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Abstract 
The NVIDIA® DGX-1TM with Tesla V100 ( Figure 1) is an integrated system for deep learning. DGX-1 
features 8 NVIDIA® Tesla® V100 GPU accelerators connect through NVIDIA® NVLinkTM, the NVIDIA high-
performance GPU interconnect, in a hybrid cube-mesh network. Together with dual-socket Intel Xeon 
CPUs and four 100 Gb InfiniBand network interface cards, DGX-1 provides unprecedented performance 
for deep learning training. Moreover, the DGX-1 system software, powerful libraries, and NVLink network 
are tuned for scaling up deep learning across all eight Tesla V100 GPUs to provide a flexible, maximum 
performance platform for the development and deployment of deep learning applications in both 
production and research settings.

DGX-1 with V100 GPUs achieves dramatically higher throughput than DGX-1 with previous-generation 
NVIDIA Tesla P100 GPUs, achieving up to 3.1x faster deep learning training for convolutional neural 
networks. High-performance NVLink GPU interconnect improves scalability of deep learning training, 
improving recurrent neural network training performance by up to 1.5x compared to slower PCIe 
interconnect. More productivity and performance benefits come from the fact that DGX-1 is an 
integrated system, with a complete optimized software platform aimed at deep learning that ensures 
DGX-1 outperforms similar off-the-shelf systems. 

Figure 1 NVIDIA DGX-1
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1 INTRODUCTION
Deep learning is quickly changing the field of computer science as well as many other disciplines, and it 
is having a large impact on the economics of large enterprises such as Google [Metz 2015], Facebook 
[Statt 2016], and Amazon [Finley 2016]. Even as this new discipline and technology becomes 
mainstream, it is evolving rapidly. To serve increasingly sophisticated applications and deliver higher 
quality results, neural networks are becoming exponentially deeper and more complex. At the same 
time, neural networks deployed in mainstream interactive applications are being driven to infer and 
predict results faster. 

The demand for deep learning performance is rapidly growing. Facebook CTO Mike Schroepfer recently 
noted that:

• Facebook’s deployed neural networks process more than 6 million predictions per second; 
• 25% of Facebook engineers are now using AI and machine learning APIs and infrastructure; 
• Facebook has deployed more than 40 PFLOP/s of GPU capability in house to support deep 

learning across their organization [Schroepfer 2016:6:54]. 

In an April 2016 interview, former Baidu Chief Scientist Andrew Ng stated that Baidu has adopted an 
HPC (High Performance Computing) point of view to machine learning: 

The faster we train our networks, the more iteration we can make on our datasets and models, and 
the more iterations we make, the more we advance our machine learning. [Ng 2016a]. 

According to Ng, training one of Baidu’s speech models requires 10 exaflops of computation [Ng 
2016b:6:50].

As neural networks get deeper and more complex, they provide a dramatic increase in accuracy (for 
example, Microsoft Deep Residual Networks [He et al. 2015]), but training these higher accuracy 
networks requires much higher computation time, and their complexity increases prediction latency.

Aimed at satisfying this insatiable need for performance, the NVIDIA DGX-1 (shown in Figure 1) is the 
latest artificial intelligence (AI) supercomputer for deep learning training. NVIDIA’s goal with DGX-1 was 
to create the world’s fastest platform for training deep neural networks that can be deployed quickly 
and simply for plug-and-play use by deep learning researchers and data scientists. The architecture of 
DGX-1 draws on NVIDIA’s experience in the field of high-performance computing as well as knowledge 
gained from optimizing deep learning frameworks on NVIDIA GPUs with every major cloud service 
provider and multiple Fortune 1000 companies.
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2 NVIDIA DGX-1 WITH V100 SYSTEM ARCHITECTURE
The NVIDIA® DGX-1TM is a deep learning system, architected for high throughput and high interconnect 
bandwidth to maximize neural network training performance. The core of the system is a complex of 
eight Tesla V100 GPUs connected in the hybrid cube-mesh NVLink network topology described in Section 
3. In addition to the eight GPUs, DGX-1 includes two CPUs for boot, storage management, and deep 
learning framework coordination. DGX-1 is built into a three-rack-unit (3U) enclosure that provides 
power, cooling, network, multi-system interconnect, and SSD file system cache, balanced to optimize 
throughput and deep learning training time. 

NVLink is an energy-efficient, high-bandwidth interconnect that enables NVIDIA GPUs to connect to peer 
GPUs or other devices within a node at an aggregate bidirectional bandwidth of up to 300 GB/s per GPU: 
over nine times that of current PCIe Gen3 x16 interconnections. The NVLink interconnect and the DGX-1 
architecture’s hybrid cube-mesh GPU network topology enable the highest achievable data-exchange 
bandwidth between a group of eight Tesla V100 GPUs. 

Tesla V100’s Page Migration Engine allows high bandwidth, low overhead sharing of data between GPUs 
and between each GPU and the system memory [NVIDIA Corporation 2016]. For multi-node, high 
performance clusters, DGX-1 provides high system-to-system bandwidth through InfiniBand (IB) 
networking with GPUDirect RDMA, and supports state-of-the art “scale-out” approaches such as those 
described in Section 3.3. 

Figure 2 shows a diagram of DGX-1 system components.
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Figure 2    DGX-1 with V100 system components
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2.1 DGX-1 System Technologies

Tesla V100 (Figure 3) is the latest NVIDIA accelerator, designed for high performance computing and 
deep learning applications [NVIDIA Corporation 2017c]. The Tesla V100 accelerator features the GV100 
GPU, which incorporates 80 streaming multiprocessors (SMs), each with:

• 8 Tensor Cores;
• 64 single-precision (FP32) cores; 
• 64 integer (INT32) cores;
• 32 double-precision (FP64) cores;
• 256KB of register file (RF); 
• Up to 96KB of shared memory 

(configurable). 

Tesla V100 peak1 computational 
throughput is:

• 125 Tensor TFLOP/s  [NVIDIA Corporation 2017c]
• 7.8 TFLOP/s for FP64 computation
• 17.7 TFLOP/s for FP32]

To support this high computational throughput, Tesla V100 incorporates HBM2 (High Bandwidth 
Memory version 2). Tesla V100 includes 16 GB of HBM2 stacked memory with 900 GB/s of bandwidth; 
significantly higher than the bandwidth of GDDR5 RAM. Because HBM2 memory is stacked memory 
located on the same physical package as the GPU, it provides considerable space savings compared to 
traditional GDDR5, which enables high-density GPU servers like DGX-1.

Each Tesla V100 has 6 NVLink connections, each capable of 50 GB/s of bidirectional bandwidth, for an 
aggregate of up to 300 GB/s bidirectional bandwidth. NVLink and the DGX-1 interconnect topology and 
its implications are discussed in detail in Section 3.

