
DA-10158-001-01_v1.7.2 | October 2023

NVIDIA Magnum IO GPUDirect
Storage cuFile API

API Reference

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | ii

Table of Contents

Chapter 1. Introduction..1

Chapter 2. Usage.. 2
2.1. Dynamic Interactions... 2

2.2. Driver, File, and Buffer Management...3

2.3. cuFile Compatibility Mode..4

Chapter 3. cuFile API Specification...7
3.1. Data Types.. 7

3.1.1. Declarations and Definitions...7

3.1.2. Typedefs...9

3.1.3. Enumerations... 9

3.2. cuFile Driver APIs...12

3.3. cuFile Synchronous IO APIs.. 13

3.4. cuFile File Handle APIs..13

3.5. cuFile Buffer APIs..14

3.6. cuFile Stream APIs..14

3.7. cuFile Batch APIs...14

Chapter 4. cuFile API Functional Specification..16
4.1. cuFileDriver API Functional Specification... 16

4.1.1. cuFileDriverOpen..16

4.1.2. cuFileDriverClose..17

4.1.3. cuFileDriverGetProperties.. 17

4.1.4. cuFileDriverSetPollMode(bool poll, size_t poll_threshold_size).................................... 19

4.1.5. cuFileDriverSetMaxDirectIOSize(size_t max_direct_io_size)... 20

4.1.6. cuFileDriverSetMaxCacheSize(size_t max_cache_size)... 21

4.1.7. cuFileDriverSetMaxPinnedMemSize(size_t max_pinned_memory_size).................. 21

4.2. cuFile IO API Functional Specification..22

4.2.1. cuFileHandleRegister..22

4.2.2. cuFileHandleDeregister...23

4.2.3. cuFileRead...24

4.2.4. cuFileWrite..25

4.3. cuFile Memory Management Functional Specification... 26

4.3.1. cuFileBufRegister...26

4.3.2. cuFileBufDeregister.. 27

4.4. cuFile Stream API Functional Specification... 28

4.4.1. cuFileStreamRegister...28

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | iii

4.4.2. cuFileStreamDeregister.. 29

4.4.3. cuFileReadAsync...30

4.4.4. cuFileWriteAsync... 31

4.5. cuFile Batch API Functional Specification.. 33

4.5.1. cuFileBatchIOSetUp..33

4.5.2. cuFileBatchIOSubmit..34

4.5.3. cuFileBatchIOGetStatus..35

4.5.4. cuFileBatchIOCancel...36

4.5.5. cuFileBatchIODestroy...37

Chapter 5. Sample Program with cuFile APIs.. 38

Chapter 6. Known Limitations of cuFile Batch APIs... 41

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | iv

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 1

Chapter 1. Introduction

NVIDIA® Magnum IO GPUDirect® Storage (GDS) is part of the GPUDirect family. GDS
enables a direct data path for direct memory access (DMA) transfers between GPU
memory and storage, which avoids a bounce buffer through the CPU. This direct path
increases system bandwidth and decreases the latency and utilization load on the CPU.

This document provides information about the cuFile APIs that are used in applications
and frameworks to leverage GDS technology and describes the intent, context, and
operation of those APIs which are part of the GDS technology.

Note: The APIs and descriptions are subject to change without notice.

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 2

Chapter 2. Usage

This section describes the operation of the cuFile APIs.

Because the functionality is part of the CUDA Driver C API, the APIs use the cuFile
prefix and camel case motif of the CUDA Driver.

‣ All APIs are thread-safe.

‣ The fork system call should not be used after the library is initialized. The behavior of
the APIs after the fork system call is undefined in the child process.

‣ The APIs with GPU buffers should be called in a valid CUDA context and stream if
applicable.

‣ All APIs are issued from the CPU, not the GPU.

Note: Starting from CUDA toolkit 12.2 (GDS version 1.7.x) release cuFile APIs support
memory allocated on GPU device as well as host memory. peer to peer transfer using
GPUDirect™ is supported to and from device memory on supported file system and
hardware configurations. The APIs will refer to this memory address as buffer pointer
unless the API specifically applies to a particular type of memory.

2.1. Dynamic Interactions
The following describes the dynamic interactions between the cuFile APIs.

Some of the cuFile APIs are optional. If they are not called proactively, their actions will
occur reactively:

If cuFile{DriverOpen, HandleRegister, BufRegister} is called on a driver, file,
or buffer, respectively that has been opened or registered by a previous cuFile* API
call, this will result in an error. Calling cuFile{BufDeregister, HandleDeregister,
DriverClose} on a buffer, file, or driver, respectively that has never been opened or
registered by a previous cuFile* API call results in an error. For these errors, the output
parameters of the APIs are left in an undefined state, and there are no other side effects.

‣ cuFileDriverOpen explicitly causes driver initialization.

Its use is optional. If it is not used, driver initialization happens implicitly at the first
use of the cuFile{HandleRegister, Read, Write, BufRegister} APIs.

Usage

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 3

‣ (Mandatory) cuFileHandleRegister turns an OS-specific file descriptor into a
CUfileHandle_t and performs checking on the GDS supportability based on the
mount point and the way that the file was opened.

‣ cuFileBufRegister explicitly registers a memory buffer.

If this API is not called, an internal registered memory is used if required on the first
time the buffer is used, for example, in cuFile{Read, Write}.

‣ cuFile{BufDeregister, HandleDeregister} explicitly frees a buffer and file
resources, respectively.

If this API is not called, the buffer and resources are implicitly freed when the driver is
closed using cuFileDriverClose.

‣ cuFileDriverClose explicitly frees driver resources.

If this API is not called, the driver resources are implicitly freed when dlclose() is
performed on the library handle or when the process is terminated.

2.2. Driver, File, and Buffer
Management

This section describes the overall workflow to manage the driver, the file, and buffer
management:

 1. Call cuFileDriverOpen() to initialize the state of the critical performance path.
 2. Allocate GPU memory with cudaMalloc, cudaMallocManaged, cuMem* APIs or host

memory using cudaMallocHost, malloc or mmap.
 3. To register the buffer, call cuFileBufRegister to initialize the buffer state of the

critical performance path.
 4. Complete the following IO workflow:

 a). For Linux, open a file with POSIX open.
 b). Call cuFileHandleRegister to wrap an existing file descriptor in an OS-agnostic

CUfileHandle_t. This step evaluates the suitability of the file state and the file
mount for GDS and initializes the file state of the critical performance path.

 c). Call IO APIs such as cuFileRead/cuFileWrite on an existing cuFile handle and
existing buffer.

‣ If the cuFileBufRegister has not been previously called on the buffer pointer,
cuFileRead/cuFileWrite will use internal registered buffers when required.

‣ Not using cuFileBufRegister might not be performant for small IO sizes.

‣ Refer to the GPUDirect Best Practices Guide for more information.

 d). Unless an error condition is returned, the IO is performed successfully.
 5. Call cuFileBufDeregister to free the buffer-specific cuFile state.
 6. Call cuFileHandleDeregister to free the file-specific cuFile state.

https://docs.nvidia.com/gpudirect-storage/best-practices-guide/index.html

Usage

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 4

 7. Call cuFileDriverClose to free up the cuFile state.

Note: Not using the cuFileDeregister and cuFileDriverClose APIs (steps 5, 6, and 7)
might unnecessarily consume resources, as shown by tools such as valgrind. The best
practice is to always call these APIs in the application cleanup paths.

2.3. cuFile Compatibility Mode
Use Cases

cuFile APIs can be used in different scenarios:

‣ Developers building GPUDirect Storage applications with cuFile APIs, but don’t have
the supported hardware configurations.

‣ Developers building applications running on GPU cards that have CUDA compute
capability > 6, but don’t have BAR space exposed.

‣ Deployments where nvidia-fs.ko is not loaded or cannot be loaded.

‣ Deployments where the Linux distribution does not support GPUDirect Storage.

‣ Deployments where the filesystem may be not supported with GPUDirect Storage.

‣ Deployments where the network links are not enabled with RDMA support.

‣ Deployment where the configuration is not optimal for GPUDirect Storage.

Behavior

The cuFile library provides a mechanism for cuFile reads and writes to use compatibility
mode using POSIX pread, pwrite, and aio_submit APIS respectively to host memory and
copying to GPU memory when applicable. The behavior of compatibility mode with cuFile
APIs is determined by the following configuration parameters.

Configuration Option (default) cuFile IO Behavior

"allow_compat_mode": true If true, falls back to using compatibility mode
when the library detects that the buffer file
descriptor opened cannot use GPUDirect
Storage.

"force_compat_mode": false If true, this option can be used to force all
IO to use compatibility mode. Alternatively
the admin can unload the nvidia_fs.ko or not
expose the character devices in the docker
container environment.

"gds_rdma_write_support": true If false, forces compatibility mode to be
used for writes even when the underlying file
system is capable of performing GPUDirect
Storage writes.

Note: If the option is “false”, this option will
override and disable any filesystem-specific
option to enable RDMA writes.

Usage

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 5

Configuration Option (default) cuFile IO Behavior

"posix_unaligned_writes" : false If true, forces compatibility mode to be used
for writes where the file offset and/or IO size is
not aligned to Page Boundary (4KB).

“lustre:posix_gds_min_kb" : 0 For a lustre filesystem, if greater than 0,
compatibility mode is used for IO sizes
between [1 - posix_gds_min_kb] specified in
kB.
Note: This option will force posix mode even if
“allow_compat_mode” is set to “false”.

