
Graphics Processing Units (GPUs):
Architecture and Programming

Mohamed Zahran (aka Z)

mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-GA.3033-004

CUDA
Advanced Techniques 3

Some slides are used and slightly
modified from:
NVIDIA teaching kit

In This Lecture …

• More about performance

• Parallel Patterns

• Error Handling

More About Performance

Hardware configuration can be safely
ignored when designing a software for
correctness but must be considered in
the code structure when designing for
peak performance.

Some Insights About
Performance

Occupancy

LatencyThroughput

Utilization

It is a common belief that …

• More threads is better
– because it needs more threads to hide latency

But is it always true?

Computational memory

CUDA Basic Linear Algebra Subroutines

Latency Vs Throughput

• Latency (how much time) is time
– instruction takes 4 cycles per warp
– memory takes 400 cycles

• Throughput (how many operations per
cycle or second) is rate
– Arithmetic: 1.3 Tflop/s = 480 ops/cycle

(op=multiply-add)
– Memory: 177 GB/s ≈ 32 ops/cycle (op=32-

bit load)

Hide Latency is …

• Doing other operations while waiting

• This will make the kernel runs faster

• But not at the peak performance

What can we do??

Little’s Law

Examples from GPU

Less operations means idle cycle

Average latency of a computational operation

So …

• Higher performance does not mean
more threads but higher utilization

• Utilization is related to parallelism

• We can increase utilization by
– increasing throughput

• Instruction level parallelism

• Thread level parallelism

– decreasing latency

Occupancy is not utilization, but one of the contributing factors.

Occupancy Calculator API
__global__ void MyKernel(int *d, int *a, int *b) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;

d[idx] = a[idx] * b[idx]; }

int main() {

int numBlocks;

int blockSize = 32;

int device;

cudaDeviceProp prop;

int activeWarps;

int maxWarps;

cudaGetDevice(&device);

cudaGetDeviceProperties(&prop, device);

cudaOccupancyMaxActiveBlocksPerMultiprocessor(

&numBlocks,

MyKernel,

blockSize,

0);

activeWarps = numBlocks * blockSize / prop.warpSize;

maxWarps = prop.maxThreadsPerMultiProcessor / prop.warpSize;

}

cudaOccupancyMaxActiveBlocksPerMultiprocessor

• From CUDA 6.5
• Produces an occupancy prediction based on:

– the block size
– shared memory usage of a kernel

• Reports occupancy in terms of the number of
concurrent thread blocks per multiprocessor

• Don’t forget: it is just a prediction!
• Arguments:

1. pointer to an integer (where #blocks will be
reported)

2. kernel
3. block size
4. dynamic shared memory per block in bytes

How about memory?

maximizing overall memory throughput for
the application

=

minimize data transfers

with low bandwidth

host  device Global mem access

This means …Typically

1. Load data from device memory to shared
memory.

2. Synchronize with all the other threads of
the block so that each thread can safely
read shared memory locations that were
populated by different threads.

3. Process the data in shared memory.
4. Synchronize again if necessary to make

sure that shared memory has been
updated with the results.

5. Write the results back to device memory.

But accessing global memory is a
necessary evil … So:

• Can we apply the same technique (i.e.
Little’s law) to memory?

This means that to hide memory latency you need to keep 100KB in flight.
But less if the kernel is compute bound!

How Can You Get 100KB From Threads?

• Use more threads

• Use more instructions per thread

• Use more data per thread

Now for some commonly used
parallel patterns

• Histogram

• Convolution

• Reduction tree

• Prefix sum

Histogram

In a Nutshell

• Important and very useful computation:
– For each element in the data set, use the

value to identify a “bin counter” to
increment.

• A good example for understanding output
interference in parallel computation

Example

• Define the bins as four-letter sections of the
alphabet: a-d, e-h, i-l, n-p, …

• For each character in an input string, increment the
appropriate bin counter.

• In the phrase “Programming Massively Parallel
Processors” the output histogram is shown below:

Implementation 1

• Partition the input into sections

• Have each thread to take a section of the
input

• Each thread iterates through its section.

