
Kyrylo Perelygin, Yuan Lin

GTC 2017

COOPERATIVE GROUPS

2

DEVELOPERS
Scalable Cooperation among groups of threads

Flexible parallel decompositions

Composition across software boundaries

Deploy Everywhere

Examples include:

Persistent RNNs

Physics

Search Algorithms

Sorting

Cooperative Groups: a flexible model for synchronization and

communication within groups of threads.

At a glance Benefits all applications

3

LEVELS OF COOPERATION: TODAY

__syncthreads(): block level
synchronization barrier in CUDA

SM

GPU

Multi-GPU

Warp

Warp

4

LEVELS OF COOPERATION: CUDA 9.0

SM

GPU

Multi-GPU

Warp

Warp

For device-spanning grid:
auto g = this_grid();

For multiple grids spanning GPUs:

auto g = this_multi_grid();

For CUDA thread blocks:

auto g = this_thread_block();

For current coalesced set of threads:

auto g = coalesced_threads();
For warp-sized group of threads:

auto block = this_thread_block();
auto g = tiled_partition<32>(block)

All Cooperative Groups functionality is

within a cooperative_groups:: namespace

5

THREAD GROUP

Base type, the implementation depends on its construction.

Unifies the various group types into one general, collective, thread group.

We need to extend the CUDA programming model with handles that can
represent the groups of threads that can communicate/synchronize

Thread

Group

Thread

Block

Tile
Thread

Block

Coalesced

Group

Grid

Group

Multi-Grid

Group

6

THREAD BLOCK
Implicit group of all the threads in the launched thread block

Implements the same interface as thread_group:

void sync(); // Synchronize the threads in the group

unsigned size(); // Total number of threads in the group

unsigned thread_rank(); // Rank of the calling thread within [0, size]

bool is_valid(); // Whether the group violated any API constraints

And additional thread_block specific functions:

dim3 group_index(); // 3-dimensional block index within the grid

dim3 thread_index(); // 3-dimensional thread index within the block

7

CUDA KERNEL All threads launched

foobar(thread_block g)

thread_group tile4 = tiled_partition(tile32, 4);

thread_block g = this_thread_block();

thread_group tile32 = tiled_partition(g, 32);

All threads in thread block

PROGRAM DEFINED DECOMPOSITION

Restricted to powers of two,

and <= 32 in initial release

8

GENERIC PARALLEL ALGORITHMS

__device__ int reduce(thread_group g, int *x, int val) {
int lane = g.thread_rank();
for (int i = g.size()/2; i > 0; i /= 2) {
x[lane] = val; g.sync();
val += x[lane + i]; g.sync();

}
return val;

}

g = tiled_partition(this_thread_block(), 32);
reduce(g, ptr, myVal);

g = this_thread_block();
reduce(g, ptr, myVal);

Per-Block Per-Warp

9

THREAD BLOCK TILE
A subset of threads of a thread block, divided into tiles in row-major order

thread_block_tile<32> tile32 = tiled_partition<32>(this_thread_block());

thread_block_tile<4> tile4 = tiled_partition<4>(this_thread_block());

Exposes additional functionality: .shfl()
.shfl_down()
.shfl_up()
.shfl_xor()

.any()

.all()

.ballot()

.match_any()

.match_all()
Size known at compile time = fast!

10

STATIC TILE REDUCE

template <unsigned size>
__device__ int tile_reduce(thread_block_tile<size> g, int val) {
for (int i = g.size()/2; i > 0; i /= 2) {
val += g.shfl_down(val, i);

}
return val;

}

g = tiled_partition<16>(this_thread_block());
tile_reduce(g, myVal);

Per-Tile of 16 threads

11

GRID GROUP
A set of threads within the same grid, guaranteed to be resident on the device

New CUDA Launch API to opt-in:
cudaLaunchCooperativeKernel(…)

__global__ kernel() {
grid_group grid = this_grid();
// load data
// loop - compute, share data

grid.sync();
// devices are now synced

}

Device needs to support the cooperativeLaunch property.

cudaOccupancyMaxActiveBlocksPerMultiprocessor(&numBlocksPerSm, kernel, numThreads, 0));

12

GRID GROUP
The goal: keep as much state as possible resident

Shortest Path / Search
Genetic Algorithms /

Master driven algorithms
Particle Simulations

Weight array perfect for
persistence

Iteration over vertices?
Fuse!

