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PROFILING OF GPU 
PROGRAMS
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OVERVIEW

No prior GPU (profiling) experience required here

Examples use GPU, but no requirement for method

Variety of different tools, possibilities for profiling

Recommend: Start with Nsight Systems

Sampling, system-wide, CUDA traces (+ more)

Many people do not use profilers – perceived difficulty?

Most important lesson: „Do not trust your gut“

Let‘s start with profiling basics!
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WHAT DOES A PROFILER DO?
Sampling vs. Instrumentation (very simplified)

Instrument function calls, APIs, etc. (automatable)

while (...) {

trace_do_nothing() -> do_nothing()

trace_intense_calculation() -> intense_calculation() 

trace_sleep() ->  sleep()
}

(+) Captures whole program, full call chains

(-) Potentially higher overhead, skew

Every ms, take a sample of callstack

while (...) {

do_nothing()

intense_calculation()

sleep()
}

(+) Hot spots show up, low overhead 

(-) May miss some calls

Samples
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THE NSIGHT SUITE

Tracing: CUDA API calls, MPI trace, OpenACC trace, OpenMP

Sampling, hardware counters

Augment with NVIDIA Tools Extension (NVTX): 
Create (nested) ranges, define macros

Application-wide profiling (Systems), Kernel-level profiling (Compute)

Nsight Systems

Nsight Compute

NVTX primer: https://devblogs.nvidia.com/parallelforall/cuda-pro-

tip-generate-custom-application-profile-timelines-nvtx/

https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx/
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WHETTING YOUR APPETITE
Timeline overview in Nsight Systems GUI

Here: Application already ported 
to GPU – basic guidelines 
followed (coalescing, data 
movement, SoA)

S7122: CUDA Optimization Tips, 
Tricks and Techniques (2017)

NVTX 
ranges

GPU 
activity

https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s7122-cuda+optimization+tips%2c+tricks+and+techniques
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A FIRST (I)NSIGHT
Maximum achievable speedup: Amdahl‘s law

Amdahl‘s law states overall speedup s given the parallel fraction p of code and number of processes 𝑁

𝒔 =
1

1 − 𝑝 +
𝑝
𝑁

<
1

1 − 𝑝

Limited by serial fraction, even for 𝑁 → ∞

Example for 𝑝 = 30%

Also valid for per-method speedups
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A FIRST (I)NSIGHT
Recording with the GUI

Connect directly 

Or use an SSH Tunnel:
ssh -L 8200:compute-

node:22 login-node

Select traces to collect
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A FIRST (I)NSIGHT

1) We‘ll use the command line

mpirun –np $NP \

nsys profile --trace=cuda,nvtx,mpi \

--output=my_report.%q{OMPI_COMM_WORLD_RANK}.qdrep ./myApp

Note: Slurm users, try srun ... %q{SLURM_PROCID}

2) Inspect results: Open the report file in the GUI

Also possible to get details on command line (documentation), nsys stats --help

See also https://docs.nvidia.com/nsight-systems/, "Profiling from the CLI on Linux Devices"

Recording an application timeline

https://docs.nvidia.com/nsight-systems/index.html
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THE GENERAL IDEA

Create reduced test case that hits important code paths

Profile once and look at structure

Augment & Annotate analyzed regions (NVTX)

Identify optimization targets (Wallclock, Amdahl‘s law)

Fill „blank spots“ on timeline with GPU activity

Now: Let‘s see how to start using this on your codes and on JUWELS

1) Simple example 

2) Real-world application

Application timeline with Nsight Systems
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ON JUWELS

1. Terminal

2. Load modules, launch profiling command

1. module load CUDA GCC Nsight-Systems # see below for versions

2. srun –n1 –N1 nsys profile -f true -o my_report ./executable

3. Generates and overwrites my_report.qdrep

3. Open the report in nsys-ui or use nsys stats my_report.qdrep

Caveat: Load Nsight-Systems/2020.4.1 since 2020.5.1 has a bug with JUWELS‘ srun (fixed in next version)

File naming for MPI with my_report.%q{SLURM_PROCID} (see MPI talk)

Recording a profile from JupyterLab
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LAUNCHING THE GUI
Xpra X-forwarding in your browser
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LAUNCHING THE GUI

Caveat: You need to re-load your modules – this is a separate session

module load Nsight-Systems

nsys-ui

Newer nsys versions can open older reports

Xpra: Note the bar, in case you close your terminal...

Generally works very well (zero setup)

For heavy usage: Nsight Systems is free, can install it locally

https://developer.nvidia.com/nsight-systems

Xpra X-forwarding in your browser

https://developer.nvidia.com/nsight-systems
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LOOKING AT A SIMPLE EXAMPLE
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USING CALLSTACK SAMPLES

Events View makes 
information searchable

„Highlight All“ shows all
matches

Can search in description,
includes callstack
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ADDING SOME COLOR

Like manual timing, only less work

Nesting, timing

Correlation, filtering

Code annotation with NVTX
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ADDING NVTX

#include <nvToolsExt.h>

Copy&paste PUSH/POP macros (or module)

PUSH(name, color)

Sprinkle them strategically through code

NVTX v3 is header-only

Not shown: Advanced usage (domains, ...)

https://github.com/NVIDIA/NVTX

https://developer.nvidia.com/blog/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx/

https://developer.nvidia.com/blog/customize-cuda-fortran-profiling-nvtx/

Simple range-based API

https://github.com/NVIDIA/NVTX
https://developer.nvidia.com/blog/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx/
https://developer.nvidia.com/blog/customize-cuda-fortran-profiling-nvtx/
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ZOOMING IN
Regions of interest

Kernel launch

UM migrations and 
page faults

Use Amdahl‘s law as 
heuristic

GPU 
activity

Kernel
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MINIMIZING PROFILE SIZE

Only profile what you need – all profilers have some overhead

Bonus: lower number of events => smaller file size

Add to nsys command line: 

--capture-range=nvtx --nvtx-capture=any_nvtx_marker_name \
--env-var=NSYS_NVTX_PROFILER_REGISTER_ONLY=0 --kill none

Alternatively: cudaProfilerStart() and –Stop()

--capture-range=cudaProfilerApi

Shorter time, smaller files = quicker progress
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OTHER FEATURES

„Traditional“ top-down or bottom-up stack views

Lots of different traces (MPI, OpenACC, OpenMP, ...)

Data export (csv, sqlite, ...)

Customizable reports via Python scripts

Full guide:

https://docs.nvidia.com/nsight-systems/UserGuide

We only covered a small subset

https://docs.nvidia.com/nsight-systems/UserGuide
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WHEN TO MOVE ON

Specialized MPI profiling/bottlenecks, load imbalance

Kernel-level profiling -> Nsight Compute

Used later on (get the low-hanging fruit first!)

Use it when you find a hotspot kernel

Now: Revisit the real-world example from the beginning

Proper tool for the job
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KNOW YOUR CODE

1. One-time setup: Create and fill data structures

2. Time loop

1. Propagate

2. Boundary conditions

3. Collide

3. Output and finalization

Overview of LBM D2Q37* algorithm phases

*Details on code and in-depth analysis: What the Profiler Is Telling You (GTC 2020)

https://developer.nvidia.com/gtc/2020/video/s22141
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LOOKING CLOSER

Setup on host, page fault, 
transfer to device

Profiling: Skip long first iteration 

Unified Virtual Memory,
Managed Memory

Details in S9727: Memory 
Management on Modern GPU 
Architectures (2019) 
and S8430: Everything You Need 
to Know About Unified Memory
(2018)

Focusing on the time loop

Host-to-Device 
migrations

https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s9727-memory+management+on+modern+gpu+architectures
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s8430-everything+you+need+to+know+about+unified+memory
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LOOKING CLOSER

Zooming in and using Events View for NVTX

Useful for other rows, e.g. CUDA API

Hierarchy of ranges, use to locate on timeline:

Focusing on the iteration

Our 
focus
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IDENTIFYING INTERESTING REGIONS

Basic block NVTX „iteration“. Identify components. Mark kernel in CUDA API row, find kernel launch

How to correlate ranges, API and kernel calls

Finding 
correlations
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SUMMARY

Start with Nsight Systems and record a first profile

Identify roughly some features (use call stacks, code knowledge), add NVTX

Add and customize traces as needed 

Use capture ranges

Iteratively eliminate „blank“ spots – is the GPU active?

Switch to more specialized profilers as needed

How to approach porting your own code




