
Graphics Processing Units (GPUs):
Architecture and Programming

Mohamed Zahran (aka Z)

mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-GA.3033-004

CUDA
Advanced Techniques 1

Some Refreshing Exercises!

• Suppose registers and shared memory
capacities were not an issue. When is it
still beneficial to put values fetched
from memory into the shared memory?

Some Refreshing Exercises!

• Assume a kernel is launched with 1000
blocks. Each block has 512 threads.
– If a variable is declared as local in the

kernel, how many versions will be created
throughout the lifetime of the kernel?

– How about if the variable is created as
shared?

Some Refreshing Exercises!

• A kernel contains 36 floating point
operations and 7 32-bit word global
memory accesses per thread. For each of
the following device properties, indicate
whether this kernel is compute- or
memory-bound.
– Peak FLOPS = 200 GFLOPS, Peak Memory

Bandwidth = 100 GB/s

– Peak FLOPS = 300 GFLOPS, Peak Memory
Bandwidth = 250 GB/s

A Note About Performance

Defining Performance

• Which airplane has the best performance?

0 100 200 300 400 500

Douglas

DC-8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Passenger Capacity

0 2000 4000 6000 8000 10000

Douglas DC-

8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Cruising Range (miles)

0 500 1000 1500

Douglas

DC-8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Cruising Speed (mph)

0 100000 200000 300000 400000

Douglas DC-

8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Passengers x mph

Performance Considerations

• There are many hardware constraints.

• Depending on the application, different
constraints may dominate.

• We can improve performance of an
application by trading one resource
usage for another.

Performance Issue:
Thread Diversion

• Works well when all threads in a warp
follow the same control-flow

• Performance loss due to thread
diversion

Performance Issue:
Thread Diversion

Example: Sum Reduction Kernel

Performance Issue:
Thread Diversion

Example: Sum Reduction Kernel

Why is this version better than the previous one?

Performance Issue:
Global Memory

• Typical application: process massive
amount of data within short period of time
– From global memory

– large amount + short period = huge bandwidth
requirement

• Two main challenges regarding global
memory:
– Long latency

– Relatively limited bandwidth

Dealing With Global Memory:
TILING

• We have seen this before

• Make use of shared memory available in
SMs to reduce trips to global memory

Dealing With Global Memory:
Coalescing

• To more effectively move data from
global memory to shared memory and
registers

• For best results: can be used with tiling
• Global memory:

– DRAM
– Reading a bit is slow
– So memory is implemented to read several

bits in parallel

Dealing With Global Memory:
Coalescing

• If an application can make use of data from
multiple consecutive locations, the DRAM can
supply the data in much higher rate.

• Kernel must arrange its data access accordingly
• When all threads in a warp execute a load

instruction:
– The hardware detects whether the addresses are

consecutive
– The hardware combines (coalesces) all accesses in

a consolidated access to consecutive DRAM
locations

Dealing With Global Memory:
Coalescing

Md Nd

W
ID

T
H

WIDTH

Thread 1

Thread 2

Not coalesced coalesced

Same
warp

Dealing With Global Memory:
Coalescing

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

T0 T1 T2 T3

Time Period 1

T0 T1 T2 T3

Time Period 2

Favorable access
direction in
Kernel code
of one thread

…

Dealing With Global Memory:
Coalescing

M1,1M0,1 M2,1 M3,1

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel code

…

M2,0M1,0M0,0 M3,0

Dealing With Global Memory:
Cache

• Fermi (and later GPUs) have cache for
global memory

• Caches automatically coalesce most of
kernel access patterns

Dealing With Global Memory:
Prefetching

Prefetch next data elements while consuming the current data
elements.

This increases the number of independent instructions between
memory accesses and consumers

Performance Issue:
SM Resources

• Execution resources in SM include:
– registers

– block slots

– thread slots

• There is an interaction among the
resources that you must take into
account.