"weka:rdma_write_support" : false If this option is false, all writes to WekaFS will
use compatibility mode.
Note: If the option is set to “false”, cuFile
library will use the posix path even if the
allow_compat_mode option is true or false.

"gpfs:gds_write_support" : false If this option is false, all writes to IBM
Spectrum Scale will use compatibility mode.
Note: If the option is set to “false”, cuFile
library will use the posix path even if the
allow_compat_mode option is true or false.

"rdma_dynamic_routing": false,

"rdma_dynamic_routing_order": ["
"SYS_MEM"]

If rdma_dynamic_routing is set to true
and rdma_dynamic_routing_order is set to
[“SYS_MEM”] , then all IO for DFS will use
compatibility mode.

In addition to the above configuration options, compatibility mode will be used as a
fallback option for following use cases.

Use Case cuFile IO Behavior

No BAR1 memory in GPU. Use compatibility mode.

For wekaFS or IBM Spectrum Scale mounts: If
there are no rdma_dev_addr_list specified, or
failure to register MR with ib device.

Use compatibility mode.

Bounce buffers cannot be allocated in GPU
memory.

Use compatibility mode.

For WekaFS and IBM Spectrum Scale: If the
kernel returns -ENOTSUP for GPUDirect Storage
read/write.

Retry the IO operation internally using
compatibility mode.

cuFile Stream and cuFile Batch APIs on IBM
Spectrum Scale or WekaFS

All Async and batch operations will internally
use compatibility mode IO.

The nvidia_fs.ko driver is not loaded. All IO operations will use compatibility mode.

Limitations

‣ Compatible mode does not work in cases where the GPUs have CUDA compute
capability less than 6.

Usage

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 6

‣ GDS Compat mode has been tested and works with GDS enabled file systems and
environments. It has not been tested to work on all other filesystems.

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 7

Chapter 3. cuFile API Specification

This section provides information about the cuFile APIs that are used from the CPU to
enable applications and frameworks.

3.1. Data Types

3.1.1. Declarations and Definitions
Here are the relevant cuFile enums and their descriptions.
typedef struct CUfileError {
 CUfileOpError err; // cufile error
 enum CUresult cu_err; // for CUDA-specific errors
} CUfileError_t;

/**
 * error macros to inspect error status of type CUfileOpError
 */

#define IS_CUFILE_ERR(err) \
 (abs((err)) > CUFILEOP_BASE_ERR)

#define CUFILE_ERRSTR(err) \
 cufileop_status_error(static_cast<CUfileOpError>(abs((err))))

#define IS_CUDA_ERR(status) \
 ((status).err == CU_FILE_CUDA_DRIVER_ERROR)

#define CU_FILE_CUDA_ERR(status) ((status).cu_

The following enum and two structures enable broader cross-OS support:
enum CUfileFileHandleType {
 CU_FILE_HANDLE_TYPE_OPAQUE_FD = 1, /* linux based fd */
 CU_FILE_HANDLE_TYPE_OPAQUE_WIN32 = 2, /* windows based handle */
CU_FILE_HANDLE_TYPE_USERSPACE_FS = 3, /* userspace based FS */
};

typedef struct CUfileDescr_t {
CUfileFileHandleType type; /* type of file being registered */
union {
int fd; /* Linux */
void *handle; /* Windows */
} handle;
const CUfileFSOps_t *fs_ops; /* file system operation table */
}CUfileDescr_t;

/* cuFile handle type */

cuFile API Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 8

typedef void* CUfileHandle_t;

typedef struct cufileRDMAInfo
{
 int version;
 int desc_len;
 const char *desc_str;
}cufileRDMAInfo_t;

typedef struct CUfileFSOps {
 /* NULL means discover using fstat */
 const char* (*fs_type) (void *handle);

 /* list of host addresses to use, NULL means no restriction */
 int (*getRDMADeviceList)(void *handle, sockaddr_t **hostaddrs);

 /* -1 no pref */
 int (*getRDMADevicePriority)(void *handle, char*, size_t,
 loff_t, sockaddr_t* hostaddr);

 /* NULL means try VFS */
 ssize_t (*read) (void *handle, char*, size_t, loff_t, cufileRDMAInfo_t*);
 ssize_t (*write) (void *handle, const char *, size_t, loff_t ,
 cufileRDMAInfo_t*);
}CUfileFSOps_t;

typedef enum CUfileDriverStatusFlags {
 CU_FILE_LUSTRE_SUPPORTED = 0, /*!< Support for DDN LUSTRE */
 CU_FILE_WEKAFS_SUPPORTED = 1, /*!< Support for WEKAFS */
 CU_FILE_NFS_SUPPORTED = 2, /*!< Support for NFS */
 CU_FILE_GPFS_SUPPORTED = 3, /*! < Support for GPFS */
 CU_FILE_NVME_SUPPORTED = 4, /*!< Support for NVMe */
 CU_FILE_NVMEOF_SUPPORTED = 5, /*!< Support for NVMeOF */
 CU_FILE_SCSI_SUPPORTED = 6, /*!< Support for SCSI */
 CU_FILE_SCALEFLUX_CSD_SUPPORTED = 7, /*!< Support for Scaleflux CSD*/
 CU_FILE_NVMESH_SUPPORTED = 8, /*!< Support for NVMesh Block Dev*/
 CU_FILE_BEEGFS_SUPPORTED = 9, /*!< Support for BeeGFS */
}CUfileDriverStatusFlags_t;

enum CUfileDriverControlFlags {
 CU_FILE_USE_POLL_MODE = 0, /*!< use POLL mode. properties.use_poll_mode*/
 CU_FILE_ALLOW_COMPAT_MODE = 1 /*!< allow COMPATIBILITY mode.
 properties.allow_compat_mode*/
};

typedef enum CUfileFeatureFlags {
 CU_FILE_DYN_ROUTING_SUPPORTED =0,
 CU_FILE_BATCH_IO_SUPPORTED = 1,
 CU_FILE_STREAMS_SUPPORTED = 2
} CUfileFeatureFlags_t;;

/* cuFileDriverGetProperties describes this structure’s members */
typedef struct CUfileDrvProps {
 struct {
 unsigned int major_version;
 unsigned int minor_version;
 size_t poll_thresh_size;
 size_t max_direct_io_size;
 unsigned int dstatusflags;
 unsigned int dcontrolflags;
 } nvfs;
 CUfileFeatureFlags_t fflags;
 unsigned int max_device_cache_size;
 unsigned int per_buffer_cache_size;
 unsigned int max_pinned_memory_size;
 unsigned int max_batch_io_timeout_msecs;

cuFile API Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 9

}CUfileDrvProps_t;

/* Parameter block for async cuFile IO */
/* Batch APIs use an array of these */
/* Status must be CU_FILE_WAITING when submitted, and is
 updated when enqueued and when complete, so this user-allocated
 structure is live until the operation completes. */
typedef enum CUFILEStatus_enum {
 CUFILE_WAITING = 0x000001, /* required value prior to submission */
 CUFILE_PENDING = 0x000002, /* once enqueued */
 CUFILE_INVALID = 0x000004, /* request was ill-formed or could not be
 enqueued */
 CUFILE_CANCELED = 0x000008, /* request successfully canceled */
 CUFILE_COMPLETE = 0x0000010, /* request successfully completed */
 CUFILE_TIMEOUT = 0x0000020, /* request timed out */
 CUFILE_FAILED = 0x0000040 /* unable to complete */
}CUfileStatus_t;

typedef enum cufileBatchMode {
 CUFILE_BATCH = 1,
} CUfileBatchMode_t;

typedef struct CUfileIOParams {
 CUfileBatchMode_t mode; // Must be the very first field.
 union {
 struct {
 void *devPtr_base;
 off_t file_offset;
 off_t devPtr_offset;
 size_t size;
 }batch;
 }u;
 CUfileHandle_t fh;
 CUfileOpcode_t opcode;
 void *cookie;
}CUfileIOParams_t;

typedef struct CUfileIOEvents {
 void *cookie;
 CUfileStatus_t status; /* status of the operation */
 size_t ret; /* -ve error or amount of I/O done. */
}CUfileIOEvents_t;

3.1.2. Typedefs
cuFile typedefs:
typedef struct CUfileDescr CUfileDesr_t
typedef struct CUfileError CUfileError_t
typedef struct CUfileDrvProps CUfileDrvProps_t
typedef enum CUfileFeatureFlags CUfileFeatureFlags_t
typedef enum CUfileDriverStatusFlags_enum CUfileDriverStatusFlags_t
typedef enum CUfileDriverControlFlags_enum CUfileDriverControlFlags_t
typedef struct CUfileIOParams CUfileIOParams_t
typedef enum CUfileBatchOpcode CUfileBatchOpcode_t

3.1.3. Enumerations
cuFile enums:

‣ enum CUfileOpcode_enum

This is the cuFile operation code for batch mode.

cuFile API Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 10

OpCode Value Description

CU_FILE_READ 0 Batch Read

CU_FILE_WRITE 1 Batch Write

/* cuFile Batch IO operation kind */
enum CUfileOpcode {
 CU_FILE_READ,
 CU_FILE_WRITE,
};

‣ enum CUfileStatus

The cuFile Status codes for batch mode.

Status Value Description

CUFILE_WAITING 0x01 The initial value.

CUFILE_PENDING 0x02 Set once enqueued into the
driver.

CUFILE_INVALID 0x04 Invalid parameters.

