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1 Introduction

This document describes a mechanism for sub-dividing Non-Volatile DIMMs
(NVDIMMSs) into namespaces, which are logic units of storage similar to SCSI
LUNs or NVM Express namespaces. The primary audience for this document is
driver writers and NVDIMM manageability software developers, although
NVDIMM designers and platform OEMs may also find this specification useful.

This chapter contains an over of the motivation for NVDIMM namespaces,
covers the related terminology, and provides examples of the software
architecture that might utilize this specification. Chapter 2 defines NVDIMM
namespaces and provides the on-media data stuctures and rules for using them.
Chapter 3 defines the Block Translation Table (BTT) mechanism, which is an
optional layout within a namespace for providing block writes that cannot be
torn by a system interruption such as a power failure. Finally, Chapters 4 and 5
contain detailed examples of code and algorithms to help clarify the intention of
this specification and enable interoperating implementations.

1.1 Document Scope

This document exists primarily to document the NVDIMM on-media data
structures shown in the following tables:

* Table 2: Namespace Label Index Block Fields

* Table 3: Namespace Label Fields

* Table 4: BTT Info Block Fields

* Table 5: BTT Map Layout

* Table 6: BTT Flog Layout
Virtually all other text in this document is here to describe the semantics of
those data structures. Software architecture diagrams and algorithms described
here are meant to provide one possible implementation; various
implementations are possible provided the rules are followed as outlined in
chapters 2 and 3.

Fully function code examples for some algorithms described in this specification
(the BTT algorithm, for example) are available as open source guides to help
with individual implementations. See
https://github.com/pmem/nvmli/blob/master/src/libpmemblk/btt.c.
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Figure 1: Typical NVDIMM Software Architecture

The software architecture overview in Figure 1 shows one way that the
hardware NVDIMM might interact with software components. An NVDIMM
NFIT-driver stack sits at the heart of the architecture and is responsible for
managing namespaces, including creating, deleting, updating them, and the
block I/0 path for reading and writing data blocks in a namespace.

1.2 Related Documents

This document depends heavily on the following related documents:

1.2.1 NVDIMM Firmware Interface Table (NFIT)

This ACPI table, defined in ACPI 6.0, enables platform firmware to describe
NVDIMMs to an OSPM.

1.2.2 NVDIMM DSM Example Definition

This document describes a hardware interface for NVDIMMSs which enables
block mode access by providing Block Windows (BWs) which the driver uses to
address NVM on a specific DIMM. Although the namespaces defined by this
specification could be used with a variety of NVDIMM interfaces, the BW
interface is used in many examples for clarity.

1.3 Terminology

This following table provides a brief glossary of terms used by this document.
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Term Description
In the context of this specification, Block Mode refers to block-
organized NVM, used as a block storage device like an SSD. The
Block Mode . . . e .
namespaces described in this specification are either Block Mode
or Persistent Memory namespaces.
A block-organized namespace which is associated with a single
Block Mode | DIMM. Although the namespace only spans NVM on a single
Namespace | DIMM, it does not necessarily use the entire DIMM; the DIMM
may contribute to other namespaces as well.
The NVDIMM DSM Example Definition describes a hardware
Block interface to NVDIMM s that supports Block Mode. The heart of
Window |that interface is the Block Window mechanism, a set of
(or BW) |Programmable apertures used by driver software for NVM block
1/0.
Block Translation Table: A software mechanism for turning a
BTT byte-addressable Persistent Memory range into a block-

organized range with powerfail write atomicity when a block is
updated.
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Term Description
The Block Mode namespaces described in this specification are
associated with a single DIMM, and are therefor DIMM-local
DIMM-local o
namespaces. Compare this with an Interleave Set based
Namespace L . .
namespace, which is potentially spread across multiple DIMMs
that are interleaved together.
DIMM Physical Address: A memory address from a DIMM’s
DPA perspective, that is, the offset into the DIMM’s memory, starting
with DPA zero as the lowest addressable byte of the DIMM.
A simple, position-dependent checksum algorithm producing a
Fletcher64 64-bit result (see section 5.1 for an algorithmic description).
A byte-addressable, contiguous range of system F?h sical address
space interleaved across one or more DIMMs. The NVDIMM
Interleave | Firmware Interface Table Specification describes an entry in the
Set SPA Table whose interleave is described by the Interleave
?escription Table. That SPA entry corresponds to an Interleave
et.
The Persistent Memory namespaces described in this
Is'qgfgssgg SEecification are associated with an Interleave Set and are
Namespace |t erefor Interleave Set based. Compare this with Block Mode
P namespaces which are DIMM-local.
Label A persistent area of an NVDIMM reserved for namespace Label
Storage storage.
Area
Byte order for storing multi-byte values where the least-
Little significant byte is stored in the lowest address in memory. This is
Endian the x86 native byte order. All on-media integers described in this
specification are stored in little endian byte order.
Memory | A feature of most memory controllers that interleaves data
Interleave | between multiple DIMMs for performance reasons.
A namespace defines a contiguously-addressed range of Non-
Volatile Memory similar to a SCSI Logical Unit (LUN) or a NVM
Namespace | Express namespace. Namespaces described by this specification
can be either Persistent Memory namespaces or Block Mode
namespaces.
A non-volatile DIMM. This term is generic, describing the non-
NVDIMM volatile nature but not the implementation which could be
anything from non-volatile memory on the DIMM, to battery-
backed up RAM.
NVM Non-Volatile Memory.
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Term Description

Persistent | Byte-addressable memory which retains its contents across
Memory | power loss.A DIMM primarily containing non-volatile memory.

(or PMEM)

A feature allowing writes (or stores to memory) of a certain size

PO\X/Vﬁga'I that cannot be torn by a system interruption like a power failure.
Atomicit After recovery, the area being written will contain either the old
Y |value or the new value, but not a mixture of the two.

System Physical Address: A physical address as accessed by the

UuID Universally-Unique Identifier: A 128-bit ID designed to be
practically unique. Described in RFC 4122.

Table 1: Terminology

1.4 Overview

The NVDIMMs targeted by this specification provide byte-addressable non-
volatile memory mapped into the System Physical Address (SPA) space.
Alternatively, they may only provide access via a Block Window or similar
mechanism, or they may allow a combination of both of these modes of
operation.

1.4.1 NVDIMMs and the System Physical Address Space

As shown in Figure 2, an NVDIMM may appear in the System Physical Address
(SPA) space where software can access is as memory using loads and stores.
Software typically uses virtual addresses to access memory, and from there the
MMU translates those to addresses in the SPA space. From that point the
system memory controller determines which DIMM is being addressed and
translates the access to an offset into the DIMM'’s Physical Address (DPA) space.
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Figure 2: Persistent Memory Mapped into the System Physical Address Space

The on-DIMM data structures described in this specification use either relative
offsets or DPAs when referring to other on-DIMM data structures, as the exact
location of a DIMM in the SPA may vary from boot to boot due to other platform
configuration changes.

The simple 1-to-1 mapping of a SPA range to a DPA range shown in Figure 2 is

often not possible due to cross-DIMM interleaving done by the memory
controller.

11
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Figure 3: 2-Way Interleave Set of Persistent Memory

Figure 3 shows a simple example of interleaving where two NVDIMMs are
combined to make a contiguous range of SPA space. The dashed red arrows in
the picture illustrate how accesses from the CPU are sent to the NVDIMMs
alternatively based on their address. In this document, the term Interleave Set is
used to refer to a contiguous range of SPA providing byte-addressable access to
NVDIMMs. The interleave set can be 1-way, 2-way, etc., and can include fairly
complex interleave math and attributes such as memory controller based
mirroring between interleave sets. The primary feature of an interleave set as
far as this document is concerned is the fact that every byte of the interleave set
is usable by software as Persistent Memory.