The PCIe links between the GPUs and CPUs enable access to the system memory to enable working set 
and dataset streaming to and from the GPUs. The system memory capacity is four times the GPU 
memory capacity to enable simplified buffer management and balance for deep learning workloads. 
While twice the GPU memory footprint would normally be sufficient to manage background data moves 
and double buffering, four times gives greater flexibility for managing in-memory working sets and 
streaming data movement. In addition to the 512 GB of system memory, the eight Tesla V100 GPUs have 
a total of 128 GB HBM2 memory with net GPU memory bandwidth of 8 × 900 GB/s = 7.2 TB/s.

1. Based on GPU Boost Clock

Figure 3 The Tesla V100 Accelerator
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DGX-1 is provisioned with both Ethernet and InfiniBand (IB) network interfaces. Two 10-gigabit Ethernet 
interfaces provide remote user access into the system, and also access to remote storage. To connect 
multiple DGX-1 systems, each system has four high-bandwidth, low-latency EDR IB (Extended Data Rate 
InfiniBand) ports for a total of 800 Gb/s of bidirectional communication. With 8 V100 GPUs and 4 EDR IB 
ports, each DGX-1 system has one IB port for every two GPUs. In addition, the DGX-1 EDR IB is 
compatible with NVIDIA GPUDirect Remote Direct Memory Access (RDMA), providing the ability to 
transfer data directly from GPU memory in one system to GPU memory in another without involving 
either the CPU or the system memory.

Efficient, high-bandwidth streaming of training data is critical to the performance of DGX-1 as a deep 
learning system, as is reliable, low failure rate storage. Each system comes configured with a single 480 
GB boot OS SSD, and four 1.92 TB SAS SSDs (7.6 TB total) configured as a RAID 0 striped volume for high-
bandwidth performance. For working sets larger than 7 TB, data can be staged and cached through the 
SSDs in the background during a training run, with remote data being accessed via either the provided 
10G Ethernet interfaces or the EDR IB interfaces.

In addition to high computational throughput and memory bandwidth, training deep neural networks 
requires high streaming data rates from disk storage. DGX-1 is designed to support large training 
datasets that are hundreds of gigabytes to terabytes in size. The four SAS SSDs together provide an 
aggregate streaming read bandwidth of 2 GB/s, which is sufficient to avoid disk streaming bottlenecks 
during training.

The thermal design power (TDP)2 of DGX-1 is 3.5 kW, but actual power consumption is dynamic based 
on workload. For ease of deployment, DGX-1 is designed to be air cooled in most datacenter 
environments with inlet air from 5°C – 35°C. 

2. TDP specifies the maximum system power used while running real-world applications, and is used to 
correctly size power and cooling requirements in data centers.
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3 MULTI-GPU AND MULTI-SYSTEM SCALING WITH NVLINK AND 
INFINIBAND
Servers with two or more GPUs per CPU are becoming common as developers increasingly expose and 
leverage the available parallelism in their applications. While dense GPU systems provide a great vehicle 
for scaling single-node performance, multi-GPU application efficiency can be constrained by the 
performance of the PCIe (Peripheral Component Interconnect Express) bus connections between GPUs. 
Similarly, data center applications are growing outside the box, requiring efficient scaling across multiple 
interconnected systems. To address both of these needs, DGX-1 incorporates the NVLink high-speed GPU 
interconnect for multi-GPU scalability within a system, and multiple EDR InfiniBand ports to provide high 
bandwidth between many connected DGX-1 systems.

Given that communication is an expensive operation, developers must overlap data transfers with 
computation, or carefully orchestrate GPU accesses over PCIe interconnect to maximize performance. As 
GPUs get faster and GPU-to-CPU ratios climb, a higher-performance GPU interconnect provides users 
with more flexibility in communication scheduling, and is required to properly balance the higher 
throughput of the GPUs. 

This challenge motivated the creation of the NVLink high-speed interconnect, which enables NVIDIA 
GPUs to connect to peer GPUs and/or to NVLink-enabled CPUs or other devices within a node. NVLink 
supports the GPU ISA, which means that programs running on NVLink-connected GPUs can execute 
directly on data in the memory of another GPU as well as on local memory. GPUs can also perform 
atomic memory operations on remote GPU memory addresses, enabling much tighter data sharing and 
improved application scaling.

NVLink uses NVIDIA’s new High-Speed Signaling interconnect (NVHS). NVHS transmits data over a 
differential pair running at up to 25 Gb/s. Eight of these differential connections form a “Sub-Link” that 
sends data in one direction, and two sub-links—one for each direction—form a “Link” that connects two 
processors (GPU-to-GPU or GPU-to-CPU). A single link supports up to 50 GB/s of bidirectional bandwidth 
between the endpoints. Multiple links can be ganged together for even higher bandwidth between 
processors. The NVLink implementation in Tesla V100 supports up to six Links, allowing for an aggregate 
maximum theoretical bidirectional bandwidth of up to 300 GB/s.
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3.1 DGX-1 NVLink Network Topology for Efficient Application Scaling

DGX-1 includes eight NVIDIA Tesla V100 accelerators; providing the highest compute-density available in 
an air-cooled 3U chassis. Application scaling on this many highly parallel GPUs can be hampered by 
today’s PCIe interconnect. NVLink provides the communications performance needed to achieve good 
scaling on deep learning and other applications. Each Tesla V100 GPU has six NVLink connection points, 
each providing a point-to-point connection to another GPU at a peak bandwidth of 25 GB/s in each 
direction. Multiple NVLink connections can be aggregated, multiplying the available interconnection 
bandwidth between a given pair of GPUs. The result is that NVLink provides a flexible interconnect that 
can be used to build a variety of network topologies among multiple GPUs. V100 also supports 16 lanes 
of PCIe 3.0. In DGX-1, these are used for connecting between the CPUs and GPUs and high-speed IB 
network interface cards.

The design of the NVLink network topology for DGX-1 aims to optimize a number of factors, including 
the bandwidth achievable for a variety of point-to-point and collective communications primitives, the 
ability to support a variety of common communication patterns, and the ability to maintain 
performance when only a subset of the GPUs is utilized. During the design, NVIDIA engineers modeled 
projected scaling of a variety of applications, such as deep learning, sorting, Fast Fourier Transforms 
(FFT), molecular dynamics, graph analytics, computational fluid dynamics, seismic imaging, ray tracing, 
and others. This paper focuses on the scaling of deep learning training. 