CUFILE_CANCELED 0x08 Request successfully
canceled.

CUFILE_COMPLETE 0x10 Successfully completed.

CUFILE_TIMEOUT 0x20 The operation has timed out.

CUFILE_FAILED 0x40 IO has failed.

‣ enum CUfileOpError

‣ The cuFile Operation error types.

‣ All error code values, other than CU_FILE_SUCCESS, are considered failures that
might leave the output and input parameter values of APIs in an undefined state.

These values cannot have any side effects on the file system, the application
process, and the larger system.

Note: cuFile-specific errors will be greater than CUFILEOP_BASE_ERR to enable
users to distinguish between POSIX errors and cuFile errors.
#define CUFILEOP_BASE_ERR 5000

Error Code Value Description

CU_FILE_SUCCESS 0 The cufile is successful.

CU_FILE_DRIVER_NOT_INITIALIZED 5001 The nvidia-fs driver is not
loaded.

CU_FILE_DRIVER_INVALID_PROPS 5002 An invalid property.

CU_FILE_DRIVER_UNSUPPORTED_LIMIT 5003 A property range error.

CU_FILE_DRIVER_VERSION_MISMATCH 5004 An nvidia-fs driver version
mismatch.

CU_FILE_DRIVER_VERSION_READ_ERROR 5005 An nvidia-fs driver version read
error.

cuFile API Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 11

Error Code Value Description

CU_FILE_DRIVER_CLOSING 5006 Driver shutdown in progress.

CU_FILE_PLATFORM_NOT_SUPPORTED 5007 GDS is not supported on the
current platform.

CU_FILE_IO_NOT_SUPPORTED 5008 GDS is not supported on the
current file.

CU_FILE_DEVICE_NOT_SUPPORTED 5009 GDS is not supported on the
current GPU.

CU_FILE_NVFS_DRIVER_ERROR 5010 An nvidia-fs driver ioctl error.

CU_FILE_CUDA_DRIVER_ERROR 5011 A CUDA Driver API error.

This error indicates a CUDA
driver-api error. If this is set,
a CUDA-specific error code
is set in the cu_err field for
cuFileError.

CU_FILE_CUDA_POINTER_INVALID 5012 An invalid device pointer.

CU_FILE_CUDA_MEMORY_TYPE_INVALID 5013 An invalid pointer memory type.

CU_FILE_CUDA_POINTER_RANGE_ERROR 5014 The pointer range exceeds the
allocated address range.

CU_FILE_CUDA_CONTEXT_MISMATCH 5015 A CUDA context mismatch.

CU_FILE_INVALID_MAPPING_SIZE 5016 Access beyond the maximum
pinned memory size.

CU_FILE_INVALID_MAPPING_RANGE 5017 Access beyond the mapped
size.

CU_FILE_INVALID_FILE_TYPE 5018 An unsupported file type.

CU_FILE_INVALID_FILE_OPEN_FLAG 5019 Unsupported file open flags.

CU_FILE_DIO_NOT_SET 5020 The fd direct IO is not set.

CU_FILE_INVALID_VALUE 5022 Invalid API arguments.

CU_FILE_MEMORY_ALREADY_REGISTERED 5023 Device pointer is already
registered.

CU_FILE_MEMORY_NOT_REGISTERED 5024 A device pointer lookup failure
has occurred.

CU_FILE_PERMISSION_DENIED 5025 A driver or file access error.

CU_FILE_DRIVER_ALREADY_OPEN 5026 The driver is already open.

CU_FILE_HANDLE_NOT_REGISTERED 5027 The file descriptor is not
registered.

CU_FILE_HANDLE_ALREADY_REGISTERED 5028 The file descriptor is already
registered.

CU_FILE_DEVICE_NOT_FOUND 5029 The GPU device cannot be not
found.

CU_FILE_INTERNAL_ERROR 5030 An internal error has occurred.
Refer to cufile.log for more
details.

cuFile API Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 12

Error Code Value Description

CU_FILE_GETNEWFD_FAILED 5031 Failed to obtain a new file
descriptor.

CU_FILE_NVFS_SETUP_ERROR 5033 An NVFS driver initialization
error has occurred.

CU_FILE_IO_DISABLED 5034 GDS is disabled by config on
the current file.

CU_FILE_BATCH_SUBMIT_FAILED 5035 Failed to submit a batch
operation.

CU_FILE_GPU_MEMORY_PINNING_FAILED 5036 Failed to allocate pinned GPU
memory.

CU_FILE_BATCH_FULL 5037 Queue full for batch operation.

CU_FILE_ASYNC_NOT_SUPPORTED 5038 cuFile stream operation is not
supported.

Note: Data path errors are captured via standard error codes by using errno. The APIs
will return -1 on error.

3.2. cuFile Driver APIs
The following cuFile APIs that are used to initialize, finalize, query, and tune settings for
the cuFile system.
/* Initialize the cuFile infrastructure */
CUfileError_t cuFileDriverOpen();

/* Finalize the cuFile system */
CUfileError_t cuFileDriverClose();

/* Query capabilities based on current versions, installed functionality */
CUfileError_t cuFileGetDriverProperties(CUfileDrvProps_t *props);

/*API to set whether the Read/Write APIs use polling to do IO operations */
CUfileError_t cuFileDriverSetPollMode(bool poll, size_t poll_threshold_size);

/*API to set max IO size(KB) used by the library to talk to nvidia-fs driver */
CUfileError_t cuFileDriverSetMaxDirectIOSize(size_t max_direct_io_size);

/* API to set maximum GPU memory reserved per device by the library for internal
 buffering */
CUfileError_t cuFileDriverSetMaxCacheSize(size_t max_cache_size);

/* Sets maximum buffer space that is pinned in KB for use by cuFileBufRegister
CUfileError_t cuFileDriverSetMaxPinnedMemSize(size_t
 max_pinned_memory_size);

Note: Refer to sample_007 for usage.

https://github.com/NVIDIA/MagnumIO/blob/main/gds/samples/cufile_sample_007.cc

cuFile API Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 13

3.3. cuFile Synchronous IO APIs
The core of the cuFile IO APIs are the read and write functions.
ssize_t cuFileRead(CUFileHandle_t fh, void *bufPtr_base, size_t size, off_t
 file_offset, off_t devPtr_offset);
ssize_t cuFileWrite(CUFileHandle_t fh, const void *bufPtr_base, size_t size, off_t
 file_offset, off_t devPtr_offset);

The starting offset of the buffer on the device or host is determined by a base
(bufPtr_base) and offset (bufPtr_offset). This offset is distinct from the offset in the
file.

Note: To use the registered buffer, the bufPtr_base must be the buffer pointer used to
register during cuFileBufRegister. Otherwise cuFileRead and cuFileWrite APIs may use
internal memory buffers for GPUDirect Storage peer to peer operations.

Note: The default behavior for all paths where GDS is not supported is for the
cuFile IO API to attempt IO using file system supported posix mode APIs when
properties.allow_compat_mode is set to true. In order to disable cuFile APIs falling back
to posix APIs for unsupported GDS paths, properties.allow_compat_mode in the /etc/
cufile.json file should be set to false.

Note: Refer to sample sample_003 for usage.

3.4. cuFile File Handle APIs
Here is some information about the cuFile Handle APIs.

The cuFileHandleRegister API makes a file descriptor or handle that is known to the
cuFile subsystem by using an OS-agnostic interface. The API returns an opaque handle
that is owned by the cuFile subsystem.

To conserve memory, the cuFileHandleDeregister API is used to release cuFile-related
memory objects. Using only the POSIX close will not clean up resources that were used
by cuFile. Additionally, the clean up of cuFile objects associated with the files that were
operated on in the cuFile context will occur at cuFileDriverClose.
CUfileError_t cuFileHandleRegister(CUFileHandle_t *fh, CUFileDescr_t *descr);
void cuFileHandleDeregister(CUFileHandle_t fh);

Note: Refer to sample_003 for usage.

https://github.com/NVIDIA/MagnumIO/blob/main/gds/samples/cufile_sample_003.cc
https://github.com/NVIDIA/MagnumIO/blob/main/gds/samples/cufile_sample_003.cc

cuFile API Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 14

3.5. cuFile Buffer APIs
The cuFileBufRegister API incurs a significant performance cost, so registration costs
should be amortized where possible. Developers must ensure that buffers are registered
up front and off the critical path.

The cuFileBufRegister API is optional. If this is not used, instead of pinning the user’s
memory, cuFile-managed and internally pinned buffers are used.

The cuFileBufDeregister API is used to optimally clean up cuFile-related memory
objects, but CUDA currently has no analog to cuFileBufDeregister. The cleaning
up of objects associated with the buffers operated on in the cuFile context occurs
at cuFileDriverClose. If explicit APIs are used, the incurred errors are reported
immediately, but if the operations of these explicit APIs are performed implicitly, error
reporting and handling are less clear.
CUfileError_t cuFileBufRegister(const void *devPtr_base, size_t size, int flags);
CUfileError_t cuFileBufDeregister(const void *devPtr_base);

Note: Refer to sample_005 for usage.

3.6. cuFile Stream APIs
Operations that are enqueued with cuFile Stream APIs are FIFO ordered with respect to
other work on the stream and must be completed before continuing with the next action
in the stream.
CUfileError_t cuFileReadAsync(CUFileHandle_t fh, void *bufPtr_base,
 size_t *size_p, off_t *file_offset_p, off_t *bufPtr_offset_p,
 ssize_t *bytes_read_p, CUStream stream);
CUfileError_t cuFileWriteAsync(CUFileHandle_t fh, void *bufPtr_base,
 size_t *size_p, off_t *file_offset_p, off_t *bufPtr_offse_pt,
 ssize_t *bytes_written_p, CUstream stream);

Note: Refer to samples sample_031, sample_032, sample_033, and sample_034 for usage.

