CSCI-GA.3033-004

Graphics Processing Units (GPUs):
Architecture and Programming

CUDA
Advanced Techniques 2

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com

Alignment

Memory Alignment

* Memory access on the GPU works much
better if the data items are aligned at
64 byte boundaries.

» Hence, allocating 2D (or 3D) arrays so
that every row starts at a 64-byte
boundary address will improve
performance.

» Difficult to do for a programmer!

Pitch

Columns

Rows

Padding

Pitch

2D Arrays

» CUDA offers special versions of:

— Memory allocation of 2D arrays so that
every row is padded (if necessary). The
function determines the best pitch and
returns it to the program. The function
name is cudaMallocPitch()

— Memory copy operations that take into
account the pitch that was chosen by the
memory allocation operation. The function
name is cudaMemcpy2D()

device array
cudaMallocPitch(void** devP‘rr,M. |
size_t* pi'l‘Ch,é/W'” return the pitch

size_t widthInBytes,
size_t height)

* This allocates at least width (in bytes) X height array.

* The value returned in pitch is the width in bytes of the
allocation.

* The above function determines the best pitch and
returns it to the program.

* It is strongly recommends the usage of this function for
allocating 2D (and 3D) arrays.

cudaError_t cudaMemcpy2D (void * dst,
size_t dpitch,
COHS_T voiclj * SI"C\ the widths in memory in bytes

)) ! including any padding added

SIZC_T SPITCh, S——— to the end of each row
size_t width,
size_t height,
enum cudaMemcpyKind kind)

* dst - Destination memory address

* dpitch - Pitch of destination memory

* src - Source memory address

* spitch - Pitch of source memory

» width - Width of matrix transfer (in bytes)
* height - Height of matrix transfer (rows)

* kind - Type of transfer

Example

int main(int argc, char * argv[])
{

float * A, *dA;

size_t pitch;

A = (float *)malloc(sizeof(float)*N*N);
cudaMallocPitch(&dA, &pitch, sizeof(float)*N, N);

//copy memory from unpadded array A of 760 by 760 dimensions
//to more efficient dimensions on the device

cudaMemcpy2D(dA pitch, A sizeof(float)*N,sizeof(float)*N,N,
cudaMemcpyHostToDevice);

So..
Pitch is a good technique to speedup memory access

* There are two drawbacks that you have to live with:
- Some wasted space
* A bit more complicated elements access

Multi-GPU System

Nebulae: #10 in Top 500 list (June 2012)

Intel Xeon X5650 and Nvidia GPU Tesla c2050

Tsubame 2.0: #5 in Top 500 list

Intel Xeon X5670 and Nvidia GPU

 Mu
 Mu

Flavors

tiple GPUs in the same node (e.g. PC)
ti-node syst

=

Multi-GPU configuration is here to stay!

Hardware Example:
Tesla S870 Server

Hardware Example:
Tesla S870 Server

Host System
w/ 2 PCle slots

NVIDIA
Switch

Tesla S870

NVIDIA

Connected to a single-host

Hardware Example:
Tesla S870 Server

Host System "PCle Host

Adapater

w/ 1 PCle slot sl —

NVIDIA

Switch 3 I

Tesla S870

NVIDIA
switch SN

Host System PCle Host 1§
Adapater R —

w/ 1 PCle slot Card

Connected to a two host systems

Why Multi-GPU Solutions

Scaling-up performance
Another level of parallelism
Power

Reliability

// Run independent kernel on each CUDA device

Int numDevs= 0;
cudaGetDeviceCount(&numbDevs);

for (int d = 0; d < numDevs; d++) {
cudaSetDevice(d);
kernel<<<blocks, threads>>>(args);

CUDA Support

« cudaGetDeviceCount(int * count)
— Returns in *count the number of devices

« cudaGetDevice (int * device)

— Returns in *device the device on which the
active host thread executes the device
code.