The hybrid cube-mesh topology (Figure 4) can be thought of as a cube with GPUs at its corners and with 
all twelve edges connected through NVLink (some edges have two NVLink connections), and with two of 
the six faces having their diagonals connected as well. The topology can also be thought of as three 
interwoven rings of single NVLink connections.
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Figure 4 DGX-1 uses an 8-GPU hybrid cube-mesh interconnection network topology.  
The corners of the mesh-connected faces of the cube are connected to the PCIe tree network, which 
also connects to the CPUs and NICs.
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The cube-mesh topology provides the highest bandwidth of any 8-GPU NVLink topology for multiple 
collective communications primitives, including broadcast, gather, all-reduce, and all-gather, which are 
important to deep learning. Using NVLink connections to span the gap between the two clusters of four 
GPUs relieves pressure on the PCIe bus and on the inter-CPU SMP link, and avoids staging transfers 
through system memory when transferring across the two clusters.

Furthermore, this 8-GPU cube-mesh topology is easily subdivided into fully connected halves, or into 
NVLink-connected GPU pairs. This flexibility is important when multiple applications share the server.

3.2 Scaling Deep Learning Training on NVLink

Deep neural networks learn many levels of abstraction, ranging from simple to complex concepts. The 
strength of deep models is that they are not only powerful but learnable. A deep neural network is 
trained by feeding it input and letting it compute layer-by-layer to generate output for comparison with 
a known correct answer. After computing the error at the output, this error flows backward through the 
network by back-propagation. At each step backward the model parameters are tuned in a direction 
that tries to reduce the error using a numerical optimization method such as stochastic gradient descent 
(SGD). This process sweeps over the data improving the model as it goes.

Training deep neural networks in parallel across multiple GPUs and/or multiple nodes requires 
distributing either the input data (“data parallel”), the model being trained (“model parallel”), or a 
hybrid of the two [Wu et al. 2015][Krizhevsky 2014]. Regardless of the approach, parallelizing across 
GPUs requires synchronization and communication of data (such as gradients) between GPUs. For 
example, in data-parallel approaches, separate parallel tasks must periodically resynchronize their 
gradients so that the model parameters are kept in sync across all parallel tasks. This amounts to an all-
reduce operation.

Scaling is a measure of the improvement in time to solution when increasing the number of parallel 
processors applied to a problem. A common approach to scaling training deep neural networks is to 
increase the global batch size as the number of GPUs increases. Perhaps unsurprisingly, these so-called 
“weak” scaling approaches have high parallel efficiency, even with relatively slow interconnections 
among GPUs. Nevertheless, for many weak-scaling deep learning workloads, NVLink provides significant 
performance advantages.

A common deep learning workload is the training of convolutional neural networks for computer vision 
tasks such as image recognition and understanding. Implementations commonly use weak data-parallel 
scaling for training. Figure  shows training performance and scaling for the Inception-V3 deep neural 
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network architecture using the Caffe2 framework. NVLink provides about a 15% overall performance 
benefit compared to PCIe when training on eight GPUs. 

The training of recurrent neural networks (RNNs) are another common deep learning workload. Due to 
high inter-GPU communication requirements, RNNs—in particular long short-term memory (LSTM) 
networks—often benefit more from faster NVLink interconnect. RNNs are commonly used for speech 
recognition and natural language processing. An example is the “Sequence-to-Sequence” (Seq2Seq) 

Figure 5 DGX-1 with V100 NVLink performance and scaling for mixed-precision training of the 
Inception-v3 neural network architecture using Caffe2 and the ImageNet dataset with a batch size 
of 128 per GPU. The bars show performance on one, two, four, and eight GPUs, comparing an off-
the-shelf system of eight Tesla V100 GPUs using PCIe for communication (gray) with eight Tesla 
V100 GPUs in a DGX-1 using NVLink communication (green). The lines show the speedup 
compared to a single GPU. Tests used NVIDIA DGX containers version 17.11, processing real data 
with cuDNN 7.0.4, NCCL 2.1.2.
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neural machine translation (NMT) technique [Sutskever et al., 2014], with several implementations and 
improvements including Open Neural Machine Translation (OpenNMT) [Klein et. al, 2017] and Sockeye 
[Hieber et. al, 2017]. As Figure 6 shows, DGX-1 with V100 GPUs and NVLink provides significant multi-
GPU performance and scaling advantages for an NMT implementation of Seq2Seq relative to a V100 
PCIe configuration.

Seq2Seq NMT models are used for language translation as well as image and video captioning 
[Venugopalan et. al, 2015]. Seq2Seq is an RNN made up of an encoder, which ingests an input sequence, 
and a decoder, which generates the output sequence (e.g., a translation). The encoder and decoder are 
parameterized by their embedding size, known as the RNN’s learning capacity. Increasing the 
embedding size can improve the network’s accuracy at the cost of lower training throughput (as with 
any other network, care must be taken to not overfit). With larger embeddings, the performance of 
NVLink becomes more valuable.

Figures 6 and 7 show training performance for a Sockeye NMT language translation model with a 
multilayer perceptron (MLP) attention model. Research has shown that adding attention to the decoder 
can improve the performance of a Seq2Seq network [Luong, et. al, 2015 and Bahdanau, et. al, 2016]. 
Figure 6 shows training performance and scaling of the NMT model on DGX-1 with an encoder and 
decoder embedding size of 512, comparing communication with NVLink to PCIe. NVLink provides about 
30% overall performance benefit compared to PCIe when training on eight GPUs.
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As with CNNs, NVLink benefits vary with differences in RNN configuration that affect the balance of 
computation and communication. Figure 7 shows that NVLink benefits the performance of Seq2seq 
more as the network embedding size increases, with a 2.54x improvement vs. PCIe for an embedding size 
of 2048. We ran three eight-GPU tests on a DGX-1 with and without NVLink. We varied the encoder and 
decoder embedding sizes from 512 to 2048, decreasing the per-GPU batch size with increasing 
embedding size due to GPU memory constraints. 

Figure 6 DGX-1 and V100 PCIe performance and scaling for single-precision training of a 
neural machine translation model with MLP attention and encoder/decoder embedding size of 
512 and a batch size of 256 per GPU. The bars show performance on one, two, four, and eight 
GPUs, comparing an off-the-shelf system of eight Tesla V100 GPUs using PCIe for 
communication (gray) with eight Tesla V100 GPUs in a DGX-1 using NVLink for communication 
(green). The lines show the speedup compared to a single GPU. Tests used NVIDIA DGX 
containers version 17.11, processing real data with cuDNN 7.0.4, NCCL 2.1.2.
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In general, the largest NVLink advantages occur when scaling to all eight GPUs, where multiple NVLink 
connections provide bandwidth far exceeding what PCIe provides. Communication-heavy applications 
such as recurrent neural networks show even larger performance benefits from NVLink, as the 2.54x 
speedup in Figure 7 demonstrates.

