
Graphics Processing Units (GPUs): 
Architecture and Programming

Mohamed Zahran (aka Z)

mzahran@cs.nyu.edu

http://www.mzahran.com

CSCI-GA.3033-004

CUDA
Advanced Techniques 4



This Lectures

• Texture memory

• A glimpse on libraries

• Power-aware programming

• Putting it all together



Texture Memory



Texture Memory

• read-only memory 

• Can improve performance and reduce 
memory traffic when reads have certain 
access patterns.

• Originally designed for the classical 
OpenGL and DirectX rendering pipelines.

• But has some properties that make it 
extremely useful for computing, especially 
computer vision application.



Texture Memory

• Texture memory is cached on chip 
– In KB range in every SM

– In some situations it will provide higher 
effective bandwidth by reducing memory 
requests to off-chip DRAM. 

• Texture caches are designed for graphics 
applications where memory access patterns 
exhibit a great deal of spatial locality. 

• Every SM has several texture fetch units



One SM from Pascal architecture (GP100)

Source: https://www.extremetech.com/extreme/226032-nvidias-pascal-gp100-gpu-massive-bandwidth-
enormous-double-precision-performance



Texture Memory

• The texture cache is optimized for 2D 
spatial locality.

• Part of DRAM

• The process of reading a texture is 
called a texture fetch. 

• Can be addressed as 1D, 2D, or 3D 
dimensional arrays.

• Elements of the array are called texels.



Texturing
Hardware

Underlying memory:
•Device Memory

Or
•CUDA Arrays

texture references



CUDA Arrays

• Designed specifically to support texturing.
• Allocated from device memory
• Do not consume any CUDA address space.
• Have an opaque layout
• Cannot be addressed by pointers
• Memory locations addressed using two 

things:
– array handle
– set of 1D, 2D, or 3D coordinates



Why CUDA Arrays?

• Designed so that contiguous addresses 
exhibit 2D or 3D locality.



Texture Memory

To accelerate frequently performed 
operations such as mapping
a 2D "skin" onto a 3D polygonal model. 



source: http://cuda-programming.blogspot.com/2013/02/texture-memory-in-cuda-what-is-texture.html



Texture Memory



Texture Memory

Capabilities:

• Ability to cache global memory
• Dedicated interpolation hardware
• Provides a way to interact with the 

display capabilities of the GPU.

The best performance is achieved when the 
threads of a warp read locations that are close 
together from a spatial locality perspective.



Allocating CUDA Arrays
cudaError_t cudaMallocArray (

struct cudaArray ** array,
const struct cudaChannelFormatDesc * desc,
size_t width,
size_t height,
unsigned int flags

);

array: pointer to allocated array in device memory
width: array width in bytes
height: default is 0   1D array
flags: 

• cudaArrayDefault: default array allocation
• cudaArraySurfaceLoadStore



Allocating CUDA Arrays
cudaError_t cudaMallocArray (

struct cudaArray ** array,
const struct cudaChannelFormatDesc * desc,
size_t width,
size_t height,
unsigned int flags

);

struct cudaChannelFormatDesc {
int x, y, z, w;    number of bits in each member of the texture element

enum cudaChannelFormatKind f;
};

cudaChannelFormatKindSigned Signed channel format

cudaChannelFormatKindUnsigned Unsigned channel format

cudaChannelFormatKindFloat Float channel format

cudaChannelFormatKindNone No channel format

struct cudaChannelFormatDesc
cudaCreateChannelDesc(x,y,z,w,f);



Texture Fetch

• First parameter is texture reference
– defines which part of texture memory is fetched
– must be bound through runtime functions to 

texture memory
– Attribute: 

• texture is addressed as 1D, 2D, or 3D
• the input and output data types of the texture fetch
• the input coordinates are interpreted
• what processing should be done

– Type of texels are the basic: integer, 
single/double precision floating point, … .



