector of booleans (as the
map does), the select primitives fill a result array of
selected vector positions (integers), and return the to-
tal number of selected tuples.

Similarly, there are the aggr_* primitives that calcu-
late aggregates like count, sum, min, and max. For each,
an initialization, an update, and an epilogue pattern
need to be specified. The primitive generator then
generates the relevant routines for the various imple-
mentations of aggregation in X100.

The X100 mechanism of allowing database exten-
sion developers to provide (source-)code patterns in-

4If X100 is used in resource-restricted environments, the size
of the X100 binary (less than a MB now) could be further re-
duced by omitting the column-versions of (certain) execution
primitives. X100 will still be able to process those primitives
although more slowly, with a vector size of 1.



stead of compiled code, allows all ADTs to get first-
class-citizen treatment during query execution. This
was also a weak point of MIL (and most extensible
DBMSs [19]), as its main algebraic operators were only
optimized for the built-in types.

4.3 Data Storage

MonetDB/X100 stores all tables in vertically frag-
mented form. The storage scheme is the same whether
the new ColumnBM buffer manager is used, or Mon-
etDB BAT[void,T] storage. While MonetDB stores
each BAT in a single contiguous file, ColumnBM par-
titions those files in large (>1MB) chunks.

A disadvantage of vertical storage is an increased
update cost: a single row update or delete must per-
form one I/O for each column. MonetDB/X100 cir-
cumvents this by treating the vertical fragments as
immutable objects. Updates go to delta structures
instead. Figure 8 shows that deletes are handled by
adding the tuple ID to a deletion list, and that inserts
lead to appends in separate delta columns. ColumnBM
actually stores all delta columns together in a chunk,
which equates PAX [2]. Thus, both operations incur
only one I/O. Updates are simply a deletion followed
by an insertion. Updates make the delta columns
grow, such that whenever their size exceeds a (small)
percentile of the total table size, data storage should
be reorganized, such that the vertical storage is up-to-
date again and the delta columns are empty.

An advantage of vertical storage is that queries that
access many tuples but not all columns save bandwidth
(this holds both for RAM bandwidth and I/O band-
width). We further reduce bandwidth requirements
using lightweight compression. MonetDB /X100 sup-
ports enumeration types, which effectively store a col-
umn as a single-byte or two-byte integer. This integer
refers to #rowlId of a mapping table. MonetDB/X100
automatically adds a Fetch1Join operation to retrieve
the uncompressed value using the small integer when
such columns are used in a query. Notice that since the
vertical fragments are immutable, updates just go to
the delta columns (which are never compressed) and
do not complicate the compression scheme.

MonetDB /X100 also supports simple “summary”
indices, similar to [12], which are used if a column is
clustered (almost sorted). These summary indices con-
tain a #rowld, the running maximum value of the col-
umn until that point in the base table, and a reversely
running minimum at a very coarse granularity (the de-
fault size is 1000 entries, with #rowids taken with fixed
intervals from the base table). These summary indices
can be used to quickly derive #rowId bounds for range
predicates. Notice again, due to the property that
vertical fragments are immutable, indices on them ef-
fectively require no maintenance. The delta columns,
which are supposed to be small and in-memory, are
not indexed and must always be accessed.

delete from TABLE wheri key=F insert into TABLE values (K,d,m)
p ipmod

shipmod shi shipmod
key flag #del key flag #del key flag #del
#OJAl A [m #OlA| [a] [m #HO Al |al|m |ug
#1/B||A |m #1/B| |a| |m B| |a||m
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Figure 8: Vertical Storage and Updates

5 TPC-H Experiments

Table 4 shows the results of executing all TPC-H
queries on both MonetDB/MIL and MonetDB/X100.
We ran the SQL benchmark queries on an out-of-
the-box MonetDB/MIL system with its SQL-frontend
on our AthlonMP platform (1533MHz, 1GB RAM,
Linux2.4) at SF=1. We also hand-translated all TPC-
H queries to X100 algebra, and ran them on Mon-
etDB/X100. The comparison between the first two
result columns clearly shows that MonetDB /X100 out-
performs MonetDB/MIL.

Both MonetDB/MIL and MonetDB /X100 use join
indices over all foreign key paths. For MonetDB /X100
we sorted the orders table on date, and kept lineitem
clustered with it. We use summary indices (see Sec-
tion 4.3) on all date columns of both tables. We
also sorted both suppliers and customers on (re-
gion,country). In all, total disk storage for Mon-
etDB/MIL was about 1GB, and around 0.8GB for
MonetDB/X100 (SF=1). The reduction was achieved
by using enumeration types, where possible.