3.7. cuFile Batch APIs
Batch APIs are submitted synchronously, but executed asynchronously with respect to
host thread.

These operations can be submitted on different files, different locations in the same file,
or a mix. Completion of IO can be checked asynchronously using a status API in the same
host thread or in a different thread. The cuFileBatchIOGetStatus API takes an array of
CUfileIOEvents_t and minimum number of elements to poll for. which describes the IO

https://github.com/NVIDIA/MagnumIO/blob/main/gds/samples/cufile_sample_005.cc
https://github.com/NVIDIA/MagnumIO/blob/main/gds/samples/cufile_sample_031.cc
https://github.com/NVIDIA/MagnumIO/blob/main/gds/samples/cufile_sample_032.cc
https://github.com/NVIDIA/MagnumIO/blob/main/gds/samples/cufile_sample_033.cc
https://github.com/NVIDIA/MagnumIO/blob/main/gds/samples/cufile_sample_034.cc

cuFile API Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 15

action, status, errors, and bytes transacted for each instance. The bytes transacted field
is valid only when the status indicates a successful completion.

Note: Refer to samples sample_019, sample_020, sample_021, and sample_022 for usage.

https://github.com/NVIDIA/MagnumIO/blob/main/gds/samples/cufile_sample_020.cc
https://github.com/NVIDIA/MagnumIO/blob/main/gds/samples/cufile_sample_021.cc
https://github.com/NVIDIA/MagnumIO/blob/main/gds/samples/cufile_sample_022.cc

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 16

Chapter 4. cuFile API Functional
Specification

This section provides information about the cuFile API functional specification.

See the GPUDirect Storage Overview Guide for a high-level analysis of the set of
functions and their relation to each other. We anticipate adding additional return codes
for some of these functions.

All cuFile APIs are called from the host code.

4.1. cuFileDriver API Functional
Specification

This section provides information about the cuFileDriver API functional specification.

4.1.1. cuFileDriverOpen
CUfileError_t cuFileDriverOpen();

Opens the Driver session to support GDS IO operations.

Parameters

‣ None

Returns

‣ CU_FILE_SUCCESS on a successful open, or if the driver is already open.

‣ CU_FILE_DRIVER_NOT_INITIALIZED on a failure to open the driver.

‣ CU_FILE_PERMISSION_DENIED on a failure to open.

This can happen when the character device (/dev/nvidia_fs[0-15]) is restricted to
certain users by an administrator, for example, admin, where /dev is not exposed with
read permissions in the container.

‣ CU_FILE_DRIVER_VERSION_MISMATCH, when there is a mismatch between the cuFile
library and its kernel driver.

‣ CU_FILE_CUDA_DRIVER_ERROR if the CUDA driver failed to initialize.
CU_FILE_PLATFORM_NOT_SUPPORTED if the current platform is not supported by GDS.

https://docs.nvidia.com/gpudirect-storage/overview-guide/index.html

cuFile API Functional Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 17

‣ CU_FILE_NVFS_SETUP_ERROR for a cuFile-specific internal error.

Refer to the cufile.log file for more information.

Description

‣ This API opens the session with the NVFS kernel driver to communicate from
userspace to kernel space and calls the GDS driver to set up the resources required
to support GDS IO operations.

‣ The API checks whether the current platform supports GDS and initializes the cuFile
library.

‣ This API loads the cuFile settings from a JSON configuration file in /etc/
cufile.JSON.

If the JSON configuration file does not exist, the API loads the default library
settings. To modify this default config file, administrative privileges are needed. The
administrator can modify it to grant cuFile access to the specified devices and mount
paths and also tune IO parameters (in KB, 4K aligned) that are based on the type of
workload. Refer to the default config file (/etc/cufile.json) for more information.

4.1.2. cuFileDriverClose
CUfileError_t cuFileDriverClose();

‣ Closes the driver session and frees any associated resources for GDS.

‣ This happens implicitly upon process exit.

‣ The driver can be reopened once it is closed.

Parameters

‣ None

Returns

‣ CU_FILE_SUCCESS on a successful close.

‣ CU_FILE_DRIVER_NOT_INITIALIZED on failure.

Description

‣ Close the GDS session and any associated memory resources. If there are
buffers registered by using cuFileBufRegister, which are not unregistered, a
cuFileDriverClose implicitly unregisters those buffers. Any in-flight IO when
cuFileDriverClose is in-progress will receive an error.

4.1.3. cuFileDriverGetProperties
The cuFileDrvProps_t structure can be queried with cuFileDriverGetProperties and
selectively modified with cuFileDriverSetProperties. The structure is self-describing,
and its fields are consistent with the major and minor API version parameters.
CUfileError_t cuFileDriverGetProperties(cuFileDrvProps_t *props);

‣ Gets the Driver session properties for GDS functionality.

https://docs.nvidia.com/gpudirect-storage/configuration-guide/index.html#gds-parameters

cuFile API Functional Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 18

Parameters

props

‣ Pointer to the cuFile Driver properties.

Returns

‣ CU_FILE_SUCCESS on a successful completion.

‣ CU_FILE_DRIVER_NOT_INITIALIZED on failure.

‣ CU_FILE_DRIVER_VERSION_MISMATCH on a driver version mismatch.

‣ CU_FILE_INVALID_VALUE if input is invalid.

Description

This API is used to get current GDS properties and nvidia-fs driver properties and
functionality, such as support for SCSI, NVMe, and NVMe-OF.

This API is used to get the current nvidia-fs drivers-specific properties such as the
following:

‣ major_version: the cuFile major version

‣ minor_version: the cuFile minor version

‣ props.nvfs.dstatusflags, which are bit flags that indicate support for the following
driver features:

‣ CU_FILE_EXASCALER_SUPPORTED, a bit to check whether the DDN EXAScaler
parallel filesystem solutions (based on the Lustre filesystem) client supports GDS.

‣ CU_FILE_WEKAFS_SUPPORTED, a bit to check whether WekaFS supports GDS.

‣ Props.nvfs.dcontrolflags, which are bit flags that indicate the current activation
for driver features:

‣ CU_FILE_USE_POLL_MODE, when bit is set, IO uses polling mode.

‣ CU_FILE_ALLOW_COMPAT_MODE, if the value is 1 compatible mode is set.

Otherwise, the compatible mode is disabled.

‣ Props.fflags, which are bit flags that indicate whether the following library features
are supported:

‣ CU_FILE_STREAMS_SUPPORTED, an attribute that checks whether CUDA-streams
are supported.

‣ CU_FILE_DYN_ROUTING_SUPPORTED, an attribute that checks whether dynamic
routing feature is supported.

‣ Props.nvfs.poll_thresh_size, a maximum IO size, in KB and must be 4K-aligned,
that is used for the POLLING mode.

‣ Props.nvfs.max_direct_io_size, a maximum GDS IO size, in KB and must be 4K-
aligned, that is requested by the nvidia-fs driver to the underlying filesystem.

‣ Props.max_device_cache_size, a maximum GPU buffer space per device, in KB and
must be 4K-aligned. Used internally, for example, to handle unaligned IO and optimal
IO path routing. This value might be rounded down to the nearest GPU page size.

cuFile API Functional Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 19

‣ Props.max_device_pinned_mem_size, a maximum buffer space, in KB and must be
4K-aligned, that is pinned and mapped to the GPU BAR space. This might be rounded
down to the nearest GPU page size.

‣ Props.per_buffer_cache_size, a GPU bounce buffer size, in KB, used for internal
pools.

Additional Information

See the following for more information:

‣ cuFileDriverSetPollMode(bool poll, size_t poll_threshold_size)

‣ cuFileDriverSetMaxDirectIOSize(size_t max_direct_io_size)

‣ cuFileDriverSetMaxCacheSize(size_t max_cache_size)

‣ cuFileDriverSetMaxPinnedMemSize(size_t max_pinned_memory_size)

4.1.4. cuFileDriverSetPollMode(bool poll, size_t
poll_threshold_size)

cuFileDriverSetPollMode(bool poll, size_t poll_threshold_size) API
CUfileError_t cuFileDriverSetPollMode(bool poll,
 size_t poll_threshold_size);

‣ Sets whether the Read/Write APIs use polling to complete IO operations. If poll mode
is enabled, an IO size less than or equal to the threshold value is used for polling.

‣ The poll_threshold_size must be 4K aligned.

Parameters

poll

‣ Boolean to indicate whether to use the poll mode.

poll_threshold_size

‣ IO size to use for POLLING mode in KB.

‣ The default value is 4KB.

Returns

‣ CU_FILE_SUCCESS on a successful completion.

‣ CU_FILE_DRIVER_NOT_INITIALIZED on failure to load the driver.

‣ CU_FILE_DRIVER_UNSUPPORTED_LIMIT on failure to set with valid threshold size

Description

This API is used in conjunction with cuFileGetDriverProperties. This API is used to set
whether the library should use polling and the maximum IO threshold size less than or
equal to which it will poll.

cuFile API Functional Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 20

This API overrides the default value that may be set through the JSON configuration file
using the config keys properties.poll_mode and properties.poll_max_size_kb for
the current process.

