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In This Lecture …

• More about performance

• Parallel Patterns

• Error Handling



More About Performance

Hardware configuration can be safely
ignored when designing a software for
correctness but must be considered in
the code structure when designing for
peak performance.



Some Insights About 
Performance

Occupancy

LatencyThroughput

Utilization



It is a common belief that …

• More threads is better
– because it needs more threads to hide latency

But is it always true?

Computational memory



CUDA Basic Linear Algebra Subroutines 



Latency Vs Throughput

• Latency (how much time) is time
– instruction takes 4 cycles per warp
– memory takes 400 cycles

• Throughput (how many operations per 
cycle or second) is rate
– Arithmetic: 1.3 Tflop/s = 480 ops/cycle 

(op=multiply-add)
– Memory: 177 GB/s ≈ 32 ops/cycle (op=32-

bit load)



Hide Latency is …

• Doing other operations while waiting

• This will make the kernel runs faster

• But not at the peak performance

What can we do??



Little’s Law



Examples from GPU

Less operations means idle cycle

Average latency of a computational operation



So …

• Higher performance does not mean 
more threads but higher utilization

• Utilization is related to parallelism

• We can increase utilization by 
– increasing throughput

• Instruction level parallelism

• Thread level parallelism

– decreasing latency

Occupancy is not utilization, but one of the contributing factors.



Occupancy Calculator API
__global__ void MyKernel(int *d, int *a, int *b) { 

int idx = threadIdx.x + blockIdx.x * blockDim.x; 

d[idx] = a[idx] * b[idx]; } 

int main() { 

int numBlocks; 

int blockSize = 32; 

int device; 

cudaDeviceProp prop; 

int activeWarps; 

int maxWarps; 

cudaGetDevice(&device); 

cudaGetDeviceProperties(&prop, device); 

cudaOccupancyMaxActiveBlocksPerMultiprocessor( 

&numBlocks, 

MyKernel, 

blockSize, 

0);

activeWarps = numBlocks * blockSize / prop.warpSize; 

maxWarps = prop.maxThreadsPerMultiProcessor / prop.warpSize;  

}



cudaOccupancyMaxActiveBlocksPerMultiprocessor

• From CUDA 6.5
• Produces an occupancy prediction based on: 

– the block size 
– shared memory usage of a kernel

• Reports occupancy in terms of the number of 
concurrent thread blocks per multiprocessor

• Don’t forget: it is just a prediction!
• Arguments:

1. pointer to an integer (where #blocks will be 
reported)

2. kernel
3. block size
4. dynamic shared memory per block in bytes



How about memory?

maximizing overall memory throughput for 
the application 

=

minimize data transfers 

with low bandwidth

host  device Global mem access



This means …Typically

1. Load data from device memory to shared 
memory.

2. Synchronize with all the other threads of 
the block so that each thread can safely 
read shared memory locations that were 
populated by different threads.

3. Process the data in shared memory.
4. Synchronize again if necessary to make 

sure that shared memory has been 
updated with the results.

5. Write the results back to device memory.



But accessing global memory is a 
necessary evil … So:

• Can we apply the same technique (i.e. 
Little’s law) to memory?

This means that to hide memory latency you need to keep 100KB in flight.
But less if the kernel is compute bound!



How Can You Get 100KB From Threads?

• Use more threads

• Use more instructions per thread

• Use more data per thread



Now for some commonly used 
parallel patterns

• Histogram

• Convolution

• Reduction tree

• Prefix sum



Histogram



In a Nutshell 

• Important and very useful computation:
– For each element in the data set, use the 

value to identify a “bin counter” to 
increment.

• A good example for understanding output 
interference in parallel computation



Example

• Define the bins as four-letter sections of the 
alphabet: a-d, e-h, i-l, n-p, …

• For each character in an input string, increment the 
appropriate bin counter.

• In the phrase “Programming Massively Parallel 
Processors” the output histogram is shown below:



Implementation 1

• Partition the input into sections

• Have each thread to take a section of the 
input

• Each thread iterates through its section.

• For each letter, increment the appropriate 
bin counter



Implementation 1



Evaluation of Implementation 1

- Possible collision

- Poor memory access efficiency:
– Adjacent threads do not access adjacent 

memory locations

– Accesses are not coalesced

– DRAM bandwidth is poorly utilized



Implementation 2

• Interleaved partitioning:
– All threads process a contiguous section of 

elements 

– They all move to the next section and 
repeat

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4



Implementation 2



Evaluation of Implementation 2

+ Better memory access patterns

- Still possibility of collision due to data  

races



Implementation 3

• We need to deal with data races:
– read-modify-write operations



Implementation 3
• We need atomic operation for read-modify-

write.
• A read-modify-write operation performed by a 

single hardware instruction on a memory 
location address
– Read the old value, calculate a new value, and write 

the new value to the location
• The hardware ensures that no other threads 

can perform another read-modify-write 
operation on the same location until the current 
atomic operation is complete
– Any other threads that attempt to perform an 

atomic operation on the same location will typically 
be held in a queue

– All threads perform their atomic operations 
serially on the same location



Implementation 3
• Atomic operations in CUDA

– Atomic add, sub, inc, dec, min, max, exch
(exchange)

– CAS (compare and swap)
• 3 args: address, compare, val
• reads a value from address (old value)
• computer:  0ld = compare ? val : old

• Example:
– int atomicAdd(int* address, int val); 
– unsigned int atomicAdd(unsigned int* address,

unsigned int val); 
– atomicSub, atomicExch, atomicMin, … atomicAnd, 

AtomicOr, …
• atomicAdd for double precision floating-point 

numbers requires CC 6.0 or higher



Implementation 3
__global__ void histo_kernel(unsigned char *buffer,

long size, unsigned int *histo) 

{

int i = threadIdx.x + blockIdx.x * blockDim.x;

// stride is total number of threads

int stride = blockDim.x * gridDim.x;

// All threads handle blockDim.x * gridDim.x

// consecutive elements

while (i < size) {

int alphabet_position = buffer[i] – “a”;

if (alphabet_position >= 0 && alpha_position < 26) 

atomicAdd(&(histo[alphabet_position/4]), 1);

i += stride;

}

}



About Atomic Operations
• An atomic operation on a DRAM location 

starts with a read, which has a latency of a 
few hundred cycles.

• The atomic operation ends with a write to 
the same location, with a latency of a few 
hundred cycles.

• During this whole time, no one else can 
access the location  serialization!

• Shorter latency is services from L2 cache.
• Much shorter latency if the operation is on 

shared memory (100x higher throughput 
than global and 10x than L2).



Evaluation of Implementation 3

+ No data race

+ Coalesced memory access

- Performance loss due to serialization



Implementation 4



Implementation 4
• Privatization: a very important use case for 

shared memory
• Cost

– Overhead for creating and initializing private copies
– Overhead for accumulating the contents of private 

copies into the final copy

• Benefit
– Much less contention and serialization in accessing 

both the private copies and the final copy
– The overall performance can often be improved 

more than 10x



Implementation 4
• Create private copies of the histo[] array for each thread block

__global__ void histo_kernel(unsigned char *buffer,

long size, unsigned int *histo) 

{

__shared__ unsigned int histo_private[7];



Implementation 4

• Create private copies of the histo[] array for each thread block

__global__ void histo_kernel(unsigned char *buffer,

long size, unsigned int *histo) 

{

__shared__ unsigned int histo_private[7];

if (threadIdx.x < 7) histo_private[threadidx.x] = 0;

__syncthreads();

Initialize the bin counters in 
the private copies of histo[] 



Implementation 4

int i = threadIdx.x + blockIdx.x * blockDim.x;
// stride is total number of threads

int stride = blockDim.x * gridDim.x;
while (i < size) {

atomicAdd( &(private_histo[buffer[i]/4), 1);
i += stride;

}

Build the private histogram



Implementation 4
// wait for all other threads in the block to finish

__syncthreads();

if (threadIdx.x < 7) {
atomicAdd(&(histo[threadIdx.x]), 

private_histo[threadIdx.x] );
}

}

Build the final histogram



About Privatization

• Privatization is a powerful and frequently used 
technique for parallelizing applications

• The operation needs to be associative and 
commutative

• The private histogram size needs to be small
• Fits into shared memory
• What if the histogram is too large to privatize?

– Sometimes one can partially privatize an output 
histogram and use range testing to go to either 
global memory or shared memory



What we learned from the 
histogram example

• Atomic operations may be needed 
sacrificing some performance for 
correctness

• Privatization can sometimes reduce the 
performance loss due to serialization 
caused by atomic operations.



