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Some Refreshing Exercises!

• Suppose registers and shared memory 
capacities were not an issue. When is it 
still beneficial to put values fetched 
from memory into the shared memory?



Some Refreshing Exercises!

• Assume a kernel is launched with 1000 
blocks. Each block has 512 threads. 
– If a variable is declared as local in the 

kernel,  how many versions will be created 
throughout the lifetime of the kernel?

– How about if the variable is created as 
shared?



Some Refreshing Exercises!

• A kernel contains 36 floating point 
operations and 7 32-bit word global 
memory accesses per thread. For each of 
the following device properties, indicate 
whether this kernel is compute- or 
memory-bound. 
– Peak FLOPS = 200 GFLOPS, Peak Memory 

Bandwidth = 100 GB/s 

– Peak FLOPS = 300 GFLOPS, Peak Memory 
Bandwidth = 250 GB/s 



A Note About Performance



Defining Performance

• Which airplane has the best performance?
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Performance Considerations

• There are many hardware constraints.

• Depending on the application, different 
constraints may dominate.

• We can improve performance of an 
application by trading one resource 
usage for another.



Performance Issue:
Thread Diversion

• Works well when all threads in a warp 
follow the same control-flow

• Performance loss due to thread 
diversion



Performance Issue:
Thread Diversion

Example: Sum Reduction Kernel



Performance Issue:
Thread Diversion

Example: Sum Reduction Kernel

Why is this version better than the previous one?



Performance Issue:
Global Memory

• Typical application: process massive 
amount of data within short period of time
– From global memory

– large amount + short period = huge bandwidth 
requirement

• Two main challenges regarding global 
memory:
– Long latency

– Relatively limited bandwidth



Dealing With Global Memory:  
TILING

• We have seen this before

• Make use of shared memory available in 
SMs to reduce trips to global memory



Dealing With Global Memory:  
Coalescing

• To more effectively move data from 
global memory to shared memory and 
registers

• For best results: can be used with tiling
• Global memory:

– DRAM
– Reading a bit is slow
– So memory is implemented to read several 

bits in parallel



Dealing With Global Memory:  
Coalescing

• If an application can make use of data from 
multiple consecutive locations, the DRAM can 
supply the data in much higher rate.

• Kernel must arrange its data access accordingly
• When all threads in a warp execute a load 

instruction:
– The hardware detects whether the addresses are 

consecutive
– The hardware combines (coalesces) all accesses in 

a consolidated access to consecutive DRAM 
locations



Dealing With Global Memory:  
Coalescing
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Dealing With Global Memory:  
Coalescing
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Dealing With Global Memory:  
Coalescing
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Dealing With Global Memory:  
Cache

• Fermi (and later GPUs) have cache for 
global memory

• Caches automatically coalesce most of 
kernel access patterns



Dealing With Global Memory:  
Prefetching

Prefetch next data elements while consuming the current data 
elements.

This increases the number of independent instructions between 
memory accesses and consumers



Performance Issue:
SM Resources

• Execution resources in SM include:
– registers

– block slots

– thread slots

• There is an interaction among the 
resources that you must take into 
account.



Performance Issue:
SM Resources

Example: Assume G80 is executing the matrix 
multiplication with 16x16 thread blocks

(G80SM: 8 block slots, 768 thread slots, 8192 registers)

If a thread needs 10 registers then:
• A block needs 10x16x16 = 2560 registers
• 3 blocks -> 7680 registers (under the 8192 limit)
• We can’t add another block (will make it 10240)
• 3 blocks x 256 threads/block = 768 (within limit)

Assume the programmer declares one more auto var:
• 11 x 16 x 16 = 2816 registers per block
• 3 blocks -> 3 x 2816 = 8448 (above limit)
• SM reduces #blocks by 1 -> 5632 registers required
• This reduces the number of threads in SM to 2 x256 -> 512

By using 1 extra variable
the program saw a 1/3 
reduction in warp parallelism
-> performance cliff