Performance Issue:
SM Resources

Example: Assume G80 is executing the matrix
multiplication with 16x16 thread blocks

(G80SM: 8 block slots, 768 thread slots, 8192 registers)

If a thread needs 10 registers then:
• A block needs 10x16x16 = 2560 registers
• 3 blocks -> 7680 registers (under the 8192 limit)
• We can’t add another block (will make it 10240)
• 3 blocks x 256 threads/block = 768 (within limit)

Assume the programmer declares one more auto var:
• 11 x 16 x 16 = 2816 registers per block
• 3 blocks -> 3 x 2816 = 8448 (above limit)
• SM reduces #blocks by 1 -> 5632 registers required
• This reduces the number of threads in SM to 2 x256 -> 512

By using 1 extra variable
the program saw a 1/3
reduction in warp parallelism
-> performance cliff

Performance Issue:
SM Resources

Example: Still with G80:
• An instruction takes 4 cycles
• Assume 4 independent instructions between global memory

load and its use
• Global memory latency is 200 cycles

To keep execution units fully utilized:
We need to have 200/(4 x 4) = 14 warps

Assume an extra register allows the programmer
to use a transformation to increase independent
instructions from 4 to 8, then:
• Now we need 200/(4 x 8) = 7 warps
• Blocks reduced from 3 to 2 -> warps reduced from 24 to 16
• Still we can fully utilize execution units

Trading thread-level
parallelism with increased
thread performance

Performance Issue:
Instruction Mix

for (int k = 0; k < BLOCK_SIZE; ++k)

Pvalue += Ms[ty][k] * Ns[k][tx];

Is the above code efficient?

• Extra instructions to update loop counter
• Extra instructions for conditional branch at the end of each iteration
• Using k to access matrices incurs address arithmetic instructions.
• All of the above compete with the floating-point calculations for

limited instruction processing bandwidth.

2 FP arithmetic
2 address arithmetic instructions
1 loop branch instructions
1 loop increment instructions

only 1/3 instructions are FP operations

Performance Issue:
Instruction Mix

for (int k = 0; k < BLOCK_SIZE; ++k)

Pvalue += Ms[ty][k] * Ns[k][tx];

Pvalue += Ms[ty][0] * Ns[0][tx] + …

Ms[ty][15] * Ns[15][tx];

Loop unrolling

Performance Issue:
Thread Granularity

• Algorithmic decision

• It is often advantageous to put more work
into each thread and use fewer threads
o When redundant work exists between threads

o Example: Let a thread compute 2 tiles

+ Less redundant work

+ Potentially more independent instructions

- More resources requirements

Putting It All Together

Thread Granularity:
• normal
• merging 2 blocks
• merging 4 blocks

Putting It All Together

Until tile reaches 16x16 neither loop unrolling nor data prefetch helps.

For small tile size, global memory bandwidth severely limits performance.

Putting It All Together

Granularity adjustment can reduce global memory access.

Putting It All Together

Data prefetching becomes less beneficial as as thread granularity increases.

About Algorithms for GPUs

• When designing an algorithm for GPU,
the two main characteristics that
determine its performance are:
1. How much parallelism is available
2. How much data must move through the

memory hierarchy

• Then when you move from algorithm to
code you need to take hardware
constraints into account.

A note about compilation …
And some useful tools!

NVCC device specific switches
 -arch : controls the "virtual'' architecture that will be

used for the generation of the PTX code.

 -code : specifies the actual device that will be targeted
by the cubin binary.

Source: Multicore and GPU Programming: An Integrated Approach by G. Barlas

sm_xy

• x is the GPU generation number

• y is the version within that generation

• Binary compatibility of GPU applications is
not guaranteed across different
generations.
– Example: a CUDA application that has been

compiled for a Fermi GPU will very likely not
run on a Kepler GPU (and vice versa).

• This is why nvcc relies on a two stage
compilation model for ensuring application
compatibility with future GPU generations.

Source: CUDA compiler driver nvcc manual (NVIDIA website)

-arch

-code

JIT Compilation

• If you are unsure which exact GPU the code will
run on.

• Use -arch without -code
• Main disadvantage: slower startup

Fatbinaries

nvcc x.cu -arch=compute_30 -code=compute_30,sm_30,sm_35

Generate binaries for
two versions of Kepler

generate PTX
and keep it in the
binary generated,
for JIT on future GPUs

At runtime, the CUDA driver will select the most appropriate translation
when the device function is launched.

Till now we have single virtual architecture and several real architectures.
How about several virtual architectures?