Pattern: Convolution



Convolution

• An Array operation
• Output data element = weighted sum of 

a collection of neighboring input 
elements.

• The weights are defined by an input 
mask array.

• Usually used as filters to transform 
signals (or pixels or …) into more 
desirable form.



Convolution

Mask



Convolution

Convolution can also be 2D.



Convolution



Convolution

The 1D Version

• Thread organized as 1D grid.
• Pvalue allows intermediate values to be accumulated in registers 

to save DRAM bw.
• We assume ghost values are 0.
• There will be control flow divergence (due to ghost elements). 
• Ratio of floating point arithmetic calculation 

to global memory access is ~ 1.0  What can we do??



Regarding Mask M

• Size of M is typically small.

• The contents of M do not change 
during execution.

• All threads need to access M and in the 
same order. 

Doesn’t this make M a good candidate for
constant memory>



Constant Memory

• Constant memory variables are visible to 
all thread blocks.

• Constant memory variables cannot be 
changed during kernel execution.

• The size of constant memory can vary 
from device to device.



Mask M and Constant Memory

• In host:
• #define MASK_WIDTH 10

__constant__ float M[MASK_WIDTH]
• Allocate and initialize a mask h_M
• cudaMemcpyToSymbol(M, h_M, MASK_WIDTH * sizeof(float),

offset, kind);

• Kernel functions
– access constant memory variables as global 

variables  no need to pass pointers of these 
variables to the kernel as parameter.



Question: Isn’t the constant memory also 
in DRAM? Why is it assumed faster than 

global memory?

Answer: 

•CUDA runtime knows that constant memory variables 
are not modified.

• It directs the hardware to aggressively cache them 
during kernel execution.



Pattern: Reduction Tree



What is it?

• A commonly used strategy for processing 
large input data sets 
– There is no required order of processing 

elements in a data set
– Partition the data set into smaller chunks 
– Have each thread to process a chunk 
– Use a reduction tree to summarize the results

from each chunk into the final answer 

• Google and Hadoop MapReduce frameworks 
are examples of this pattern 



What is it?

• Summarize a set of input values into one 
value using a “reduction operation” 
– Max 
– Min 
– Sum 
– Product 

• Often with user defined reduction 
operation function as long as the operation 
– Is associative and commutative 
– Has a well-defined identity value (e.g., 0 for 

sum) 



An efficient sequential reduction 
algorithm performs N operations in O(N)

• Initialize the result as an identity value 
for the reduction operation 
– Smallest possible value for max reduction 
– Largest possible value for min reduction 
– 0 for sum reduction 
– 1 for product reduction 

• Scan through the input and perform the 
reduction operation between the result 
value and the current input value 



A parallel reduction tree algorithm 
performs N-1 Operations in log(N) steps



Straightforward Implementation

• The original vector is in device global 
memory 

• The shared memory is used to hold a 
partial sum vector 

• Each step brings the partial sum vector 
closer to the sum 

• The final sum will be in element 0 
• Reduces global memory traffic due to 

partial sum values 



First Step: Block Design 

• Each thread block takes 2*BlockDim.x input elements

• Each thread loads 2 elements into shared memory

__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;

unsigned int start = 2*blockIdx.x*blockDim.x;

partialSum[t] = input[start + t];

partialSum[blockDim+t] = input[start + blockDim.x+t];



Step 2: Reduction

for (unsigned int stride = 1; 

stride <= blockDim.x;  stride *= 2) 

{

__syncthreads();

if (t % stride == 0)

partialSum[2*t]+= partialSum[2*t+stride];

}



A lot of branch divergence.



A Better Version



Better Reduction Step
for (unsigned int stride = blockDim.x; 

stride > 0;  stride /= 2) 

{

__syncthreads();

if (t < stride)

partialSum[t] += partialSum[t+stride];

}

For a 1024 thread block
No divergence in the first 5 steps

1024, 512, 256, 128, 64, 32 consecutive threads are active in each step
All threads in each warp  either all active or all inactive

The final 5 steps will still have divergence 



Be Careful!

• Although the number of “operations” is 
N, each “operation involves much more 
complex address calculation and 
intermediate result manipulation.

• If the parallel code is executed on a 
single-thread hardware, it would be 
significantly slower than the code based 
on the original sequential algorithm.