1.4.2 NVDIMM Access via Block Window

Sometimes it is preferable to access the storage on an NVDIMM without
interleaving between multiple DIMMs. This may be because software is building
a RAID-style array from multiple NVDIMMs and wants to maintain the RAS
boundaries of the DIMMs similarly to the RAS boundaries of multiple disks in a
RAID array. Or this may be because the NVDIMM is not capable of the Persistent
Memory style access described in the previous section.
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Figure 4: DPA-Based Access Through a Block Window (BW)

In Figure 4, one way that accesses are isolated to a single NVDIMM is shown.
NVDIMMs which comply with the NVDIMM DSM Example Definition include
Block Windows (BWs), which are apertures through which software can read
and write block-sized chunks of NVM. The BWs include a control register for
programming the target location, and a status register for error detection. The
main point of the BW, howeuver, is to send I/0 specifically to a single DIMM.

1.4.3 Namespaces

Just as a large SAN storage array can be subdivided into some set of SCSI LUNs,
and an NVM Express PCle SSD can be carved into namespaces, NVDIMM
namespaces are very much the same idea. This is not to be confused with other
subdivision mechanisms like disk partitions or virtual volumes provided by many
SW RAID stacks — those things still exist on top of NVDIMM namespaces just as
they do on top of any direct-attached storage. Note that unlike things like disk
partitions, namespaces may have attributes unavailable through other means,
like different block sizes for block devices, the choice of powerfail write
atomicity, and the ability to be accessed as Persistent Memory.

In this specification, there are two main types of namespaces: a Persistent
Memory namespace and a Block Mode namespace.

13
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Figure 5: 2-Way Interleave Set Containing a Persistent Memory Namespace

A Persistent Memory namespace is associated with an Interleave Set, since the
primary reason for a Persistent Memory namespace is to be addressed as
memory in the SPA. Figure 5 shows a typical Persistent Memory namespace,
along with some other relevant details. The example in the figure starts with a
2-way interleave set where two NVDIMMs are completely mapped into the SPA
as interleaved space (note the SPA bracket on the right). The example has a
single Persistent Memory namespace created on the Interleave Set. In fact, an
Interleave Set is allowed to contain at most one namespace, but the namespace
size may be smaller than the Interleave Set size, as shown in the figure, allowing
some of the space to remain unused (the bracket on the left). Finally, Figure 5
also depicts the labels that define the namespace, stored in a Label Storage Area
shown at the top of the figure. The exct location of the label storage area is
NVDIMM-specific, but NVDIMMs following the NVDIMM DSM Example
Definition access the label storage area using a firmware device-specific-method.

14
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Figure 6: Block Namespaces Associated with Individual DIMMs
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A Block Mode namespace is associated with a specific DIMM (not an Interleave
Set like Persistent Memory namespaces). Just as the previous figure, Figure 6 is
showing that namespaces need not use the entire capacity available to them.
Unlike a Persistent Memory namespace, which can appear at most once per
Interleave Set, multiple Block Mode namespaces are allowed on each NVDIMM.
Additional Block Mode namespaces can be created until the NVDIMM space is
exhausted, or the label storage area space is exhausted.

Namespace Labels

[
N DPA

[~ S— o = S— : via
. Block Window
(BW)
S

o

Block Namespace -~

~,. from
&=
=== CPU

""" cpa

Persistent Memory {
Namespace

NVDIMM  NVDIMM
0 1

Figure 7: NVDIMMs Contributing to Both Persistent Memory and Block Namespaces

Figure 7 puts the two types of namespaces together, showing how they co-exist.
Notice how the space used for the Persistent Memory namespace always starts
at the lowest DPA, potentially leaving the higher DPA space for use with Block
Mode namespaces. In the example, the Persistent Memory namespace only
uses a fraction of the interleave set, and each NVDIMM contains a label in its
label storage area describing that NVDIMM’s contribution to the Persistent

15
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Memory namespace (the labels are depicted as little yellow boxes in the labe,
storage area). Additionall, the figure shows some of the free space on
NVDIMM1 was used for a Block Mode namespace, requiring that NVDIMM to
have another label in its label storage area to describe that namespace.

It is up to software to determine exactly where the namespaces are placed, but
some rules must be followed. Those rules are described in chapter 2, and
include the requirement that namespaces cannot overlap, and that the
Persistent Memory namespace, if it exists, must end at the beginning (lowest
address in the SPA) of an Interleave Set.

The Block Mode namespace on NVDIMM 1 shown on the right side of Figure 7
consists of a single range of DPA. In order to overcome the fragmentation that
naturally occurs from creating and deleting namespaces over time, Block Mode
namespaces are allowed to consist of multiple ranges of DPA.

Block Namespace
(in two ranges)

Block Namespace —-C

Persistent Memory {
Namespace

NVDIMM  NVDIMM
0 1

Figure 8: Creating a Multi-Range Namespace Due to Fragmentation

As an example, imagine a Block Mode namespace of 4GB is created, followed by
the creation of a 2GB Block Mode. At some later point the original 4GB
namespace is deleted and the admin wishes to create a 6GB namespace. In our
example, 6GB of storage is available, but not contiguously due to the second
2GB namespace stuck in the middle. This is solved, as shown in Figure 8, by
creating a Block Mode namespace made up of two ranges (shown on the right).
Each range takes a label in the label storage area (chapter 2 describes how the
labels are used together to describe the namespace). The resulting labels in
Figure 8 are one on NVDIMM 0 (to describe that DIMM'’s contribution to the
Persistent Memory namespace), and four on NVDIMM 2 (one for that DIMM'’s
contribution to the Persistent Memory namespace, one for the 2GB namespace
indicated by the bracket on the left, and two for the two-range namespace
indicated by the bracket on the right).

16
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A key point of Figure 8 is to show that, although the Block Mode namespace on
the right is made up of two DPA ranges, it still implements a contiguous address
range of logical blocks. This is typically implemented by the driver examining the
logical block addres (LBA) of an 1/O request, matching it against the ranges that
name up a namespace, and issuing the I/0 to the DPA+offset appropriate to the
range being accessed.

1.4.4 Driver Software

There are many ways an NVDIMM driver can be organized, one such
organization might be to arrange the drive routines as shown in Figure 9.

BW Transfers . Set of ‘ External
operations at transfers at LBAs
for each specific offsets in the !
| transfer DPAs namespace [ /
., / '\_' y - . / :,‘
o " /."’ "y" " .,,"’ {/
}/ \ /
— : BW name BTT block
space
€= /0 (€ ™ /0 /0 (mwm /O
reque st

NVDIMM containing
a Block Namespace

Driver
routines

Figure 9: Example Software Organization for Block I/0

Walking through the above example driver organization from right to left, the
driver starts by taking an I/O request from the software in the stack above it.
That request is broken up into individual blocks, each associated with an LBA.
The term External LBA is used here to indicate the LBA is in the range 0 to the
highest LBA advertised to components outside the driver — the external LBA
range does not include extra blocks that may be allocated by the driver to
support write atomics, for example.

Requests based on external LBAs are submitted to the BTT I/O routine, which
implements the translation table based write atomicity described in chapter 3.

17
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The BTT algorithm will take the request and turn it into multiple requests to
specific offsets in the namespace. For example, a read request will be turned
into a small read from the BTT map data structure followed by a full block read
from the location indicated by the map (much more detail on this in chapter 3).

Continuing to the left in Figure 9, the namespace 1/0 routine will take the
namespace offset based requests an convert them to DPA based requests using
the ranges associated with the namespace (from the namespace labels).

Finally, the example uses Block Windows so the BW I/0 routine takes the DPA
based requests and programs the BWs to perform the 1/0, as described in the
NVDIMM DSM Example Definition.

