Kyrylo Perelygi
GTC 2017

< NVIDI

Cooperative Groups: a flexible model for synchronization and
communication within groups of threads.

Scalable Cooperation among groups of threads
Flexible parallel decompositions
Composition across software boundaries

Deploy Everywhere

Benefits all applications

Examples include:

Persistent RNNs
Physics

Search Algorithms
Sorting

2 <NVIDIA.

LEVELS OF COOPERATION: TODAY

__syncthreads(): block level
synchronization barrier in CUDA

3 €ANVIDIA.

LEVELS OF COOPERATION: CUDA 9.0

For current coalesced set of threads:
auto g = coalesced threads();
For warp-sized group of threads:
auto block = this thread block();
auto g = tiled partition<32>(block)

For CUDA thread blocks:
auto g = this thread block();

For device-spanning grid:
auto g = this grid();

For multiple grids spanning GPUs:
auto g = this multi _grid();

All Cooperative Groups functionality is
within a cooperative_groups:: namespace

4 <ANVIDIA.

THREAD GROUP

Base type, the implementation depends on its construction.
Unifies the various group types into one general, collective, thread group.

We need to extend the CUDA programming model with handles that can
represent the groups of threads that can communicate/synchronize

Thread Grid
Group Group
Thread
Block
Tile Coalesced Multi-Grid

Thread

Block Group Group

5 ©ANVIDIA.

THREAD BLOCK

Implicit group of all the threads in the launched thread block

Implements the same interface as

void // Synchronize the threads in the group

unsigned // Total number of threads in the group

unsigned // Rank of the calling thread within [0, size]

bool // Whether the group violated any API constraints
And additional specific functions:

dim3 // 3-dimensional block index within the grid

dim3 // 3-dimensional thread index within the block

6

NVIDIA.

PROGRAM DEFINED DECOMPOSITION
I YT V4 L - A threads taunched

thread_block g = this_thread_block();

T PV PP At threads in thread block

thread_group tile32 = tiled_partition(g, 32);

bbbttt ebvked

thread group tile4 = tiled partition(tile32, 4);

ol el el el !l Restricted to powers of two,
\AAA/ \AAA/ \AAA \AAA \AAA \AAA \AAA/ \AAA/ and <= 32 in -In-lt-lal release

7 <NVIDIA.

GENERIC PARALLEL ALGORITHMS

Per-Block Per-Warp
2 - O 8= ((), 32);
reduce(g, ptr, myVal); reduce(g, ptr, myval);
__device int reduce(g, int *x, int val) {
int lane = g. QF
for (int i = g. ()/2; i >0; i /=2)
x[lane] = val; g. 0);
val += x[lane + i]; g. (0);
}
return val;

}

8 NVIDIA.

THREAD BLOCK TILE

A subset of threads of a thread block, divided into tiles in row-major order

thread _block tile<32> tile32 = tiled partition<32>(this thread block());

thread block tile<4> tiled4 = tiled partition<4>(this_thread block());

Exposes additional functionality: .shfl() .any()
.shfl _down() .all()
.shfl_up() .ballot()
Size known at compile time = fast! .shfl_xor() .match_any()

.match_all()

9 <NVIDIA.

STATIC TILE REDUCE

Per-Tile of 16 threads

g = 16> (());
tile reduce(g, myVal);

template <unsignhed size>

__device int tile_reduce(<size> g, int val) {
for (int i = g. ()/2; i >0; i /=2)
val += g. (val, 1i);
}
return val;

}

10 NVIDIA.

GRID GROUP

A set of threads within the same grid, guaranteed to be resident on the device

New CUDA Launch API to opt-in:

cudaLaunchCooperativeKernel(..)

__global kernel() {
grid group grid =
// load data
// loop - compute, share data
grid.sync();
// devices are now synced

this grid();

Device needs to support the cooperativelaunch property.

cudaOccupancyMaxActiveBlocksPerMultiprocessor(&numBlocksPerSm, kernel, numThreads, 0));

11 <4 NVIDIA.