We also ran TPC-H both at SF=1 and SF=100 on
our Itanium2 1.3GHz (3MB cache) server with 12GB
RAM running Linux2.4. The last column of Table 4
lists official TPC-H results for the MAXDATA Plat-
inum 9000-4R, a server machine with four 1.5GHz
(6MB cache) Itanium2 processors and 32GB RAM
running DB2 8.1 UDB?.

We should clarify that all MonetDB TPC-H num-
bers are in-memory results; no I/O occurs. This
should be taken into account especially when compar-
ing with the DB2 results. It also shows that even at
SF=100, MonetDB/X100 needs less than our 12GB
RAM for each individual query. If we would have had
32GB of RAM like the DB2 platform, the hot-set for
all TPC-H queries would have fit in memory.

While the DB2 TPC-H numbers obviously do in-
clude 1/0, its impact may not be that strong as its
test platform uses 112 SCSI disks. This suggests that
disks were added until DB2 became CPU-bound. In

5These results are from stream 0, also known as the “power
test”, in which there are no concurrent queries nor updates.



MonetDB/MIL[MonetDB/X100, 1CPU|DB2, 4CPU
Q[ SF=1[[SF=1|SF=1] SF=100 SF=100
1 3.72]] 0.50] 0.31 30.25 229
2 0.46|| 0.01| 0.01 0.81 19
3 2.52|| 0.04| 0.02 3.77 16
4 156/ 0.05| 0.02 1.15 14
5 2.72|| 0.08| 0.04 11.02 72
6 2.24(| 0.09| 0.02 1.44 12
7 3.26|| 0.22| 0.22 29.47 81
8 2.23|| 0.06| 0.03 2.78 65
9 6.78|| 0.44| 0.44 71.24 274
10 4.40| 0.22| 0.19 30.73 a7
11 0.43|| 0.03| 0.02 1.66 20
12 3.73|| 0.09| 0.04 3.68 19
13 11.42| 1.26] 1.04]  148.22 343
14 1.03|| 0.02| 0.02 2.64 14
15 1.39|| 0.09 0.04 14.36 30
16 2.25|| 0.21| 0.14 15.77 64
17 2.30|| 0.02| 0.02 1.75 77
18 5.20|| 0.15| 0.11 10.37 600
19 12.46|| 0.05| 0.05 4.47 81
20 2.75|| 0.08| 0.05 2.45 35
21 8.85|| 0.29 0.17 17.61 428
22 3.07|| 0.07] 0.04 2.30 93
| AthlonMP| Itanium2 |

Table 4: TPC-H Performance (seconds)

any case, and taking into account that CPU-wise the
DB2 hardware is more than four times stronger, Mon-
etDB/X100 performance looks very solid.

5.1 Query 1 performance

As we did for MySQL and MonetDB/MIL, we now also
study the performance of MonetDB/X100 on TPC-
H Query 1 in detail. Figure 9 shows its translation
into X100 Algebra. X100 implements detailed tracing
and profiling support using low-level CPU counters,
to help analyze query performance. Table 5 shows the
tracing output generated by running TPC-H Query 1
on our Itanium2 at SF=1. The top part of the trace
provides statistics on the level of the vectorized prim-
itives, while the bottom part contains information on
the (coarser) level of X100 algebra operators.

A first observation is that X100 manages to run all
primitives at a very low number of CPU cycles per
tuple - even relatively complex primitives like aggre-
gation run in 6 cycles per tuple. Notice that a mul-
tiplication (map-mul_*) is handled in 2.2 cycles per tu-
ple, which is way better than the 49 cycles per tuple
achieved by MySQL (see Section 3.1).

A second observation is that since a large part of
data that is being processed by primitives comes from
vectors in the CPU cache, X100 is able to sustain a
very high bandwidth. Where multiplication in Mon-
etDB/MIL was constrained by the RAM bandwidth
of 500MB/s, MonetDB/X100 exceeds 7.5GB/s on the

same operator 6,

60n the AthlonMP it is around 5GB/s

Order(

Project(

Aggr(
Select(

Table(lineitem)
< ( 1_shipdate, date(’1998-09-03’))),
1_returnflag, 1_linestatus ],
sum_qty = sum(l_quantity),
sum_base_price = sum(l_extendedprice),
sum_disc_price = sum(

discountprice = *( -(£1t(’1.0’), 1l_discount),

1_extendedprice ) ),
sum_charge = sum(*( +( £1t(°1.0’), 1_tax),
discountprice ) ),
sum_disc = sum(l_discount),
count_order = count() 1),