Just as it is useful to describe a possible implementation of the driver data path,
it is also useful to describe a possible driver organization for managing

namespaces.
Firmware
operations ~
to label o‘:;;m
storage
area
label / 2::22 Namespace
- /0 (€= e €= Management
Firmware
mailbox requeSt
. \ J
NVDIMM
Driver
routines

Figure 10: Example Software Organization for Namespace Management

Figure 10 shows how namespace management in the driver might be divided
into routines that deal with the namespace rules described in this spec, and a
label I/0 routine and understands how to access the label storage area. The

18
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figure shows the label storage area described by the NVDIMM DSM Example
Definition, where firmware device-specific-methods are used to access data
structures in the label storage area.

19
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2 Namespaces

A namespace defines a contiguously-addressed range of Non-Volatile Memory
similar to a SCSI Logical Unit (LUN) or an NVM Express namespace. This
specification provides two categories of namespace:

- Persistent Memory namespace
This type of namespace is associated with an Interleave Set, where a
combination of one or more DIMMs, interleaved together by the system
memory controller, provides a byte-addressable range of Persistent
Memory in the system physical address space. These persistent memory
namespaces are typically exposed via a Persistent Memory Aware File
System as shown in the Persistent Memory stack in Figure 1.

- Block Mode namespace
This type of namespace is associated with a single DIMM, where a range
of NVM on that DIMM is organized into logical blocks. These DIMM-local
namespaces are typically exposed via the system’s block storage
interfaces as shown in the Block stack in Figure 1.

Namespaces are defined by Namespace Labels which are stored in a Label
Storage Area on each DIMM. NVDIMMs providing an isolated Label Storage
Area as described in the NVDIMM DSM Example Definition access the labels
using Firmware Device-specific-methods. However, any NVDIMM could use the
label format specified in this document by storing the labels in a well-known
location.

Figure 11 shows the organization of the Label Storage Area. A header called the
Namespace Label Index Block appears twice at the top of the Label Storage Area.
This provides a powerfail-safe method for updating the information in the
storage area by alternating between the two index blocks when writing (more
details on this mechanism below).
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Figure 11: Namespace Label Storage on the NVDIMM

Following the index blocks, an array for storing labels takes up the remainder of
the label storage area. NVDIMM vendors define the size of their label storage
area and, therefor, the number of labels it holds. NVDIMMs following the
NVDIMM Block Mode Specification use an area at least 128KB in size, which
holds around 1000 labels. The index blocks contain a bitmap which indicates
which label slots are currently free and which are in use. The same powerfail-
safe mechanism used for updating the index blocks covers the update of labels
in the label area.

The powerfail-safe update mechanism depends on a principle used several times
in this specification where writes to active metadata are avoided. Instead, a
shadow copy is updated and checksums and sequence numbers are used to
make the last written copy active (a complete description of this mechanism is in
section 2.3).

Similarly, the labels themselves are never updated in-place. Instead, a free label
slot is first updated, followed by an update to the index block to mark the old
label slot free and the new label slot in use. At least one slot in the storage area
must be free, ensuring it is always possible to update labels using this method.

2.1 Namespace Label Index Block Layout

This section describes the layout of the Namespace Label Index Block. Like all
on-media structures defined in this specification, all multi-byte integer fields in
the index block are stored in little endian byte order.
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The size of an index block depends on how many label slots fit into the label
storage area. The minimum size of an index block is 256 bytes and the size must
be a multiple of 256 bytes. As necessary, padding with zero bytes at the end of

the structure is used to meet these size requirements.

For a storage area of

128KB, as described in the NVDIMM DSM Example Definition, the corresponding

index block size is 256 bytes:

Size of the Label Index Block
field up to the free field, as
described in Table 2

72 bytes

Bytes required for a bitmask
of 1024 labels (the number of

128-byte labels that fit into a 128 bytes

128KB label storage area)

Padding to meet minimum
size of 256 bytes

56 bytes

Total size of Label Index

Block on NVDIMMs following

the NVDIMM DSM Example
Definition

256 bytes

The following table describes the layout in a Namespace Label Index Block. See
section 4.1 for an example C structure definition of the Namespace Label Index

Block.
. Byte Byte —
Field Length | Offset Description
sig 16 0x0000 | Must be “NAMESPACE_INDEX\0".
Boolean attributes of this label storage
flags 4 0x0010 | area. There are no flag bits defined at
this time, so this field must be zero.
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Field

Byte
Length

Byte
Offset

Description

seq

0x0014

Sequence number used to identify
which of the two label index blocks is
current. Only the least-significant two
bits of this field are used in the current
definition, rotating through the values
depicted in Figure 12. The other bits
must be zero.

myoff

0x0018

The offset of this Label Index Block in
the label storage area.

mysize

0x0020

The size of this Label Index Block in
bytes. This field must be a multiple of
256 bytes.

otheroff

0x0028

The offset of the other Label Index
Block paired with this one (stored
adjacent to this one in the label
storage area).

labeloff

0x0030

The offset of the first slot where labels
are stored in this label storage area.

nlabel

0x0038

The total number of slots for storing
labels in this label storage area.

major

0x003c

Major version number. Currently at
version 1. Software must support this
version exactly, or decline to support
the DIMM contents.

minor

0x003e

Minor version number. Currently at
version 1. Software may use this to
check for backward-compatible
features in the label.

checksum

0x0040

64-bit Fletcher64 checksum of all fields
in this Label Index Block (see section
5.1 for details on the Fletcher64
checksum). This field is considered
zero when the checksum is computed.

23




Namespaces

™ ®

(lntel

. Byte Byte —
Field Length | Offset Description
Btes Array of unsigned bytes implementing
re y ired a bitmask that tracks which label slots
t:EloId are free. The size of this field is the
free 0x0048 | number of bytes required to hold the
nlabel . . . .
. bitmask with nlabel bits, padded with
bits + .
2ddin addition zero bytes to make the Label
P 8 Index Block size a multiple of 256.
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Table 2: Namespace Label Index Block Fields

Most of the fields are sufficiently defined by the above table, but some fields
require a more detailed explanation:

2.1.1 The Label Index Block seq Field

The sequence number held by the seq field is two bits in size (the remaining bits
in the seq field must be zero). Each time an index block is written, the
sequence number of the current index block is “incremented” by moving to the
next value clockwise as shown in Figure 12.

11 ,-»\ 01
kA

———

Figure 12: Cyclic Sequence Numbers in Label Index Block

Since there are two index blocks, written alternatively with successive sequence
numbers, the older index block’s sequence number will be immediately behind
(counter-clockwise to) the current index block’s sequence number. This
property is used during software initialization to identify the current index block.

The sequence number 00 is used to indicate an uninitialized or invalid index
block. Software never writes the sequence number 00, so a correctly
checksummed index block with this sequence number probably indicates a
software bug. When software discovers this case it treats it as an invalid index
block indication.
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Two index blocks with matching sequence numbers is also unexpected and likely
indicates a software bug. However, for deterministic behavior this specification
defines how matching sequence numbers are handled (section 2.3 explains the
index block at the higher offset in the label storage area is considered the valid
block in this case).

2.1.2 The Label Index Block £ree Field

The free bitmask is organized in the usual way where the label slot with the
lowest offset in the label storage area is tracked by the least significant bit of the
first byte of the free array. Missing from the above layout is a total count of free
slots. Since the common use case for the label storage area is to read all labels
during software initialization, it is recommended that software create a total
free count (or in use count, or both), maintained at run-time. Rules for
maintaining the on-media index blocks are described in section 2.3 below.

2.2 Namespace Label Layout

Each slot in the label storage area is either free or contains an active namespace
label. Single namespace may be described by a single label, but often it takes
multiple labels to fully describe a namespace. This happens for two reasons:

- Persistent Memory namespace

This type of namespace is associated with an Interleave Set. For interleave
sets that involve more than a single DIMM, each DIMM involved will contain
a namespace label describing that DIMM’s contribution to the namespace.