--generate-code

nvcc x.cu \

--generate-code arch=compute_20,code=sm_20 \

--generate-code arch=compute_20,code=sm_21 \

--generate-code arch=compute_30,code=sm_30

The Default

nvcc x.cu -arch=compute_20 -code=sm_20,compute_20

nvcc x.cu

is equivalent to

nvcc

• Some nvcc features: --ptxas-options=-v
– Print the smem, register and other

resource usages

• Generates CUDA binary file: nvcc –cubin
– cubin file is the cuda executable

Dealing with binary files

nvprof

• CUDA profiler: profiling data from the
command line

• To profile a region of the application:
1. #include <cuda_profiler_api.h>
2. in the host function surround the region with:

• cudaProfilerStart()
• cudaProfilerStop()

3. nvcc myprog.cu
4. nvprof --profile-from-start-off ./a.out

nvprof summary mode (default)

nvprof trace mode

GPU-trace mode provides a timeline of all activities taking place on
the GPU in chronological order.

Print individual kernel invocations
and sort them in chronological order.

Print CUDA runtime/driver
API trace

nvprof --devices x --events y ./a.out

• x: device number in case of multi-GPU

• y: event name
– Gives very useful information, such as:

• number of global memory loads, stores, …

• number of global memory coalesced

• branch divergences

Revisiting Shared Memory

Till now

• We know that we have to use
__shared__

• But, you leave it to the runtime system
to distribute shared memory among
blocks. Can you change that?

• What if you don’t know how much
shared memory we need before
execution?

If we know the size beforehand

__global__ void staticShared(int *d, int n)
{

__shared__ int array[64];
int t = threadIdx.x;
s[t] = d[t];

}

What if you don’t
know this size
beforehand?

Dynamic Shared Memory

__global__ void DynamicShared(int *d, int n)
{

extern __shared__ int array[];
int t = threadIdx.x;
s[t] = d[t];

}

main()
{

…
DynamicShared<<<100, 100, N*sizeof(int)>>>(int *, int);

}

Step 1:
A different declaration
with no size in the kernel

Step 2:
The 3rd argument of kernel
launch is the shared memory
allocation size per thread block
in bytes.

What if you need more than one
array in the shared memory?

• Declare a single extern unsized array
(as in the previous slide).

• Use pointers into it to divide it into
multiple arrays.

• Example:
extern __shared__ int s[];

int *integerData = s; // nI ints

float *floatData = (float*)&integerData[nI]; // nF floats

char *charData = (char*)&floatData[nF]; // nC chars

Potential Performance Loss:
Shared Memory Bank Conflicts

• Shared memory is divided into equally
sized memory modules called banks.

• Banks can be accessed simultaneously.

• Shared memory accesses that
span b distinct banks yield an effective
bandwidth that is b times as high as the
bandwidth of when accesses map to the
same bank.

• Exceptions are: broadcast and multicast.

Potential Performance Loss:
Shared Memory Bank Conflicts

• Shared memory banks are organized
such that successive 32-bit words are
assigned to successive banks.

• Bandwidth is 32 bits per bank per clock
cycle.

• Warp size is 32

Potential Performance Loss:
Shared Memory Bank Conflicts

• Now, depending on compute capability:
– 1.x: the number of banks is 16. A shared

memory request for a warp is split into one
request for the first half of the warp and one
request for the second half of the warp.

– 2.x: the number of banks is 32. A shared
memory request for a warp is not split.

– 3.x: have configurable bank size (next slide)

cudaDeviceSetSharedMemConfig(i)

• i above can be:
– cudaSharedMemBankSizeFourByte 

default

– cudaSharedMemBankSizeEightByte

Floating Points

Importance of Floating Points

• Many graphics operations are floating
point operations

• GPU performance is measure in GFLOPS

bi bi–1 b2 b1 b0 b–1 b–2 b–3 b–j• • •• • • .

1

2

4

2i–1

2i

• • •

• • •

1/2

1/4

1/8

2–j

Turing Award 1989 to William Kahan for design of the
IEEE Floating Point Standards 754 (binary) and 854

(decimal)

What is Excel doing?
1.333333333333330000 =4/3

0.333333333333333000 =4/3-1

1.000000000000000000 =(4/3-1)*3

0 =(4/3-1)*3-1

0 =A4*(2^52)

0 =(4/3-1)*3-1

-2.22045E-16 =((4/3-1)*3-1)

-1 =A7*(2^52)

• Excel tries to round internal binary floating point to output decimal

format to look like what it thinks the user wants to see, rather than the
most accurate answer (depending on parentheses).

A1:
A2:
A3:
A4:
A5:
A6:
A7:
A8:

Floating Point

• We need a way to represent

– numbers with fractions, e.g., 3.1416

– very small numbers, e.g., .000000001

– very large numbers, e.g., 3.15576  109

• Representation:

– sign, exponent, mantissa: (–1)sign  mantissa  2exponent

– more bits for mantissa gives more accuracy

– more bits for exponent increases range

• IEEE 754 floating point standard:

– single precision: 8 bit exponent, 23 bit mantissa

– double precision: 11 bit exponent, 52 bit mantissa

IEEE 754 floating-point standard

• Leading “1” bit of significand is implicit
(called hidden 1 technique, except when exp = -127)

• Exponent is “biased” to make sorting easier
– all 0s is smallest exponent

– all 1s is largest exponent

– bias of 127 for single precision and 1023 for double precision

– summary: (–1)sign  (1+significand)  2exponent – bias

• Example:

– decimal: -.75 = - (½ + ¼)

– binary: -.11 = -1.1 x 2-1

– floating point: exponent = 126 = 01111110

– IEEE single precision: 10111111010000000000000000000000

More about IEEE floating Point
Standard

Single Precision:

(–1)sign  (1+mantissa)  2exponent – 127

The variables shown in red are the numbers
stored in the machine

Floating Point Example

what is the decimal equivalent of

1 01110110 10110000…0

Based on exp
we have 3 encoding schemes

• exp ≠ 0..0 or 11…1  normalized encoding

• exp = 0… 000  denormalized encoding

• exp = 1111…1  special value encoding
– frac = 000…0

– frac = something else

Carnegie Mellon

1. Normalized Encoding
• Condition: exp ≠ 000…0 and exp ≠ 111…1

• Exponent is: E = Exp – (2k-1 – 1), k is the # of
exponent bits
– Single precision: E = exp – 127
– Double precision: E = exp – 1023

• Significand is: M = 1.xxx…x2
– Range(M) = [1.0, 2.0-ε)
– Get extra leading bit for free

frac

referred to as Bias

Range(E)=[-126,127]
Range(E)=[-1022,1023]

Normalized Encoding Example

• Value: Float F = 15213.0;
– 1521310 = 111011011011012

= 1.11011011011012 x 213

• Significand
M = 1.11011011011012

frac= 110110110110100000000002

• Exponent
E = exp – Bias = exp - 127 = 13
 exp = 140 = 100011002

• Result:

0 10001100 11011011011010000000000

s exp frac

Carnegie Mellon

2. Denormalized Encoding

• Condition: exp = 000…0

• Exponent value: E = 1 – Bias (instead of E = 0 – Bias)
• Significand is: M = 0.xxx…x2 (instead of M=1.xxx2)

• Cases
– exp = 000…0, frac = 000…0

• Represents zero
• Note distinct values: +0 and –0

– exp = 000…0, frac ≠ 000…0

• Numbers very close to 0.0

frac

Carnegie Mellon

3. Special Values Encoding

• Condition: exp = 111…1

• Case: exp = 111…1, frac = 000…0
– Represents value  (infinity)
– Operation that overflows
– E.g., 1.0/0.0 = −1.0/−0.0 = +, 1.0/−0.0 = −

• Case: exp = 111…1, frac ≠ 000…0
– Not-a-Number (NaN)
– Represents case when no numeric value can be

determined
– E.g., sqrt(–1),  − ,   0

Carnegie Mellon

Visualization: Floating Point Encodings

+−

0

+Denorm +Normalized−Denorm−Normalized

+0
NaN NaN

Floating Point: IEEE 754

What is the decimal equivalent of:

101111111101000000000000000000001 01111111 10100000000000000000000

- 127
So:
•Real exponent = 127 -127 = 0

•There is hidden 1

1.1010….0
= 1.625

Final answer = -1.625

In Summary About Floating Points

exponent mantissa meaning

11…1 ≠ 0 NaN

11…1 =0 (-1)S * ∞

00…0 ≠0 denormalized

00…0 =0 0

Algorithm Considerations

• Non representable numbers are rounded

• This rounding error leads to different
results depending on the order of
operations
– Non-repeatability makes debugging harder

• A common technique to maximize floating
point arithmetic accuracy is to presort
data before a reduction computation.