[ 1_returnflag, 1_linestatus, sum_qty,
sum_base_price, sum_disc_price, sum_charge,
avg_qty = /( sum_qty, cnt=dbl(count_order)),
avg_price = /( sum_base_price, cnt),
avg_disc = /( sum_disc, cnt), count_order ]),

[ 1_returnflag ASC, 1_linestatus ASC])

—

Figure 9: Query 1 in X100 Algebra

Finally, Table 5 shows that Query 1 uses three
columns that are stored in enumerated types (i.e.
l_discount, 1_tax and l_quantity). X100 automatically
adds three FetchiJoins to retrieve the original values
from the respective enumeration tables. We can see
that these fetch-joins are truly efficient, as they cost
less than 2 cycles per tuple.

5.1.1 Vector Size Impact

We now investigate the influence of vector size on per-
formance. X100 uses a default vector size of 1024, but
users can override it. Preferably, all vectors together
should comfortably fit the CPU cache size, hence they
should not be too big. However, with really small vec-
tor sizes, the possibility of exploiting CPU parallelism
disappears. Also, in that case, the impact of interpre-
tation overhead in the X100 Algebra next() methods
will grow.

Figure 10 presents results of the experiment, in
which we execute TPC-H Query 1 on both the Ita-
nium2 and AthlonMP with varying vector sizes. Just
like MySQL, interpretation overhead also hits Mon-
etDB /X100 strongly if it uses tuple-at-a-time process-
ing (i.e. a vector size of 1). With increasing vector
size, the execution time quickly improves. For this
query and these platforms, the optimal vector size
seems to be 1000, but all values between 128 and 8K
actually work well. Performance starts to deteriorate
when intermediate results do not fit in the cache any-
more. The total width of all vectors used in Query 1 is
just over 40 bytes. Thus, when we start using vectors
larger than 8K, the cache memory requirements start
to exceed the 320KB combined L1 and L2 cache of the
AthlonMP, and performance starts to degrade. For
Itanium 2 (16KB L1, 256KB L2, and 3MB L3), the
performance degradation starts a bit earlier, and then



input|total| time| BW| avg.|X100 primitive
count| MB| (us)|MBf|cycles

6M| 30| 8518|3521 1.9|map_fetch_uchr_col flt_col

6M| 30| 8360|3588 1.9|map_fetch_uchr_col flt_col

6M| 30| 8145|3683 1.9|map_fetch_uchr_col_flt_col

6M| 35.5| 13307|2667 3.0|select_lt _usht_col_usht_val
5.9M| 47| 10039(4681 2.3 |map_subflt_val_flt_col
59M| 71| 9385|7565 2.2 |map_mul_flt_col_flt_col
59M| 71| 9248|7677 2.1 |map_mul_flt_col_flt_col
5.9M| 47| 10254(4583 2.4 |map_add_flt_val_flt _col
5.9M| 35.5| 13052(2719 3.0|map_uidx_uchr_col
5.9M| 53| 14712|3602 3.4|map_directgrp_uidx_col_uchr_col
59M| 71| 28058(2530 6.5|aggr_sum_flt_col_uidx_col
5.9M| 71| 285982482 6.6 |aggr_sum flt_col_uidx_col
5.9M| 71| 27243|2606| 6.3 |aggr-sum_flt_col_uidx_col
59M| 71| 26603|2668 6.1|aggr_sum_flt_col_uidx_col
5.9M| 71| 27404|2590| 6.3|aggr-sum_flt_col_uidx_col
5.9M| 47| 18738(2508 4.3|aggr_count_uidx_col

X100 operator
0 3978 Scan

6M 10970 FetchlJoin(ENUM)

6M 10712 Fetch1lJoin(ENUM)

6M 10656 FetchlJoin(ENUM)

6M 15302 Select
5.9M 236443 Aggr(DIRECT)

Table 5: MonetDB/X100 performance trace of TPC-H
Query 1 (Itanium2, SF=1)

decreases continuously until data does not fit even in
L3 (after 64K x 40 bytes).

When the vectors do not fit in any cache anymore,
we are materializing all intermediate results in main
memory. Therefore, at the extreme vector size of 4M
tuples, MonetDB /X100 behaves very similar to Mon-
etDB/MIL. Still, X100 performance is better since it
does not have to perform the extra join steps present
in MIL, required to project selected tuples (see Sec-
tion 3.2).