Figure 7  Sockeye neural machine translation single-precision training with MXNet using MLP 
attention on DGX-1, demonstrating significant NVLink performance benefits. The bars present 
performance on eight Tesla V100 GPUs in a DGX-1 when using NVLink for communication (green), 
and when using PCIe for communication (gray). Performance benefits increase with the encoder/
decoder embedding size. Results are the average number of samples per second processed during a 
single epoch of training with the German to English dataset. Tests used NVIDIA DGX MXNet 
container version 17.11, processing real data with cuDNN 7.0.4, NCCL 2.1.2.
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3.3 InfiniBand for Scaling to Multiple DGX-1 Systems

Multi-system scaling of the latest computational workloads, especially deep learning, requires strong 
communications between GPUs, both inside the system and between systems, to match the significant 
GPU performance of each system and to improve performance of scaling workloads. In addition to 
NVLink for high speed communication internally between GPUs, DGX-1 also uses Mellanox ConnectX-4 
EDR 100Gb InfiniBand ports to provide extremely low-latency and high-bandwidth communication 
between systems to reduce bottlenecks. The latest InfiniBand standard, EDR IB, configured in DGX-1 
provides:

• Four EDR IB ports providing simultaneous 400 Gb/s in and 400 Gb/s out of each DGX-1 system
• Low-latency communication and built-in primitives and collectives to accelerate large 

computations across multiple systems;
• High performance computing network topology support to enable data transfer between multiple 

systems simultaneously with minimal contention;

• NVIDIA GPUDirect RDMA3 across InfiniBand for direct transfers between GPUs in multiple systems.

DGX-1 comes configured with four EDR IB ports providing 800 Gb/s total bidirectional bandwidth that 
can be used to build a high-speed cluster of DGX-1 systems. Four EDR IB ports balance intra- and inter-
node bandwidth, and in certain use cases can be fully consumed by inter-node communication. When 
compared to typical networking technologies such as Ethernet, InfiniBand provides twenty times the 
bandwidth and four times lower latency even across a large multi-system cluster (see Table 1).

3. NVIDIA GPUDirect Remote Direct Memory Access (RDMA) protocol provides the ability to transfer data 
directly between GPUs in two different systems across the InfiniBand network without involving the CPU 
or system memory. This reduces latency, and significantly increases performance of multi-systems.
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The latest DGX-1 multi-system clusters use a network based on a fat-tree topology providing easily-
routed, predictable, contention-free communication between systems (see Figure 8). A fat tree is a tree-
structured network topology with systems at the leaves that connect up through multiple switch levels 
to a central top-level switch. Each level in a fat tree has the same number of links providing equal 
bandwidth. The fat-tree topology ensures the highest communication bisection4 bandwidth and lowest 
latency for all-to-all and all-gather type collectives that are common in computational and deep learning 
applications.

In addition, the internal NVLink cube-mesh network is connected to the external InfiniBand network in a 
way that provides optimized performance. Placement of the EDR IB ports in the DGX-1 system at the 
corners of the NVLink hybrid cube-mesh network provide balanced access for GPUs to IB and allow 
direct GPU-to-GPU RDMA communication across IB (see Figure 4). Since each EDR IB link has similar 
bandwidth to a x16 PCIe Gen 3 interface, system-to-system interconnect is well-balanced. From an 
application point of view, GPUDirect RDMA and the unique NVLink and IB network design provide the 
ability for any GPU kernel to directly access any other GPU’s memory in the network with minimal 
overhead, latency, and contention. 

Table 1 Multi-system DGX-1 cluster with InfiniBand provides 20x network performance.  

Typical multi-system 
cluster

DGX-1 multi-system 
cluster

Number of systems 124 124

Technology Dual 10 Gb Ethernet Quad EDR IB

Single system peak network 
Bandwidth

40 Gb/s 800 Gb/s

Full Cluster peak Bisection 
Bandwidth

310 GB/s 6,012 GB/sa

a. InfiniBand full cluster peak bandwidth of 6,012 GB/s computed based on 124 systems with 4 EDR IB ports
per system at 200 Gb/s (100 Gb/s in and 100 Gb/s out simultaneously) * 64/66 bit encoding divided by 8
bits/byte to convert to bytes times 0.5 to calculate bisection bandwidth.

System wide latency 5 us 1.28 usb

b. InfiniBand latency of 1.28 us based on system to system latency of 1.01 us plus 3 switch hops at 0.09 us
each.

4. Bisection bandwidth is the total bandwidth available between two halves of a networked cluster. It is
determined by splitting the system network down the center and adding the bandwidth of all the links
that were split.
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Figure 8   Example Multi-System Cluster of 124 DGX-1 Systems Tuned for Deep Learning

While the reference system architecture shown in Figure 8 is based on 124 systems, the fat-tree topology 
used is extensible to much larger configurations with more switches while still maintaining the high 
performance characteristics of InfiniBand. With the design in Figure 8, each first-level switch supports 
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4 DGX-1 SOFTWARE
The DGX-1 software has been built to run deep learning at scale. A key goal is to enable practitioners to 
deploy deep learning frameworks and applications on DGX-1 with minimal setup effort. The design of 
the platform software is centered around a minimal OS and driver install on the server, and provisioning 
of all application and SDK software in Docker (see Section 4.2) containers through the DGX Container 
Registry5, maintained by NVIDIA. Containers available for DGX-1 include multiple optimized deep 
learning frameworks, the NVIDIA DIGITS deep learning training application, third-party accelerated 
solutions, and the NVIDIA CUDA Toolkit. Figure 9 shows the DGX-1 deep learning software stack. 

Figure 9   The DGX-1 Deep Learning Software Stack.

5. NVIDIA’s Docker container registry service. See http://docs.nvidia.com/dgx/dgx-registry-guide/
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This software architecture has many advantages:

• Since each deep learning framework is in a separate container, each framework can use different 
versions of libraries like libc, cuDNN, and others, and not interfere with each other.

• As deep learning frameworks are improved for performance or bug fixes, new versions of the 
containers are made available in the DGX Container Registry.

• The system is easy to maintain, and the OS image stays clean, since applications are not installed 
directly on the OS.

• Security updates, driver updates, and OS patches can be delivered seamlessly.

The deep learning frameworks and the CUDA Toolkit include libraries that have been custom-tuned to 
provide high multi-GPU performance on DGX-1.

The remainder of this section covers the key components of the DGX-1 software stack (above the GPU 
Compute Software Driver) in detail. Section 5 provides details of optimizations to deep learning 
frameworks for DGX-1.

4.1 NVIDIA CUDA Toolkit

CUDA is a parallel-computing platform and programming model created by NVIDIA to give application 
developers access to the massive parallel processing capability of GPUs. CUDA is the foundation for GPU 
acceleration of deep learning as well as a wide range of other computation- and memory-intensive 
applications ranging from astronomy, to molecular dynamics simulation, to computational finance. Today 
there are over 400 GPU-accelerated applications that leverage the CUDA parallel computing platform 
[NVIDIA 2017b]. DGX-1 is not only the fastest platform for deep learning, but the most advanced CUDA 
platform for a wide variety of GPU-accelerated applications. 