Steps for Using Texture Memory 
in Your CUDA Code

1. Declare the texture memory in CUDA.

2. Bind the texture memory to your 
texture reference in CUDA.

3. Read the texture memory from your 
texture reference in CUDA Kernel.

4. Unbind the texture memory from your 
texture reference in CUDA.



Step 1: Declare
texture <type, dim, readmode> texture_reference;
• texture_reference: the handle to be used
• type: type of texel data returned from an access to 

the texture: int, float, … .
• dim: 1 (default), 2, or 3
• readmode: controls conversion of texel returned by 

an access
– cudaReadModeElementType (default) no conversion
– cudeReadModeNormalizedFloat

• if type is integer, value returned is mapped to [-1.0,1.0] for 
signed, and [0.0, 1.0] for unsigned

• Example: 
texture <float, 2, cudaReadModeElementType> mytex;



Step 2: Bind

cudaBindtexture (size *t offset, 

& testure_reference , const void * devptr, 

size_t size) ;

• Binds size bytes of the memory area pointed to by 
devPtr to texture reference texture_reference. 

• offset parameter is an optional byte offset.

• devPtr:  Memory area on device

• size: Size of the memory area pointed to by devPtr



Step 3: Read

• The easiest is: tex1Dfetch()
Example:
texture <int,1,cudaReadModeElementType> texref;
__global__
void textureTest(int *out){

int tid =  blockIdx.x * blockDim.x + threadIdx.x;
float x;
int i;
for(i=0; i<30; i++)

x = tex1Dfetch(texref, i);
}



Step 4: Unbind

cudaUnbindTexture(texture_reference);



So

• Texture memory size is very small.

• We just scratched the surface of texture 
memory.

• Two usages of texture memory outside 
graphics applications:
– Using texture cache to reduce bandwidth and 

work around coalescing constraints.

– Make use of advanced fixed-function hardware 
put inside GPU for graphics applications



A Glimpse on Libraries
https://developer.nvidia.com/gpu-accelerated-libraries

cuBLAS

cuSPARSE

CUDA Math Library

https://developer.nvidia.com/cuDNN
https://developer.nvidia.com/cublas


CUDA Libraries

• CUDA provides a set of very useful 
libraries.

• This increases the programmer 
productivity.



Example: CUBLAS

• Cuda Based Linear Algebra Subroutines
– conjugate gradient, linear solvers, … 

• Single GPU or Multiple GPUs
• Support CUDA Stream
• Basic preparation

– Install CUDA Toolkit
– Include cublas_v2.h
– Link cublas.lib ( -lcublas)



CUDA Libraries: CUBLAS

• Some basic tips
– Every CUBLAS function needs a handle

– The CUBLAS function must be written 
between cublasCreate() and 
cublasDestory()

– Every CUBLAS function returns a 
cublasStatus_t to report the state of 
execution.

– Column-major storage



Example: CUFFT

• Cuda Based Fast Fourier Transform 
Library.

• The FFT is a divide-and-conquer algorithm

• Computes FFT on Nvidia CUDA

• 1D, 2D, and 3D

• The CUFFT library is freely available as 
part of the CUDA Toolkit

• #include<cufft.h>



Power Aware Programming



What Can A Software Application 
Do?

• Use less expensive operations
• Less stress on power-hungry parts
• Access and make use of internal GPU 

performance counters 
– PAPI: https://developer.nvidia.com/papi-cuda-component

– Nvidia Management Library (NVL)

• Interaction of three players:
– The application software
– The Compiler
– The OS



Power-Aware Applications

• Applications must be Designed and tested for 
power management

• Applications must handle sleep transitions 
seamlessly

• You can differentiate your application with 
power management features
– Handle power management events

– Scale behavior based on user’s power preference



NVIDIA NML

• Nvidia Management Library
https://developer.nvidia.com/nvidia-management-library-nvml

• C based interface for monitoring and 
managing various states within NVIDIA 
GPUs

• You call it from the host
• Compile with –lnvidia-ml
• You must have installed Nvidia CUDA 

toolkit and Nvidia development drivers



NVIDIA NML

#include <stdio.h>

#include <nvml.h>

int main()
{
nvmlReturn_t result; 
unsigned  int device_count , i; 
char version[80];
result =  nvmlInit ();
result =  nvmlSystemGetDriverVersion (version,80);
result = nvmlDeviceGetCount(&device_count );
}



What Can NVML Do?