GRID GROUP

The goal: keep as much state as possible resident

Shortest Path / Search

Weight array perfect for
persistence
Iteration over vertices?
Fuse!

Genetic Algorithms /
Master driven algorithms

o o
%00)
o &o > <—e PY o> < \o®o0

globalbest "

slave /. slave
local best

T

/Z
(o]
00 o oo
o8 7 N o080
v an individual slave
o g o inpc_);ulation Og o
ceo/ o %o

slave slave

OO0 O

Synchronization
between a master block
and slaves

Particle Simulations

o -

()
: N T~
Al N S

C/c/&

k"L
PN

Synchronization
between update and
collision simulation

12

NVIDIA.

MULTI GRID GROUP

A set of threads guaranteed to be resident on the same system, on multiple devices

__global void kernel() {
multi_grid group multi grid = this multi _grid();
// load data
// loop - compute, share data
multi grid.sync();
// devices are now synced, keep on computing

GPU A GPUB
Block O Block 1 Block O Block 1

AAA

Synchronize

13 <ANVIDIA.

MULTI GRID GROUP

Launch on multiple devices at once

New CUDA Launch API to opt-in:

cudaLaunchCooperativekKernelMultiDevice(...)

Devices need to support the cooperativeMultiDevicelaunch property.

struct cudalaunchParams params[numDevices];
for (int i = @; i < numDevices; i++) {

params[i].
params[i].
params[i].
params[i].
params[i].
params[i].

}

func = (void *)kernel;

gridDim = dim3(..); // Use occupancy calculator
blockDim = dim3(..);

sharedMem = ..;

stream = ..; // Cannot use the NULL stream

args = ..;

cudaLaunchCooperativeKernelMultiDevice(params, numDevices);

14 <A NVIDIA.

COALESCED GROUP

Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

. Y™ Y L L L L ‘1 202 .
active Size: 8

15 <4 NVIDIA.

COALESCED GROUP

Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

coalesced group active = coalesced threads();

VYYVVVVYVYY

Size: 8

if () { // start block

gl
Internal Lane Mask

Size: 3

16 <4 NVIDIA.

COALESCED GROUP

Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

coalesced group active = coalesced threads(); VVVVVYVYYY Size: 8
if () { // start block
coalesced group gl = coalesced threads(); \A / \ 4 Size: 3

Internal Lane Mask
o [1]

Bl g1 thread_rank();

Automatic translation to rank-in-group!

17 <4 NVIDIA.

COALESCED GROUP

Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

coalesced group active = coalesced threads(); VVVVVYVYYY Size: 8
if () { // start block
coalesced group gl = coalesced threads(); \A / \ 4 Size: 3

Internal Lane Mask
! gl.thread rank();

Automatic translation from rank-in-group to
SIMD lane!

18 <4 NVIDIA.

COALESCED GROUP

Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

coalesced group active = coalesced threads(); VYVVVVYVYYY Size: 8
if () { // start block

coalesced group gl = coalesced threads(); \A / \ 4 Size: 3

Internal Lane Mask

! gl.thread rank();
gl.shfl(value, 0);

. . | 82 gl, 2 Size: 2 and 1

19 <4 NVIDIA.

COALESCED GROUP

Discover the set of coalesced threads, i.e. a group of converged threads executing in SIMD

coalesced group active = coalesced threads(); VYVVVVYVYYY Size: 8
if () { // start block
coalesced group gl = coalesced threads(); \A / \ 4 Size: 3
Internal Lane Mask
! gl.thread rank();
gl.shfl(value, 0);
. . 0 g2 = tiled partition(gl, 2); Size: 2 and 1

} // end block

active

20 <ANVIDIA.

ATOMIC AGGREGATION

Opportunistic cooperation within a warp

inline _ device int atomicAggInc(int *p)

{

coalesced group g = ()
int prev;
if (8. () ==90) {
prev = (p, g.size());
}
prev = g. () + g. (prev, 0);

return prev,

21

NVIDIA.

ARCHITECTURE

WARP SYNCHRONOUS PROGRAMMING
IN CUDA 9.0

cuda warp synchronous programming 1_!, Q

All Videos Images Shopping News More Settings Tools
About 17,200 results (0.27 seconds)

FOFWarp-synchronous programming - Irisa
www.irisa.fr/alf/downloads/collange/cours/gpuprog_ufmg.../gpu_ufmg_2015_5.pdf -

Mar 9, 2016 - Lane ID exists in PTX, not in C for CUDA. Can be recovered using If you know warp-
synchronous programming in CUDA, you know SIMD ...

Warp synchronous programming - NVIDIA Developer Forums
https://devtalk.nvidia.com/defaul/topic/807699/warp-synchronous-programming/ ~

Jan 30, 201 5 - http//docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#volatile-qualifier
regarding this: "If dynamically allocated shared memory of ..

Is syncthreads required within a warp? - NVIDIA Developer Forums
https://devtalk.nvidia.com/default/topic/.../is-syncthreads-required-within-a-warp-/ «

Mov 6, 2013 - cuda threads fence applied on share memeory has the same effect only that it ... Warp
synchronous programming is also safe across all current ...

warp synchronous programming is a lie - Issue #167 - AccelerateHS ...
https://github.com/AccelerateHS/accelerate/issues/167 «

May 6, 2014 - Until at least CUDA 4, warp synchronous programming was the advertised and
recommended way to get the best performance from a GPU.

cuda - What is warp-level-programming (racecheck) - Stack Overflow
stackoverflow.com/questions/192011826/what-is-warp-level-programmming-racecheck «

Sep 25, 2013 - Its true that all processing is handled in warps. Warp level programming also called warp
synchronous programming depends on this to ensure ...

parallel processing - CUDA __syncthreads() usage within a warp ...
stackoverflow.com/questions/10205245/cuda-syncthreads-usage-within-a-warp -

Apr 18, 2012 - Updated with more information about using volatile. Presumably you want all threads ...
On the face of it this means you can omit the _syncthreads() , a practice known as "warp-synchronous
programming”. However, there are ...

cuda - Struggling with intuition regarding how warp-synchronous ...
stackoverflow.com/.../struggling-with-intuition-regarding-how-warp-synchronous-thr...

Dec 4, 2013 - Let’s look at the code in blocks, and answer your questions along the way: int sum ... Now
we are finally getting into some warp-synchronous programming. This line of code depends on the fact
that 32 threads are executing in ...

24 <A NVIDIA.

CUDA WARP THREADING MODEL

NVIDIA GPU multiprocessors create, manage, schedule and execute threads in warps
(32 parallel threads).

Threads in a warp may diverge and re-converge during execution.
diverged diverged

\“\ /

converged

time

Full efficiency may be realized when all 32 threads of a warp are converged.

25 NVIDIA.

WARP SYNCHRONOUS PROGRAMMING

Warp synchronous programming is a CUDA programming technique that leverages
warp execution for efficient inter-thread communication.

e.g. reduction, scan, aggregated atomic operation, etc.

CUDA C++ supports warp synchronous programming by providing warp synchronous
built-in functions and cooperative group collectives.

26 NVIDIA.

EXAMPLE: SUM ACROSS A WARP

val = input[lane id];

val += _ shfl xor_ sync(Oxffffffff,
val += _ shfl xor_ sync(Oxffffffff,
val += _ shfl xor sync(Oxffffffff,
val += _ shfl xor_ sync(Oxffffffff,
val += _ shfl xor_ sync(Oxffffffff,

X

0
o
A’A

X)

[

AN

A

NN
=<

N IAN =

i
i
i

I
N

A
I

v

AN

- SN
RIS ANNVS=

IIIOIOIf\\ \/
i

W
)

val,
val,
val,
val,
val,

VN

val =Y?2, input[i]

27

NVIDIA.

HOW TO WRITE
WARP SYNCHRONOUS PROGRAMMING

Make Sync Explicit

Thread re-convergence diverged diverged

Use built-in functions to converge I l I
threads explicitly
Do not rely on implicit thread re- I
convergence.

converged
=== time

28 <ANVIDIA.

HOW TO WRITE
WARP SYNCHRONOUS PROGRAMMING

diverged diverged

Use built-in functions to converge
threads explicitly

Do not rely on implicit thread re-
convergence.

Reading and writing the
same
memory location by
different threads

Use built-in functions to sync threads may cause data races.
and exchange data in one step.

When using shared memory, avoid data
races between convergence points.

29

NVIDIA.

WARP SYNCHRONOUS BUILT-IN FUNCTIONS

: which threads in a warp are active
__activemask

: exchange data between threads in warp
__all_sync, __any_sync, __uni_sync, __ ballot_sync
__shfl_sync, __shfl_up_sync, _ shfl_down_sync, __ shfl_xor_sync
__match_any_sync, _ _match_all_sync

: synchronize threads in a warp and provide a memory
fence

__syncwarp

30 NVIDIA.

EXAMPLE: ALIGNED MEMORY COPY

// pick the optimal memory copy based on the alignment
__device void memorycopy(char *tptr, char *sptr, size t size) {
unsigned mask = activemask();

if (__all sync(mask, is all aligned(tptr, sptr, 16))
return memcpy aligned 16(tptr, sptr, size);

if (__all sync(mask, is all aligned(tptr, sptr, 8))
return memcpy aligned 8(tptr, sptr, size);

31 NVIDIA.

EXAMPLE: ALIGNED MEMORY COPY

// pick the optimal memory copy based on the alignment Find the active threads
__device void memorycopy(char *tptr, char *sptr, size t size) {

unsigned mask = activemask();

if (__all sync(mask, is all aligned(tptr, sptr, 16))
return memcpy aligned 16(tptr, sptr, size);

if (__all sync(mask, is all aligned(tptr, sptr, 8))
return memcpy aligned 8(tptr, sptr, size);

32 NVIDIA.

EXAMPLE: ALIGNED MEMORY COPY

// pick the optimal memory copy based on the alignment Find the active threads

__device void memorycopy(char *tptr, char *sptr, size t size) {

unsigned mask = _ activemask(); Returns true when all threads in ‘mask’

have the same predicate value
if (_ all sync(mask, is all aligned(tptr, sptr, 16))

return memcpy aligned 16(tptr, sptr, size);

if (__all sync(mask, is all aligned(tptr, sptr, 8))
return memcpy aligned 8(tptr, sptr, size);

33 NVIDIA.

EXAMPLE: SHUFFLE

__shfl_sync, __shfl_down_sync

Broadcast: all threads get the value of ‘x’ from lane id 0

y = _ shfl sync(exffffffff, x, 0);

34 <NVIDIA.

EXAMPLE: SHUFFLE

__shfl_sync, __shfl_down_sync

Broadcast: all threads get the value of ‘x’ from lane id 0

Z

35 <ANVIDIA.

y = _ shfl sync(exffffffff, x, 0);

Reduction:

for (int offset = 16; offset > 0; offset /= 2)
val += _ shfl down_sync(oxffffffff, val, offset);

EXAMPLE: DIVERGENT BRANCHES

All *_sync built-in functions can be used in divergent branches on Volta

if (lane_id < 16)

/\ #tdefine FULLMASK Oxffffffff

__device__ int get warp_sum(int v) {
i - for (int i = 1; i < 32; i = i*2)
. = get_warp_sum(x); | | .. = get_warp_sum(y); v += _ shfl xor_sync(FULLMASK, v, i);

v return v;
\/ }

36 <ANVIDIA.

EXAMPLE: DIVERGENT BRANCHES

All *_sync built-in functions can be used in divergent branches on Volta

if (lane_id < 16)

/\ #tdefine FULLMASK Oxffffffff

__device__ int get warp_sum(int v) {
- - for (int i = 1; i < 32; i = i*2)
. = get_warp_sum(x); || .. = get_warp_sum(y); v += _ shfl xor_sync(FULLMASK, v, i);

v return v;
\/ }

Possible to write a library function that performs warp synchronous programming w/o
requiring it to be called convergently.

37 <ANVIDIA.

EXAMPLE: REDUCTION VIA SHARED MEMORY

Re-converge threads and perform memory fence

v += shmem[tid+16]; _ syncwarp();

shmem[tid] = v; __syncwarp();
v += shmem[tid+8]; syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+4]; syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+2]; syncwarp();
shmem[tid] = v; __syncwarp();
v += shmem[tid+1]; syncwarp();

shmem[tid] = v;

38 NVIDIA.

BUT WHAT’S WRONG WITH THIS CODE?

vV += shmem[tid+16];
shmem[tid] = v;

V += shmem[tid+8];
shmem[tid] = v;

v += shmem[tid+4];
shmem[tid] = v;

VvV += shmem[tid+2];
shmem[tid] = v;

v += shmem[tid+1];
shmem[tid] = v;

39 NVIDIA.

IMPLICIT WARP SYNCHRONOUS PROGRAMMING

Implicit warp synchronous programming builds upon two unreliable assumptions,
implicit thread re-convergence points, and

Implicit lock-step execution of threads in a warp.
Implicit warp synchronous programming is unsafe and unsupported.

Make warp synchronous programming safe by making synchronizations explicit.

40 NVIDIA.

IMPLICIT THREAD RE-CONVERGENCE

Example 1:

if (lane_id < 16)
A;
else
B;
assert(__activemask() == Oxffffffff);

IIIIIIIII

IMPLICIT THREAD RE-CONVERGENCE

Example 1:
if (lane_id < 16)
A;
else
B;
assert(__activemask() == Oxffffffff); not guaranteed to be true
Solution

Do not reply on implicit thread re-convergence

Use warp synchronous built-in functions to ensure convergence

42 NVIDIA.

IMPLICIT LOCK-STEP EXECUTION

Example 2

if (__activemask() == Oxffffffff) {
assert(__activemask() == Oxffffffff);

3

43 NVIDIA.

IMPLICIT LOCK-STEP EXECUTION

Example 2

if (__activemask() == Oxffffffff) {
assert(__activemask() == Oxffffffff); not guaranteed to be true

3

Solution
Do not reply on implicit lock-step execution

Use warp synchronous built-in functions to ensure convergence

44 NVIDIA.

IMPLICIT LOCK-STEP EXECUTION

Example 3 shmem[tid] += shmem[tid+16];
shmem|[tid] += shmem[tid+8];
shmem|[tid] += shmem[tid+4];
shmem|[tid] += shmem[tid+2];
shmem|[tid] += shmem[tid+1];

45 NVIDIA.

IMPLICIT LOCK-STEP EXECUTION

Example 3 shmem[tid] += shmem[tid+16];
shmem|[tid] += shmem[tid+8];
shmem|[tid] += shmem[tid+4]; . data race
shmem|[tid] += shmem[tid+2];
shmem|[tid] += shmem[tid+1];

Solution v += shmem[tid+16]; syncwarp();
.. shmem[tid] = v; __syncwarp();

Make sync explicit | _ shmem[tid+8]; _Syncwar\pg;;
shmem[tid] = v; __syncwarp();

v += shmem[tid+4]; syncwarp();

shmem[tid] = v; __syncwarp();

v += shmem[tid+2]; syncwarp();

shmem[tid] = v; __syncwarp();

v += shmem[tid+1]; syncwarp();

shmem[tid] = V, 46 <INVIDIA.