See the following for more information:

‣ cuFileDriverGetProperties

4.1.5. cuFileDriverSetMaxDirectIOSize(size_t
max_direct_io_size)

CUfileError_t cuFileDriverSetMaxDirectIOSize(size_t max_direct_io_size);

‣ Sets the max IO size, in KB.

This parameter is used by the nvidia-fs driver as the maximum IO chunk size in which
IO is issued to the underlying filesystem. In compatible mode, this is the maximum IO
chunk size that the library uses to issue POSIX read/writes.

‣ The max direct IO size must be 4K aligned.

Parameters

max_direct_io_size

‣ The maximum allowed direct IO size in KB.

‣ The default value is 16384KB. This is because typically parallel-file systems perform
better with bulk read/writes.

Returns

‣ CU_FILE_SUCCESS on successful completion.

‣ CU_FILE_DRIVER_NOT_INITIALIZED on failure to load the driver.

‣ CU_FILE_DRIVER_UNSUPPORTED_LIMIT on failure to set with valid size.

Description

This API is used with cuFileGetDriverProperties and is used to set the maximum
direct IO size used by the library to specify the nvidia-fs kernel driver the maximum
chunk size in which the latter can issue IO to the underlying filesystem. In compatible
mode, this is the maximum IO chunk size which the library uses for issuing POSIX read/
writes. This parameter is dependent on the underlying GPU hardware and system
memory.

This API overrides the default value that might be set through the JSON configuration
file by using the properties.max_direct_io_size_kb config key for the current process.

Refer to the following for more information:

‣ cuFileDriverGetProperties

cuFile API Functional Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 21

4.1.6. cuFileDriverSetMaxCacheSize(size_t
max_cache_size)

CUfileError_t cuFileDriverSetMaxCacheSize(size_t max_cache_size);

‣ Sets the maximum GPU buffer space, in KB, per device and is used for internal use,
for example, to handle unaligned IO and optimal IO path routing. This value might be
rounded down to the nearest GPU page size.

‣ The max cache size must be 4K aligned.

‣ This API overrides the default value that might be set through the JSON
configuration file using the properties.max_device_cache_size_kb config key for
the current process.

Parameters

max_cache_size

‣ The maximum GPU buffer space, in KB, per device used for internal use, for example,
to handle unaligned IO and optimal IO path routing. This value might be rounded
down to the nearest GPU page size.

‣ The default value is 131072KB.

Returns

‣ CU_FILE_SUCCESS on successful completion.

‣ CU_FILE_DRIVER_NOT_INITIALIZED on failure to load the driver.

‣ CU_FILE_DRIVER_UNSUPPORTED_LIMIT on failure to set with valid IO size

Description

This API is used with cuFileGetDriverProperties and is used to set the upper limit on
the cache size per device for internal use by the library.

See cuFileDriverGetProperties for more information.

4.1.7. cuFileDriverSetMaxPinnedMemSize(size_t
max_pinned_memory_size)

CUfileError_t cuFileDriverSetMaxPinnedMemSize(size_t max_pinned_mem_size);

‣ Sets the maximum GPU buffer space, in KB, that is pinned and mapped. This value
might be rounded down to the nearest GPU page size.

‣ The max pinned size must be 4K aligned.

‣ The default value corresponds to the maximum PinnedMemory or the physical
memory size of the device.

‣ This API overrides the default value that may be set by the
properties.max_device_pinned_mem_size_kb JSON config key for the current
process.

cuFile API Functional Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 22

Parameters

max_pinned_memory_size

‣ The maximum buffer space, in KB, that is pinned and mapped to the GPU BAR space.

‣ This value might be rounded down to the nearest GPU page size.

‣ The maximum limit may be set to UINT64_MAX, which is equivalent to no enforced
limit. It may be set to something smaller than the size of the GPU’s physical memory.

Returns

‣ CU_FILE_SUCCESS on successful completion.

‣ CU_FILE_DRIVER_NOT_INITIALIZED on failure to load driver.

‣ CU_FILE_DRIVER_UNSUPPORTED_LIMIT on failure to set with valid size.

Description

This API is used with cuFileGetDriverProperties and is used to set an upper
limit on the maximum size of GPU memory that can be pinned and mapped and
is dependent on the underlying GPU hardware and system memory. This API is
related to cuFileBufRegister, which is used to register GPU device memory.
SeecuFileDriverGetProperties for more information.

4.2. cuFile IO API Functional
Specification

This section provides information about the cuFile IO API function specification.

The device pointer addresses referred to in these APIs pertain to the current context for
the caller.

Unlike the non-async version of cuMemcpy, the cuFileHandleRegister,
cuFileHandleDeregister, cuFileRead, and cuFileWrite APIs do not have the semantic
of being ordered with respect to other work in the null stream.

4.2.1. cuFileHandleRegister
CUfileError_t cuFileHandleRegister(CUFileHandle_t *fh, CUfileDescr_t *descr);

‣ Register an open file.

‣ cuFileHandleRegister is required and performs extra checking that is memoized to
provide increased performance on later cuFile operations.

‣ This API is OS agnostic.

Note: CUDA toolkit 12.2 (GDS version 1.7.x) supports non O_DIRECT open flags as
well as O_DIRECT. Application is allowed to open a file in non O_DIRECT mode in
compat mode and also with nvidia-fs.ko installed. In the latter case, an O_DIRECT path
between GPU and Storage will be used if such a path exists.

cuFile API Functional Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 23

Parameters

‣ fh

Valid pointer to the OS-neutral cuFile handle structure supplied by the user but
populated and maintained by the cuFile runtime.

‣ desc

Valid pointer to the OS-neutral file descriptor supplied by the user carrying details
regarding the file to be opened such as fd for Linux-based files.

Returns

‣ CU_FILE_SUCCESS on successful completion.

‣ CU_FILE_DRIVER_NOT_INITIALIZED on failure to load the driver.

‣ CU_FILE_IO_NOT_SUPPORTED, if the filesystem is not supported.

‣ CU_FILE_INVALID_VALUE if there are null or bad API arguments.

‣ CU_FILE_INVALID_FILE_OPEN_FLAG, if the file is opened with unsupported modes
such as no O_APPEND, O_NOCTTY, O_NONBLOCK, O_DIRECTORY, O_NOFOLLOW, O_NOATIME,
and O_TMPFILE.

‣ CU_FILE_INVALID_FILE_TYPE, if the file path is not valid, not a regular file, not a
symbolic link, or not a device file.

‣ CU_FILE_HANDLE_ALREADY_REGISTERED if the file is already registered using the same
file-descriptor.

Description

‣ Given a file-descriptor will populate and return the CUfileHandle_t needed for
issuing IO with cuFile APIs.

‣ A return value of anything other than CU_FILE_SUCCESS leaves fh in an undefined
state but has no other side effects.

‣ By default this API accepts whether the file descriptor is opened with O_DIRECT
mode or non O_DIRECT mode.

Refer to the following for more information:

‣ cuFileRead

‣ cuFileWrite

‣ cuFileReadAsync

‣ cuFileWriteAsync

‣ cuFileHandleDeregister

4.2.2. cuFileHandleDeregister
CUfileError_t cuFileHandleDeregister(CUFileHandle_t *fh);

Parameters

‣ fh

cuFile API Functional Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 24

The file handle obtained from cuFileHandleRegister.

Returns

None

Note: This API only logs an ERROR level message in the cufile.log file for valid inputs.

Description

‣ The API is used to release resources that are claimed by cuFileHandleRegister.

This API should be invoked only after the application ensures there are no
outstanding IO operations with the handle. If cuFileHandleDeregister is called while
IO on the file is in progress might result in undefined behavior.

‣ The user is still expected to close the file descriptor outside the cuFile subsystem
after calling this API using close system call.

Closing a file handle without calling cuFileHandleDeregister does not release
the resources that are held in the cuFile library. If this API is not called, the cuFile
subsystem releases the resources lazily or when the application exits.

See the following for more information:

‣ cuFileRead

‣ cuFileWrite

‣ cuFileHandleDeregister

4.2.3. cuFileRead
ssize_t cuFileRead(CUfileHandle_tfh, void *bufPtr_base, size_t size, off_t
 file_offset, off_t bufPtr_offset);

‣ Reads specified bytes from the file descriptor into the device memory or the host
memory.

Parameters

‣ fh

File descriptor for the file.

‣ bufPtr_base

Base address of buffer in device memory or host memory. For registered buffers,
bufPtr_base must remain set to the base address used in the cuFileBufRegister
call.

‣ size

Size in bytes to read.

‣ file_offset

Offset in the file to read from.

‣ bufPtr_offset

cuFile API Functional Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 25

Offset relative to the bufPtr_base pointer to read into. This parameter should be
used only with registered buffers.

Returns

‣ Size of bytes that were successfully read.

‣ -1 on an error, so errno is set to indicate filesystem errors.

‣ All other errors return a negative integer value of the CUfileOpError enum value.

Description

This API reads the data from a specified file handle at a specified offset and size bytes
into the GPU memory by using GDS functionality or into the host memory based on the
type of memory pointer. The API works correctly for unaligned offsets and any data size,
although the performance might not match the performance of aligned reads.This is a
synchronous call and blocks until the IO is complete.

Note: For the bufPtr_offset, if data will be read starting exactly from the bufPtr_base
that is registered with cuFileBufRegister, bufPtr_offset should be set to 0. To read
starting from an offset in the registered buffer range, the relative offset should be
specified in the bufPtr_offset, and the bufPtr_base must remain set to the base
address that was used in the cuFileBufRegister call.