• For each letter, increment the appropriate
bin counter

Implementation 1

Evaluation of Implementation 1

- Possible collision

- Poor memory access efficiency:
– Adjacent threads do not access adjacent

memory locations

– Accesses are not coalesced

– DRAM bandwidth is poorly utilized

Implementation 2

• Interleaved partitioning:
– All threads process a contiguous section of

elements

– They all move to the next section and
repeat

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Implementation 2

Evaluation of Implementation 2

+ Better memory access patterns

- Still possibility of collision due to data

races

Implementation 3

• We need to deal with data races:
– read-modify-write operations

Implementation 3
• We need atomic operation for read-modify-

write.
• A read-modify-write operation performed by a

single hardware instruction on a memory
location address
– Read the old value, calculate a new value, and write

the new value to the location
• The hardware ensures that no other threads

can perform another read-modify-write
operation on the same location until the current
atomic operation is complete
– Any other threads that attempt to perform an

atomic operation on the same location will typically
be held in a queue

– All threads perform their atomic operations
serially on the same location

Implementation 3
• Atomic operations in CUDA

– Atomic add, sub, inc, dec, min, max, exch
(exchange)

– CAS (compare and swap)
• 3 args: address, compare, val
• reads a value from address (old value)
• computer: 0ld = compare ? val : old

• Example:
– int atomicAdd(int* address, int val);
– unsigned int atomicAdd(unsigned int* address,

unsigned int val);
– atomicSub, atomicExch, atomicMin, … atomicAnd,

AtomicOr, …
• atomicAdd for double precision floating-point

numbers requires CC 6.0 or higher

Implementation 3
__global__ void histo_kernel(unsigned char *buffer,

long size, unsigned int *histo)

{

int i = threadIdx.x + blockIdx.x * blockDim.x;

// stride is total number of threads

int stride = blockDim.x * gridDim.x;

// All threads handle blockDim.x * gridDim.x

// consecutive elements

while (i < size) {

int alphabet_position = buffer[i] – “a”;

if (alphabet_position >= 0 && alpha_position < 26)

atomicAdd(&(histo[alphabet_position/4]), 1);

i += stride;

}

}

About Atomic Operations
• An atomic operation on a DRAM location

starts with a read, which has a latency of a
few hundred cycles.

• The atomic operation ends with a write to
the same location, with a latency of a few
hundred cycles.

• During this whole time, no one else can
access the location  serialization!

• Shorter latency is services from L2 cache.
• Much shorter latency if the operation is on

shared memory (100x higher throughput
than global and 10x than L2).

Evaluation of Implementation 3

+ No data race

+ Coalesced memory access

- Performance loss due to serialization

Implementation 4

Implementation 4
• Privatization: a very important use case for

shared memory
• Cost

– Overhead for creating and initializing private copies
– Overhead for accumulating the contents of private

copies into the final copy

• Benefit
– Much less contention and serialization in accessing

both the private copies and the final copy
– The overall performance can often be improved

more than 10x

Implementation 4
• Create private copies of the histo[] array for each thread block

__global__ void histo_kernel(unsigned char *buffer,

long size, unsigned int *histo)

{

__shared__ unsigned int histo_private[7];

Implementation 4

• Create private copies of the histo[] array for each thread block

__global__ void histo_kernel(unsigned char *buffer,

long size, unsigned int *histo)

{

__shared__ unsigned int histo_private[7];

if (threadIdx.x < 7) histo_private[threadidx.x] = 0;

__syncthreads();

Initialize the bin counters in
the private copies of histo[]

Implementation 4

int i = threadIdx.x + blockIdx.x * blockDim.x;
// stride is total number of threads

int stride = blockDim.x * gridDim.x;
while (i < size) {

atomicAdd(&(private_histo[buffer[i]/4), 1);
i += stride;

}

Build the private histogram

Implementation 4
// wait for all other threads in the block to finish

__syncthreads();

if (threadIdx.x < 7) {
atomicAdd(&(histo[threadIdx.x]),

private_histo[threadIdx.x]);
}

}

Build the final histogram

About Privatization

• Privatization is a powerful and frequently used
technique for parallelizing applications

• The operation needs to be associative and
commutative

• The private histogram size needs to be small
• Fits into shared memory
• What if the histogram is too large to privatize?

– Sometimes one can partially privatize an output
histogram and use range testing to go to either
global memory or shared memory

What we learned from the
histogram example

• Atomic operations may be needed 
sacrificing some performance for
correctness

• Privatization can sometimes reduce the
performance loss due to serialization
caused by atomic operations.