6 Related Work

This research builds a bridge between the classical Vol-
cano iterator model [10] and the column-wise query
processing model of MonetDB [4].

Apart from formalizing the iterator model of query
processing, Volcano also generalized various forms of
parallel query processing [20], where one of the possi-
ble strategies is to dedicate a seperate process to each
query operator. This differs from our approach in the
sense that we reduce overhead by making a process
spend significant time in each operator for each query
processing iteration (i.e. processsing a vector of tuples
rather than a single one).

The work closest to our paper is [14], where a
blocked execution path in DB2 is presented. Unlike
MonetDB /X100, which is designed from the ground
up for vectorized execution, the authors only use their
approach to enhance aggregation and projection op-
erations. In DB2, the tuple layout remains NSM, al-
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Figure 10: Query 1 performance w.r.t. vector-size

though the authors discuss the possibility to dynami-
cally remap NSM chunks into vertical chunks dynam-
ically.

Also closely related is [22], which also suggests
block-at-a-time processing, again focusing on NSM tu-
ple layouts. The authors propose to insert ”Buffer”
operators into the operator pipeline, which call their
child N times after each other, buffering the results.
This helps in situations where the code-footprint for
all operators that occur in a query tree together exceed
the instruction cache. Then, when the instructions of
one operator are “hot” it makes sense to call it multi-
ple times. Thus, this paper proposes to do block-wise
processing, but without modifying the query operators
to make them work on blocks. We argue that if our ap-
proach is adopted, we get the instruction cache benefit
discussed in [22] for free. We had already noticed in
the past, that MonetDB/MIL due to its column-wise
execution spends so much time in each operator that
instruction cache misses are not a problem.

A similar proposal for block-at-a-time query pro-
cessing is [21], this time regarding lookup in B-trees.
Again the goals of the authors are different, mainly
better use of the data caches, while the main goal of
MonetDB/X100 is to increase the CPU efficiency of
query processing by loop pipelining.

As far as data storage is concerned, the update
scheme of MonetDB/X100 combines the decomposed
storage model (DSM) [8], with PAX [2] for tuples that
are updated. This idea is close to the suggestion in [15]
to combine DSM and NSM for more flexible data mir-
roring, and use of inverted lists to handle updates ef-
ficiently. In fact, a PAX block can be seen as a col-
lection of vertical vectors, such that X100 could run
right on top of this representation, without conversion
overhead.



7 Conclusion and Future Work

In this paper, we investigate why relational database
systems achieve low CPU efficiencies on modern CPUs.
It turns out, that the Volcano-like tuple-at-a-time exe-
cution architecture of relational systems introduces in-
terpretation overhead, and inhibits compilers from us-
ing their most performance-critical optimization tech-
niques, such as loop pipelining.

We also analyzed the CPU efficiency of the main
memory database system MonetDB, which does not
suffer from problems generated by tuple-at-a-time in-
terpretation, but instead employs a column-at-a-time
materialization policy, which makes it memory band-
width bound.

Therefore, we propose to strike a balance between
the Volcano and MonetDB execution models. This
leads to pipelined operators that pass to each other
small, cache-resident, vertical data fragments called
vectors. Following this principle, we present the ar-
chitecture of a brand new query engine for MonetDB
called X100. It uses vectorized primitives, to perform
the bulk of query processing work in a very efficient
way. We evaluated our system on the TPC-H de-
cision support benchmark with size 100GB, showing
that MonetDB/X100 can be up to two orders of mag-
nitude faster than existing DBMS technology.

In the future, we will continue to add to Mon-
etDB/X100 more vectorized query processing opera-
tors. We also plan to port the MonetDB/MIL SQL-
frontend to it, and fit it with a histogram-based query
optimizer. We intend to deploy MonetDB/X100 in
data-mining, XML processing and multimedia and in-
formation retrieval projects ongoing in our group.

We will also continue our work on the ColumnDB
buffer manager. This work embodies our goal to make
MonetDB /X100 scale out of main memory, and prefer-
ably achieve the same high CPU efficiencies if data
is sequentially streamed in from disk instead of from
RAM. Therefore, we plan to investigate lightweight
compression and multi-query optimization of disk ac-
cess to reduce I/O bandwidth requirements.

Finally, we are considering the use of X100 as an
energy-efficient query processing system for low-power
(embedded,mobile) environments, because it has a
small footprint, and its property to perform as much
work in as few CPU cycles as possible, translates to
improved battery life in such environments.
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