LEGACY WARP-LEVEL BUILT-IN FUNCTIONS

Legacy built-in functions
_all(), __any(), __ballot(), __shfl(), __shfl_up(), __shfl_down(), __shfl_xor()

These legacy warp-level built-in functions can perform data exchange between the
active threads in a warp.

They do not ensure which threads are active.

They are deprecated in CUDA 9.0 on all architectures.

47 NVIDIA.

COOPERATIVE GROUPS VS BUILT-IN FUNCTIONS

// increment the value at ptr by 1 and return the old value

__device__ int atomicAggInc(int *p);

coalesced group g =

int res;
if (8. () == 0)
res = (p, g.size());
res = g. (res, 0);
return g. () + res;

();

int mask = activemask();
int rank = _ popc(mask & 0);
int leader_lane = _ ffs(mask) - 1;
int res;
if (rank == 0)
res = atomicAdd(p, _ popc(mask));
res = shfl sync(mask, res, leader_lane);

return rank + res;

48 NVIDIA.

WARP SYNCHRONOUS PROGRAMMING
IN CUDA 9.0

New warp synchronous built-in functions ensure reliable synchronizations.
New warp synchronous built-in functions can be used divergently on Volta.

Legacy warp built-in functions are deprecated.

Cooperative groups offers
Higher-level abstraction of thread groups
Four levels of thread grouping

More scalable code and better software decomposition

49 NVIDIA.

BETTER COMPOSITION

Barrier synchronization hidden within functions

__device int sum(int *x, int n)

{

}

__global void parallel kernel(float *x)

{

__syncthreads();

All threads in thread block
must arrive at this barrier.

return total;

// Entire thread block must call sum
sum(Xx, n);

Hidden constraint on
caller due to
implementation of sum.

51 <4NVIDIA.

BETTER COMPOSITION

Explicit cooperative interfaces

__device int sum(thread group g, int *x, int n)

{
T Participating thread group
g.sync() provided by caller.
return total;

}

__global void parallel kernel(...)

{
// Entire thread block must call sum The need to synchronize
sum(this thread block(), x, n); in sum is visible in code.

}

52 <ANVIDIA.

FUTURE ROADMAP

Partition by label or predicate, more complex scopes

At all scopes!

o] 110]14o]1jo0 (Volta specific)

thread_group cta = this_thread _block();
thread group g = partition(cta, cta.thread rank() & 1);

Warp 32 Warp 32 Warp 32

ojojojoRsaiofojofoaliq1]]| M

thread group g = tiled partition(cta, 64);

53 <ANVIDIA.

FUTURE ROADMAP

Library of collectives (sort, reduce, etc.)

template <int BlockThreads>
__global int BlockReduce(float *d _in, ...)

{
<BlockThreads> cta = ();
// Statically allocate shared reduction storage
__shared <decltype(cta), float> group reduce;
// Compute the block-wide sum for thread-©
float total = cooperative groups:: (
cta, d_in[cta.rank()], group reduce);
}

On a simpler note:

// Collective key-value sort, default allocator
cooperative groups:: (, myValues, myKeys);

54

NVIDIA.

HONORABLE MENTION

The ones that didn’t make it into their own slide

_CG_DEBUG : Define to enable various runtime safety checks. This
helps debug incorrect APl usage, incorrect synchronization, or similar
issues (Automatically turned on with -G).

Tools help detect incorrect warp-synchronization with the racecheck
tool.

Match is a new Volta instruction that is able to return who in your
warp has the same 32 or 64 bit value

55 NVIDIA.

Developers a flexible model for synchronization and communication
between groups of threads.

Shipping in CUDA 9.0
Provides safety, composability, and high performance
Flexibility to synchronize at various architecture and program defined scopes.

Deploy everywhere from Kepler to Volta

56 NVIDIA.