Performance Issue:
SM Resources

Example: Still with G80:
• An instruction takes 4 cycles
• Assume 4 independent instructions between global memory 

load and its use
• Global memory latency is 200 cycles

To keep execution units fully utilized:
We need to have 200/(4 x 4) = 14 warps

Assume an extra register allows the programmer
to use a transformation to increase independent
instructions from 4 to 8, then:
• Now we need 200/(4 x 8 ) = 7 warps
• Blocks reduced from 3 to 2 -> warps reduced from 24 to 16
• Still we can fully utilize execution units

Trading thread-level
parallelism with increased
thread performance



Performance Issue:
Instruction Mix

for (int k = 0; k < BLOCK_SIZE; ++k)

Pvalue += Ms[ty][k] * Ns[k][tx];

Is the above code efficient?

• Extra instructions to update loop counter 
• Extra instructions for conditional branch at the end of each iteration
• Using k to access matrices incurs address arithmetic instructions.
• All of the above compete with the floating-point calculations for       

limited instruction processing bandwidth.

2 FP arithmetic
2 address arithmetic instructions
1 loop branch instructions
1 loop increment instructions

only 1/3 instructions are FP operations



Performance Issue:
Instruction Mix

for (int k = 0; k < BLOCK_SIZE; ++k)

Pvalue += Ms[ty][k] * Ns[k][tx];

Pvalue += Ms[ty][0] * Ns[0][tx] + …

Ms[ty][15] * Ns[15][tx];

Loop unrolling



Performance Issue:
Thread Granularity

• Algorithmic decision

• It is often advantageous to put more work 
into each thread and use fewer threads
o When redundant work exists between threads

o Example: Let a thread compute 2 tiles

+ Less redundant work

+ Potentially more independent instructions

- More resources requirements



Putting It All Together

Thread Granularity:
• normal
• merging 2 blocks
• merging 4 blocks



Putting It All Together

Until tile reaches 16x16 neither loop unrolling nor data  prefetch helps.

For small tile size, global memory bandwidth severely limits performance.



Putting It All Together

Granularity adjustment can reduce global memory access.



Putting It All Together

Data prefetching becomes less beneficial as  as thread granularity increases.



About Algorithms for GPUs

• When designing an algorithm for GPU, 
the two main characteristics that 
determine its performance are:
1. How much parallelism is available
2. How much data must move through the 

memory hierarchy

• Then when you move from algorithm to 
code you need to take hardware 
constraints into account.



A note about compilation … 
And some useful tools!



NVCC device specific switches
 -arch : controls the "virtual'' architecture that will be 

used for the generation of the PTX code.

 -code : specifies the actual device that will be targeted 
by the cubin binary.

Source: Multicore and GPU Programming: An Integrated Approach by G. Barlas



sm_xy

• x is the GPU generation number

• y is the version within that generation

• Binary compatibility of GPU applications is 
not guaranteed across different 
generations. 
– Example:  a CUDA application that has been 

compiled for a Fermi GPU will very likely not 
run on a Kepler GPU (and vice versa). 

• This is why nvcc relies on a two stage 
compilation model for ensuring application 
compatibility with future GPU generations.



Source: CUDA compiler driver nvcc manual (NVIDIA website)

-arch

-code



JIT Compilation

• If you are unsure which exact GPU the code will 
run on.

• Use -arch without -code 
• Main disadvantage: slower startup



Fatbinaries

nvcc x.cu -arch=compute_30 -code=compute_30,sm_30,sm_35

Generate binaries for 
two versions of Kepler

generate PTX
and keep it in the 
binary generated,
for JIT on future GPUs

At runtime, the CUDA driver will select the most appropriate translation 
when the device function is launched.

Till now we have single virtual architecture and several real architectures.
How about several virtual architectures?



--generate-code

nvcc x.cu \

--generate-code arch=compute_20,code=sm_20 \

--generate-code arch=compute_20,code=sm_21 \

--generate-code arch=compute_30,code=sm_30



The Default

nvcc x.cu -arch=compute_20  -code=sm_20,compute_20

nvcc x.cu

is equivalent to



nvcc

• Some nvcc features: --ptxas-options=-v
– Print the smem, register and other 

resource usages

• Generates CUDA binary file: nvcc –cubin
– cubin file is the cuda executable



Dealing with binary files



nvprof

• CUDA profiler: profiling data from the 
command line

• To profile a region of the application:
1. #include <cuda_profiler_api.h>
2. in the host function surround the region with: 

• cudaProfilerStart()
• cudaProfilerStop()

3. nvcc myprog.cu
4. nvprof --profile-from-start-off ./a.out



nvprof summary mode (default)



nvprof trace mode

GPU-trace mode provides a timeline of all activities taking place on 
the GPU in chronological order.



Print individual kernel invocations
and sort them in chronological order.

Print CUDA runtime/driver
API trace



nvprof --devices x --events y ./a.out

• x: device number in case of multi-GPU

• y: event name
– Gives very useful information, such as:

• number of global memory loads, stores, …

• number of global memory coalesced 

• branch divergences 



Revisiting Shared Memory



Till now

• We know that we have to use 
__shared__

• But, you leave it to the runtime system 
to distribute shared memory among 
blocks. Can you change that?

• What if you don’t know how much 
shared memory we need before 
execution?



If we know the size beforehand

__global__ void staticShared(int *d, int n)
{

__shared__ int array[64];
int t = threadIdx.x;
s[t] = d[t];

}

What if you don’t 
know this size 
beforehand?



Dynamic Shared Memory

__global__ void DynamicShared(int *d, int n)
{

extern __shared__ int array[];
int t = threadIdx.x;
s[t] = d[t];

}

main()
{

… 
DynamicShared<<<100, 100, N*sizeof(int)>>>(int *, int);

}

Step 1:
A different declaration
with no size in the kernel

Step 2:
The 3rd argument of kernel
launch is the shared memory 
allocation size per thread block
in bytes.



What if you need more than one 
array in the shared memory?

• Declare a single extern unsized array 
(as in the previous slide). 

• Use pointers into it to divide it into 
multiple arrays.

• Example:
extern __shared__ int s[];

int *integerData = s;            // nI ints

float *floatData = (float*)&integerData[nI]; // nF floats

char *charData = (char*)&floatData[nF];      // nC chars



Potential Performance Loss:
Shared Memory Bank Conflicts

• Shared memory is divided into equally 
sized memory modules called banks. 

• Banks can be accessed simultaneously.

• Shared memory accesses that 
span b distinct banks yield an effective 
bandwidth that is b times as high as the 
bandwidth of when accesses map to the 
same bank.

• Exceptions are: broadcast and multicast.



Potential Performance Loss:
Shared Memory Bank Conflicts

• Shared memory banks are organized 
such that successive 32-bit words are 
assigned to successive banks.

• Bandwidth is 32 bits per bank per clock 
cycle.

• Warp size is 32 



Potential Performance Loss:
Shared Memory Bank Conflicts

• Now, depending on compute capability:
– 1.x: the number of banks is 16. A shared 

memory request for a warp is split into one 
request for the first half of the warp and one 
request for the second half of the warp. 

– 2.x: the number of banks is 32. A shared 
memory request for a warp is not split.

– 3.x: have configurable bank size (next slide)



cudaDeviceSetSharedMemConfig(i)

• i above can be:
– cudaSharedMemBankSizeFourByte 

default

– cudaSharedMemBankSizeEightByte



Floating Points



Importance of Floating Points

• Many graphics operations are floating 
point operations

• GPU performance is measure in GFLOPS
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Turing Award 1989 to William Kahan for design of the 
IEEE Floating Point Standards 754 (binary) and 854 

(decimal)



What is Excel doing?
1.333333333333330000 =4/3

0.333333333333333000 =4/3-1

1.000000000000000000 =(4/3-1)*3

0 =(4/3-1)*3-1

0 =A4*(2^52)

0 =(4/3-1)*3-1

-2.22045E-16 =((4/3-1)*3-1)

-1 =A7*(2^52)

• Excel tries to round internal binary floating point to output decimal 

format to look like what it thinks the user wants to see, rather than the 
most accurate answer (depending on parentheses).

A1:
A2:
A3:
A4:
A5:
A6:
A7:
A8:



Floating Point

• We need a way to represent

– numbers with fractions, e.g., 3.1416

– very small numbers, e.g., .000000001

– very large numbers, e.g., 3.15576  109

• Representation:

– sign, exponent, mantissa:    (–1)sign  mantissa   2exponent  

– more bits for mantissa gives more accuracy

– more bits for exponent increases range

• IEEE 754 floating point standard:  

– single precision:  8 bit exponent, 23 bit mantissa

– double precision:  11 bit exponent, 52 bit mantissa



IEEE 754 floating-point standard

• Leading “1” bit of significand is implicit
(called hidden 1 technique, except when exp = -127)

• Exponent is “biased” to make sorting easier
– all 0s is smallest exponent 

– all 1s is largest exponent

– bias of 127 for single precision and 1023 for double precision

– summary:   (–1)sign  (1+significand)  2exponent – bias

• Example:

– decimal:  -.75 = - ( ½ + ¼ )

– binary:  -.11 = -1.1 x 2-1

– floating point:  exponent = 126 = 01111110

– IEEE single precision:  10111111010000000000000000000000



More about IEEE floating Point 
Standard

Single Precision:

(–1)sign  (1+mantissa)  2exponent – 127

The variables shown in red are the numbers 
stored in the machine



Floating Point Example

what is the decimal equivalent of 

1 01110110    10110000…0 



Based on exp
we have 3 encoding schemes

• exp ≠ 0..0 or 11…1  normalized encoding

• exp = 0… 000  denormalized encoding

• exp = 1111…1   special value encoding
– frac = 000…0

– frac = something else



Carnegie Mellon

1. Normalized Encoding
• Condition: exp ≠ 000…0 and exp ≠ 111…1

• Exponent is: E =  Exp – (2k-1 – 1), k is the # of 
exponent bits
– Single precision: E = exp – 127        
– Double precision: E = exp – 1023

• Significand is: M =  1.xxx…x2
– Range(M) = [1.0, 2.0-ε)
– Get extra leading bit for free

frac

referred to as Bias

Range(E)=[-126,127]
Range(E)=[-1022,1023]



Normalized Encoding Example

• Value: Float F = 15213.0;
– 1521310 = 111011011011012  

= 1.11011011011012 x 213

• Significand
M = 1.11011011011012

frac= 110110110110100000000002

• Exponent
E =    exp – Bias    = exp - 127  = 13
 exp =   140 = 100011002

• Result:

0 10001100 11011011011010000000000 

s exp frac



Carnegie Mellon

2. Denormalized Encoding

• Condition: exp = 000…0

• Exponent value: E = 1 – Bias (instead of E = 0 – Bias)
• Significand is: M = 0.xxx…x2 (instead of M=1.xxx2)

• Cases
– exp = 000…0, frac = 000…0

• Represents zero
• Note distinct values: +0 and –0

– exp = 000…0, frac ≠ 000…0

• Numbers very close to 0.0

frac



Carnegie Mellon

3. Special Values Encoding

• Condition: exp = 111…1

• Case: exp = 111…1, frac = 000…0
– Represents value  (infinity)
– Operation that overflows
– E.g., 1.0/0.0 = −1.0/−0.0 = +,  1.0/−0.0 = −

• Case: exp = 111…1, frac ≠ 000…0
– Not-a-Number (NaN)
– Represents case when no numeric value can be 

determined
– E.g., sqrt(–1),  − ,   0



Carnegie Mellon

Visualization: Floating Point Encodings

+−

0
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+0
NaN NaN



Floating Point: IEEE 754

What is the decimal equivalent of:

101111111101000000000000000000001  01111111  10100000000000000000000

- 127
So:
•Real exponent = 127 -127 = 0

•There is hidden 1

1.1010….0
= 1.625

Final answer = -1.625



In Summary About Floating Points

exponent mantissa meaning

11…1 ≠ 0 NaN

11…1 =0 (-1)S * ∞

00…0 ≠0 denormalized

00…0 =0 0



Algorithm Considerations

• Non representable numbers are rounded

• This rounding error leads to different 
results depending on the order of 
operations
– Non-repeatability makes debugging harder

• A common technique to maximize floating 
point arithmetic accuracy is to presort 
data before a reduction computation.