See the following for more information:

‣ cuFileWrite

‣ cuFileReadAsync

‣ cuFileWriteAsync

4.2.4. cuFileWrite
ssize_t cuFileWrite(CUfileHandle_t fh, const void *bufPtr_base, size_t size, off_t
 file_offset, off_t bufPtr_offset);

‣ Writes specified bytes from the device memory into the file descriptor using GDS.

Parameters

‣ fh

File descriptor for the file

‣ bufPtr_base

Base address of buffer in device memory or host memory. For registered buffers,
bufPtr_base must remain set to the base address used in the cuFileBufRegister
call.

‣ size

Size in bytes to which to write.

‣ file_offset

Offset in the file to which to write.

cuFile API Functional Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 26

‣ bufPtr_offset

Offset relative to the bufPtr_base pointer from which to write. This parameter
should be used only with registered buffers.

Returns

‣ Size of bytes that were successfully written.

‣ -1 on an error, so errno is set to indicate filesystem errors.

‣ All other errors return a negative integer value of the CUfileOpError enum value.

Description

This API writes the data from the GPU memory or the host memory to a file specified by
the file handle at a specified offset and size bytes by using GDS functionality. The API
works correctly for unaligned offset and data sizes, although the performance is not on-
par with aligned writes.This is a synchronous call and will block until the IO is complete.

Note: GDS functionality modified the standard file system metadata in SysMem. However,
GDS functionality does not take any special responsibility for writing that metadata back
to permanent storage. The data is not guaranteed to be present after a system crash
unless the application uses an explicit fsync(2) call. If the file is opened with an O_SYNC
flag, the metadata will be written to the disk before the call is complete.

Refer to the note in cuFileRead for more information about bufPtr_offset:.

Refer to the following for more information:

‣ cuFileWrite

‣ cuFileReadAsync

‣ cuFileWriteAsync

4.3. cuFile Memory Management
Functional Specification

The device pointer addresses that are mentioned in the APIs in this section pertain to
the current context for the caller. cuFile relies on users to complete their own allocation
before using the cuFileBufRegister API and free after using the cuFileBufDeregister
API.

4.3.1. cuFileBufRegister
CUfileError_t cuFileBufRegister(const void *bufPtr_base,
 size_t size, int flags);

‣ Based on the memory type, this API registers existing cuMemAlloc’d (pinned)
memory for GDS IO operations or host memory for IO operations.

Parameters

cuFile API Functional Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 27

‣ bufPtr_base

Address of device pointer. cuFileRead and cuFileWrite must use this bufPtr_base
as the base address.

‣ size

Size in bytes from the start of memory to map.

‣ flags

Reserved for future use, must be 0.

Returns

‣ CU_FILE_SUCCESS on a successful registration.

‣ CU_FILE_NVFS_DRIVER_ERROR if the nvidia-fs driver cannot handle the request.

‣ CU_FILE_INVALID_VALUE on a failure.

‣ CU_FILE_CUDA_DRIVER_ERROR on CUDA-specific errors. CUresult code can be obtained
using CU_FILE_CUDA_ERR(err).

‣ CU_FILE_MEMORY_ALREADY_REGISTERED, if memory is already registered.

‣ CU_FILE_INTERNAL_ERROR, an internal library-specific error.

‣ CU_FILE_CUDA_MEMORY_TYPE_INVALID, for device memory that is not allocated via
cudaMalloc or cuMemAlloc.

‣ CU_FILE_CUDA_POINTER_RANGE_ERROR, if the size exceeds the bounds of the allocated
memory.

‣ CU_FILE_INVALID_MAPPING_SIZE, if the size exceeds the GPU resource limits.

‣ CU_FILE_GPU_MEMORY_PINNING_FAILED, if not enough pinned memory is available.

Description

Based on the memory type, this API either registers the specified GPU address or host
memory address and size for use with the cuFileRead and cuFileWrite operations. The
user must call cuFileBufDeregister to release the pinned memory mappings for GPU
memory if needed.

See the following for more information:

‣ cuFileBufDeregister

4.3.2. cuFileBufDeregister
CUfileError_t cuFileBufDeregister(const void *bufPtr_base);

‣ Based on the memory type, this API either deregisters CUDA memory or the host
memory registered using the cuFileBufRegister API.

Parameters

‣ bufPtr_base

Address of device pointer to release the mappings that were provided to
cuFileBufRegister

cuFile API Functional Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 28

Returns

‣ CU_FILE_SUCCESS on a successful deregistration.

‣ CU_FILE_MEMORY_NOT_REGISTERED, if bufPtr_base was not registered.

‣ CU_FILE_ERROR_INVALID_VALUE on failure to find the registration for the specified
memory.

‣ CU_FILE_INTERNAL_ERROR, an internal library-specific error.

Description

This API deregisters memory mappings that were registered by cuFileBufRegister.
Refer to cuFileBufRegister for more information.

4.4. cuFile Stream API Functional
Specification

This section provides information about the cuFile stream API functional specification.

The stream APIs are similar to Read and Write, but they take a stream parameter to
support asynchronous operations and execute in the CUDA stream order.

4.4.1. cuFileStreamRegister
CUfileError_t cuFileStreamRegister(CUStream_t stream, unsigned flags);

‣ Defines the input behavior for stream I/O APIs.

Parameters

‣ stream

CUDA stream in which to enqueue the operation. If NULL, make this operation in the
default CUDA stream.

‣ flags

The following are valid values:

Value Description

0x0 All the I/O parameters are valid only at the
time of execution.

0x1 Buffer offset value is valid at submission
time.

0x2 File offset value is valid at submission time.

0x4 Size is valid at submission time.

0x8 All inputs i.e. buffer offset, file offset and
size are 4K aligned.

cuFile API Functional Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 29

Value Description

0xf All inputs are aligned and known at
submission time.

Note: Using the flag ‘0XF’ will perform best as the workflow can be optimized during
submission time.

Description

This optional API registers the stream with the cuFile subsystem.

This API will allocate resources to handle stream operations for cuFile.

The API will synchronize on the stream before allocating resources.

The stream pointer is expected to be a valid pointer.

Returns

‣ CU_FILE_SUCCESS on a successful submission.

‣ CU_FILE_ERROR_INVALID_VALUEon a invalid stream specification.

‣ CU_FILE_DRIVER_ERROR if the NVIDIA-fs driver cannot handle the request.

‣ CU_FILE_PLATFORM_NOT_SUPPORTED on unsupported platforms.

4.4.2. cuFileStreamDeregister
CUfileError_t cuFileStreamDeregister(CUStream_t stream);

Parameters

‣ stream

CUDA stream in which to enqueue the operation. If NULL, make this operation in the
default CUDA stream.

‣ flags

Reserved for future use.

Description

This optional API deregisters the stream with the cuFile subsystem.

This API will free allocated cuFile resources associated with the stream.

The API will synchronize on the stream before releasing resources.

The stream pointer is expected to be a valid pointer.

The stream will be automatically deregistered as part of cuFileDriverClose.

Returns

‣ CU_FILE_SUCCESS on a successful submission.

‣ CU_FILE_ERROR_INVALID_VALUEon a invalid stream specification.

cuFile API Functional Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 30

‣ CU_FILE_PLATFORM_NOT_SUPPORTED on unsupported platforms.

4.4.3. cuFileReadAsync
CUfileError_t cuFileReadAsync(CUFileHandle_t fh,
 void *bufPtr_base,
 size_t *size_p,
 off_t file_offset_p,
 off_t bufPtr_offset_p,
 int *bytes_read_p,
 CUstream stream);

‣ Enqueues a read operation for the specified bytes from the cuFile handle into the
device memory by using GDS functionality or to the host memory based on the type
of memory pointer.

‣ If non-NULL, the action is ordered in the stream.

‣ The current context of the caller is assumed.

Parameters

‣ fh

The cuFile handle for the file.

‣ bufPtr_base

‣ The base address of the buffer in the memory into which to read.

‣ The buffer can be allocated using either
cudaMemory/cudaMallocHost/malloc/mmap.

‣ For registered buffers, bufPtr_base must remain set to the base address used in
cuFileBufRegister call.

‣ size_p

Pointer to size in bytes to read. If the exact size is not known at the time of I/O
submission, then you must set it to the maximum possible I/O size for that stream I/
O.

‣ file_offset_p

Pointer to offset in the file from which to read. Unless otherwise set using
cuFileStreamRegister API, this value will not be evaluated until execution time.

‣ bufPtr_offset_p

Pointer to the offset relative to the bufPtr_base pointer from which to write. Unless
otherwise set using cuFileStreamRegister API, this value will not be evaluated until
execution time.

‣ bytes_read_p

Pointer to the bytes read from the specified filehandle. This pointer should be a non
NULL value and *bytes_read_p set to 0. After successful execution of the operation
in the stream, the value *bytes_read_p will contain either:

‣ The number of bytes successfully read.

‣ -1 on IO errors.

cuFile API Functional Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 31

‣ All other errors return a negative integer value of the CUfileOpError enum value.

‣ stream

‣ CUDA stream in which to enqueue the operation.

‣ If NULL, make this operation synchronous.

Returns

‣ CU_FILE_SUCCESS on a successful submission.

‣ CU_FILE_DRIVER_ERROR, if the nvidia-fs driver cannot handle the request.

‣ CU_FILE_ERROR_INVALID_VALUE on an input failure.