Pattern: Convolution

Convolution

• An Array operation
• Output data element = weighted sum of

a collection of neighboring input
elements.

• The weights are defined by an input
mask array.

• Usually used as filters to transform
signals (or pixels or …) into more
desirable form.

Convolution

Mask

Convolution

Convolution can also be 2D.

Convolution

Convolution

The 1D Version

• Thread organized as 1D grid.
• Pvalue allows intermediate values to be accumulated in registers

to save DRAM bw.
• We assume ghost values are 0.
• There will be control flow divergence (due to ghost elements).
• Ratio of floating point arithmetic calculation

to global memory access is ~ 1.0  What can we do??

Regarding Mask M

• Size of M is typically small.

• The contents of M do not change
during execution.

• All threads need to access M and in the
same order.

Doesn’t this make M a good candidate for
constant memory>

Constant Memory

• Constant memory variables are visible to
all thread blocks.

• Constant memory variables cannot be
changed during kernel execution.

• The size of constant memory can vary
from device to device.

Mask M and Constant Memory

• In host:
• #define MASK_WIDTH 10

__constant__ float M[MASK_WIDTH]
• Allocate and initialize a mask h_M
• cudaMemcpyToSymbol(M, h_M, MASK_WIDTH * sizeof(float),

offset, kind);

• Kernel functions
– access constant memory variables as global

variables  no need to pass pointers of these
variables to the kernel as parameter.

Question: Isn’t the constant memory also
in DRAM? Why is it assumed faster than

global memory?

Answer:

•CUDA runtime knows that constant memory variables
are not modified.

• It directs the hardware to aggressively cache them
during kernel execution.

Pattern: Reduction Tree

What is it?

• A commonly used strategy for processing
large input data sets
– There is no required order of processing

elements in a data set
– Partition the data set into smaller chunks
– Have each thread to process a chunk
– Use a reduction tree to summarize the results

from each chunk into the final answer

• Google and Hadoop MapReduce frameworks
are examples of this pattern

What is it?

• Summarize a set of input values into one
value using a “reduction operation”
– Max
– Min
– Sum
– Product

• Often with user defined reduction
operation function as long as the operation
– Is associative and commutative
– Has a well-defined identity value (e.g., 0 for

sum)

An efficient sequential reduction
algorithm performs N operations in O(N)

• Initialize the result as an identity value
for the reduction operation
– Smallest possible value for max reduction
– Largest possible value for min reduction
– 0 for sum reduction
– 1 for product reduction

• Scan through the input and perform the
reduction operation between the result
value and the current input value

A parallel reduction tree algorithm
performs N-1 Operations in log(N) steps

Straightforward Implementation

• The original vector is in device global
memory

• The shared memory is used to hold a
partial sum vector

• Each step brings the partial sum vector
closer to the sum

• The final sum will be in element 0
• Reduces global memory traffic due to

partial sum values

First Step: Block Design

• Each thread block takes 2*BlockDim.x input elements

• Each thread loads 2 elements into shared memory

__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;

unsigned int start = 2*blockIdx.x*blockDim.x;

partialSum[t] = input[start + t];

partialSum[blockDim+t] = input[start + blockDim.x+t];

Step 2: Reduction

for (unsigned int stride = 1;

stride <= blockDim.x; stride *= 2)

{

__syncthreads();

if (t % stride == 0)

partialSum[2*t]+= partialSum[2*t+stride];

}

A lot of branch divergence.

A Better Version

Better Reduction Step
for (unsigned int stride = blockDim.x;

stride > 0; stride /= 2)

{

__syncthreads();

if (t < stride)

partialSum[t] += partialSum[t+stride];

}

For a 1024 thread block
No divergence in the first 5 steps

1024, 512, 256, 128, 64, 32 consecutive threads are active in each step
All threads in each warp either all active or all inactive

The final 5 steps will still have divergence

Be Careful!

• Although the number of “operations” is
N, each “operation involves much more
complex address calculation and
intermediate result manipulation.

• If the parallel code is executed on a
single-thread hardware, it would be
significantly slower than the code based
on the original sequential algorithm.