The NVIDIA CUDA Toolkit provides a comprehensive environment for C and C++ developers building 
GPU-accelerated applications. The CUDA Toolkit includes NVCC, the CUDA C++ compiler for NVIDIA GPUs, 
a suite of libraries of GPU-accelerated algorithms, debugging and profiling tools, examples, and 
comprehensive programming guides and documentation. While the CUDA Toolkit can be directly 
installed on DGX-1, it is also provided as a Docker container image which can be used as the base layer 
for any containerized CUDA application (as Figure 9 shows). In addition, the full CUDA Toolkit is 
embedded in every deep learning framework container image.
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4.2 Docker Engine Utility for NVIDIA GPUs

Over the last few years there has been a dramatic rise in the use of software containers for simplifying 
deployment of data center applications at scale. Containers encapsulate an application’s dependencies 
to provide reproducible and reliable execution of applications and services without the overhead of a 
full virtual machine.

A Docker container is a mechanism for bundling a Linux application with all of its libraries, configuration 
files, and environment variables so that the execution environment is always the same, on whatever 
Linux system it runs (see Figure 10). DGX-1 uses Docker containers as the mechanism for deploying deep 
learning frameworks.

Figure 10 Docker containers encapsulate application dependencies to provide reproducible and 
reliable execution. The Docker Engine Utility for NVIDIA GPUs maps the user-mode components 
of the NVIDIA driver and the GPUs into the Docker container at launch. 
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Docker containers generally strive to be platform- and hardware-agnostic. They achieve this by 
separating user-mode code (in the container) from kernel-mode code. This separation presents a 
problem when using specialized hardware such as NVIDIA GPUs, since GPU drivers consist of a matched 
set of user-mode and kernel-mode modules. An early workaround to this problem was to fully install the 
NVIDIA drivers inside the container and map in the devices corresponding to the NVIDIA GPUs on launch. 
This solution is brittle because the version of the host driver must exactly match the version of the driver 
installed in the container. This requirement drastically reduced the portability of these early containers, 
undermining one of Docker’s more important features.

To enable portability in Docker images that leverage GPUs, NVIDIA developed the Docker Engine Utility 
for NVIDIA GPUs  [NVIDIA Corporation 2015], also known as the nvidia-docker utility, an open-source 
project that provides a command-line tool to mount the user-mode components of the NVIDIA driver 
and the GPUs into the Docker container at launch, as Figure 10 shows. 

4.3 NVIDIA Deep Learning SDK

NVIDIA provides a complete suite of GPU-accelerated libraries built on top of the CUDA parallel 
computing platform. The following two libraries provide GPU-accelerated primitives for deep neural 
networks:

• the CUDA Basic Linear Algebra Subroutines library (cuBLAS): cuBLAS is a GPU-accelerated version 
of the complete standard BLAS library that delivers significant speedup running on GPUs. The 
cuBLAS generalized matrix-matrix multiplication (GEMM) routine implements a key computation 
used in deep neural networks; for example, in computing fully connected layers.

• the CUDA Deep Neural Network library (cuDNN): cuDNN provides highly tuned implementations 
for standard routines such as forward and backward convolution, pooling, normalization, and 
activation layers. 

When deployed using Docker containers for DGX-1, deep learning frameworks are automatically 
configured to use parallel routines optimized for the Tesla V100 GPU architecture in DGX-1.
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4.4 NCCL

The NVIDIA Collective Communication Library (NCCL, pronounced “Nickel”) is a library of topology-
aware multi-GPU collective communication primitives that can be easily integrated into applications. 
Initially developed as an open-source research project6, NCCL is designed to be light-weight, and is 
dependent only on common C++ and CUDA libraries. NCCL can be deployed in single-process or multi-
process applications, handling required inter-process communication transparently. The NCCL API is 
designed to be familiar to anyone with experience using MPI collectives such as broadcast, reduce, 
gather, scatter, all-gather, all-reduce, or all-to-all. 

Docker containers for DGX-1 include a version of NCCL that optimizes these collectives for the DGX-1 
architecture’s 8-GPU hybrid cube-mesh NVLink network. When deployed using these containers, deep 
learning frameworks such as NVCaffe, Torch, Microsoft Cognitive Toolkit, and TensorFlow automatically 
use this version of NCCL when run on multiple GPUs. 

6. http://github.com/NVIDIA/nccl
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There are numerous approaches to implementing collectives efficiently. However, it is critical that our 
implementation takes the topology of interconnects between processors into account. To illustrate this, 
consider a broadcast of data from GPU0 to all other GPUs in the PCIe tree topology pictured in Figure 11. 

A two-step tree algorithm is one approach: in the first step the data is sent from GPU0 to a second GPU, 
and in the second step both of these send data to the remaining processors. However, there is a choice. 
Either send data from GPU0 to GPU1 in the first step and then GPU0 to GPU2 and GPU1 to GPU3 in the 
second, or perform the initial copy from GPU0 to GPU2 and then GPU0 to GPU1 and GPU2 to GPU3 in 
the second step. Examining the topology, it is clear that the second option is preferred, since sending 
data simultaneously from GPU0 to GPU2 and GPU1 to GPU3 would cause contention on the upper PCIe 
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Figure 11 A common PCIe topology for 4 GPUs attached to a single CPU. Purple arrows 
represent PCIe x16 connections
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links, halving the effective bandwidth for this step. In general, achieving good performance for 
collectives requires careful attention to the interconnect topology.   

Figure 12    Ring order of GPUs in PCIe tree

To optimize Broadcast bandwidth, an even better approach is to treat the PCIe tree topology as a ring, as 
Figure 12 shows. The broadcast is then performed by relaying small chunks of the input around the ring 
from GPU0 to GPU3. Interestingly, ring algorithms provide near optimal bandwidth for nearly all of the 
standard collective operations, even when applied to tree-like PCIe topologies, provided that the correct 
ring order is selected. 

In order to provide maximum bandwidth, NCCL implements ring-style collectives, and implicitly indexes 
the GPUs into the optimal ring order under the hood. This provides great performance for applications 
while freeing developers from having to worry about specific hardware configurations.
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The 8-GPU hybrid cube-mesh network can be thought of as three interwoven bidirectional rings of single 
NVLink connections, as Figure 13 shows. Treating the topology this way ensures that the performance of 
collectives other than all-to-all is largely equivalent.