CUDA Support

» cudaSetDevice(devID)

— Device selection within the code by
specifying the identifier and making CUDA
kernels run on the selected GPU.

size t size = 1024 * sjzeocf (float);

cudaSetDevice (0) ; Set dewvice 0 as current
float* p0;

cudaMalloc (&pl, size); Allocate memory on device (
MyERernel <<<1000, 12B8>>>(p0); Launch kernel on dewvice [
cudaSetDevice (1) ; Set device 1 as current
float* pl;

cudaMalloc (&pl, size); Allocate memory on device
MyEernel <<<1000, 12B>>>(pl}); Launch kernel on device

Peer-to-Peer Access

CUDA Support:
Peer to peer memory Access

* Peer-to-Peer Memory Access

— cudaDeviceEnablePeerAccess() to check
peer access
cudaSetDevice (0) ; Set device (0 as current

float* pl;

size t gize = 1024 * sizeof (float);

cudaMalloc (spl, size); Allocate memory on device [

MyEernel <<<1000, 128>>>(p0); Launch kernel on device (
cudaSetDevice (1) ; Set dewvice 1 as current

cudalDeviceEnablePeerhccess (0, 0); Enable peer—to—peer access

What we want to do ...

Direct Access Direct Transfers
GPUO GPU1

Does the device support P2P?

cudakrror_t cudaDeviceCanAccessPeer
(int* canAccessPeer,

int device,
int peerDevice)

e Returns 1 in canAccessPeer if device can
access peerDevice.

* You heed to check both directions.

Then ...

cudaError_t cudaDeviceEnablePeerAccess (

peerDevice
ID
int peerDevice, .|

unsigned int flags<}——@ FRUWEEEES

to zero

Access granted by this call is unidirectional (i.e. current device can access peer device)

cudaError_t cudaDeviceDisablePeerAccess (
int peerDevice)

CUDA Support
Peer to peer memory Copy

 Using cudaMemcpyPeer()

cudaSetDevice (0) ;
float* p0;

size t gize = 1024 * sizeof(float);

cudaMalloc (&p0, size);
cudaSetDevice (1) ;
float* pl;

cudaMalloc (&pl, size);
cudaSetDevice (0) ;

-

MyFernel<<<1000, 128>>>(p0);

cudaSetDevice (1) ;
cudaMemcpyPeer (pl, 1,
MyEernel<<<1000, 12B>>

pl0, 0, si=z

i

M

cudaMemcpyPeer (void * dst,

int dstDevice, Size of

< 1k memory
const void * src, copy i
Int srcDevice, S

size_t count)

*This function is asynchronous with respect to the host.
*This function is serialized with respect to all pending and future
asynchronous work into the current device.

Important: If GPU supports Unified Virtual Address,
then no need to the above function.
(We will see shortly)

The Evolution of CPU-GPU
Memory Operations

Milestones
Traditional cudaMemcpy() < Wedlreadysawhis
Zero-copy .
Unified Virtual Address (CUDA 4.0 and up)
Managed Memory (CUDA 6.0 and up)

The Evolution of CPU-GPU
Memory Operations

Milestones

 Traditional cudaMemcpy()

» Zero-copy

 Unified Virtual Address (CUDA 4.0 and up)
» Unified Memory (CUDA 6.0 and up)

Unified Virtual Address
Space (UVA)

From CUDA 4.0

puts all CUDA execution, CPU and GPU,
in the same address space

Requires Fermi-class GPU and above
Requires 64-bit application

Call cudaGetDeviceProperties() for all
participating devices and check
unifiedAddressing flag

Unified Virtual Addressing

Easier to Program with Single Address Space

No UVA: Multiple Memory Spaces UVA : Single Address Space

System GPUO GPU1 System GPUO GPU1
Memory Memory Memory Memory Memory Memory

I

Easier Memory Copy

« Between host and multiple devices:

cudaMemcpy(gpuO_buf, host_buf, buf_size, cudaMemcpyDefault)
cudaMemcpy(gpul_buf, host_buf, buf_size, cudaMemcpyDefault)
cudaMemcpy(host_buf, gpuO_buf, buf_size, cudaMemcpyDefault)
cudaMemcpy(host_buf, gpul_buf, buf_size, cudaMemcpyDefault)

* Between two devices:
cudaMemcpy(gpuO_buf, gpul_buf, buf_size, cudaMemcpyDefault)

« cudaMemcpy() knows that our buffers are on different
devices

« (UVA), will do a P2P copy

* Note that this will transparently fall back to a normal copy
through the host if P2P is not available

Example:
Direct N-Body

Simulation of dynamical system of N-
bodies

O(N?)

Compute-Bound application

Assume we have K GPUs

— So each GPU is responsible for N/K bodies

For each iteration:

— Get all N up-to-date positions onto each GPU
— Compute accelerations (N/k per GPU)

— Integrate position, velocity (N/k per GPU)

Example:
Direct N-Body

 Sharing data among GPUs: options
— Explicit copies via host

— Zero-copy shared host array
(cudaMallocHost())

— Per-device arrays with peer-to-peer
exchange transfers (UVA)

— Peer-to-peer memory access

N-Body
Explicit Copy Via Host

for(;;) {

for (int d = 0; d < devs; d++) {
cudaSetDevice(d);
cudaMemcpyAsync(pos[d], in, devs*bytes, H2D, s[d]):

}

for (int d = O; d < devs; d++) {
cudaSetDevice(d);
integrate<««b, t, 0, s[d]>>>(pos[d], otherArgs);

}

for (int d = 0; d < devs; d++) {
cudaSetDevice(d);

chﬁMemcpyAsync(&ou‘r[offse’r[d]], pos[d], bytes, D2H,
S .

Example:
Direct N-Body

 Sharing data among GPUs: options
— Explicit copies via host
— Zero-copy shared host array (direct device
access to host memory, through PCIe, which is
slow) ... cudaMallocHost() or cudaHostAlloc() ... so,
use it when:

* You co(% data to the device only once and access it there
AND/

 You generate data on the device and copy back to host
without reuse AND/OR

. E’our'dker'nel(s) that access the memory are compute
oun

— UVA
— Peer-to-peer memory access

N-Body
Zero-copy

// Create input and output arrays
cudaHostAlloc(&in, bytes, cudaHostAllocMapped |
cudaHostAllocPortable);

cudaHostAlloc(&out, bytes, cudaHostAllocMapped
| cudaHostAllocPortable);

Allocates size bytes of host memory that is page-locked
and accessible to the device.

Important: If GPU supports Unified Virtual Address,
then no need to the above function.
(We will see shortly)

N-Body
Zero-copy

// Create input and output arrays
cudaHostAlloc(&in, bytes, cudaHostAllocMapped |
cudaHostAllocPortable);

cudaHostAlloc(&out, bytes, cudaHostAllocMapped
| cudaHostAllocPortable);

for (int d = O0; d < devCount; d++) {
cudaSetDevice(d);
cudaHostGetDevicePointer(&dout[d], hostPtr, O);
cudaHostGetDevicePointer(&din[d], hostPtr, 0);

}

pointer that will be passed to the device to access host memory

Example:
Direct N-Body

 Sharing data among GPUs: options
— Explicit copies via host
— Zero-copy shared host array
(cudaMallocHost())

— Per-device peer-to-peer exchange transfers
« UVA as we have seen
* Non-UVA:

— cudaMemcpyPeer()

— Copies memory from one device to memory on another
device

— Peer-to-peer memory access

Example:
Direct N-Body

 Sharing data among GPUs: options
— Explicit copies via host

— Zero-copy shared host array
(cudaMallocHost())

— Per-device peer-to-peer exchange transfers

— Peer-to-peer memory access

* Pass pointer to memory on device A to kernel
running on device B

 Requires UVA
* Must first enable peer access for every pair:
« cudaDeviceEnablePeerAccess

The Evolution of CPU-GPU
Memory Operations

Milestones
 Traditional cudaMemcpy()
» Zero-copy

* Unified Virtual Address (CUDA 4.0 and up)
* Unified Memory (CUDA 6.0 and up)

Source of the next few slides:
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/

Unified Memory

* From Kepler architecture (CC 3.0 and up)

* Creates a pool of managed memory that is
shared between the CPU and GPU.