Pattern: Prefix Sum (Scan)

Scan / Parallel Prefix Sum

• Given an array A = [a0, a1, …, an-1]
and a binary associative operator @ with identity I

– scan (A) = [I, a0, (a0 @ a1), …, (a0 @ a1 @ … @ an-2)]

• This is the exclusive scan

3 1 7 0 4 1 6 3

0 3 4 11 11 15 16 22

Inclusive Scan

• Given an array A = [a0, a1, …, an-1]
and a binary associative operator @ with identity I

– scan (A) = [a0, (a0 @ a1), …, (a0 @ a1 @ … @ an-1)]

3 1 7 0 4 1 6 3

253 4 11 11 15 16 22

Why?

• Scan is used as a building block for many
parallel algorithms, especially those involving
parallel working assignment and resource
allocation
– Radix sort
– Quicksort
– String comparison
– Lexical analysis
– Run-length encoding
– Histograms
– Etc.

A Inclusive Scan Application
Example

• Assume that we have a 100-inch sausage to feed 10
• We know how much each person wants in inches

– [3 5 2 7 28 4 3 0 8 1]
• How do we cut the sausage quickly?
• How much will be left

• Method 1: cut the sections sequentially: 3 inches
first, 5 inches second, 2 inches third, etc.

• Method 2: calculate Prefix scan
– [3, 8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)

Other Examples

• Assigning camp slots

• Assigning farmer market space

• Allocating memory to parallel threads

• Allocating memory buffer for
communication channels

• …

Sequential algorithm

void scan(float* output, float* input, int length)

{

output[0] = 0;

for(int j = 1; j < length; ++j)

{

output[j] = input[j-1] + output[j-1];

}

}

• N additions
• Use a guide:

– Want parallel to be work efficient
– Does similar amount of work

3 1 7 0 4 1 6 3

0 3 4

A Parallel Inclusive Scan Algorithm

1. Read input from

device memory to

shared memory

Each thread reads one value from the input

array in device memory into shared memory array.

T0 3 1 7 0 4 1 6 3

A Parallel Scan Algorithm

1. (previous slide)

2. Iterate log(n)

times: Threads stride

to n: Add pairs of

elements stride

elements apart.

Double stride at each

iteration.

• Active threads: stride to n-1 (n-stride threads)

• Thread j adds elements j and j-stride from T0 and

writes result into shared memory buffer T1 (ping-pong)

Iteration #1

Stride = 1

T1 3 4 8 7 4 5 7 9

Stride 1

T0 3 1 7 0 4 1 6 3

A Parallel Scan Algorithm

T1 3 4 8 7 4 5 7 9

T0 3 4 11 11 12 12 11 14

Stride 1

Stride 2

1. Read input from

device memory to

shared memory.

2. Iterate log(n)

times: Threads stride

to n: Add pairs of

elements stride

elements apart.

Double stride at each

iteration.

Iteration #2

Stride = 2

T0 3 1 7 0 4 1 6 3

A Parallel Scan Algorithm

T1 3 4 11 11 15 16 22 25

1. Read input from

device memory to

shared memory. Set

first element to zero

and shift others right

by one.

2. Iterate log(n)

times: Threads stride

to n: Add pairs of

elements stride

elements apart.

Double stride at each

iteration.

3. Write output from

shared memory to

device memory
Iteration #3

Stride = 4

T1 3 4 8 7 4 5 7 9

T0 3 4 11 11 12 12 11 14

Stride 1

Stride 2

T0 3 1 7 0 4 1 6 3

Stride 4

How to handle dependencies in
that implementation?

• During every iteration, each thread can
overwrite the input of another thread

• Barrier synchronization to ensure all
inputs have been properly generated

• Barrier synchronization is required to
ensure that all threads have secured
their inputs

• All threads perform addition and write
output

Possible Implementation

__global__ void work_inefficient_scan_kernel(float *X, float *Y, int InputSize) {

__shared__ float XY[SECTION_SIZE];

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < InputSize) {XY[threadIdx.x] = X[i];}

// the code below performs iterative scan on XY

for (unsigned int stride = 1; stride <= threadIdx.x; stride *= 2) {

__syncthreads();

float in1 = XY[threadIdx.x - stride];

__syncthreads();

XY[threadIdx.x] += in1;

}

__ syncthreads();

If (i < InputSize) {Y[i] = XY[threadIdx.x];}

}

77

Work Efficiency Considerations

• The first-attempt Scan executes log(n)
iterations

• This scan algorithm is not very work efficient
– Sequential scan algorithm does n adds

– A factor of log(n) hurts: 20x for 10^6 elements!