Pattern: Prefix Sum (Scan)



Scan / Parallel Prefix Sum

• Given an array A = [a0, a1, …, an-1] 
and a binary associative operator @ with identity I

– scan (A) = [I, a0, (a0 @ a1), …, (a0 @ a1 @ … @ an-2)] 

• This is the exclusive scan

3 1 7 0 4 1 6 3

0 3 4 11 11 15 16 22



Inclusive Scan

• Given an array A = [a0, a1, …, an-1] 
and a binary associative operator @ with identity I

– scan (A) = [a0, (a0 @ a1), …, (a0 @ a1 @ … @ an-1)] 

3 1 7 0 4 1 6 3

253 4 11 11 15 16 22



Why?

• Scan is used as a building block for many 
parallel algorithms, especially those involving 
parallel working assignment and resource 
allocation
– Radix sort
– Quicksort
– String comparison
– Lexical analysis
– Run-length encoding
– Histograms
– Etc.



A Inclusive Scan Application 
Example

• Assume that we have a 100-inch sausage to feed 10
• We know how much each person wants in inches

– [3  5   2   7   28 4  3 0  8  1]
• How do we cut the sausage quickly? 
• How much will be left

• Method 1: cut the sections sequentially: 3 inches 
first, 5 inches second, 2 inches third, etc. 

• Method 2: calculate Prefix scan
– [3, 8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)



Other Examples

• Assigning camp slots

• Assigning farmer market space

• Allocating memory to parallel threads

• Allocating memory buffer for 
communication channels

• …



Sequential algorithm

void scan( float* output, float* input, int length)

{

output[0] = 0; 

for(int j = 1; j < length; ++j)

{

output[j] = input[j-1] + output[j-1];

}

}

• N additions
• Use a guide:

– Want parallel to be work efficient
– Does similar amount of work

3 1 7 0 4 1 6 3

0 3 4



A Parallel Inclusive Scan Algorithm

1. Read input from 

device memory to 

shared memory

Each thread reads one value from the input

array in device memory into shared memory array.

T0 3 1 7 0 4 1 6 3



A Parallel Scan Algorithm

1. (previous slide)

2. Iterate log(n) 

times: Threads stride 

to n: Add pairs of 

elements stride

elements apart. 

Double stride at each 

iteration. 

• Active threads: stride to n-1 (n-stride threads)

• Thread j adds elements j and j-stride from T0 and 

writes result into shared memory buffer T1 (ping-pong)

Iteration #1

Stride = 1

T1 3 4 8 7 4 5 7 9

Stride 1

T0 3 1 7 0 4 1 6 3



A Parallel Scan Algorithm

T1 3 4 8 7 4 5 7 9

T0 3 4 11 11 12 12 11 14

Stride 1

Stride 2

1. Read input from 

device memory to 

shared memory. 

2. Iterate log(n) 

times: Threads stride 

to n: Add pairs of 

elements stride

elements apart. 

Double stride at each 

iteration. 

Iteration #2

Stride = 2

T0 3 1 7 0 4 1 6 3



A Parallel Scan Algorithm

T1 3 4 11 11 15 16 22 25

1. Read input from 

device memory to 

shared memory. Set 

first element to zero 

and shift others right 

by one.

2. Iterate log(n) 

times: Threads stride 

to n: Add pairs of 

elements stride

elements apart. 

Double stride at each 

iteration. 

3. Write output from 

shared memory to 

device memory
Iteration #3

Stride = 4

T1 3 4 8 7 4 5 7 9

T0 3 4 11 11 12 12 11 14

Stride 1

Stride 2

T0 3 1 7 0 4 1 6 3

Stride 4



How to handle dependencies in 
that implementation?

• During every iteration, each thread can 
overwrite the input of another thread

• Barrier synchronization to ensure all 
inputs have been properly generated

• Barrier synchronization is required to 
ensure that all threads have secured 
their inputs

• All threads perform addition and write 
output



Possible Implementation

__global__ void work_inefficient_scan_kernel(float *X, float *Y, int InputSize) {

__shared__ float XY[SECTION_SIZE];

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < InputSize) {XY[threadIdx.x] = X[i];}

// the code below performs iterative scan on XY

for (unsigned int stride = 1; stride <= threadIdx.x; stride *= 2) {

__syncthreads();

float in1 = XY[threadIdx.x - stride];

__syncthreads();

XY[threadIdx.x] += in1;

}

__ syncthreads();

If (i < InputSize) {Y[i] = XY[threadIdx.x];}

}



77

Work Efficiency Considerations

• The first-attempt Scan executes log(n) 
iterations

• This scan algorithm is not very work efficient
– Sequential scan algorithm does n adds

– A factor of log(n) hurts: 20x for 10^6 elements!