So..

When doing floating-point operations in parallel you 
have to decide:

• How much accuracy is good enough?

• Do you need single-precision or double precision?

• Can you tolerate presorting overhead, if you care  

about rounding errors?



Asynchronous Execution

• Asynchronous = returns to host right-away 
and does not wait for device

• This includes (but not limited to):
– Kernel launches;
– Memory copies between two addresses to the 

same device memory;
– Memory copies from host to device of a 

memory block of 64 KB or less;
– Memory copies performed by functions that 

are suffixed with Async;



Asynchronous Execution

• Some CUDA API calls and all kernel 
launches are asynchronous with respect 
to the host code.

• This means error-reporting is also 
asynchronous.



Streams



Streams

• A sequence of operations that execute on the device 
in the order in which they are issued by the host 
code

• Operations in different streams can be interleaved 
and, when possible, they can even run concurrently. 

• A stream can be sequence of kernel launches and 
host-device memory copies 

• Can have several open streams to the same device at 
once

• Need GPUs with concurrent transfer/execution 
capability

• Potential performance improvement: can overlap 
transfer and computation



Streams

• By default all transfers and kernel 
launches are assigned to stream 0 
– This means they are executed in order

host thread

FIFO

Device



Example: Default Stream

cudaMemcpy(d_a, a, numBytes, cudaMemcpyHostToDevice); 
increment<<<1,N>>>(d_a) ;

cudaMemcpy(a, d_a, numBytes, cudaMemcpyDeviceToHost);

• In the code above, from the perspective of the device, all three operations are issued to 
the same (default) stream and will execute in the order that they were issued.

• From the perspective of the host: 
• data transfers are blocking or synchronous transfers
• kernel launch is asynchronous.

cudaMemcpy(d_a, a, numBytes, cudaMemcpyHostToDevice); 
increment<<<1,N>>>(d_a) ;
anyCPUfunction();
cudaMemcpy(a, d_a, numBytes, cudaMemcpyDeviceToHost);



Example: Non-Default Stream

Non-default streams in CUDA C/C++ are declared, created, and 
destroyed in host code as follows: 

cudaStream_t stream1; 
cudaError_t result; 
result = cudaStreamCreate(&stream1); 
result = cudaStreamDestroy(stream1);

To issue data transfer to non-default stream (non-blocking):

result = cudaMemcpyAsync(d_a, a, N, cudaMemcpyHostToDevice, stream1);

To launch a kernel to non-default stream:

increment<<<1,N,0,stream1>>>(d_a);



Important

• All operations to non-default streams are 
non-blocking with respect to the host 
code. 

• Sometimes you need to synchronize the 
host code with operations in a stream.

• You have several options:
– cudaDeviceSynchronize()  blocks host
– cudaStreamSynchronize(stream) blocks 

host
– cudaStreamQuery(stream) does not block 

host



Streams
• The amount of overlap execution 

between two streams depends on:
– Device supports overlap transfer and 

kernel execution ( compute capability 1.1 
and higher)

– Devices supports concurrent kernel 
execution (compute capability 2.x and 
higher)

– Device supports concurrent data transfer 
(compute capability 2.x and higher)

– The order on which commands are issued to 
each stream



Using streams to overlap device 
execution with data transfer

• Conditions to be satisfied first:
– The device must be capable of concurrent 

copy and execution. 

– The kernel execution and the data transfer 
to be overlapped must both occur in 
different, non-default streams.

– The host memory involved in the data 
transfer must be pinned memory.



Using streams to overlap device 
execution with data transfer

for (int i = 0; i < nStreams; ++i) { 

int offset = i * streamSize; 

cudaMemcpyAsync(&d_a[offset], &a[offset], 
streamBytes, 
cudaMemcpyHostToDevice,
stream[i]); 

kernel<<…….>>(d_a, offset); 

cudaMemcpyAsync(&a[offset],  &d_a[offset], 
streamBytes, 
cudaMemcpyDeviceToHost,
stream[i]); 

}



So..

• Streams are a good way to overlap execution and 
transfer, hardware permits.

• Don’t confuse kernels, threads, and streams.



Pinned Pages

• Allocate page(s) from system RAM 
(cudaMallocHost() or cudaHostAlloc())
– Accessible by device (but wait till next slide)

– Cannot be paged out

– Enables highest memory copy performance ( 
cudaMemcpyAsyc() )

– Don’t forget cudaFreeHost();

• If too much pinned pages, overall system 
performance may greatly suffer.



cudaHostAlloc(void ** ptr, 
size_t size, 

unsigned int flags)

The Flags:
• cudaHostAllocDefault: causes cudaHostAlloc() to 

emulate cudaMallocHost().
• cudaHostAllocPortable: The memory returned by this 

call will be considered as pinned memory by all CUDA 
contexts, not just the one that performed the allocation.

• cudaHostAllocMapped: Maps the allocation into the 
CUDA address space. The device pointer to the memory 
may be obtained by calling cudaHostGetDevicePointer().

• cudaHostAllocWriteCombined: Allocates the memory as 
write-combined (WC). 
– WC memory can be transferred across the PCI Express bus 

more quickly on some system configurations. 
– Cannot be read efficiently by most CPUs. 



Host page accessible by the device??

• The pointer to the host memory is not 
directly transferable to device, except 
with:
– cudaHostGetDevicePointer(void ** pDevice,

void * pHost,             
unsigned int flags)

– flags are 0 for now

• Accessing host memory from device 
without explicit copy is called zero-copy 
mechanism.



Steps for Zero-Copy

1. cudaHostAlloc (void **  ptr, size_t
size, unsigned int flags) 
– flag here: cudaHostAllocMapped

2. cudaHostGetDevicePointer()

3. Then use the pointer in your kernel on 
device as if it is in the GPU memory



#include <stdio.h>
#include <cuda.h>
#include <stdlib.h>
#define N 32         // size of vectors

__global__ void add(int *a,int *b, int *c) {
int tid = blockIdx.x *  blockDim.x + threadIdx.x;
if(tid < N)  c[tid] = a[tid]+b[tid];

}

int main(int argc, char *argv[])  {
int T = 32, B = 1;            // threads per block and blocks per grid
int *a,*b,*c; // host pointers
int *dev_a, *dev_b, *dev_c; // device pointers to host memory
int size = N*sizeof(int); 

cudaHostAlloc( (void**)&a, size, cudaHostAllocMapped);
cudaHostAlloc( (void**)&b, size, cudaHostAllocMapped);
cudaHostAlloc( (void**)&c, size, cudaHostAllocMapped );

…   // load arrays with some numbers

cudaHostGetDevicePointer(&dev_a, a, 0); 
cudaHostGetDevicePointer(&dev_b, b, 0);
cudaHostGetDevicePointer(&dev_c ,c, 0);

add<<<B,T>>>(dev_a,dev_b,dev_c);

cudaFreeHost(a); 
cudaFreeHost(b);
cudaFreeHost(c);

return 0;
}



So..

• If the CPU program requires a lot of memory, then 
pinned pages is not a good idea.



Other Sources of Concurrency

• Some devices of compute capability 2.x and higher can 
execute multiple kernels concurrently. 

• The maximum number of kernel launches that a device can 
execute concurrently is 32 on devices of compute 
capability 3.5 and 16 on devices of lower compute 
capability.

• A kernel from one CUDA context cannot execute 
concurrently with a kernel from another CUDA context.

• Kernels that use many textures or a large amount of local 
memory are less likely to execute concurrently with other 
kernels.

• Some devices of compute capability 2.x and higher can 
perform a copy from page-locked host memory to device 
memory concurrently with a copy from device memory to 
page locked host memory.



Conclusions
• As we program GPUs we need to pay attention to several 

performance bottlenecks:
– Branch diversion
– Global memory latency
– Global memory bandwidth
– Shared memory bank conflicts
– Communication
– Limited resources

• We have several techniques in our arsenal to enhance 
performance
– Try to make threads in the same warp follow the same control flow
– Tiling
– Coalescing
– Loop unrolling
– Increase thread granularity
– Trade one resource for another
– Memory access pattern
– Streams 

• Pay attention to interaction among techniques