• A parallel algorithm can be slow when
execution resources are saturated due to low
work efficiency

Improving Efficiency

• A common parallel algorithm pattern:
Balanced Trees

– Build a balanced binary tree on the input data and sweep it
to and from the root

– Tree is not an actual data structure, but a concept to
determine what each thread does at each step

• For scan:
– Traverse down from leaves to root building partial sums at

internal nodes in the tree
• Root holds sum of all leaves

– Traverse back up the tree building the scan from the
partial sums

Parallel Scan - Reduction Step

79

+

+

+ + +

+

+

x0 x3 x4 x5 x6 x7x1 x2

∑x0..x1 ∑x2..x3 ∑x4..x5 ∑x6..x7

∑x0..x3
∑x4..x7

∑x0..x7

Time

In place calculation

Final value after reduce

Inclusive Post Scan Step

+

x0 x4 x6x2∑x0..x1 ∑x4..x5
∑x0..x3 ∑x0..x7

∑x0..x5

Inclusive Post Scan Step

+

x0 x4 x6x2∑x0..x1 ∑x4..x5
∑x0..x3 ∑x0..x7

∑x0..x5

+ +

∑x0..x2 ∑x0..x4

+

∑x0..x6

Putting it Together

http://upload.wikimedia.org/wikipedia/commons/8/81/Prefix_sum_16.svg

Work Analysis

• The parallel Scan executes 2* log(n) parallel iterations

– log(n) in reduction and log(n) in post scan
– The iterations do n/2, n/4,..1, 1, …., n/4. n/2

adds
– Total adds: 2* (n-1)  O(n) work

• The total number of adds is no more than
twice of that done in the efficient
sequential algorithm
– The benefit of parallelism can easily overcome

the 2X work when there is sufficient hardware

Error Handling in CUDA

__global__ void foo(int *ptr)
{

*ptr = 7;
}

int main(void)
{

foo<<<1,1>>>(0);
return 0;

}

What will happen when you compile
and execute this piece of code?

Error Handling

• In a CUDA program, if we suspect an
error has occurred during a kernel
launch, then we must explicitly check
for it after the kernel has executed.

• CUDA runtime will respond to questions
… But won’t talk without asked!

cudaError_t cudaGetLastError(void);

• Called by the host

• returns a value encoding the kind of the
last error it has encountered

• check for the error only after we're
sure a kernel has finished executing 
don’t forget kernel calls are async!
– What will you do?

#include <stdio.h>
#include <stdlib.h>

__global__ void foo(int *ptr)
{
*ptr = 7;

}

int main(void)
{
foo<<<1,1>>>(0);

// make the host block until the device is finished with foo
cudaThreadSynchronize();

// check for error
cudaError_t error = cudaGetLastError();
if(error != cudaSuccess)
{
// print the CUDA error message and exit
printf("CUDA error: %s\n", cudaGetErrorString(error));
exit(-1);

}

return 0;
}

$ nvcc crash.cu -o crash
$./crash
CUDA error: unspecified launch failure

Same Technique with Synchronous Calls

cudaError_t error = cudaMalloc((void**)&ptr,

100000000000);
if(error != cudaSuccess)
{
// print the CUDA error message and exit
printf("CUDA error: %s\n",

cudaGetErrorString(error));
exit(-1);

}

The output will be:
CUDA error: out of memory

Rules of Thumb

• Do not use cudaThreadSynchronize() a lot
in your code because it has a large
performance penalty.

• You can enable it during debugging and
disable it otherwise.

#ifdef DEBUG
cudaThreadSynchronize();
cudaError_t error = cudaGetLastError();
if(error != cudaSuccess)
{

printf("CUDA error at %s:%i: %s\n", filename, line_number, cudaGetErrorString(error));
exit(-1);

}
#endif

If debugging, compile with:
$ nvcc -DDEBUG mycode.cu

Conclusions

• Performance is related to how you keep
the GPU and its memory busy  does
not necessarily mean higher occupancy.

• We looked at some of the common
parallel patterns used in many GPU
kernels. These are tools that you can
use in your own kernels.