* Managed memory is accessible to CPU and
GPU with single pointers.

» Under the hood: data automatically
migrates from CPU to GPU.

Unified Memory

CUDA & Code with Unified Memory

void sortfile{FILE *fp, int N} { void sortfile{FILE *fp, int N} {
char *dataj char *dataj
data = {char *Jmal1loc (N); cudaMal locManaged{&data, M);

. 1. N, Fpl; a3 . 1, N, Tp);

gort{data, N, 1, compare); << . o xxx{data N, 1, compare);

cudaFree{data);

source: https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/

Isn't it like UVA?

 Unified memory depends on UVA.

« UVA does NOT move data automatically
between CPU and GPU.

* Unified memory gives higher performance
than UVA.

Advantages of Unified Memory

* Ease of programming

 Data is migrated on demand.

— offer the performance of local data on the
GPU

— while providing the ease of use of globally
shared data
 Very efficient with complex data
structures (e.q. linked lists, structures
with pointers, ...).

Note: The physical location of data is invisible to the program
and may be changed at any time

Disadvantages of Unified Memory

» Carefully tuned CUDA program that
uses streams to efficiently overlap
execution with data transfers may
perform better than a CUDA program
that only uses Unified Memory.

How to allocated managed memory?

« Option 1: cudaMallocManaged() routine,
which is semantically similar to
cudaMalloc()

 Option 2: defining a global
___managed___ variable, which is
semantically similar to a ___device___
variable

cudaMallocManaged()

int main() {
int *ret;
cudaMallocManaged(&ret, 1000 * sizeof(int));

AplusB<<< 1, 1000 >>>(ret, 10, 100);
cudaDeviceSynchronize();

for(int i=0; i<1000; i++)
printf("%d: A+B = %d\n", i, ret][i]);

cudaFree(ret);
return O;

__managed___

__device__ _ _managed__ int ret[1000];

__global__ void AplusB(int a, int b) {
ret[threadldx.x] = a + b + threadldx.x;

}

int main() {

AplusB<<< 1, 1000 >>>(10, 100);
cudaDeviceSynchronize();

for(int i=0; i<1000; i++)
printf("%d: A+B = %d\n", i, ret[i]);

return O;

Final Notes About Unified Memory

* Coherence is ahead of performance in
runtime implementation. Data has to be
coherent across CPUs and GPUs in the
system.

* Page faulting is implemented in systems
with compute capability 6.x and up
->cudaMallocManaged will not run out of
memory as lpng as there is enough system
memory available for the allocation.

» Before that, all managed data must move
to the GPU before kernel launch
(automatically of course) > Devices of
compute capability lower than 6.x cannot
allocate more managed memory than the
physical size of GPU memory

Dynamic Parallelism

The Usual case

e Data travels back .
and forth between [l PRIy
the CPU and GPU |

many times.

» Reason: because i
of the inability of [N EEE——
the GPU to create [fuil
more work on m
itself depending
on the data.

With Dynamic Parallelism:

» GPU can generate Kepler GPU
work on itself without s
involvement of CPU. ""'

* Permits Dynamic Run
time decisions.

» Kernels can start new N L 4
kernels im

« Streams can spawn I
hew streams.

-

W mmm

CUDA 5.0 and later on devices of Compute Capability 3.5 or higher

__global ChildEernel (void* data) {
//Operate on data

}

__global ParentEernel (void *data) {

1f (threadIdx.x == 0) {
ChildEernel<<<l, 32>>>(data);
cudaThreadSynchronize () ;

syncthreads () ;
//Operate on data

// In Host Code
ParentEernel<<<8, 32>>>(data);

A kernel can call another kernel that calls another kernel up to 24 nested ...
Subject to the availability of resources.