• Get you the temperature of the device 
in Celsius.
– nvmlDeviceGetTemperature()

– nvmlDeviceGetPowerUsage()

• Reduce the clock frequency (throttling)
– nvmlDeviceGetApplicationsClock()

– nvmlDeviceGetAPIRestriction()

– nvmlDeviceSetApplicationsClock()



Power Breakdown:  GeForce 285 GTX



Computational Thinking 101



Computational Thinking 101

Computational Thinking is arguably the most important aspect 
of parallel  Application development!
J. Wing Communications of the ACM, 49(3), 2006

What is it?
Decomposing a domain problem into well-defined, coordinated work 
units that can Each be realized with different numerical methods 
and well-known algorithms.



Why Do We Need Parallel 
Computing in the First place?

To solve a given problem in less time

To solve bigger problems

To achieve better solutions for a 
given problem and a given amount of time

Increased 
Speed!



Applications that are good 
candidates for parallel computing:

• Involve large problem sizes

• Involve high modeling complexity

Formulating the problem is crucial!!

The problem must be formulated in a such a way that it can 
be decomposed into subproblems that can be executed 

at the same time.



The Process of 
Parallel Programming

• Problem decomposition

• Algorithm selection

• Implementation in a language

• Performance tuning

This is what we have
been doing till now!



Problem Decomposition

Identify the work to be performed 
by each unit of parallel execution 
thread in CUDA



Problem Decomposition: 
Thread Arrangement

Example: Electrostatic Map Problem 

Thread 1 Thread 2

in

Thread 1 Thread 2

…

in

out

Atom-centric: each thread responsible
for calculating the effect of one atom on
all grid points  Scatter

Grid-centric: each thread calculates the effect of all atoms on a grid point
 Gather



Which is better?

• Gather is desirable
– Threads can accumulate their results in 

their private registers.

– Multiple threads share input atom values.



Problem Decomposition

• Picking the best thread arrangement 
requires the understanding of the 
underlying hardware.

• A real application consists of several 
modules that work together
– Amount of work per module can vary 

dramatically 
– You need to decide if a module is worth 

implementing in CUDA

• Amdahl’s law



Algorithm Selection

• An algorithm must exhibit three essential 
properties:
– definiteness = no ambiguity
– effective computability = each step can be carried 

by a computer
– finiteness = guaranteed to terminate

• When comparing several algorithms, take the 
following factors into account:
– Steps of computation
– Degree of parallel execution
– Numerical stability
– Memory bandwidth



Skills needed to go
from: Parallel Programmer
to: Computational Thinker

• Computer Architecture

• Programming models and compilers

• Algorithm techniques: (e.g. tiling)

• Domain knowledge



So

• Computational thinking is an art but a 
very crucial one.

• Jumping from problem definition to 
coding right away is the worst thing you 
can do!



Putting It All Together



What will we do?

We will pick a problem, analyze it, and see

how it can be written and optimized for 

GPU.

• Minimize memory access
• Minimize thread divergence
• Fully parallelized



N-Body Problem

An N-body simulation numerically approximates 
the evolution of a system of bodies in which each 

body continuously interacts with every other 
body.



Frames from an Interactive 3D Rendering of a 16,384-Body System



N-Body Problem

• Manifests itself in many domains: physics, 
astronomy, electromagnetics, molecules, 
etc.

• N points
• The answer at each point depends on data 

at all the other points
• O(n2)
• To reduce complexity: compress data of 

groups of nearby points
– A well-known algorithm to do this: Barnes Hut



Challenges of CUDA 
Implementation of Barnes Hut

• Repeatedly builds 
and traverse an 
irregular tree-based 
data structure.

• Performs a lot of 
pointer-chasing 
memory operations.

• Typically expressed 
recursively.