- Block Mode namespace

This type of namespace is DIMM-local, associated with a single DIMM and
not interleaved across DIMMs. Due to potential fragmentation of the NVM
on a DIMM, block mode namespaces may be described as a list of ranges on
that DIMM. In this case, each range will be stored as a label in the label
storage area on that DIMM.

In the cases where multiple labels are used to describe a namespace, the label

fields nlabel and position provide an ordering (“label one of two, label two of
two”) so that incomplete label sets can be detected.

The following table describes the layout of the Namespace Label. See section
4.2 for an example C structure definition of the Namespace Label.
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Field

Byte
Length

Byte
Offset

Description

uuid

16

0x0000

UUID per RFC 4122

name

64

0x0010

Optional name, NULL-terminated.

flags

0x0050

Boolean attributes of this namespace.

Bit

Meaning

0x00000001

ROLAREL: label
is read-only.
This indicates
the namespace
is exported to a
domain where
configuration
changes to the
label are not
allowed, such as
a virtual
machine.

0x00000002

LOCAL:
namespace is
local to this
DIMM (DIMM-
based
namespaces are
not spread
across DIMMs;
Interleave Set
based
namespaces will
have this bit
clear).

0x00000004

UPDATING:
label set is being
updated.

nlabel

0x0054

Total number of labels describing this
namespace. For Interleave Set based
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Field

Byte
Length

Byte
Offset

Description

namespaces, this number represents
the number of DIMMs involved since
each DIMM will have a label describing
that DIMM'’s contribution to this
namespace. For DIMM-local
namespaces, this field is zero.

position

0x0056

Position of this label in list of labels for
this namespace, such that:

0 < position < nlabel

For DIMM-local namespaces, this field
is zero.

isetcookie

0x0058

For an Interleave Set based
namespace, this cookie identifies the
Interleave Set. The label is considered
invalid if the actual Interleave Set
cookie doesn’t match the cookie
stored here. For DIMM-local
namespaces, this field is zero.

lbasize

0x0060

Zero for a Persistent Memory
namespace, a hon-zero LBA size in
bytes for a block-structured
namespace.

dpa

0x0068

The DPA where the NVM contributing
to this namespace begins on this
DIMM.

rawsize

0x0070

The extent of the DPA contributed by
this label.

slot

0x0078

Current slot in the label storage area
where this label is stored.

unused

0x007c

Must be zero.
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The existence of a label in the label storage area is not enough to consider the
label valid. The rules for managing the label metadata must be applied, as
described in section 2.3. Most of the fields are sufficiently defined by the above
table, but some fields require a more detailed explanation:

Table 3: Namespace Label Fields

2.2.1 The Label uuid Field

This field provides two functions. First, the namespace is associated with a UUID
that drivers can use to uniquely identify it, providing a way for it to be matched
up with applications using it, etc. Second, when multiple labels are required to
describe a namespace (either multiple labels on a single DIMM because a Block
Mode namespace consists of multiple ranges, or multiple labels spread across
DIMMs because a Persistent Memory namespace is on a multi-DIMM Interleave
Set), the UUID is the mechanism used to group the labels together. Section 2.3.4
describes the process for grouping the labels together by UUID, checking for
missing labels, recovering from partial label changes, etc.

2.2.2 The Label name Field

The name field is optionally used by manageability software to store a more
friendly name for the namespace. When this field is unused, it contains zeros.
For a Block Mode namespace, it is only necessary to store the name in the first
label of the range set. All subsequent name fields for that Block Mode
namespace are ignored and are expected to be zeros. But for Persistent
Memory namespaces, storing the name in every label for the namespace allows
for better error messages when exposing incomplete namespaces (if the name
were only stored in the first label, and that label is missing, there’s no way to
display the name in error messages).

The name field can be set at label creation time, or updated by following the
rules for updating labels. When updating the name of a Block Mode namespace,
a single, atomic update of the first label is used. When updating the name of a
Persistent Memory namespace, the two-phase approach using the UPDATING
flag is used to update all labels atomically, as described in section 2.3.7.

2.2.3 The Label £1lags Field

There are several varieties of namespaces, determined by the bits set in the
flags field:

* Persistent Memory namespace
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These namespaces have the LOCAL bit clear (since Persistent Memory
namespaces are associated with Interleave Sets, not the local DIMM). The
lbasize field in the label is unused in this case and should contain zero.

* Block Mode namespace

These namespaces have the LOCAL bit set (since Block Mode namespaces
are associated with the local DIMM). The 1basize field in the label
contains the logical block size for the namespace — all I/O must be done in
multiples of this size.

* Block Mode namespace with Powerfail Write Atomicity

These Block Mode namespaces use a BTT (Block Translation Table) to
provide single-block powerfail write atomicity. That is, a write of a block
cannot be torn by system interruption such as a power failure. This feature
is indicated by the presence of a BTT info block located at an offset of 4K
bytes from the start of the namespace/GPT-partition.

* Persistent Memory namespace being Created or Updated

During a cross-DIMM operation, such as creating a new namespace, or
updating the name field for a Persistent Memory namespace, the
UPDATING flag is used to make the update atomic across interruptions.
Updates happen in two phases, first writing the label with the UPDATING flag
set, second writing the updated label without the UPDATING flag. As
described in section 2.3.7, this allows recovery actions during software
initialization to either roll back or roll forward the cross-DIMM change.

* A Read-Only Namespace Label

The ROLABEL field indicates that device drivers and manageability software
should refuse to make changes to the namespace labels. Thisisa nota
security mechanism, but a usability feature instead. In cases where
ROLABEL is set, such as virtual machine guests, attempting to make
configuration changes that affect the namespace labels will fail (i.e. because
the VM guest is not in a position to make the change correctly). For these
cases, the VMM can set the ROLABEL bit on the label exposed to the guest
to provide a better user experience where manageability refuses to make
changes with a friendlier error message.

2.2.4 The Label nlabel and position Fields

The nlabel field contains the number of labels required to describe an
interleave-setnamespace. Each label is numbered as to its position in the list of
labels using the position field. For example, the common case where a
Persistent Memory Mode namespace requires exactly one label, nlabel will
be 1 and position will be 0. If a Persistent Memory namespace is built on an
Interleave Set that spans 4 DIMMs, each DIMM will contain a label with
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increasing position values to show the labels position in the set. For Block
Mode namespaces ‘nlabel’ and ‘position” must be zero.

2.2.5 The Label isetcookie Field

When a Persistent Memory namespace is defined, it is associated with an
Interleave Set. The isetcookie field in each label for that namespace is set
to a checksum the associated entry in the NFIT Interleave Description Table.
This value is used to detect a change in the Interleave Set configuration,
rendering the label invalid. The cookie must be robust in the case of DIMMs
moving physical location. Platform firmware may or may not be able to re-
establish an existing interleave set if DIMMs move location. The following
algorithm is used to calculate the isetcookie field.

For each interleave set create a data structure of the form:

struct interleave_set info ({
struct interleave_set info map {
uint64_t region_spa offset;
uint32_ t serial number;
uint32_t zero;
} mapping[INTERLEAVE WAYS];

};

INTERLEAVE WAYS is the number of memory devices (DIMMs) in the
interleave set as specified by the number of Memory Device to System
Physical Address Range Mapping Structure entries that reference the
System Physical Address Range Structure that defines the interleave set.

region_spa_ offset is the Region Offset field of the Memory Device
to System Physical Address Range Mapping Structure for a given DIMM.
This determines the DIMM’s position in the interleave set.

serial number is the Serial Number field from the NVDIMM Control
Region Structure associated with the Memory Device to System Physical

Address Range Mapping Structure for the given DIMM.

zero is zero-filled padding.