Inter-GPU transfers for deep learning are performed using these three distinct bidirectional rings. Each 
ring connects all eight GPUs and together they use all six links of each Volta GPU in both directions. With 
this approach, reduction and broadcast operations can be performed at a speed of more than 130 GB/s, 
compared to 10 GB/s using PCIe on previous hardware generations. This performance is essential to 
achieving high scaling for deep learning training.

GPU
7

GPU
4

GPU
6

GPU
5

GPU
0

GPU
3

GPU
1

GPU
2

Figure 13 The DGX-1 NVLink hybrid cube-mesh topology can be treated as three 
interwoven bidirectional rings of single NVLink connections, shown here in gray, light 
green, and dark green.
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5 DEEP LEARNING FRAMEWORKS AND TOOLS FOR DGX-1
The NVIDIA Deep Learning SDK accelerates widely-used deep learning frameworks such as NVCaffe, 
Caffe2, Microsoft Cognitive Toolkit, MXNet, TensorFlow, Theano, PyTorch, Torch, and TensorRT. The 
following sections describe the deep learning frameworks and tools NVIDIA has optimized for DGX-1.

The DGX-1 software stack provides containerized versions of these frameworks optimized for the 
system. These frameworks, including all necessary dependencies, are pre-built, tested, and ready to run. 
For users who need more flexibility to build custom deep learning solutions, each framework container 
image also includes the framework source code to enable custom modifications and enhancements, 
along with the complete software development stack described in Section 4.

Most deep learning frameworks have begun to merge support for half-precision training techniques that 
exploit Tensor Core calculations in Volta. Some frameworks include support for FP16 storage and Tensor 
Core math. To achieve optimum performance, you can train a model using Tensor Core math and FP16 
mode on some frameworks. For information about which frameworks are optimized for Volta, see  
http://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html.

For the latest list of NVIDIA’s optimizations and changes for DGX-1, select your deep learning framework 
listed in the Deep Learning DGX Documentation Release Notes.

5.1 NVCaffe

Caffe7 is a deep learning framework made with flexibility, speed, and modularity in mind. It was 
originally developed by the Berkeley Vision and Learning Center (BVLC) and by community contributors. 

NVIDIA Caffe [NVIDIA Corporation, 2017a], also known as NVCaffe, is an NVIDIA-maintained fork of BVLC 
Caffe tuned for NVIDIA GPUs, particularly in multi-GPU configurations. It includes multi-precision 
support as well as other NVIDIA-enhanced features and offers performance specially tuned for the 
NVIDIA DGX-1.

NVCaffe supports single and multi-GPU execution.

The following list summarizes NVIDIA’s NVCaffe optimizations and changes for DGX-1. 

• Integration with cuDNN v7.
• Integration with CUDA 9.
• Integration with cuBLAS.
• Integration with latest version of NCCL with NVLink for improved multi-GPU scaling. 

7. http://caffe.berkeleyvision.org/
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• Automatic selection of the best cuDNN convolution algorithm.
• NVCaffe includes support for FP16 storage and Tensor Core math. To achieve optimum 

performance, you can train a model using Tensor Core math and FP16 mode on NVCaffe.
• 16-bit (half) floating point train and inference support.
• Mixed-precision support for storing and/or computing data in either 64-, 32- or 16-bit formats. 

Precision can be defined for every layer (forward and backward passes may be different), or it can 
be set globally.

• A parallelized parser and image transformer for improved I/O performance.
• Optimized GPU memory management for data and parameters storage, I/O buffers and workspace 

for convolutional layers.
• Parallel data parser and transformer for improved I/O performance.
• Parallel back-propagation and gradient reduction on multi-GPU systems.
• Fast solvers implementation with fused CUDA kernels for weights and history update.
• Multi-GPU test phase for even memory load across multiple GPUs.
• Backward compatibility with BVLC Caffe and NVCaffe 0.15.
• Extended set of optimized models (including 16-bit floating point examples).

5.2 Caffe2

Caffe28 is a deep-learning framework designed to easily express all model types, for example, 
convolutional neural networks (CNNs), recurrent neural networks (RNNs), and more, in a friendly 
Python-based API, and execute them using a highly efficient C++ and CUDA backend.

Caffe2’s flexible API lets users define models for inference or training using expressive, high-level 
operations. The Python interface allows easy control and visualization of the inference or training 
process. 

Caffe2 supports single and multi-GPU execution, along with multi-node execution.

The following list summarizes NVIDIA’s Caffe2 optimizations and changes for DGX-1.

• Integration with cuDNN v7.
• Integration with CUDA 9.
• Integration with cuBLAS.
• Integration with latest version of NCCL with NVLink for improved multi-GPU scaling. 

8. https://research.fb.com/downloads/caffe2/
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• Caffe2 includes support for FP16 storage and Tensor Core math. To achieve optimum 
performance, you can train a model using Tensor Core math and FP16 mode on Caffe2.

5.3 Microsoft Cognitive Toolkit 

The Microsoft Cognitive Toolkit9 (also known as CNTK), is a unified deep-learning toolkit that allows 
users to easily realize and combine popular model types such as feed-forward deep neural networks 
(DNNs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs). Microsoft 
Cognitive Toolkit implements stochastic gradient descent (SGD) learning with automatic differentiation 
and parallelization across multiple GPUs and servers10. Microsoft Cognitive Toolkit can be called as a 
library from Python or C++ applications, or executed as a standalone tool using the BrainScript model 
description language. 

NVIDIA and Microsoft worked closely to accelerate the Microsoft Cognitive Toolkit on GPU-based 
systems such as DGX-1 and Azure N-Series virtual machines. This combination offers startups and major 
enterprises alike tremendous ease of use and scalability since a single framework can be used to first 
train models on premises with the DGX-1 and later deploy those models at scale in the Microsoft Azure 
cloud11. 

Microsoft Cognitive Toolkit supports single and multi-GPU execution.

The following list summarizes NVIDIA’s Microsoft Cognitive Toolkit optimizations and changes for DGX-1.

• Integration with cuDNN v7.
• Integration with CUDA 9.
• Integration with cuBLAS.
• Integration with latest version of NCCL with NVLink for improved multi-GPU scaling. 
• Integration of Volta hardware support. 
• Image reader pipeline improvements allow AlexNet [Krizhevsky et al. 2012] to train at over 12,000 

images/second.
• Reduced GPU memory overhead for multi-GPU training by up to 2 GB per GPU. 
• Dilated convolution support.

9. https://www.microsoft.com/en-us/research/product/cognitive-toolkit/
10. Source: https://github.com/Microsoft/CNTK#what-is-the-microsoft-cognitive-toolkit
11. For information on using Microsoft Cognitive Toolkit in Azure, see https://github.com/Microsoft/
CNTK/wiki/CNTK-on-Azure
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5.4 MXNet 

MXNet12 is a deep learning framework designed for both efficiency and flexibility, which allows you to 
mix symbolic and imperative programming to maximize efficiency and productivity. At the core of MXNet 
is a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative 
operations on the fly. A graph optimization layer on top of the scheduler makes symbolic execution fast 
and memory efficient. MXNet is portable and lightweight, and scales to multiple GPUs and multiple 
machines.