So..

When doing floating-point operations in parallel you
have to decide:

• How much accuracy is good enough?

• Do you need single-precision or double precision?

• Can you tolerate presorting overhead, if you care

about rounding errors?

Asynchronous Execution

• Asynchronous = returns to host right-away
and does not wait for device

• This includes (but not limited to):
– Kernel launches;
– Memory copies between two addresses to the

same device memory;
– Memory copies from host to device of a

memory block of 64 KB or less;
– Memory copies performed by functions that

are suffixed with Async;

Asynchronous Execution

• Some CUDA API calls and all kernel
launches are asynchronous with respect
to the host code.

• This means error-reporting is also
asynchronous.

Streams

Streams

• A sequence of operations that execute on the device
in the order in which they are issued by the host
code

• Operations in different streams can be interleaved
and, when possible, they can even run concurrently.

• A stream can be sequence of kernel launches and
host-device memory copies

• Can have several open streams to the same device at
once

• Need GPUs with concurrent transfer/execution
capability

• Potential performance improvement: can overlap
transfer and computation

Streams

• By default all transfers and kernel
launches are assigned to stream 0
– This means they are executed in order

host thread

FIFO

Device

Example: Default Stream

cudaMemcpy(d_a, a, numBytes, cudaMemcpyHostToDevice);
increment<<<1,N>>>(d_a) ;

cudaMemcpy(a, d_a, numBytes, cudaMemcpyDeviceToHost);

• In the code above, from the perspective of the device, all three operations are issued to
the same (default) stream and will execute in the order that they were issued.

• From the perspective of the host:
• data transfers are blocking or synchronous transfers
• kernel launch is asynchronous.

cudaMemcpy(d_a, a, numBytes, cudaMemcpyHostToDevice);
increment<<<1,N>>>(d_a) ;
anyCPUfunction();
cudaMemcpy(a, d_a, numBytes, cudaMemcpyDeviceToHost);

Example: Non-Default Stream

Non-default streams in CUDA C/C++ are declared, created, and
destroyed in host code as follows:

cudaStream_t stream1;
cudaError_t result;
result = cudaStreamCreate(&stream1);
result = cudaStreamDestroy(stream1);

To issue data transfer to non-default stream (non-blocking):

result = cudaMemcpyAsync(d_a, a, N, cudaMemcpyHostToDevice, stream1);

To launch a kernel to non-default stream:

increment<<<1,N,0,stream1>>>(d_a);

Important

• All operations to non-default streams are
non-blocking with respect to the host
code.

• Sometimes you need to synchronize the
host code with operations in a stream.

• You have several options:
– cudaDeviceSynchronize()  blocks host
– cudaStreamSynchronize(stream) blocks

host
– cudaStreamQuery(stream) does not block

host

Streams
• The amount of overlap execution

between two streams depends on:
– Device supports overlap transfer and

kernel execution (compute capability 1.1
and higher)

– Devices supports concurrent kernel
execution (compute capability 2.x and
higher)

– Device supports concurrent data transfer
(compute capability 2.x and higher)

– The order on which commands are issued to
each stream

Using streams to overlap device
execution with data transfer

• Conditions to be satisfied first:
– The device must be capable of concurrent

copy and execution.

– The kernel execution and the data transfer
to be overlapped must both occur in
different, non-default streams.

– The host memory involved in the data
transfer must be pinned memory.

Using streams to overlap device
execution with data transfer

for (int i = 0; i < nStreams; ++i) {

int offset = i * streamSize;

cudaMemcpyAsync(&d_a[offset], &a[offset],
streamBytes,
cudaMemcpyHostToDevice,
stream[i]);

kernel<<…….>>(d_a, offset);

cudaMemcpyAsync(&a[offset], &d_a[offset],
streamBytes,
cudaMemcpyDeviceToHost,
stream[i]);

}

So..