The isetcookie is then calculated by sorting the mapping[] array by
region_spa offset and then taking the Fletcher64 sum of the total
interleave_set_ info structure.
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For Block Mode namespaces, the isetcookie field must be zero.

2.2.6 The Label 1basize Field

Block Mode namespaces have a block size associated with them and this is
stored in the 1basize field. All1/O to the namespace is addressed in multiples
of this size.

For Persistent Memory namespaces, the 1basize field must be zero.

2.3 Namespace Label Rules

In this section, the rules for managing namespace label information are
described. Reading and writing the label storage area is a device-dependent
operation. For NVDIMMs following the NVDIMM DSM Example Definition, this
involves invoking platform firmware device-specific-methods to read or write
the label space.

There are a variety of ways software can choose to manage the label metadata.
A set of example algorithms are described in chapter 5. Unlike the BTT data
structures described in chapter 3, the namespace labels are not designed for
high-performance, parallel access. All the algorithms related to labels in this
specification assume single-threaded execution, or some sort of label metadata
lock for drivers proving label management.

Software must maintain certain invariants to use the on-media data structures
correctly and to inter-operate with other software components. This section
describes the rules that must be followed for the on-media data structures in the
label storage area.

At all times, the following must be true:

- The size of the label storage area is known (this must be true even if no
namespace metadata has been written yet).

- The label storage area either contains no valid Label Index Blocks,
indicating there are no labels on the DIMM (all slots free), or the
validation rules below produce a single, valid, Label Index Block.

- The number of free label slots is at least 1

- Only fully written, active labels, and full-written labels with the
UPDATING flag are marked in-use by the label index block

- Write to in-use label slots are not allowed; all updated to labels must be
done by writing to free slots and then updating the label index block to
make them active
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2.3.1 Validating Label Index Blocks and Labels

The existence of a valid Namespace Label Index Block depends on the following

tests passing (typically done during driver initialization):

1. Based on the size of the label storage area, the size of the Label Index
Block is calculated and both index blocks must be read successfully from
the label storage area.

2. Any index block with an incorrect signature field is discarded

Any index block with an incorrect checksum is discarded

4. Any index block with an incorrect myoff, mysize, or otheroff field is
discarded

5. Any index block with a sequence number of zero is discarded

6. If two index blocks remain, after passing all the above tests, and their
sequence numbers match, the index block at the lower offset in the label
storage area is discarded

7. Iftwo index blocks remain, after passing all the above tests, their
sequence numbers are compared and the block whose sequence number
is the predecessor of the other (immediately counter-clockwise to it, as
shown inFigure 16) is discarded.

8. If one index block remains, that is the current, valid block and software
should make note that the next update to the index will write the other
block. However, if no valid index blocks remain, all slots are considered
free and the next update to the index will write to the lower-addressed
block location (i.e. the start of the label storage area). Note that there’s
no reason to write a valid index block until the first update to a label
takes place, although software is free to write an initial block no valid
block is found.

w

The existence of valid namespace labels on a DIMM depends on the slot being
marked in-use by a valid label index block and, in the case of a Persistent
Memory namespace, on the isetcookie field in the label matching the
current NFIT information.

2.3.2 Reading Namespace Labels

Namespace labels are typically scanned, in their entirety, during software
initialization, for example when a driver is making a list of valid namespaces to
surface as NVDIMM devices. Once a list of labels has been created, the steps in
the following sections are followed for recovery of label state after a system
interruption and to assemble labels into valid namespaces. Since Persistent
Memory namespaces are associated with Interleave Sets and not individual
DIMMs, software should read all labels associated with an Interleave Sets before
performing the next steps on them. An even simpler algorithm (and the one
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described in section Error! Reference source not found.) simply makes a list of
all labels from all NVDIMMs on the system and then performs the recovery and
namespace assembly steps on the entire list.

For a given DIMM, the following steps are used to read all labels once the Label
Index Block validation steps in the previous section are complete:

0. Pre-condition: both Label Index Blocks have been read and the rules in
section 2.3.1 have been followed to determine the current index state.
1. Step through the £ree bitmask field in the index, starting with bit 0 and
ending with bitnlabel - 1
a. Read the label in that slot using the label I/O method for the
NVDIMM. For NVDIMMs following rhe NVDIMM DSM Example
Definition, this means issuing a firmware mailbox command to
access the label-sized chunk of data at the offset given by (2 *
index block_size * slot * label size).

After reading all the labels during software initialization, the next steps are
typically to perform the recovery steps described in the next section, and then
assemble the labels into complete sets, as described in the section after next.

2.3.3 Recovery Steps on Namespace Labels

After creating a list of labels, as described in the previous section, a driver must
perform recovery steps to return the labels to a stable state. This is to recover
from an unexpected system interruption while labels are being written. Since
the Label Index Blocks are written by alternating to the unused copy of the
index, and checksum indicate completed writes, no recovery is necessary for
that data structure or for label updates made on a single DIMM. The only
recovery required for the label storage area is due to the interruption of a multi-
DIMM update to a set of labels.

Section 2.3.7 below describes how the UPDATING flag in a label is used to
indicate a multi-DIMM label operation. For recovery, the following steps must
be applied to the set of labels:

0. Pre-condition: The set of labels have been read as described in the

previous section.

1. For each set of labels with the same UUID, if no labels in the set are
found with the UPDATING flag set, then no recovery is required for that
set
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2. For the sets where UPDATING appears at least once, if the set is
incomplete (some DIMM s in the Interleave Set do not contain a label
with the UUID), the recovery action is to roll back the interrupted create
operation that left this state:

a. For each DIMM in the Interleave Set containing a label with the
uulID:
i. Delete the label

3. For set where UPDATING appears at least once and the set is otherwise
complete (each DIMM in the Interleave Set contains a label with the
UUID, some with UPDATING set, some with UPDATING clear), the
recovery action is to roll forward the change that was interrupted:

a. For each DIMM in the Interleave Set:

i. If UPDATING is set, write an updated label with
UPDATING clear and with the name field copied from the
first label in the set (the label with a position field of
0).

2.3.4 Assembling Namespace Labels into Complete Sets

After creating a list of labels and performing the recovery actions on the list, as
described in the previous two sections, a driver must follow the steps in this
section to assemble complete sets of labels representing usable namespaces:

0. Precondition: Labels have been read and the recovery actions have been
taken.
1. For each set of labels with the same UUID
a. If the setis complete (position fields are found for every
position from 0 to nlabel - 1), the namespace is complete
and may be surfaced by the driver as a usable namespace (if the
driver supports that type of namespace)

2.3.4.1 Incomplete Namespaces

A driver may find incomplete namespaces in the case where an Interleave Set is
incomplete. In this case, the BIOS will prevent the Interleave Set from appearing
in the SPA, but the individual DIMMs will still exist along with their labels for the
incomplete Persistent Memory namespace. In this case, it is recommended that
the driver expose the incompete namespace somehow, even if only for
manageability software, so that users see evidence of the missing DIMMs). No
I/0 should be allowed on an incomplete namespace. Manageability software
should allow incomplete namespaces to be deleted (i.e. for the case where the
admin knows the missing DIMM will never return).
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2.3.5 Updating the Contents of the Label Storage Area

More specific cases are covered below, but in general adding a label to a
DIMM'’s label storage area requires the driver to follow these steps:

0.

1.

2.
3.

Pre-conditions: the driver has a new label constructed to be written to a
specific DIMM'’s label storage area. There are at least 2 free slots in the
label storage area so that, after adding the label, at least 1 free slot
remains.