‣ CU_FILE_CUDA_ERROR on CUDA-specific errors.

CUresult code can be obtained by using CU_FILE_CUDA_ERR(err).

Description

‣ This API reads the data from the specified file handle at the specified offset and size
bytes into the GPU memory using GDS functionality.

This is an asynchronous call and enqueues the operation into the specified CUDA
stream and will not block the host thread for IO completion. The operation can be
waited upon using cuStreamSynchronize(stream).

‣ The bytes_read_p memory should be allocated with cuMemHostAlloc/malloc/mmap
or registered with cuMemHostRegister.

The pointer to access that memory from the device can be obtained by using
cuMemHostGetDevicePointer.

‣ Operations that are enqueued with cuFile Stream APIs are FIFO ordered with respect
to other work on the stream and must be completed before continuing to the next
action in the stream.

‣ Unless otherwise specified through cuFileStreamRegister API, file offset, buffer
offset or size parameter will not be evaluated until execution time. In these scenarios,
size parameters should be set to the maximum possible I/O size at the time of
submission and can be set to the actual size prior to the stream I/O execution.

Refer to the following for more information:

‣ cuFileRead

‣ cuFileWrite

‣ cuFileWriteAsync

4.4.4. cuFileWriteAsync
CUfileError_t cuFileWriteAsync(CUFileHandle_t fh,
 void *bufPtr_base,
 size_t *size_p,
 off_t file_offset_p,
 off_t bufPtr_offset_p,
 int *bytes_written_p,
 CUstream_t stream);

cuFile API Functional Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 32

‣ Queues Write operation for the specified bytes from the device memory into the
cuFile handle by using GDS.

Parameters

‣ fh

The cuFile handle for the file.

‣ bufPtr_base

The base address of the buffer in the memory from which to write. The buffer
can be allocated using either cudaMemory/cudaMallocHost/malloc/mmap. For
registered buffers, bufPtr_base must remain set to the base address used in the
cuFileBufRegister call.

‣ size_p

Pointer to the size in bytes to write. If the exact size is not known at the time of I/O
submission, then you must set it to the maximum possible I/O size for that stream I/
O.

‣ file_offset_p

Pointer to the offset in the file from which to write. Unless otherwise set using
cuFileStreamRegister API, this value will not be evaluated until execution time.

‣ bufPtr_offset_p

Pointer to the offset relative to the bufPtr_base pointer from which to write. Unless
otherwise set using cuFileStreamRegister API, this value will not be evaluated until
execution time.

‣ bytes_written_p

Pointer to the bytes written to the specified filehandle.This pointer should be a
non NULL value and *bytes_written_p set to 0. After successful execution of the
operation in the stream, the value *bytes_written_p will contain either:

‣ The number of bytes successfully written.

‣ -1 on IO errors.

‣ All other errors will return a negative integer value of the CUfileOpError enum
value.

‣ stream

The CUDA stream to enqueue the operation.

Returns

‣ CU_FILE_SUCCESS on a successful submission.

‣ CU_FILE_DRIVER_ERROR, if the nvidia-fs driver cannot handle the request.

‣ CU_FILE_ERROR_INVALID_VALUE on an input failure.

‣ CU_FILE_CUDA_ERROR on CUDA-specific errors.

The CUresult code can be obtained by using CU_FILE_CUDA_ERR(err).

Description

cuFile API Functional Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 33

‣ This API writes the data from the GPU memory to a file specified by the file handle at
a specified offset and size bytes by using GDS functionality. This is an asynchronous
call and enqueues the operation into the specified CUDA stream and will not block
the host thread for IO completion. The operation can be waited upon by using
cuStreamSynchronize(stream).

‣ The bytes_written pointer should be allocated with cuMemHostAlloc or registered
with cuMemHostRegister, and the pointer to access that memory from the device can
be obtained by using cuMemHostGetDevicePointer.

‣ Operations that are enqueued with cuFile Stream APIs are FIFO ordered with respect
to other work on the stream and must be completed before continuing to the next
action in the stream.

‣ Unless otherwise specified through cuFileStreamRegister API, file offset, buffer
offset or size parameter will not be evaluated until execution time. In these scenarios,
size parameters should be set to the maximum possible I/O size at the time of
submission and can be set to the actual size prior to the stream I/O execution.

See the following for more information:

‣ cuFileRead

‣ cuFileWrite

‣ cuFileReadAsync

4.5. cuFile Batch API Functional
Specification

This section provides information about the cuFile Batch API functional specification.

4.5.1. cuFileBatchIOSetUp
CUfileError_t
cuFileBatchIOSetUp(CUfileBatchHandle_t *batch_idp, int max_nr);

Parameters

‣ max_nr

(Input) The maximum number of events this batch will hold.

Note: The number should be between 1 - “properties.io_batch_size”

‣ batch_idp

(Output) Will be used in subsequent batch IO calls.

Returns

‣ CU_FILE_SUCCESS on success.

‣ CU_FILE_INTERNAL_ERROR on on any failures.

cuFile API Functional Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 34

Description

This interface should be the first call in the sequence of batch I/O operation. This
takes the maximum number of batch entries the caller intends to use and returns a
CUFileBatchHandle_t which should be used by the caller for subsequent batch I/O calls.

See the following for more information:

‣ cuFileRead

‣ cuFileWrite

‣ cuFileReadAsync

‣ cuFileWriteAsync

‣ cuFileBatchIOGetStatus

‣ cuFileBatchIOCancel

‣ cuFileBatchIODestroy

4.5.2. cuFileBatchIOSubmit
CUfileError_t cuFileBatchIOSubmit(CUfileBatchHandle_t batch_idp,
 unsigned nr,
 CUfileIOParams_t *iocbp,
 unsigned int flags)

Parameters

‣ batch_idp

The address of the output parameter for the newly created batch ID, which was
obtained from a cuFileBatchSetup call.

‣ nr

‣ The number of requests for the batch request.

‣ The value must be greater than 0 and less than or equal to max_nr specified in
cuFileBatchIOSetup.

‣ iocbp

The pointer contains the CUfileIOParams_t array structures of the length nr array.

‣ flags

Reserved for future use. Should be set to 0.

Returns

‣ CU_FILE_SUCCESS on success.

‣ CU_FILE_INTERNAL_ERROR on any failures.

Description

‣ This API will need to be used to submit a read/write operation on an array of GPU/
CPU data pointers from their respective file handle, offset, and size bytes.

cuFile API Functional Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 35

Based on the type of memory pointer, the data is transferred to/from the GPU
memory by using GDS or the data is transferred to/from the CPU memory.

‣ This is an asynchronous call and will enqueue the operation on a batch_id
provided by the cuFileIOSetup API. The operation can be monitored when using
this batch_id through cuFileBatchIOGetStatus.

‣ The operation can be canceled by calling cuFileBatchIOCancel or destroyed by
cuFileBatchIODestroy.

‣ The entries in the CUfileIOParams_t array describe individual IOs.

The bytes transacted field is valid only when the status indicates a completion.

‣ Operations that are enqueued with cuFile Batch APIs are FIFO ordered with respect
to other work on the stream and must be completed before continuing to the next
action in the stream. Operations in each batch might be reordered with respect to
each other.

‣ The status field of individual IO operations via CUfileIOParams_t entries will have
undefined values before the entire batch is complete. This definition is subject to
change.

See the following for more information:

‣ cuFileRead

‣ cuFileWrite

‣ cuFileReadAsync

‣ cuFileWriteAsync

‣ cuFileBatchIOGetStatus

‣ cuFileBatchIOCancel

‣ cuFileBatchIODestroy

4.5.3. cuFileBatchIOGetStatus
CUfileError_t cuFileBatchIOGetStatus(CUfileBatchHandle_t batch_idp,
 unsigned min_nr,
 unsigned *nr,
 CUfileIOEvents_t *iocbp,
 struct timespec* timeout));

Parameters

‣ batch_idp

Obtained during setup.

‣ min_nr

The minimum number of IO entries for which status is requested. The min_nr should
be greater than or equal to zero and less than or equal to *nr.

‣ nr

cuFile API Functional Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 36

This is a pointer to max requested IO entries to poll for completion and is used as an
Input/Output parameter. As an input *nr must be set to pass the maximum number
of IO requests to poll for. As an output, *nr returns the number of completed I/Os.

‣ iocbp

CUFileIOEvents_t array containing the status of completed I/Os in that batch.

‣ timeout

This parameter is used to specify the amount of time to wait for in this API, even
if the minimum number of requests have not completed. If the timeout hits, it is
possible that the number of returned IOs can be less than min_nr.

Returns

‣ CU_FILE_SUCCESS on success.

The success here refers to the completion of the API. Individual IO status and error
can be obtained by examining the returned status and error in the array iocbp.

‣ CU_FILE_ERROR_INVALID_VALUE for an invalid batch ID.

Description

‣ This is a batch API to monitor the status of batch IO operations by using the
batch_id that was returned by cuFileBatchIOSubmit. The operation will be
canceled automatically if cuFileBatchIOCancel is called and the status will reflect
CU_FILE_CANCELED for all canceled IO operations.

‣ The status of each member of the batch is queried, which would not be possible
with one CUEvent. The status field of individual IO operations via CUfileIOParams_t
entries will have undefined values before the entire batch is completed. This
definition is subject to change.

