
Markus Hrywniak, DevTech Compute, 22 January 2021

PROFILING OF GPU
PROGRAMS

2

OVERVIEW

No prior GPU (profiling) experience required here

Examples use GPU, but no requirement for method

Variety of different tools, possibilities for profiling

Recommend: Start with Nsight Systems

Sampling, system-wide, CUDA traces (+ more)

Many people do not use profilers – perceived difficulty?

Most important lesson: „Do not trust your gut“

Let‘s start with profiling basics!

3

WHAT DOES A PROFILER DO?
Sampling vs. Instrumentation (very simplified)

Instrument function calls, APIs, etc. (automatable)

while (...) {

trace_do_nothing() -> do_nothing()

trace_intense_calculation() -> intense_calculation()

trace_sleep() -> sleep()
}

(+) Captures whole program, full call chains

(-) Potentially higher overhead, skew

Every ms, take a sample of callstack

while (...) {

do_nothing()

intense_calculation()

sleep()
}

(+) Hot spots show up, low overhead

(-) May miss some calls

Samples

0

23

12

4

THE NSIGHT SUITE

Tracing: CUDA API calls, MPI trace, OpenACC trace, OpenMP

Sampling, hardware counters

Augment with NVIDIA Tools Extension (NVTX):
Create (nested) ranges, define macros

Application-wide profiling (Systems), Kernel-level profiling (Compute)

Nsight Systems

Nsight Compute

NVTX primer: https://devblogs.nvidia.com/parallelforall/cuda-pro-

tip-generate-custom-application-profile-timelines-nvtx/

https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx/

5

WHETTING YOUR APPETITE
Timeline overview in Nsight Systems GUI

Here: Application already ported
to GPU – basic guidelines
followed (coalescing, data
movement, SoA)

S7122: CUDA Optimization Tips,
Tricks and Techniques (2017)

NVTX
ranges

GPU
activity

https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s7122-cuda+optimization+tips%2c+tricks+and+techniques

6

A FIRST (I)NSIGHT
Maximum achievable speedup: Amdahl‘s law

Amdahl‘s law states overall speedup s given the parallel fraction p of code and number of processes 𝑁

𝒔 =
1

1 − 𝑝 +
𝑝
𝑁

<
1

1 − 𝑝

Limited by serial fraction, even for 𝑁 → ∞

Example for 𝑝 = 30%

Also valid for per-method speedups

7

7

7

7

0,75

1

1,5

3

0 2 4 6 8 10 12

N=4

N=3

N=2

N=1

Using 1 to 4 processes

Serial part Parallel part

7

A FIRST (I)NSIGHT
Recording with the GUI

Connect directly

Or use an SSH Tunnel:
ssh -L 8200:compute-

node:22 login-node

Select traces to collect

8

A FIRST (I)NSIGHT

1) We‘ll use the command line

mpirun –np $NP \

nsys profile --trace=cuda,nvtx,mpi \

--output=my_report.%q{OMPI_COMM_WORLD_RANK}.qdrep ./myApp

Note: Slurm users, try srun ... %q{SLURM_PROCID}

2) Inspect results: Open the report file in the GUI

Also possible to get details on command line (documentation), nsys stats --help

See also https://docs.nvidia.com/nsight-systems/, "Profiling from the CLI on Linux Devices"

Recording an application timeline

https://docs.nvidia.com/nsight-systems/index.html

9

THE GENERAL IDEA

Create reduced test case that hits important code paths

Profile once and look at structure

Augment & Annotate analyzed regions (NVTX)

Identify optimization targets (Wallclock, Amdahl‘s law)

Fill „blank spots“ on timeline with GPU activity

Now: Let‘s see how to start using this on your codes and on JUWELS

1) Simple example

2) Real-world application

Application timeline with Nsight Systems

10

ON JUWELS

1. Terminal

2. Load modules, launch profiling command

1. module load CUDA GCC Nsight-Systems # see below for versions

2. srun –n1 –N1 nsys profile -f true -o my_report ./executable

3. Generates and overwrites my_report.qdrep

3. Open the report in nsys-ui or use nsys stats my_report.qdrep

Caveat: Load Nsight-Systems/2020.4.1 since 2020.5.1 has a bug with JUWELS‘ srun (fixed in next version)

File naming for MPI with my_report.%q{SLURM_PROCID} (see MPI talk)

Recording a profile from JupyterLab

11

LAUNCHING THE GUI
Xpra X-forwarding in your browser

12

LAUNCHING THE GUI

Caveat: You need to re-load your modules – this is a separate session

module load Nsight-Systems

nsys-ui

Newer nsys versions can open older reports

Xpra: Note the bar, in case you close your terminal...