The driver chooses a free slot from the Label Index Block, fills in that slot
number in the label’s slot field

The driver writes the new label to that slot in the label storage area

The driver updates the Label Index Block by taking the current index
block, clearing the appropriate bit in the £ree field, incrementing the
sequence number as shown in Figure 12, and then writing the index block
over the inactive index block location (making this location the new
active index block if the write succeeds)

Similarly, updating an existing label in the label storage area requires the driver
to follow these steps:

0. Pre-conditions: the driver has an updated label constructed to be written

to a specific DIMM'’s label storage area. There is at least 1 free slot in the
label storage area.

The driver chooses a free slot from the Label Index Block, fills in that slot
number in the label’s slot field

The driver writes the updated label to that slot in the label storage area
The driver updates the Label Index Block by taking the current index
block, setting the appropriate bit in the £ree field to make the old
version of the label inactive and clearing the appropriate bit in the free
field to make the new version active, incrementing the sequence number
as shown in Figure 12, and then writing the index block over the inactive
index block location (making this location the new active index block if
the write succeeds)

2.3.6 Writing New Namespace Labels

When creating namespaces, the driver’s namespace management routines have
two interesting cases: creating labels for a new Persistent Memory namespace
and creating labels for a new Block Mode namespace. These operations are
similar, but not identical because of the issues related to writing labels across
multiple DIMMs for Persistent Memory namespaces. The following two sub-
sections describe each case.
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The flows described in this section assume that the label management software
serializes all label updates, so that only one thread at a time is executing these
flows. The pre-conditions state a certain number of free slots must be available
before and after the operations. If there are not enough of these free slots in
the label storage area, the operations describe should fail before any steps are
taken (the failure reason should be something similar to “out of label space for
the requested operation — delete some namespaces to free up label space.”).

2.3.6.1 Writing New Persistent Memory Namespace Labels

Although rare, a system interruption such as a power failure during namespace
creation must be handled to make sure the labels are not left in a corrupt state.
When updating labels on a single DIMM, the Label Index Block update rules
provide atomicity. But when an operation involves multiple DIMMs, that
mechanism alone is not sufficient for atomicity, and the UPDATING flag in the
label is used as well. When creating a new Persistent Memory namespace, the
driver must follow these steps:

0. Pre-conditions: the labels to be written to each DIMM in the Interleave
Set have been constructed, each with a unique position field from 0
tonlabel - 1, and all labels with the same new UUID. All DIMMs
involved have at least 2 label slots free, so that after the new labels are
written, they will have at least 1 free label slot left.

1. For each DIMM in the Interleave Set, the new label is written with the
UPDATING flag set, using the adding a label flow described above in
section 2.3.6

2. For each DIMM in the Interleave Set, the new label is updated with the
same contents as the previous step, but with the UPDATING flag clear,
using the updating an existing label flow described above in section 2.3.5

In the case of an unexpected system interruption, the above flows leave either a
partial set of labels, all with the new UUID, with the UPDATING flag set, or a
complete of labels is left where some of them have the UPDATING flag set. The
recovery steps in section 2.3.3 comprehend these two cases and either roll the
change back or roll it forward as appropriate, making the cross-DIMM update
atomic with respect to system interruption (common driver multi-threaded
locking is still responsible for making the update atomic with respect to other
concurrent update attempts).

2.3.6.2 Writing New Block Mode Namespace Labels
Updating labels that are all on the same DIMM is powerfail atomic by nature of
the Label Index Block update rules. Since Block Mode namespaces are always
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DIMM-local, the use of the UPDATING flag and multi-pass update described in
the previous section are not necessary. Drivers creating new Block Mode
namespaces must follow these steps:

0. Pre-conditions: the labels to be written to the DIMM have been
constructed, each with a unique position field from 0 to nlabel -
1, and all labels with the same new UUID. The DIMMs involved has at
least nlabel + 1 label slots free, so that after the new labels are written, it
will have at least 1 free label slot left.
1. All labels are written to free slots and made active in one step using steps
similar to the adding a label flow described above in section 2.3.6:
a. Freeslots are identified using the current index block, the slot
field in each label is updated accordingly
b. All new labels are written into their free slots
The new index block is constructed so the the new label slots are
no longer marked free, the sequence number is advanced as
shown in Figure 12, and then the new index block is written over
the inactive index block location (making this location the new
active index block if the write succeeds)

2.3.7 Updating Existing Namespace Labels

At the current version of this specification, there’s only one reason to write out
an updated label: updating the name field in the label.

2.3.7.1 Updating Persistent Memory Namespace Labels
To update the name field associated with a Persistent Memory namespace, the

driver must follow these steps:

0. Pre-conditions: the namespace must already exist. Each DIMM in the
Interleave Set must have at least 1 free slot.

1. For each DIMM in the Interleave Set, the label on that DIMM is updated
with a label with the new name field and the UPDATING flag set. The
“for each DIMM” operation in this step must start with the DIMM
containing the label whose position field is zero.

2. For each DIMM in the Interleave Set, the label is updated with the same
contents as the previous step, but with the UPDATING flag clear, using
the updating an existing label flow described above in section 2.3.5
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If the above steps are interrupted unexpectedly, the recovery steps in section
section 2.3.3 handle the case where a name update is incomplete and finish the

update.

2.4 The Label-less Namespace

Implementations may choose to expose some ranges of NVM as a namespace
without any labels existing. An example of this would be a simple NVDIMM
product with no label storage space or support for Block Mode. In this case, the
entire interleave set should be exposed as a single namespace which is the full
size of the Persistent Memory range in the SPA. Implementations may find it
useful to provide this degenerate case by having the driver construct a label on
the fly that represents the Persistent Memory namespace as if the label was
read from a label storage area. But since this case doesn’t actually use a real
label storage area the name field are not supported.

2.5 Virtualization Considerations

Implementations allowing NVDIMM namespaces to appear in VM Guests may
choose to disallow configuration changes done from within the guest. The
ROLABEL flag describe in Table 3 provides this mechanism. The VMM would
set this flag in the label when it constructs the label that the VM Guest sees, and
that tells the driver in the guest that making configuration changes that write to
the label storage area does not make sense and would fail if attempted.

2.6 1/0 on Namespaces

A Persistent Memory namespace, by definition, is a contiguous range of System
Physical Address space. So reading and writing at a given offset in the
namespace is a matter of reading and writing at the same offset from the
beginning of the SPA range exposing the namespace. But for Block Mode
namespaces, the conversion from namespace offset to an NVM location is
required. The Block Mode namespace labels contain a dpa field which tells the
driver, for each range of NVM that is part of the namespace, the DIMM Physical
Address where that range starts.
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Figure 13: 1/0 on a Multi-Range Namespace

As shown in Figure 13 above, when a Block Mode namespace consists of
multiple ranges, the driver performs a look up that maps the offset into the
namespace to the specific range This is done by comparing the namespace
offset to the rawsize field in the labels (chapter 5 contains a full algorithmic
description of this process).
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3 Block Translation Table (BTT)

A block namespace may contain a Block Translation Table (BTT), which is a
layout and set of rules for doing block I/0 that provide powerfail write atomicity
of a single block. Traditional block storage, including hard disks and SSDs,
usually protect against torn sectors, which are sectors partially written when
interrupted by power failure. Existing software, mostly file systems, depend on
this behavior, often without the authors realizing it. To enable such software to
work correctly on NVDIMM block devices, the BTT adds several data structures
as shown in Figure 14.

BTT arena info block (backup)

BTT arena flog

Block Namespace - BTT arena map

BTT arena data area

BTT arena info block

NVDIMM

Figure 14: The BTT Data Structures in a Block Namespace

Each block namespace using a BTT is broken into arenas, each of which can
handle a maximum of 512 Gigabytes. Each area will contain the layout shown in
Figure 14: the info block, data area, map, flog, and a backup info block. Each of
these areas is described in the following sections. When the namespace is larger
than 512 Gigabytes, multiple arenas are required by the BTT layout, as shown in
Figure 15.
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Block Namespace - BTT arenas

NVDIMM

Figure 15: A BTT With Multiple Arenas in a Large Block Namespace

A full reference implementation of the BTT layout and algorithms is available as
open source code. Itis described at http://pmem.io/2014/09/23/btt.html,
which includes pointers to the source code.