• Results in thread 
divergence

• Many slow 
uncoalesced
accesses 

• Must use iterations



Barnes Hut n-Body Algorithm

Divided into 3 steps

1. Building the tree – O( n * log n )

2. Computing cell centers of mass – O (n)

3. Computing Forces – O( n * log n )



Barnes Hut n-Body Algorithm

Executed on GPU



Barnes Hut n-Body Algorithm



Barnes Hut n-Body Algorithm

cells: Internal tree nodes
Bodies: leaves



Barnes Hut n-Body Algorithm

Calculate for each cell:
• Center of gravity
• Cumulative mass



Barnes Hut n-Body Algorithm

Kernel 4 is not needed for correctness but for optimization.
• It is done by in-order traversal of the tree.
• Typically places spatially close bodies close together.



First Step: Data Structure

• Dynamic data structures like trees are 
usually built using heap objects.

• Is it the best way to go?
• Drawbacks:

– Access to heap objects is slow
– Very hard to coalesce objects with multiple 

fields

How do we deal with this?



First Step: Data Structure

• Use an array-based data structure

• To be able to coalesce:
– use several aligned scalar arrays, one per field

• Array indices instead of pointers makes a 
faster code



First Step: Data Structure

• Allocate bodies at the beginning and the 
cells at the end of the arrays

• Use an index of -1 as a “null pointer.” 
• Advantages.

– A simple comparison of the array index with 
the number of bodies determines whether the 
index points to a cell or a body. 

– In some code sections, we need to find out 
whether an index refers to a body or to null. 
Because -1 is also smaller than the number of 
bodies, a single integer comparison suffices to 
test both conditions.



First Step: Data Structure

b: body c: cell t: array length



Threads, Blocks, and Kernels

• The thread count per block is maximized and rounded down to 
the nearest multiple of the warp size for each kernel.

• All kernels use at least as many blocks as there are streaming 
multiprocessors in the GPU, which is automatically detected.

• Because all parameters passed to the kernels, such as the 
starting addresses of the various arrays, stay the same 
throughout the time step loop, we copy them once into the GPU’s 
constant memory. 
– This is much faster than passing them with every kernel invocation.

• Data transferred from CPU to GPU only at the beginning of the 
program and at the end.

• code operates on octrees in which nodes can have up to eight 
children. 
– It contains many loops.
– Loop unrolling is very handy here.



Kernel 1

• computes a bounding box around all bodies
– The root of the octree
– has to find the minimum and maximum coordinates 

in the three spatial dimensions
• Implementation:

– break up the data into equal sized chunks and 
assigns one chunk to each block

– Each block then performs a reduction operation
– The last block combine the results to generate the 

root node
– reduction is performed in shared memory in a way 

that avoids bank conflicts and minimizes thread 
divergence



Kernel 2

• Implements an iterative tree-building algorithm 
that uses lightweight locks

• Bodies are assigned to the blocks and threads 
within a block in round-robin fashion.

• Each thread inserts its bodies one after the 
other by:
– traversing the tree from the root to the desired 

last-level cell
– attempting to lock the appropriate child pointer 

(an array index) by writing an otherwise unused 
value to it using an atomic operation

– If the lock succeeds, the thread inserts the new 
body and release the lock



Kernel 2

• A handy group of functions to use are
atomicxxx (must use -arch sm_11 with 
nvcc)
– Definition: An atomic function performs a 

read-modify-write atomic operation on one 
32-bit or 64-bit word residing in global or 
shared memory.



Kernel 2

• If a body is already stored at this location, 
the thread:
– creates a new cell by atomically requesting the 

next unused array index
– inserts the original and the new body into this 

new cell 
– executes a memory fence (__threadfence) to 

ensure the new subtree is visible to the rest of 
the cores

– attaches the new cell to the tree 
– releases the lock.



Kernel 2



Kernel 3

• traverses the unbalanced octree from 
the bottom up to compute the center of 
gravity and the sum of the masses of 
each cell’s children



Kernel 3

• Cells are assigned to blocks and threads 
in a round-robin fashion.
– Ensure load-balance

– Start from leaves so avoid deadlocks

– Allow some coalescing 



Kernel 5

• Requires the vast majority of the 
runtime

• For each body, the corresponding 
thread traverses some prefix of the 
octree to compute the force acting upon 
this body.



Kernel 5

• Optimization: whenever a warp traverses 
part of the tree that some of the threads 
do not need, those threads are disabled 
due to thread divergence.
– