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Alignment



Memory Alignment

• Memory access on the GPU works much 
better if the data items are aligned at 
64 byte boundaries.

• Hence, allocating 2D (or 3D) arrays so 
that every row starts at a 64-byte 
boundary address will improve 
performance.

• Difficult to do for a programmer!
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2D Arrays

• CUDA offers special versions of:
– Memory allocation of 2D arrays so that 

every row is padded (if necessary). The 
function determines the best pitch and 
returns it to the program. The function 
name is cudaMallocPitch()

– Memory copy operations that take into 
account the pitch that was chosen by the 
memory allocation operation. The function 
name is cudaMemcpy2D()



cudaMallocPitch( void** devPtr, 
size_t* pitch, 
size_t widthInBytes, 
size_t height) 

device array

• This allocates at least width (in bytes) X height array.
• The value returned in pitch is the width in bytes of the 

allocation.
• The above function determines the best pitch and 

returns it to the program.
• It is strongly recommends the usage of this function for 

allocating 2D (and 3D) arrays. 

Will return the pitch



cudaError_t cudaMemcpy2D ( void * dst, 
size_t dpitch, 
const void * src, 
size_t spitch, 
size_t width, 
size_t height, 
enum cudaMemcpyKind kind ) 

• dst - Destination memory address 
• dpitch - Pitch of destination memory 
• src - Source memory address 
• spitch - Pitch of source memory 
• width - Width of matrix transfer (in bytes) 
• height - Height of matrix transfer (rows)  
• kind - Type of transfer

the widths in memory in bytes 
including any padding added 
to the end of each row



Example
int main(int argc, char * argv[])

{

float * A, *dA;

size_t pitch;

A = (float *)malloc(sizeof(float)*N*N);

cudaMallocPitch(&dA, &pitch, sizeof(float)*N, N);

//copy memory from unpadded array A of 760 by 760 dimensions

//to more efficient dimensions on the device

cudaMemcpy2D(dA,pitch,A,sizeof(float)*N,sizeof(float)*N,N, 
cudaMemcpyHostToDevice);

…

}



So..

Pitch is a good technique to speedup memory access

• There are two drawbacks that you have to live with:
• Some wasted space

• A bit more complicated elements access



Multi-GPU System



Nebulae: #10 in Top 500 list (June 2012)

Intel Xeon X5650 and Nvidia GPU Tesla c2050



Tsubame 2.0: #5 in Top 500 list

Intel Xeon X5670 and Nvidia GPU



Flavors

• Multiple GPUs in the same node (e.g. PC)

• Multi-node system (e.g. MPI).

Multi-GPU configuration is here to stay!



Hardware Example:
Tesla S870 Server



Hardware Example:
Tesla S870 Server

Connected to a single-host



Hardware Example:
Tesla S870 Server

Connected to a two host systems



Why Multi-GPU Solutions

• Scaling-up performance

• Another level of parallelism

• Power

• Reliability



// Run independent kernel on each CUDA device
int numDevs= 0;
cudaGetDeviceCount(&numDevs);
…
for (int d = 0; d < numDevs; d++) {

cudaSetDevice(d);
kernel<<<blocks, threads>>>(args);

}



CUDA Support

• cudaGetDeviceCount( int * count)  
– Returns in *count the number of devices

• cudaGetDevice ( int * device )
– Returns in *device the device on which the 

active host thread executes the device 
code.



CUDA Support

• cudaSetDevice(devID)
– Device selection within the code by 

specifying the identifier and making CUDA 
kernels run on the selected GPU.



Peer-to-Peer Access



CUDA Support:
Peer to peer memory Access

• Peer-to-Peer Memory Access
– cudaDeviceEnablePeerAccess() to check 

peer access



What we want to do …



Does the device support P2P?

cudaError_t cudaDeviceCanAccessPeer
( int* canAccessPeer,

int device,

int peerDevice)

• Returns 1 in canAccessPeer if device can 
access peerDevice.

• You need to check both directions.



cudaError_t cudaDeviceEnablePeerAccess ( 
int peerDevice, 
unsigned int flags )

peerDevice
ID

Always set 
to zero

Access granted by this call is unidirectional (i.e. current device can access peer device)

cudaError_t cudaDeviceDisablePeerAccess ( 
int peerDevice)

Then …



CUDA Support
Peer to peer memory Copy

• Using cudaMemcpyPeer() 



cudaMemcpyPeer ( void * dst,
int dstDevice, 
const void * src,              
int srcDevice,  
size_t count )

Size of 
memory 
copy in 
bytes

•This function is asynchronous with respect to the host.
•This function is serialized with respect to all pending and future 
asynchronous work into the current device.

Important: If GPU supports Unified Virtual Address, 
then no need to the above function.

(We will see shortly)



The Evolution of CPU-GPU 
Memory Operations

Milestones
• Traditional cudaMemcpy()
• Zero-copy
• Unified Virtual Address (CUDA 4.0 and up)
• Managed Memory (CUDA 6.0 and up)

We already saw this!



The Evolution of CPU-GPU 
Memory Operations

Milestones
• Traditional cudaMemcpy()
• Zero-copy
• Unified Virtual Address (CUDA 4.0 and up)
• Unified Memory (CUDA 6.0 and up)



Unified Virtual Address 
Space (UVA)

• From CUDA 4.0

• puts all CUDA execution, CPU and GPU, 
in the same address space

• Requires Fermi-class GPU and above

• Requires 64-bit application

• Call cudaGetDeviceProperties() for all 
participating devices and check 
unifiedAddressing flag





Easier Memory Copy

• Between host and multiple devices:
cudaMemcpy(gpu0_buf, host_buf, buf_size, cudaMemcpyDefault)

cudaMemcpy(gpu1_buf, host_buf, buf_size, cudaMemcpyDefault)

cudaMemcpy(host_buf, gpu0_buf, buf_size, cudaMemcpyDefault)

cudaMemcpy(host_buf, gpu1_buf, buf_size, cudaMemcpyDefault)

• Between two devices:
cudaMemcpy(gpu0_buf, gpu1_buf, buf_size, cudaMemcpyDefault)

• cudaMemcpy() knows that our buffers are on different 
devices

• (UVA), will do a P2P copy

• Note that this will transparently fall back to a normal copy 
through the host if P2P is not available



Example:
Direct N-Body

• Simulation of dynamical system of N-
bodies

• O(N2)
• Compute-Bound application
• Assume we have K GPUs

– So each GPU is responsible for N/K bodies

• For each iteration:
– Get all N up-to-date positions onto each GPU
– Compute accelerations )N/k per GPU(

– Integrate position, velocity )N/k per GPU(



Example:
Direct N-Body

• Sharing data among GPUs: options
– Explicit copies via host

– Zero-copy shared host array 
(cudaMallocHost() )

– Per-device arrays with peer-to-peer 
exchange transfers (UVA)

– Peer-to-peer memory access



N-Body
Explicit Copy Via Host

for(;;) {
for (int d = 0; d < devs; d++) {

cudaSetDevice(d);
cudaMemcpyAsync(pos[d], in, devs*bytes, H2D, s[d]);

}
for (int d = 0; d < devs; d++) {

cudaSetDevice(d);
integrate<<<b, t, 0, s[d]>>>(pos[d], otherArgs);

}
for (int d = 0; d < devs; d++) {

cudaSetDevice(d);
cudaMemcpyAsync(&out[offset[d]], pos[d], bytes, D2H, 
s[d]);

}



Example:
Direct N-Body

• Sharing data among GPUs: options
– Explicit copies via host
– Zero-copy shared host array (direct device 

access to host memory, through PCIe, which is 
slow) … cudaMallocHost() or cudaHostAlloc() …  so, 
use it when:
• You copy data to the device only once and access it there 

AND/OR
• You generate data on the device and copy back to host 

without reuse AND/OR
• Your kernel(s) that access the memory are compute 

bound

– UVA
– Peer-to-peer memory access



N-Body
Zero-copy

// Create input and output arrays
cudaHostAlloc(&in, bytes, cudaHostAllocMapped |
cudaHostAllocPortable);
cudaHostAlloc(&out, bytes, cudaHostAllocMapped
| cudaHostAllocPortable);

Allocates size bytes of host memory that is page-locked
and accessible to the device. 

Important: If GPU supports Unified Virtual Address, 
then no need to the above function.

(We will see shortly)



N-Body
Zero-copy

// Create input and output arrays
cudaHostAlloc(&in, bytes, cudaHostAllocMapped |
cudaHostAllocPortable);
cudaHostAlloc(&out, bytes, cudaHostAllocMapped
| cudaHostAllocPortable);

for (int d = 0; d < devCount; d++) {
cudaSetDevice(d);
cudaHostGetDevicePointer(&dout[d], hostPtr, 0);
cudaHostGetDevicePointer(&din[d], hostPtr, 0);

}
pointer that will be passed to the device to access host memory



Example:
Direct N-Body

• Sharing data among GPUs: options
– Explicit copies via host
– Zero-copy shared host array 

(cudaMallocHost()  )
– Per-device peer-to-peer exchange transfers 

• UVA as we have seen
• Non-UVA: 

– cudaMemcpyPeer()
– Copies memory from one device to memory on another 

device

– Peer-to-peer memory access 



Example:
Direct N-Body

• Sharing data among GPUs: options
– Explicit copies via host
– Zero-copy shared host array 

(cudaMallocHost()  )
– Per-device peer-to-peer exchange transfers 
– Peer-to-peer memory access 

• Pass pointer to memory on device A to kernel 
running on device B

• Requires UVA
• Must first enable peer access for every pair: 
• cudaDeviceEnablePeerAccess



The Evolution of CPU-GPU 
Memory Operations

Milestones
• Traditional cudaMemcpy()
• Zero-copy
• Unified Virtual Address (CUDA 4.0 and up)
• Unified Memory (CUDA 6.0 and up)

Source of the next few slides:
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/



Unified Memory 

• From Kepler architecture (CC 3.0 and up)

• Creates a pool of managed memory that is 
shared between the CPU and GPU.

• Managed memory is accessible to CPU and 
GPU with single pointers.

• Under the hood: data automatically 
migrates from CPU to GPU.



Unified Memory 

source: https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/



Isn’t it like UVA?

• Unified memory depends on UVA.

• UVA does NOT move data automatically 
between CPU and GPU.

• Unified memory gives higher performance 
than UVA. 



Advantages of Unified Memory

• Ease of programming
• Data is migrated on demand.

– offer the performance of local data on the 
GPU

– while providing the ease of use of globally 
shared data

• Very efficient with complex data 
structures (e.g. linked lists, structures 
with pointers, … ). 

Note: The physical location of data is invisible to the program 
and may be changed at any time



Disadvantages of Unified Memory 

• Carefully tuned CUDA program that 
uses streams to efficiently overlap 
execution with data transfers may 
perform better than a CUDA program 
that only uses Unified Memory.



How to allocated managed memory?

• Option 1: cudaMallocManaged() routine, 
which is semantically similar to 
cudaMalloc()

• Option 2: defining a global 
__managed__ variable, which is 
semantically similar to a __device__ 
variable



cudaMallocManaged()
int main() { 

int *ret; 

cudaMallocManaged(&ret, 1000 * sizeof(int)); 

AplusB<<< 1, 1000 >>>(ret, 10, 100); 
cudaDeviceSynchronize(); 

for(int i=0; i<1000; i++) 
printf("%d: A+B = %d\n", i, ret[i]); 

cudaFree(ret); 
return 0; 

}



__managed__
__device__ __managed__ int ret[1000];

__global__ void AplusB(int a, int b) { 

ret[threadIdx.x] = a + b + threadIdx.x; 

}

int main() { 

AplusB<<< 1, 1000 >>>(10, 100); 

cudaDeviceSynchronize();

for(int i=0; i<1000; i++) 

printf("%d: A+B = %d\n", i, ret[i]);

return 0; 

}



Final Notes About Unified Memory
• Coherence is ahead of performance in 

runtime implementation. Data has to be 
coherent across CPUs and GPUs in the 
system.

• Page faulting is implemented in systems 
with compute capability 6.x and up 
cudaMallocManaged will not run out of 
memory as long as there is enough system 
memory available for the allocation.

• Before that, all managed data must move 
to the GPU before kernel launch 
(automatically of course)  Devices of 
compute capability lower than 6.x cannot 
allocate more managed memory than the 
physical size of GPU memory



Dynamic Parallelism



The Usual case
• Data travels back 

and forth between 
the CPU and GPU 
many times. 

• Reason: because 
of the inability of 
the GPU to create 
more work on 
itself depending 
on the data. 



With Dynamic Parallelism:

• GPU can generate 
work on itself without 
involvement of CPU.

• Permits Dynamic Run 
time decisions. 

• Kernels can start new 
kernels

• Streams can spawn 
new streams. 

CUDA 5.0 and later on devices of Compute Capability 3.5 or higher



A kernel can call another kernel that calls another kernel up to 24 nested … 
Subject to the availability of resources.



When do we need that?
• Nested for-loop for example

• The need for adaptive grids

Example
of fluid simulation

Source: https://devblogs.nvidia.com/parallelforall/introduction-cuda-dynamic-parallelism/



Important
• As in the host, device kernel launch is 

asynchronous.
• Successful execution of a kernel launch means 

that the kernel is queued; 
– it may begin executing immediately, 
– or it may execute later when resources become 

available.
• Note that every thread that encounters a 

kernel launch executes it. So be careful!
• Child grids always complete before the parent 

grids that launch them, even if there is no 
explicit synchronization.



Important
• The CUDA Device Runtime guarantees that parent 

and child grids have a fully consistent view of global 
memory when the child starts and ends.

Source: http://devblogs.nvidia.com/parallelforall/cuda-dynamic-parallelism-api-principles/



Important

• By default, grids launched within a thread block are 
executed sequentially. 

• This happens even if grids are launched by 
different threads within the block. 

• To deal with this drawback  streams
• streams created on the host cannot be used on the 

device.
• Streams created in a block can be used by all 

threads in that block.

cudaStream_t s;
cudaStreamCreateWithFlags(&s, cudaStreamNonBlocking);



Important

• If the parent kernel needs results 
computed by the child kernel to do its 
own work  it must ensure that the 
child grid has finished execution before 
continuing 
– by explicitly synchronizing using 

cudaDeviceSynchronize(void). 
– This function waits for completion of all 

grids previously launched by the thread 
block from which it has been called. 



Example

void threadBlockDeviceSynchronize(void) 
{

__syncthreads();

if(threadIdx.x == 0)

cudaDeviceSynchronize();

__syncthreads();

}

To ensure all launches 
have been made.



What do we gain?

• Reduction in trips to CPU

• Recursion

• More freedom where data generated by 
the kernel decides how to partition the 
data for lower-level of the hierarchy.



How to Compile and Link?

nvcc -arch=sm_35 -rdc=true myprog.cu -lcudadevrt

generate relocatable device code, required for later linking



Hyper-Q



Till Fermi
• Only one work queue

• Even though Fermi allows 16 concurrent
kernels.

• GPU resources not fully utilized



Fermi already supported 16 way 
concurrency of kernel launches 
from separate streams
Pending work is bottlenecked on 1 
work queue.
GPU’s computational resources not 
being utilized fully.



With Hyper-Q

• Starting with Kepler

• We can have connection from multiple 
CUDA streams, Message Passing 
Interface (MPI) processes, or multiple 
threads of the same process. 
– 32 concurrent work queues, can receive 

work from 32 process cores at the same 
time. 

– 3X Performance increase on Fermi



With Hyper-Q





Conclusions

• There are many performance 
enhancement techniques in our arsenal:
– Alignment
– Streams
– Pinned pages
– Asynchronous execution
– Dynamic Parallelism
– Multi-GPU

• There are tools to help you!