3.1 BTT Data Structures

All BTT fields are stored as Little Endian, unsigned integers unless stated
otherwise in the tables below. Rules for the BTT layout are described below, but
it is highly recommended that the reference implementation, specifically the
function write_ layout (), be used as a reference since that code has been
validated extensively. The layout code can be found at
https://github.com/pmem/nvmli/blob/master/src/libpmemblk/btt.c.

3.1.1 The BTT Info Block

The following table describes the layout of the BTT Info Block. See section 4.3
for an example C structure definition of the BTT Info Block. The BTT Info Block
starts at 4K offset from the start of the hosting Namespace or GPT partition.

. Byte Byte ..
Field Length | Offset Description

sig 16 0x0000 | Must be “BTT_ARENA_INFO\0\0".
uuid 16 0x0010 | UUID identifying this BTT instance
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Field

Byte
Length

Byte
Offset

Description

parent uuid

16

0x0020

UUID of containing namespace or
GPT partition

flags

0x0030

Boolean  attributes of this
namespace.

Bit Meaning

0x00000001 | ERROR: arena
is read-only
due to errors
(metadata
inconsistent,
for example)

major

0x0034

Major version number. Currently
at version 1. Software must
support this version exactly, or
decline to support the DIMM
contents.

minor

0x0036

Minor version number. Currently
at version 1. Software may use
this to check for backward-
compatible features in the label.

external lbasize

0x0038

Advertised LBA size in bytes. 1/0O
requests must be in this size
chunk.

external nlba

0x003c

Advertised number of LBAs in this
arena.

internal lbasize

0x0040

Internal LBA size. Each block in
the arena data area is this size in
bytes. This may be larger than
the external _Ibasize due to
alignment padding between LBAs.

internal nlba

0x0044

Number of blocks in the arena
data area.
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Field

Byte

Length

Byte
Offset

Description

nfree

0x0048

Number of free blocks maintained
for writes to this arena. In the
current layout definition, nfree
will  always be equal to
internal_nlba — external_nlba.

infosize

0x004c

The size of the info block. Must
be 4096.

nextoff

0x0050

Offset of next arena, relative to
the beginning of this arena’s info
block.

dataoff

0x0058

Offset of the data area for this
arena, relative to the beginning of
this arena’s info block. The
internal-LBA number zero lives at
this offset.

mapoff

0x0060

Offset of the map for this arena,
relative to the beginning of this
arena’s info block.

flogoff

0x0068

Offset of the flog for this arena,
relative to the beginning of this
arena’s info block.

infooff

0x0070

Offset of the backup copy of this
arena’s info block, relative to the
beginning of this arena’s primary
info block.

unused

3968

0x0078

Must be zero.

checksum

0xO0ff8

64-bit Fletcher64 checksum of all
fields. This field is considered as
containing zero when the
checksum is computed.

Table 4: BTT Info Block Fields
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The existence of a valid BTT info block is used to determine whether a block
namespace is used as a raw block device (with no powerfail atomicity
guarantees) or as a BTT block device. This is similar to the way a file system
superblock is used to indicate the existence of a file system on a block device.
The block namespace encapsulates the BTT layout, which in turn encapsulates
the OS partition table (if any), and partitions then encapsulate file systems, if
any. Each BTT arena starts with a BTT info block, aligned on a 4096-byte
boundary, and ends with a backup BTT info block, in the highest 4096-byte
aligned block available in the arena. When writing the BTT layout,
implementations should write out the info blocks from the highest arena to the
lowest, writing the backup info block and other BTT data structures before the
primary info block. Writing the layout in this manner will ensure that a valid BTT
layout is only detected after the entire layout has been written.

3.1.2 The BTT Data Area

The BTT data area starts immediately after the BTT info block and extends to
the beginning of the BTT map data structure. The amount of data that can be
stored in an arena is calculated by first calculating the necessary space required
for the BTT info blocks, map, and flog (plus any alignment required), subtracting
that amount from the total arena size, and then calculating how many blocks fit
into the resulting space.

3.1.3 The BTT Map

The BTT map area maps an LBA that indexes into the arena, to its actual location.
The terminology pre-map LBA and post-map LBA is used to describe the input
and output values of this mapping. The BTT map is located as high as possible in
the arena, after room for the backup info block and flog (and any required
alignment) has been taken into account.

The following table describes the layout of the BTT Map.

Byte Byte ..
Entry Length | Offset Description
Map entry contains:
Bits Meaning
pre-map LBAO 4 0x0000

[29:0] Post-map  LBA
number  (block
number in this
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Byte Byte

Entry Length | Offset

Description

arena’s data
area)

[30] ERROR: When
set, reads on this
block return an
error. Writes to
this block clear
this flag.

[31] ZERO: When
set, reads on this
block return a
full  block of
zeros. Writes to
this block clear
this flag.

pre-map LBA 1 4 0x0004 “

Repeat for external_nlba entries in the
map.

Table 5: BTT Map Layout

The ERROR and ZERO bits indicate conditions that cannot both be true at the
same time, so that combination is used to indicate a normal map entry, where
no error or zeroed block is indicated. In other words, the error condition is
indicated only when the ERROR bit is set and the ZERO bit is clear, with similar
logic for the zero block condition. When neither condition is indicates, both
ERROR and ZERO are set. This leaves the case where both ERROR and ZERO
are bits are zero, which is typicaly the initial state of the map. Both bits zero
means that the map entry contains the initial indentity mapping where the pre-
map LBA is mapped to the same post-map LBA. Defining the map this way
allows an implementation to leverage the case where the initial contents of the
namespace is known to be zero, requiring no writes to the map when writing the
layout. This can greatly improve the layout time since the map is the largest BTT
data structure written during layout.
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3.1.4 The BTT Flog

The BTT flog is so named to illustrate that it is both a free list and a log, rolled
into one data structure. The flog size is determined by the nfree field in the
BTT info block. The flog location is the highest address in the arena after space
for the backup info block and alignment requirements have been taken in
account.

The following table describes the layout of the BTT Flog. See section 4.4 for an
example C structure definition of the BTT Flog.

. Byte Byte ..
Field Length | Offset Description
Last pre-map LBA written using this
flog entry. This value is used as an
1lba 4 0x0000
X index into the BTT map when updating
it to complete the transaction.
Old post-map LBA. This is the old
entry in the map when the last write
old map 4 0x0004 using this flog entry occurred. If the

transaction is complete, this LBA is
now the free block associated with
this flog entry.

New post-map LBA. This is the block
allocated when the last write using
new map 4 0x0008 | this flog entry occurred. By definition,
a write transaction is complete if the
BTT map entry contains this value.

This sequence number field is written
last to mark the flog entry as updated.
Only the least-significant two bits of
seq 4 0x000c | this field are used in the current
definition, rotating through the values
depicted in Figure 16. The other bits
must be zero.

1ba’ 4 0x0010 | Alternate Iba entry.

old map’ 4 0x0014 | Alternate old entry.
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Field Lgli’;h oBf)f,st:t Description
new map’ 4 0x0018 | Alternate new entry.
seq 4 0x001c | Alternate seq entry.
The above fields repeat nfree times.

Table 6: BTT Flog Layout

The seqfield in each flog entry is used to determine which set of fields is newer.
Updates to a flog entry must always be made to the older set of fields and must
be implemented carefully so that the seq bits are only written after the other
fields are known to be committed to persistence. Figure 16 shows the
progression of the seq bits over time, where the newer entry is indicated by a
value that is clockwise of the older value.

-

Figure 16: Cyclic Sequence Numbers for Flog Entries

3.2 BTT Theory of Operation

The reference implementation at at
https://github.com/pmem/nvmli/blob/master/src/libpmemblk/btt.c contains an
up-to-date and validated implementation of the BTT, so it is recommended as
the best reference for BTT operation. The layout described in this document is
implemented by the header file in the reference implementation, available at at
https://github.com/pmem/nvml/blob/master/src/libpmemblk/btt_layout.h.
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3.2.1 The Read Path

As shown in the reference implemention and illustrated in Figure 17 below,
reading a block from a BTT block namespace starts by calculating the arena, then
looking the block number up in that arena’s map. The ERROR and ZERO bits are
checked and the block data itself it read if appropriate.

namespace /O BTTI/O

Locate arena (_ External LBA
containling LBA READ

BTT arena 1

\4

Fetch map entry
-

data area

= ‘4
-

=

-
q -—— - -) Fetch data at -) block marked

pos:—map LBA as zero or error

BTT arena ™ -

L 4
’f

-

-

data area L M =) Checkforerrors =3 -BA data

or error

Figure 17: BTT Read Path Overview

3.2.2 The Write Path

The BTT write path is more complex than the read path described above. Each
write to a BTT block namespace is an allocating write, avoiding the situation
where an existing block is being overwritten since that would allow a block to be
torn by a power failure.
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namespace 1/0 BTTI/O
- —
( \ / \
Locate arena <_ External LBA
containing LBA WRITE
BTT arena ™ ¢
Identify free
data area flogientey '** flog
state
e y et
Store data in
free—block
- -
=
—’
- ==
BTT arena = ‘ - ) Read old map entry
<€ = \Write new flog entry
data area <€ = Write new map entry |=2» success

Figure 18: BTT Write Path Overview (Error Cases Not Shown)

As shown above, the write path starts with the arena calculation. A free block is
found in the flog, typically by grabbing a run-time lock for a flog entry. In the
reference implementation, this run-time lock is part of the lane mechanism.
Once the volatile flog state is updated in memory, the new block is written and
the persistent flog and map states are updated. These steps are carefully
ordered to ensure recovery is possible after a power failure at any point in the
write flow, without resulting in a torn block.

3.2.3 BTT Recovery

The reference implementation performs the recovery steps in the routine
read flog pair () available at at
https://github.com/pmem/nvml/blob/master/src/libpmemblk/btt.c. Since the
persistent flog and map states are not updated until the free block is written
with new data, a power failure at any point during the data transfer is harmless,
simply leaving the partially written data in a free block that remains free. Once
the flog is updated (made atomic by the seq bits in the flog entry), the
algorithm is committed to the update and a power failure from this point in the
write flow onwards will be handled by completing the update to the map. The
flog contains all the information required to complete the update.

BTT recovery is intended to happen single-threaded, on an inactive BTT (before
the BTT block namespace is allowed to accept I/O requests). The maximum
amount of time required for recovery is determined by nfree, but is only a few
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loads and a single store (and the corresponding cache flushes) for each
incomplete write discovered.
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4 Example C Structure Definitions

This chapter provides example C structure definitions for the data structures
defined by this specification. Since these are on-media structures, before
storing them all multi-byte integer fields should be converted to little endian
byte order. The definitions shown here use POSIX standard data types as
defined in the include file <stdint.h>.
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4.1 Namespace Label Index Block Structure

The figure below shows an example C declaration of a Label Index Block, two
copies of which are stored at the beginning of the label storage area on each
NVDIMM.

#define NSINDEX SIG LEN 16
#define NSINDEX ALIGN 256

struct namespace_ index {
char sig[NSINDEX SIG LEN];
uint32_t flags;
uint32_t seq;
uinté64_t myoff;
uint64_t mysize;
uint64_t otheroff;
uint64_t labeloff;
uint32_t nslot;
uintlé_t major;
uintl6_t minor;
uint64_t checksum;
uint8_t free[];

Figure 19: Namespace Label Index Block Structure
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The nslot field is calculated by taking the numer of labels that would fir into the
label storage area. For example:

nslot = label storage_area size / sizeof (struct namespace_ label)

The size of the £ree[] field in the above struct definition is calculated by taking
the number of labels that would fit into the label storage area and creating a
bitmask large enough to represent that many label slots, and finally rounding
that value up so the index block size is a multiple of 256. For example:

free_size = roundup (howmany (nslot, 8), 256)

4.2 Namespace Label Structure

The figure below shows an example C declaration of a Namespace Label.

#define NSLABEL UUID LEN 16
#define NSLABEL NAME LEN 64

struct namespace_label ({
uint8 t uuid[NSLABEL UUID LEN];
char name [NSLABEL NAME LEN];
uint32_t flags;
uintl6_t nlabel;
uintl6_t position;
uint64_t isetcookie;
uint64_t lbasize;
uinté4_t dpa;
uint64_t rawsize;
uint32_t slot;
uint32_t unused;

e nitions o1 ags mask for namespa

#define NSLABEL FLAG ROLABEL 0x00000001 /* :
#define NSLABEL FLAG LOCAL 0x00000002 /*
#define NSLABEL FLAG BTT 0x00000004 /*
#define NSLABEL FLAG UPDATING 0x00000008 /*

Figure 20: Namespace Label Structure

4.3 BTT Info Block Structure

The figure below shows an example C declaration of a BTT Info Block.
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#define BTT_ ALIGNMENT 4096 /* a
#define BTTINFO SIG LEN 16
#define BTTINFO UUID LEN 16

struct btt_info {
char sig[BTTINFO_ SIG LEN]; /
uint8 t uuid[BTTINFO_ UUID LEN]; /
uint8_t parentiuuid[BTTINFinUID LEN] ;
uint32_t flags; ; :
uintl6_t major;
uintl6_t minor;
uint32_t external lbasize;
uint32 t external nlba;
uint32_t internal lbasize;
uint32 t internal nlba;
uint32_t nfree;
uint32_t infosize;

/%

BT1I

DN N N N N NN

uint64_t nextoff;
uint64_t dataoff;
uint64_t mapoff;
uint64_t flogoff;
uint64 t infooff;

DN NN

char unused[3968]; Ve

uint64_t checksum; /%

#define

/%

lealia

*/

#define BTTINFO MAJOR VERSION 1
#define BTTINFO MINOR VERSION 1

Figure 21: BTT Info Block Structure

4.4 BTT Flog Structure

The figure below shows an example C declaration of a BTT Flog structure. These
entrys are paired so that each Flog entry contains two of the structs defined
below.

struct btt_flog {
uint32_t 1lba;
uint32_t old_map;
uint32 t new_map;
uint32_t seq;
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Figure 22: BTT Flog Structure
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This chapter contains example algorithms related to the namespace labels and
BTT structures defined by this specification. In some cases, C code is provided,
but most of the examples in this section are shown in an informal pseudocode

format.

5.1 The Fletcher64 Checksum

The figure below shows a Fletcher64 checksum implementation that produces
the correct result for the data structures in this specification when run on a 64-
bit system. When checksumming a structure, any multi-byte integer fields
should be in host byte order. If the structure contains its own checksum, as is
commonly the case, that field should contain zero when this checksum routine is

called.

uint64_t
checksum (void *addr, size_t len)
{
uint32_ t *p32 = addr;
uint32 t *p32end = addr + len;
uint32 t 1032 = 0;
uint32 t hi32 = 0;
while (p32 < p32end) {
lo32 += *p32++;
hi32 += 1032;
}

return (uint64_t)hi32 << 32 | 1lo32;

Figure 23: The Fletcher64 Algorithm Used in this Specification