When do we need that?

* Nested for-loop for example
* The need for adaptive grids

too coarse

less work

just right

Example
of fluid simulation

too fine

more work

Source: https://devblogs.nvidia.com/parallelforall/introduction-cuda-dynamic-parallelism/

Important

As in the host, device kernel launch is
asynchronous.

Successful execution of a kernel launch means
that the kernel is queued;
— it may begin executing immediately,

— or it may execute later when resources become
available.

Note that every thread that encounters a
kernel launch executes it. So be careful

Child grids always complete before the parent
grids That launch them, even if there is no
explicit synchronization.

Important

« The CUDA Device Runtime guarantees that parent
and child grids have a fully consistent view of global
memory when the child starts and ends.

fully consistent

/N

G—-.— CPU Thraad

.
-

Giri G-&La nch Grid A Complete
Gri #Threads —
Gnd A - Parent - :
weakly consistent Oekd S Emumoh | Grid 8 Completa

j
Grid B - Child Grid B Threads —d

Source: http://devblogs.nvidia.com/parallelforall/cuda-dynamic-parallelism-api-principles/

Important

By default, grids launched within a thread block are
executed sequentially.

This happens even if grids are launched by
different threads within the block.

To deal with this drawback = streams

streams created on the host cannot be used on the
device.

Streams created in a block can be used by all
threads in that block.

cudaStream_ts;
cudaStreamCreateWithFlags(&s, cudaStreamNonBlocking);

Important

» If the parent kernel needs results
computed by the child kernel to do its
owh work - it must ensure that the
child grid has finished execution before
continuing
— by explicitly synchronizing using

cudaDeviceSynchronize(void).
— This function waits for completion of all

grids previously launched by the thread
block from which it has been called.

Example

void threadBlockDeviceSynchronize(void)

To ensure all launches

__syncthreads(): " have been made
if(threadIdx.x == 0)

cudaDeviceSynchronize();
__syncthreads():

}

What do we gain?

» Reduction in trips to CPU
* Recursion

* More freedom where data generated by
the kernel decides how to partition the
data for lower-level of the hierarchy.

How to Compile and Link?

myprog.cu

myprog.o libcudadevrt.a

nvce -archzsm_35\-rdcz’rrue}myprog.cu -lcudadevrt
|

generate relocatable device code, required for later linking

Hyper-Q

Till Fermi

* Only one work queue

» Even though Fermi allows 16 concurrent
kernels.

» GPU resources not fully utilized

Without Hyper-Q FERMI
1 MP| Task at a Time

B8

wu
o

R
=
o
o)
T
2
=
=)
=
[
O

Stream Queue Management
Fermi already supported 16 way C C C
concurrency of kernel launches B B B
from separate streams A A A
Pending work is bottlenecked on 1 \ /
work queue.

GPU’s computational resources not
being utilized fully.

Work Distributor
(16 active grids)

streams|[0] streams|[1] streams|[2]
Cl:l C]’_ C2
Bo B B
fﬁ,ﬂ. ﬁ.-l -t"‘!l-i

G

Cz

B:

B

A

Co

Bo

Ao

Hardware Work Queue

With Hyper-Q

 Starting with Kepler

» We can have connection from multiple
CUDA streams, Message Passing
Interface (MPI) processes, or multiple
threads of the same process.

— 32 concurrent work queues, can receive
work from 32 process cores at the same

time.
— 3X Performance increase onh Fermi

With Hyper-Q

With Hyper-Q KEPL ER

32 Simultaneous MPI Tasks

R
c
o
)
©
=
=
=)
>
o
(V]

[Stream Queue Management

C C C
b B B
A A A
Vo
Grid Management Unit
(1000s of pending grids)

Work Distrbutor

(16 active gnds)

Conclusions

* There are many performance
enhancement techniques in our arsenal:

— Alignment

— Streams

— Pinned pages

— Asynchronous execution
— Dynamic Parallelism

— Multi-GPU

* There are tools to help you!