• Streams are a good way to overlap execution and
transfer, hardware permits.

• Don’t confuse kernels, threads, and streams.

Pinned Pages

• Allocate page(s) from system RAM
(cudaMallocHost() or cudaHostAlloc())
– Accessible by device (but wait till next slide)

– Cannot be paged out

– Enables highest memory copy performance (
cudaMemcpyAsyc())

– Don’t forget cudaFreeHost();

• If too much pinned pages, overall system
performance may greatly suffer.

cudaHostAlloc(void ** ptr,
size_t size,

unsigned int flags)

The Flags:
• cudaHostAllocDefault: causes cudaHostAlloc() to

emulate cudaMallocHost().
• cudaHostAllocPortable: The memory returned by this

call will be considered as pinned memory by all CUDA
contexts, not just the one that performed the allocation.

• cudaHostAllocMapped: Maps the allocation into the
CUDA address space. The device pointer to the memory
may be obtained by calling cudaHostGetDevicePointer().

• cudaHostAllocWriteCombined: Allocates the memory as
write-combined (WC).
– WC memory can be transferred across the PCI Express bus

more quickly on some system configurations.
– Cannot be read efficiently by most CPUs.

Host page accessible by the device??

• The pointer to the host memory is not
directly transferable to device, except
with:
– cudaHostGetDevicePointer(void ** pDevice,

void * pHost,
unsigned int flags)

– flags are 0 for now

• Accessing host memory from device
without explicit copy is called zero-copy
mechanism.

Steps for Zero-Copy

1. cudaHostAlloc (void ** ptr, size_t
size, unsigned int flags)
– flag here: cudaHostAllocMapped

2. cudaHostGetDevicePointer()

3. Then use the pointer in your kernel on
device as if it is in the GPU memory

#include <stdio.h>
#include <cuda.h>
#include <stdlib.h>
#define N 32 // size of vectors

__global__ void add(int *a,int *b, int *c) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if(tid < N) c[tid] = a[tid]+b[tid];

}

int main(int argc, char *argv[]) {
int T = 32, B = 1; // threads per block and blocks per grid
int *a,*b,*c; // host pointers
int *dev_a, *dev_b, *dev_c; // device pointers to host memory
int size = N*sizeof(int);

cudaHostAlloc((void**)&a, size, cudaHostAllocMapped);
cudaHostAlloc((void**)&b, size, cudaHostAllocMapped);
cudaHostAlloc((void**)&c, size, cudaHostAllocMapped);

… // load arrays with some numbers

cudaHostGetDevicePointer(&dev_a, a, 0);
cudaHostGetDevicePointer(&dev_b, b, 0);
cudaHostGetDevicePointer(&dev_c ,c, 0);

add<<<B,T>>>(dev_a,dev_b,dev_c);

cudaFreeHost(a);
cudaFreeHost(b);
cudaFreeHost(c);

return 0;
}

So..

• If the CPU program requires a lot of memory, then
pinned pages is not a good idea.

Other Sources of Concurrency

• Some devices of compute capability 2.x and higher can
execute multiple kernels concurrently.

• The maximum number of kernel launches that a device can
execute concurrently is 32 on devices of compute
capability 3.5 and 16 on devices of lower compute
capability.

• A kernel from one CUDA context cannot execute
concurrently with a kernel from another CUDA context.

• Kernels that use many textures or a large amount of local
memory are less likely to execute concurrently with other
kernels.

• Some devices of compute capability 2.x and higher can
perform a copy from page-locked host memory to device
memory concurrently with a copy from device memory to
page locked host memory.

Conclusions
• As we program GPUs we need to pay attention to several

performance bottlenecks:
– Branch diversion
– Global memory latency
– Global memory bandwidth
– Shared memory bank conflicts
– Communication
– Limited resources

• We have several techniques in our arsenal to enhance
performance
– Try to make threads in the same warp follow the same control flow
– Tiling
– Coalescing
– Loop unrolling
– Increase thread granularity
– Trade one resource for another
– Memory access pattern
– Streams

• Pay attention to interaction among techniques