Synchronization
between a master block

and slaves

Synchronization
between update and
collision simulation

13

MULTI GRID GROUP
A set of threads guaranteed to be resident on the same system, on multiple devices

GPU A GPU B

Block 0 Block 1 Block 0 Block 1

Synchronize

__global__ void kernel() {
multi_grid_group multi_grid = this_multi_grid();
// load data
// loop - compute, share data

multi_grid.sync();
// devices are now synced, keep on computing

}

14

MULTI GRID GROUP
Launch on multiple devices at once

New CUDA Launch API to opt-in:
cudaLaunchCooperativeKernelMultiDevice(…)

struct cudaLaunchParams params[numDevices];
for (int i = 0; i < numDevices; i++) {

params[i].func = (void *)kernel;
params[i].gridDim = dim3(…); // Use occupancy calculator
params[i].blockDim = dim3(…);
params[i].sharedMem = …;
params[i].stream = …; // Cannot use the NULL stream
params[i].args = …;

}
cudaLaunchCooperativeKernelMultiDevice(params, numDevices);

Devices need to support the cooperativeMultiDeviceLaunch property.

15

coalesced_group active = coalesced_threads();

COALESCED GROUP
Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

Size: 8

16

coalesced_group g1 = coalesced_threads();

coalesced_group active = coalesced_threads();

COALESCED GROUP
Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

Size: 3

Size: 8

1 3 7Internal Lane Mask

if () { // start block

17

coalesced_group g1 = coalesced_threads();

coalesced_group active = coalesced_threads();

COALESCED GROUP
Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

Size: 3

Size: 8

1 3 7Internal Lane Mask

if () { // start block

g1.thread_rank();210

Automatic translation to rank-in-group!

18

coalesced_group g1 = coalesced_threads();

coalesced_group active = coalesced_threads();

COALESCED GROUP
Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

Size: 3

Size: 8

1 3 7Internal Lane Mask

if () { // start block

g1.shfl(value, 0);

Automatic translation from rank-in-group to
SIMD lane!

g1.thread_rank();210

19

coalesced_group g1 = coalesced_threads();

coalesced_group active = coalesced_threads();

COALESCED GROUP
Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

Size: 3

Size: 8

1 3 7

if () { // start block

g1.shfl(value, 0);

g1.thread_rank();210

g2 = tiled_partition(g1, 2);0 1 0 Size: 2 and 1

Internal Lane Mask

20

coalesced_group g1 = coalesced_threads();

coalesced_group active = coalesced_threads();

COALESCED GROUP
Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

Size: 3

Size: 8

1 3 7Internal Lane Mask

if () { // start block

g1.shfl(value, 0);

g1.thread_rank();210

active.sync()

} // end block

g2 = tiled_partition(g1, 2);0 1 0 Size: 2 and 1

21

ATOMIC AGGREGATION

inline __device__ int atomicAggInc(int *p)
{

coalesced_group g = coalesced_threads();
int prev;
if (g.thread_rank() == 0) {

prev = atomicAdd(p, g.size());
}
prev = g.thread_rank() + g.shfl(prev, 0);
return prev;

}

Opportunistic cooperation within a warp

22

ARCHITECTURE

Cooperative Group APIs
<cooperative_groups.h>

PTX *.sync instructions

GPU

Device Runtime

CUDA Application

Cooperative Launch APIs
<cuda_runtime.h>

CUDA *_sync builtins

CUDA Runtime

Cooperative Launch APIs
<cuda.h>

CUDA Driver

23

WARP SYNCHRONOUS PROGRAMMING
IN CUDA 9.0

24

25

CUDA WARP THREADING MODEL
NVIDIA GPU multiprocessors create, manage, schedule and execute threads in warps
(32 parallel threads).

Threads in a warp may diverge and re-converge during execution.

Full efficiency may be realized when all 32 threads of a warp are converged.

time

diverged diverged

converged

26

WARP SYNCHRONOUS PROGRAMMING

Warp synchronous programming is a CUDA programming technique that leverages
warp execution for efficient inter-thread communication.

• e.g. reduction, scan, aggregated atomic operation, etc.

CUDA C++ supports warp synchronous programming by providing warp synchronous
built-in functions and cooperative group collectives.

27

EXAMPLE: SUM ACROSS A WARP

val = input[lane_id];
val += __shfl_xor_sync(0xffffffff, val, 1);
val += __shfl_xor_sync(0xffffffff, val, 2);
val += __shfl_xor_sync(0xffffffff, val, 4);
val += __shfl_xor_sync(0xffffffff, val, 8);
val += __shfl_xor_sync(0xffffffff, val, 16);

val =σ𝑖=0
32 𝑖𝑛𝑝𝑢𝑡[𝑖]

28

HOW TO WRITE
WARP SYNCHRONOUS PROGRAMMING

Thread re-convergence

• Use built-in functions to converge
threads explicitly

• Do not rely on implicit thread re-
convergence.

Make Sync Explicit

time

diverged diverged

converged

29

Thread re-convergence

• Use built-in functions to converge
threads explicitly

• Do not rely on implicit thread re-
convergence.

Data exchange between threads

• Use built-in functions to sync threads
and exchange data in one step.

• When using shared memory, avoid data
races between convergence points.

Make Sync Explicit

Reading and writing the
same

memory location by
different threads

may cause data races.

diverged diverged

HOW TO WRITE
WARP SYNCHRONOUS PROGRAMMING

30

WARP SYNCHRONOUS BUILT-IN FUNCTIONS

Active-mask query: which threads in a warp are active

• __activemask

Synchronized data exchange: exchange data between threads in warp

• __all_sync, __any_sync, __uni_sync, __ballot_sync

• __shfl_sync, __shfl_up_sync, __shfl_down_sync, __shfl_xor_sync

• __match_any_sync, __match_all_sync

Threads synchronization: synchronize threads in a warp and provide a memory
fence

• __syncwarp

Three Categories (New in CUDA 9.0)

31

EXAMPLE: ALIGNED MEMORY COPY
__activemask __all_sync

// pick the optimal memory copy based on the alignment

__device__ void memorycopy(char *tptr, char *sptr, size_t size) {

unsigned mask = __activemask();

if (__all_sync(mask, is_all_aligned(tptr, sptr, 16))
return memcpy_aligned_16(tptr, sptr, size);

if (__all_sync(mask, is_all_aligned(tptr, sptr, 8))
return memcpy_aligned_8(tptr, sptr, size);

…
}

32

EXAMPLE: ALIGNED MEMORY COPY
__activemask __all_sync

// pick the optimal memory copy based on the alignment

__device__ void memorycopy(char *tptr, char *sptr, size_t size) {

unsigned mask = __activemask();

if (__all_sync(mask, is_all_aligned(tptr, sptr, 16))
return memcpy_aligned_16(tptr, sptr, size);

if (__all_sync(mask, is_all_aligned(tptr, sptr, 8))
return memcpy_aligned_8(tptr, sptr, size);

…
}

Find the active threads

33

EXAMPLE: ALIGNED MEMORY COPY
__activemask __all_sync

// pick the optimal memory copy based on the alignment

__device__ void memorycopy(char *tptr, char *sptr, size_t size) {

unsigned mask = __activemask();

if (__all_sync(mask, is_all_aligned(tptr, sptr, 16))
return memcpy_aligned_16(tptr, sptr, size);

if (__all_sync(mask, is_all_aligned(tptr, sptr, 8))
return memcpy_aligned_8(tptr, sptr, size);

…
}

Find the active threads

Returns true when all threads in ‘mask’
have the same predicate value

34

EXAMPLE: SHUFFLE

Broadcast: all threads get the value of ‘x’ from lane id 0

__shfl_sync, __shfl_down_sync

y = __shfl_sync(0xffffffff, x, 0);

…

35

EXAMPLE: SHUFFLE

Broadcast: all threads get the value of ‘x’ from lane id 0

Reduction:

__shfl_sync, __shfl_down_sync

y = __shfl_sync(0xffffffff, x, 0);

for (int offset = 16; offset > 0; offset /= 2)
val += __shfl_down_sync(0xffffffff, val, offset);

…

…

…

…

36

EXAMPLE: DIVERGENT BRANCHES
All *_sync built-in functions can be used in divergent branches on Volta

…
… = get_warp_sum(x);
…

…
… = get_warp_sum(y);
…

if (lane_id < 16)

…

#define FULLMASK 0xffffffff

__device__ int get_warp_sum(int v) {
for (int i = 1; i < 32; i = i*2)

v += __shfl_xor_sync(FULLMASK, v, i);
return v;

}

37

EXAMPLE: DIVERGENT BRANCHES
All *_sync built-in functions can be used in divergent branches on Volta

…
… = get_warp_sum(x);
…

…
… = get_warp_sum(y);
…

if (lane_id < 16)

…

#define FULLMASK 0xffffffff

__device__ int get_warp_sum(int v) {
for (int i = 1; i < 32; i = i*2)

v += __shfl_xor_sync(FULLMASK, v, i);
return v;

}

Possible to write a library function that performs warp synchronous programming w/o
requiring it to be called convergently.

38

EXAMPLE: REDUCTION VIA SHARED MEMORY

Re-converge threads and perform memory fence

__syncwarp

v += shmem[tid+16]; __syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+8]; __syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+4]; __syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+2]; __syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+1]; __syncwarp();
shmem[tid] = v;

39

BUT WHAT’S WRONG WITH THIS CODE?

v += shmem[tid+16];
shmem[tid] = v;
v += shmem[tid+8];
shmem[tid] = v;
v += shmem[tid+4];
shmem[tid] = v;
v += shmem[tid+2];
shmem[tid] = v;
v += shmem[tid+1];
shmem[tid] = v;

40

IMPLICIT WARP SYNCHRONOUS PROGRAMMING

Implicit warp synchronous programming builds upon two unreliable assumptions,

• implicit thread re-convergence points, and

• Implicit lock-step execution of threads in a warp.

Implicit warp synchronous programming is unsafe and unsupported.

Make warp synchronous programming safe by making synchronizations explicit.

Unsafe and Unsupported

41

IMPLICIT THREAD RE-CONVERGENCE

Example 1:

Unreliable Assumption 1

if (lane_id < 16)
A;

else
B;

assert(__activemask() == 0xffffffff);

42

IMPLICIT THREAD RE-CONVERGENCE

Example 1:

Solution

• Do not reply on implicit thread re-convergence

• Use warp synchronous built-in functions to ensure convergence

Unreliable Assumption 1

if (lane_id < 16)
A;

else
B;

assert(__activemask() == 0xffffffff); not guaranteed to be true

43

IMPLICIT LOCK-STEP EXECUTION
Unreliable Assumption 2

if (__activemask() == 0xffffffff) {

assert(__activemask() == 0xffffffff);

}

Example 2

44

Example 2

Solution

• Do not reply on implicit lock-step execution

• Use warp synchronous built-in functions to ensure convergence

IMPLICIT LOCK-STEP EXECUTION
Unreliable Assumption 2

if (__activemask() == 0xffffffff) {

assert(__activemask() == 0xffffffff); not guaranteed to be true

}

45

IMPLICIT LOCK-STEP EXECUTION

Example 3

Unreliable Assumption 2

shmem[tid] += shmem[tid+16];

shmem[tid] += shmem[tid+8];

shmem[tid] += shmem[tid+4];

shmem[tid] += shmem[tid+2];

shmem[tid] += shmem[tid+1];

46

IMPLICIT LOCK-STEP EXECUTION

Example 3

Solution

• Make sync explicit

Unreliable Assumption 2

shmem[tid] += shmem[tid+16];

shmem[tid] += shmem[tid+8];

shmem[tid] += shmem[tid+4];

shmem[tid] += shmem[tid+2];

shmem[tid] += shmem[tid+1];

v += shmem[tid+16]; __syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+8]; __syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+4]; __syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+2]; __syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+1]; __syncwarp();
shmem[tid] = v;

data race

47

LEGACY WARP-LEVEL BUILT-IN FUNCTIONS

Legacy built-in functions

• __all(), __any(), __ballot(), __shfl(), __shfl_up(), __shfl_down(), __shfl_xor()

These legacy warp-level built-in functions can perform data exchange between the
active threads in a warp.

They do not ensure which threads are active.

They are deprecated in CUDA 9.0 on all architectures.

Deprecated in CUDA 9.0

48

COOPERATIVE GROUPS VS BUILT-IN FUNCTIONS
Example: warp aggregated atomic

int mask = __activemask();

int rank = __popc(mask & __lanemask_lt());

int leader_lane = __ffs(mask) - 1;

int res;

if (rank == 0)

res = atomicAdd(p, __popc(mask));

res = __shfl_sync(mask, res, leader_lane);

return rank + res;

coalesced_group g = coalesced_threads();

int res;

if (g.thread_rank() == 0)

res = atomicAdd(p, g.size());

res = g.shfl(res, 0);

return g.thread_rank() + res;

// increment the value at ptr by 1 and return the old value

__device__ int atomicAggInc(int *p);

49

WARP SYNCHRONOUS PROGRAMMING
IN CUDA 9.0

New warp synchronous built-in functions ensure reliable synchronizations.

New warp synchronous built-in functions can be used divergently on Volta.

Legacy warp built-in functions are deprecated.

Cooperative groups offers

• Higher-level abstraction of thread groups

• Four levels of thread grouping

• More scalable code and better software decomposition

50

51

BETTER COMPOSITION

__device__ int sum(int *x, int n)
{

...
__syncthreads();
...
return total;

}

__global__ void parallel_kernel(float *x)
{

...
// Entire thread block must call sum
sum(x, n);

}

Hidden constraint on

caller due to

implementation of sum.

All threads in thread block

must arrive at this barrier.

Barrier synchronization hidden within functions

52

BETTER COMPOSITION

Explicit cooperative interfaces

__device__ int sum(thread_group g, int *x, int n)
{

...
g.sync()
...
return total;

}

__global__ void parallel_kernel(...)
{

...
// Entire thread block must call sum
sum(this_thread_block(), x, n);
...

}

Participating thread group

provided by caller.

The need to synchronize

in sum is visible in code.

53

GPUthread_group cta = this_thread_block();
thread_group g = partition(cta, cta.thread_rank() & 1);

FUTURE ROADMAP

0 10 00 1 11

0 0 00

thread_group g = tiled_partition(cta, 64);

0 0 00 1 1 11

Warp 32 Warp 32 Warp 32

Partition by label or predicate, more complex scopes

Multi-GPU

At all scopes!

(Volta specific)

54

FUTURE ROADMAP

Library of collectives (sort, reduce, etc.)

template <int BlockThreads>
__global__ int BlockReduce(float *d_in, ...)
{

static_thread_block<BlockThreads> cta = this_thread_block();
// Statically allocate shared reduction storage
__shared__ reduce_storage<decltype(cta), float> group_reduce;

// Compute the block-wide sum for thread-0
float total = cooperative_groups::reduce(

cta, d_in[cta.rank()], group_reduce);
}

// Collective key-value sort, default allocator
cooperative_groups::sort(this_thread_block(), myValues, myKeys);

On a simpler note:

55

HONORABLE MENTION

The ones that didn’t make it into their own slide

_CG_DEBUG : Define to enable various runtime safety checks. This
helps debug incorrect API usage, incorrect synchronization, or similar
issues (Automatically turned on with –G).

Tools help detect incorrect warp-synchronization with the racecheck
tool.

Match is a new Volta instruction that is able to return who in your
warp has the same 32 or 64 bit value

56

Shipping in CUDA 9.0

Provides safety, composability, and high performance

Flexibility to synchronize at various architecture and program defined scopes.

Deploy everywhere from Kepler to Volta

Developers now have a flexible model for synchronization and communication

between groups of threads.