MXNet supports single and multi-GPU execution.

The following list summarizes NVIDIA’s MXNet optimizations and changes for DGX-1.

• Integration with cuDNN v7.
• Integration with CUDA 9.
• Integration with cuBLAS.
• Integration with latest version of NCCL with NVLink for improved multi-GPU scaling. 
• MXNet includes support for FP16 storage and Tensor Core math. To achieve optimum 

performance, you need to train a model using Tensor Core math and FP16 mode on MXNet.
• Improved input pipeline for image processing.
• Optimized embedding layer CUDA kernels.
• Optimized tensor broadcast and reduction CUDA kernels.
• Optimized input pipeline for image processing

5.5 TensorFlow

TensorFlow13 is an open-source software library for numerical computation using data flow graphs. 
Nodes in the graph represent mathematical operations, while the graph edges represent the 
multidimensional data arrays (tensors) that flow between them. This flexible architecture lets you deploy 
computation to one or more CPUs or GPUs in a desktop, server, or mobile device without rewriting code. 

TensorFlow was originally developed by researchers and engineers working on the Google Brain team 
within Google's Machine Intelligence research organization for the purposes of conducting machine 
learning and deep neural networks research. The system is general enough to be applicable in a wide 
variety of other domains, as well.

12. http://mxnet.io
13. https://www.tensorflow.org
NVIDIA DGX-1 With Tesla V100 System Architecture  WP-08437-002_v01 | 29

https://www.tensorflow.org
http://mxnet.io
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cublas
https://developer.nvidia.com/nccl
http://www.nvidia.com/object/nvlink.html


For visualizing TensorFlow results, the TensorFlow Docker image also contains TensorBoard (https://
www.tensorflow.org/get_started/summaries_and_tensorboard ). TensorBoard is a suite of visualization 
tools. For example, you can view the training histories as well as an image of the network model.

TensorFlow supports single and multi-GPU execution.

The following list summarizes NVIDIA’s TensorFlow optimizations and changes for DGX-1.

• Integration with cuDNN v7.
• Integration with CUDA 9.
• Integration with cuBLAS.
• Integration with latest version of NCCL with NVLink for improved multi-GPU scaling. 
• TensorFlow supports FP16 storage and Tensor Core math. Models that contain convolutions or 

matrix multiplications using the tf.float16 data type will automatically take advantage of Tensor 
Core hardware whenever possible.

• Replacement of libjpeg with libjpeg-turbo.
• Support for the ImageNet preprocessing script.

5.6 Theano

Theano14 is a Python library that allows you to efficiently define, optimize, and evaluate mathematical 
expressions involving multi-dimensional arrays. Theano has been powering large-scale computationally 
intensive scientific investigations since 2007. 

Theano supports single and limited multi-GPU execution.

The following list summarizes NVIDIA’s Theano optimizations and changes for DGX-1.

• Integration with cuDNN v7.
• Integration with CUDA 9.
• Integration with cuBLAS.
• Integration with latest version of NCCL with NVLink for improved multi-GPU scaling. 
• Theano includes support for FP16 storage and Tensor Core math. To make use of Tensor Core 

math, set the dnn.conv.algo_xxx configuration parameter to time_once or 
time_on_shape_change.

• Runtime code generation: evaluate expressions faster.
• Extensive unit-testing and self-verification: detect and diagnose many types of errors.

14. http://deeplearning.net/software/theano/
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5.7 PyTorch

PyTorch15 is a Python package that provides two high-level features:

• Tensor computation (like NumPy) with GPU acceleration;
• Deep neural networks (DNNs) built on a tape-based autograd system.

You can reuse your favorite Python packages such as NumPy, Scipy and Cython to extend PyTorch when 
needed.

PyTorch supports single and multi-GPU execution.

The following list summarizes NVIDIA’s PyTorch optimizations and changes for DGX-1.

• Integration with cuDNN v7 with support for Tensor Core math when available.
• Integration with CUDA 9.
• Integration with cuBLAS.
• Integration with latest version of NCCL with NVLink for improved multi-GPU scaling. 
• PyTorch includes support for FP16 storage and Tensor Core math. To achieve optimum 

performance, you can train a model using Tensor Core math and FP16 mode on PyTorch.
• Supports Tensor Core operations for convolutions and GEMMs on Volta hardware.
• The examples directory contains examples of ImageNet and LSTM training scripts that uses FP16 

data, as well as how to do training with FP16.
• Matrix multiplication on FP16 inputs uses Tensor Core math when available.
• A custom batch normalization layer is implemented to use cuDNN for batch normalization with 

FP16 inputs.

15. http://pytorch.org/
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5.8 Torch 

Torch16 is a scientific computing framework with wide support for deep learning algorithms. Torch is 
easy to use and efficient, thanks to an easy and fast scripting language, Lua, and an underlying C/CUDA 
implementation. Torch offers popular neural network and optimization libraries that are easy to use yet 
provide maximum flexibility to build complex neural network topologies.

Torch supports single and multi-GPU execution.

The following list summarizes NVIDIA’s Torch optimizations and changes for DGX-1.

• Integration with cuDNN v7.
• Integration with CUDA 9.
• Integration with cuBLAS.
• Integration with latest version of NCCL with NVLink for improved multi-GPU scaling. 
• Buffering of parameters to be communicated by NCCL to reduce latency overhead.
• cuDNN bindings for recurrents networks (RNN, GRU, LSTM), including persistent versions which 

greatly improve the performance of small batch training.
• Dilated convolution support.
• Support for 16- and 32-bit floating point (FP16 and FP32) data input to cuDNN routines.
• Support for operations on FP16 tensors (using FP32 arithmetic). 

5.9 DIGITS 

The NVIDIA Deep Learning GPU Training System (DIGITS)17 puts the power of deep learning into the 
hands of engineers and data scientists.

DIGITS can be used to rapidly train highly accurate deep neural network (DNNs) for image classification, 
segmentation and object detection tasks. DIGITS simplifies common deep learning tasks such as 
managing data, designing and training neural networks on multi-GPU systems, monitoring performance 
in real time with advanced visualizations, and selecting the best performing model from the results 
browser for deployment. DIGITS is completely interactive so that data scientists can focus on designing 
and training networks rather than programming and debugging. 

The following list summarizes NVIDIA’s DIGITS optimizations and changes for DGX-1.

16. http://torch.ch
17. https://developer.nvidia.com/digits
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• Integration with cuDNN v7.
• Integration with CUDA 9.
• Integration with cuBLAS.
• Integration with latest version of NCCL with NVLink for improved multi-GPU scaling. 
• DIGITS runs on top of NVCaffe, Torch, and TensorFlow frameworks which are optimized for DGX. 

5.10 TensorRT

NVIDIA TensorRT™ is a high-performance deep learning inference optimizer and runtime that delivers 
low latency, high-throughput inference for deep learning applications on NVIDIA GPUs. TensorRT takes a 
network definition and optimizes it by merging tensors and layers, transforming weights, choosing 
efficient intermediate data formats, and selecting from a large kernel catalog based on layer parameters 
and measured performance.

After you have trained a neural network, you can optimize and deploy the model for GPU inferencing 
with TensorRT. The TensorRT container provides an easy to use container for TensorRT development. The 
container allows for the TensorRT samples to be built, modified and executed.  For more information 
about optimizing and deploying using TensorRT, see the Deep Learning SDK Documentation.  

The TensorRT API includes importers for trained deep learning models in a variety of standard formats. 
Once imported, TensorRT can optimize a network and generate a run-time engine for deployment.  
TensorRT also includes an infrastructure that allows you to perform inference using reduced-precision 
arithmetic to take advantage of the high performance and efficiency reduced-precision capabilities of 
Pascal and Volta GPUs.

TensorRT has both C++ and Python APIs. The C++ API allows developers to import, calibrate, generate 
and deploy networks using C++. Networks can be imported directly from NVCaffe, or from other 
frameworks via the UFF format. They may also be created programmatically by instantiating individual 
layers and setting parameters and weights directly. 

TensorRT 3.0 introduces a Python API to allow developers to easily parse models (for example from 
NVCaffe, TensorFlow, NumPy compatible frameworks) and generate and run PLAN files within Python-
based development environments. Currently, all TensorRT functionality except for INT8 calibrators and 
RNN support is exposed via the Python API. The Python API also introduces compatibility with Numpy 
arrays for layer weights and GPU-resident input and output data (via PyCUDA). The Python API provides a 
set of utility functions to address common tasks including parsing NVCaffe and UFF models and writing 
PLAN files.

The following list summarizes NVIDIA’s TensorRT optimizations and changes for DGX-1.

• Integration with cuDNN v7.
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• Integration with CUDA 9.
• Integration with cuBLAS.
• Integration with latest version of NCCL with NVLink for improved multi-GPU scaling. 
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6 RESULTS: DGX-1 FOR HIGHEST DEEP LEARNING PERFORMANCE
The performance of DGX-1 for training popular deep neural networks speaks volumes about the value of 
an integrated system for deep learning. 

6.1 ResNet-50 Training Results

The graph in Figure 14 demonstrates that DGX-1 with V100 GPUs achieves much higher throughput than 
DGX-1 with previous-generation NVIDIA Tesla P100 GPUs for training the ResNet-50 convolutional neural 
network across a variety of different frameworks. The Tesla V100 GPU provides much higher 
performance compared to the Tesla P100 GPU. Not only does V100 have 40% more FP32 CUDA Cores, it 
also adds new Tensor Cores, which can provide up to 8x higher throughput for mixed-precision matrix 
multiply-and-accumulate, a core computation in deep neural networks (see Section 2.1). Tesla V100 also 
has higher peak memory bandwidth and faster second-generation NVLink interconnect. Figure 14 shows 
that the high performance of Tesla V100 translates to up to 3.1x higher training performance for the 
ResNet-50 network on all eight GPUs of DGX-1, and similar speedups can be measured on other 
convolutional neural networks. 
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− Other software used: NCCL 2.1.2, CUDA 9.0.176, cuDNN 7.0.4, Ubuntu 16,04, NVIDIA Linux DIsplay 
Driver 384.81 

− NVIDIA deep learning container version: 17.11

− Floating point precision: DGX-1 (P100) using FP32, DGX-1 (V100) using mixed precision (FP16 and 
FP32) 

− Batch sizes: 

Framework DGX-1 (P100)  
Batch Size

DGX-1 (V100) 
Batch Size

PyTorch 128 256

TensorFlow 128 256

Caffe2 64 128

NVCaffe 64 128

MXNet 96 128

Figure 14 DGX-1 deep learning training speedup comparing eight Tesla V100 GPUs in a DGX-1 
with eight Tesla P100s in a DGX-1 for the ResNet-50 deep neural network architecture on the 
popular PyTorch (0.2.0+), TensorFlow (1.3.0+), Caffe2 (0.8.1+), NVCaffe (0.16.4) and MXNet 
(0.12.0+) deep learning frameworks.
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6.2 Sequence-to-Sequence Training Results

Figure 15 demonstrates the benefits of NVLink for training sequence-to-sequence recurrent neural 
networks (RNNs), which are commonly used for machine translation tasks. Compared to convolutional 
neural networks, which tend to be compute-bound, scaling RNNs to multiple GPUs can result in a 
communication bottleneck, which the higher inter-GPU bandwidth of NVLink can help reduce. Figure 15 
shows that DGX-1 with Tesla V100 and NVLink can train the Seq2Seq RNNs up to 1.5x faster on all eight 
GPUs than an off-the-shelf system with eight Tesla V100 GPUs interconnected via PCIe.

Figure 15 DGX-1 sequence-to-sequence recurrent neural network training speedup comparing eight NVLink-
connected Tesla V100 GPUs in a DGX-1 with eight PCIe-connected Tesla V100 GPUs in an off-the-shelf system. 
PCIe results run on a SMC 4028GR-TRT with dual Intel Xeon E5-2698v4 CPUs and 256GB DDR4-2133 RAM, with 
eight PCIe Tesla V100 accelerators. MXNet (0.12.0+) and Caffe2 (0.8.1+) deep learning frameworks used in all 
tests. See Figure 14 for other software used. Seq2Seq networks implemented in each framework were trained 
with an embedding sizes of 512 and a batch size of 256 per GPU. MXNet results used MLP attention and 
Caffe2 results used regular attention. MXNet reports results in sequences per second, while Caffe2 reports 
results in tokens per second, hence the larger values.
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6.3 Conclusion

Powerful Volta GPUs and high-performance NVLink interconnect are just part of the DGX-1 story. More 
productivity and performance benefits come from the fact that DGX-1 is an integrated system, with a 
complete software platform aimed at deep learning, as described in Sections 4 and 5. This includes the 
deep learning framework optimizations such as those in NVCaffe, cuBLAS, cuDNN, and other GPU-
accelerated libraries, and NVLink-tuned collective communications through NCCL. This integrated 
software platform, combined with Tesla V100 and NVLink, ensures that DGX-1 outperforms similar off-
the-shelf systems.

To learn more about NVIDIA DGX-1, visit http://www.nvidia.com/dgx1.
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