Generally works very well (zero setup)

For heavy usage: Nsight Systems is free, can install it locally

https://developer.nvidia.com/nsight-systems

Xpra X-forwarding in your browser

https://developer.nvidia.com/nsight-systems

13

LOOKING AT A SIMPLE EXAMPLE

14

USING CALLSTACK SAMPLES

Events View makes
information searchable

„Highlight All“ shows all
matches

Can search in description,
includes callstack

15

ADDING SOME COLOR

Like manual timing, only less work

Nesting, timing

Correlation, filtering

Code annotation with NVTX

16

ADDING NVTX

#include <nvToolsExt.h>

Copy&paste PUSH/POP macros (or module)

PUSH(name, color)

Sprinkle them strategically through code

NVTX v3 is header-only

Not shown: Advanced usage (domains, ...)

https://github.com/NVIDIA/NVTX

https://developer.nvidia.com/blog/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx/

https://developer.nvidia.com/blog/customize-cuda-fortran-profiling-nvtx/

Simple range-based API

https://github.com/NVIDIA/NVTX
https://developer.nvidia.com/blog/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx/
https://developer.nvidia.com/blog/customize-cuda-fortran-profiling-nvtx/

17

ZOOMING IN
Regions of interest

Kernel launch

UM migrations and
page faults

Use Amdahl‘s law as
heuristic

GPU
activity

Kernel

18

MINIMIZING PROFILE SIZE

Only profile what you need – all profilers have some overhead

Bonus: lower number of events => smaller file size

Add to nsys command line:

--capture-range=nvtx --nvtx-capture=any_nvtx_marker_name \
--env-var=NSYS_NVTX_PROFILER_REGISTER_ONLY=0 --kill none

Alternatively: cudaProfilerStart() and –Stop()

--capture-range=cudaProfilerApi

Shorter time, smaller files = quicker progress

19

OTHER FEATURES

„Traditional“ top-down or bottom-up stack views

Lots of different traces (MPI, OpenACC, OpenMP, ...)

Data export (csv, sqlite, ...)

Customizable reports via Python scripts

Full guide:

https://docs.nvidia.com/nsight-systems/UserGuide

We only covered a small subset

https://docs.nvidia.com/nsight-systems/UserGuide

20

WHEN TO MOVE ON

Specialized MPI profiling/bottlenecks, load imbalance

Kernel-level profiling -> Nsight Compute

Used later on (get the low-hanging fruit first!)

Use it when you find a hotspot kernel

Now: Revisit the real-world example from the beginning

Proper tool for the job

21

KNOW YOUR CODE

1. One-time setup: Create and fill data structures

2. Time loop

1. Propagate

2. Boundary conditions

3. Collide

3. Output and finalization

Overview of LBM D2Q37* algorithm phases

*Details on code and in-depth analysis: What the Profiler Is Telling You (GTC 2020)

https://developer.nvidia.com/gtc/2020/video/s22141

22

LOOKING CLOSER

Setup on host, page fault,
transfer to device

Profiling: Skip long first iteration

Unified Virtual Memory,
Managed Memory

Details in S9727: Memory
Management on Modern GPU
Architectures (2019)
and S8430: Everything You Need
to Know About Unified Memory
(2018)

Focusing on the time loop

Host-to-Device
migrations

https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s9727-memory+management+on+modern+gpu+architectures
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s8430-everything+you+need+to+know+about+unified+memory

23

LOOKING CLOSER

Zooming in and using Events View for NVTX

Useful for other rows, e.g. CUDA API

Hierarchy of ranges, use to locate on timeline:

Focusing on the iteration

Our
focus

24

IDENTIFYING INTERESTING REGIONS

Basic block NVTX „iteration“. Identify components. Mark kernel in CUDA API row, find kernel launch

How to correlate ranges, API and kernel calls

Finding
correlations

25

SUMMARY

Start with Nsight Systems and record a first profile

Identify roughly some features (use call stacks, code knowledge), add NVTX

Add and customize traces as needed

Use capture ranges

Iteratively eliminate „blank“ spots – is the GPU active?

Switch to more specialized profilers as needed

How to approach porting your own code