• A parallel algorithm can be slow when 
execution resources are saturated due to low 
work efficiency



Improving Efficiency

• A common parallel algorithm pattern:
Balanced Trees

– Build a balanced binary tree on the input data and sweep it 
to and from the root

– Tree is not an actual data structure, but a concept to 
determine what each thread does at each step

• For scan:
– Traverse down from leaves to root building partial sums at 

internal nodes in the tree
• Root holds sum of all leaves

– Traverse back up the tree building the scan from the 
partial sums



Parallel Scan - Reduction Step

79

+

+

+ + +

+

+

x0 x3 x4 x5 x6 x7x1 x2

∑x0..x1 ∑x2..x3 ∑x4..x5 ∑x6..x7

∑x0..x3
∑x4..x7

∑x0..x7

Time

In place calculation 

Final value after reduce



Inclusive Post Scan Step

+

x0 x4 x6x2∑x0..x1 ∑x4..x5
∑x0..x3 ∑x0..x7

∑x0..x5



Inclusive Post Scan Step

+

x0 x4 x6x2∑x0..x1 ∑x4..x5
∑x0..x3 ∑x0..x7

∑x0..x5

+ +

∑x0..x2 ∑x0..x4

+

∑x0..x6



Putting it Together

http://upload.wikimedia.org/wikipedia/commons/8/81/Prefix_sum_16.svg


Work Analysis

• The parallel Scan executes 2* log(n) parallel iterations

– log(n) in reduction and log(n) in post scan
– The iterations do n/2, n/4,..1, 1, …., n/4. n/2 

adds
– Total adds: 2* (n-1)  O(n) work

• The total number of adds is no more than 
twice of that done in the efficient 
sequential algorithm
– The benefit of parallelism can easily overcome 

the 2X work when there is sufficient hardware



Error Handling in CUDA



__global__ void foo(int *ptr)
{

*ptr = 7;
}

int main(void)
{

foo<<<1,1>>>(0);
return 0;

}

What will happen when you compile
and execute this piece of code?



Error Handling

• In a CUDA program, if we suspect an 
error has occurred during a kernel 
launch, then we must explicitly check
for it after the kernel has executed. 

• CUDA runtime will respond to questions 
… But won’t talk without asked!



cudaError_t cudaGetLastError(void);

• Called by the host

• returns a value encoding the kind of the 
last error it has encountered

• check for the error only after we're 
sure a kernel has finished executing 
don’t forget kernel calls are async!
– What will you do?



#include <stdio.h>
#include <stdlib.h>

__global__ void foo(int *ptr)
{
*ptr = 7;

}

int main(void)
{
foo<<<1,1>>>(0);

// make the host block until the device is finished with foo
cudaThreadSynchronize();

// check for error
cudaError_t error = cudaGetLastError();
if(error != cudaSuccess)
{
// print the CUDA error message and exit
printf("CUDA error: %s\n", cudaGetErrorString(error));
exit(-1);

}

return 0;
}

$ nvcc crash.cu -o crash
$ ./crash
CUDA error: unspecified launch failure



Same Technique with Synchronous Calls

cudaError_t error = cudaMalloc((void**)&ptr,  

100000000000);
if(error != cudaSuccess)
{
// print the CUDA error message and exit
printf("CUDA error: %s\n", 

cudaGetErrorString(error));
exit(-1);

}

The output will be: 
CUDA error: out of memory



Rules of Thumb

• Do not use  cudaThreadSynchronize() a lot 
in your code because it has a large 
performance penalty.

• You can enable it during debugging and 
disable it otherwise.

#ifdef DEBUG
cudaThreadSynchronize();
cudaError_t error = cudaGetLastError();
if(error != cudaSuccess)
{

printf("CUDA error at %s:%i: %s\n", filename, line_number, cudaGetErrorString(error));
exit(-1);

}
#endif

If debugging, compile with:
$ nvcc -DDEBUG mycode.cu 



Conclusions

• Performance is related to how you keep 
the GPU and its memory busy  does 
not necessarily mean higher occupancy.

• We looked at some of the common 
parallel patterns used in many GPU 
kernels. These are tools that you can 
use in your own kernels. 