See the following for more information:

‣ cuFileBatchIOSubmit

‣ cuFileBatchIODestroy

4.5.4. cuFileBatchIOCancel
CUfileError_t cuFileBatchIOCancel(CUfileBatchHandle_t batch_idp)

Parameters

‣ batch_idp

The batch ID to cancel.

Returns

‣ CU_FILE_SUCCESS on success.

‣ CU_FILE_ERROR_INVALID_VALUEon any failures.

Description

cuFile API Functional Specification

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 37

‣ This is a batch API to cancel an ongoing IO batch operation by using the batch_id
that was returned by cuFileBatchIOSubmit. This API tries to cancel an individual
IO operation in the batch if possible and provides no guarantee about canceling an
ongoing operation.

Refer to the following for more information:

‣ cuFileBatchIOGetStatus

‣ cuFileBatchIOSubmit

‣ cuFileBatchIODestroy

4.5.5. cuFileBatchIODestroy
void cuFileBatchIODestroy(CUfileBatchHandle_t batch_idp)

Parameters

‣ batch_idp

The batch handle to be destroyed.

Returns

void

Description

This is a batch API that destroys a batch context and the resources that are allocated
with cuFileBatchIOSetup.

Refer to the following for more information:

‣ cuFileBatchIOGetStatus

‣ cuFileBatchIOSubmit

‣ cuFileBatchIOCancel

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 38

Chapter 5. Sample Program with
cuFile APIs

The following sample program uses the cuFile APIs:
// To compile this sample code:
//
// nvcc gds_helloworld.cxx -o gds_helloworld -lcufile
//
// Set the environment variable TESTFILE
// to specify the name of the file on a GDS enabled filesystem
//
// Ex: TESTFILE=/mnt/gds/gds_test ./gds_helloworld
//
//
#include <fcntl.h>
#include <errno.h>
#include <unistd.h>

#include <cstdlib>
#include <cstring>
#include <iostream>
#include <cuda_runtime.h>
#include "cufile.h"

//#include "cufile_sample_utils.h"
using namespace std;

int main(void) {
 int fd;
 ssize_t ret;
 void *devPtr_base;
 off_t file_offset = 0x2000;
 off_t devPtr_offset = 0x1000;
 ssize_t IO_size = 1UL << 24;
 size_t buff_size = IO_size + 0x1000;
 CUfileError_t status;
 // CUResult cuda_result;
 int cuda_result;
 CUfileDescr_t cf_descr;
 CUfileHandle_t cf_handle;
 char *testfn;

 testfn=getenv("TESTFILE");
 if (testfn==NULL) {
 std::cerr << "No testfile defined via TESTFILE. Exiting." << std::endl;
 return -1;
 }

 cout << std::endl;
 cout << "Opening File " << testfn << std::endl;

Sample Program with cuFile APIs

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 39

 fd = open(testfn, O_CREAT|O_WRONLY|O_DIRECT, 0644);
 if(fd < 0) {
 std::cerr << "file open " << testfn << "errno " << errno <<
 std::endl;
 return -1;
 }

 // the above fd could also have been opened without O_DIRECT starting CUDA
 toolkit 12.2
 // (gds 1.7.x version) as follows
 // fd = open(testfn, O_CREAT|O_WRONLY, 0644);

 cout << "Opening cuFileDriver." << std::endl;
 status = cuFileDriverOpen();
 if (status.err != CU_FILE_SUCCESS) {
 std::cerr << " cuFile driver failed to open " << std::endl;
 close(fd);
 return -1;
 }

 cout << "Registering cuFile handle to " << testfn << "." << std::endl;

 memset((void *)&cf_descr, 0, sizeof(CUfileDescr_t));
 cf_descr.handle.fd = fd;
 cf_descr.type = CU_FILE_HANDLE_TYPE_OPAQUE_FD;
 status = cuFileHandleRegister(&cf_handle, &cf_descr);
 if (status.err != CU_FILE_SUCCESS) {
 std::cerr << "cuFileHandleRegister fd " << fd << " status " <<
 status.err << std::endl;
 close(fd);
 return -1;
 }

 cout << "Allocating CUDA buffer of " << buff_size << " bytes." << std::endl;

 cuda_result = cudaMalloc(&devPtr_base, buff_size);
 if (cuda_result != CUDA_SUCCESS) {
 std::cerr << "buffer allocation failed " << cuda_result <<
 std::endl;
 cuFileHandleDeregister(cf_handle);
 close(fd);
 return -1;
 }

 cout << "Registering Buffer of " << buff_size << " bytes." << std::endl;
 status = cuFileBufRegister(devPtr_base, buff_size, 0);
 if (status.err != CU_FILE_SUCCESS) {
 std::cerr << "buffer registration failed " << status.err <<
 std::endl;
 cuFileHandleDeregister(cf_handle);
 close(fd);
 cudaFree(devPtr_base);
 return -1;
 }

 // fill a pattern
 cout << "Filling memory." << std::endl;

 cudaMemset((void *) devPtr_base, 0xab, buff_size);
 cuStreamSynchronize(0);

 // perform write operation directly from GPU mem to file
 cout << "Writing buffer to file." << std::endl;
 ret = cuFileWrite(cf_handle, devPtr_base, IO_size, file_offset,
 devPtr_offset);

 if (ret < 0 || ret != IO_size) {

Sample Program with cuFile APIs

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 40

 std::cerr << "cuFileWrite failed " << ret << std::endl;
 }

 // release the GPU memory pinning
 cout << "Releasing cuFile buffer." << std::endl;
 status = cuFileBufDeregister(devPtr_base);
 if (status.err != CU_FILE_SUCCESS) {
 std::cerr << "buffer deregister failed" << std::endl;
 cudaFree(devPtr_base);
 cuFileHandleDeregister(cf_handle);
 close(fd);
 return -1;
 }

 cout << "Freeing CUDA buffer." << std::endl;
 cudaFree(devPtr_base);
 // deregister the handle from cuFile
 cout << "Releasing file handle. " << std::endl;
 (void) cuFileHandleDeregister(cf_handle);
 close(fd);

 // release all cuFile resources
 cout << "Closing File Driver." << std::endl;
 (void) cuFileDriverClose();

 cout << std::endl;

 return 0;
}

NVIDIA Magnum IO GPUDirect Storage cuFile API DA-10158-001-01_v1.7.2 | 41

Chapter 6. Known Limitations of
cuFile Batch APIs

This section provides information about the known limitations of cuFile Batch APIs in this
release of GDS.

‣ Batch I/Os will be supported mainly by either the local file systems which are hosted
on NVMe or NVMeOF devices or by the native file system that supports Linux AIO.
Following table provides an overview of the cuFile batch API support with respect to
different file systems.

The following table provides an overview of cuFile batch API support with respect to
distributed file systems:

File System GDS Batch Mode Comments

Ext4/XFS Read/Write support

DDN EXAScaler Read/Write support

NFS Read/Write support

IBM Spectrum Scale Not available Will work in compat mode

Weka Not available Will work in compat mode

BeeGFS Not available Will work in compat mode

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no

representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA

shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment

to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by

authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA

product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA

product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or

applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It

is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and

perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA

product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which

may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-

party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party

under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations,

and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE

BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES

OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING

WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY

USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s

aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, DGX, DGX-1, DGX-2, DGX-A100, Tesla, and Quadro are trademarks and/or registered trademarks of NVIDIA Corporation in the
United States and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2020-2023 NVIDIA Corporation and affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	Usage
	2.1. Dynamic Interactions
	2.2. Driver, File, and Buffer Management
	2.3. cuFile Compatibility Mode

	cuFile API Specification
	3.1. Data Types
	3.1.1. Declarations and Definitions
	3.1.2. Typedefs
	3.1.3. Enumerations

	3.2. cuFile Driver APIs
	3.3. cuFile Synchronous IO APIs
	3.4. cuFile File Handle APIs
	3.5. cuFile Buffer APIs
	3.6. cuFile Stream APIs
	3.7. cuFile Batch APIs

	cuFile API Functional Specification
	4.1. cuFileDriver API Functional Specification
	4.1.1. cuFileDriverOpen
	4.1.2. cuFileDriverClose
	4.1.3. cuFileDriverGetProperties
	4.1.4. cuFileDriverSetPollMode(bool poll, size_t poll_threshold_size)
	4.1.5. cuFileDriverSetMaxDirectIOSize(size_t max_direct_io_size)
	4.1.6. cuFileDriverSetMaxCacheSize(size_t max_cache_size)
	4.1.7. cuFileDriverSetMaxPinnedMemSize(size_t max_pinned_memory_size)

	4.2. cuFile IO API Functional Specification
	4.2.1. cuFileHandleRegister
	4.2.2. cuFileHandleDeregister
	4.2.3. cuFileRead
	4.2.4. cuFileWrite

	4.3. cuFile Memory Management Functional Specification
	4.3.1. cuFileBufRegister
	4.3.2. cuFileBufDeregister

	4.4. cuFile Stream API Functional Specification
	4.4.1. cuFileStreamRegister
	4.4.2. cuFileStreamDeregister
	4.4.3. cuFileReadAsync
	4.4.4. cuFileWriteAsync

	4.5. cuFile Batch API Functional Specification
	4.5.1. cuFileBatchIOSetUp
	4.5.2. cuFileBatchIOSubmit
	4.5.3. cuFileBatchIOGetStatus
	4.5.4. cuFileBatchIOCancel
	4.5.5. cuFileBatchIODestroy

	Sample Program with cuFile APIs
	Known Limitations of cuFile Batch APIs

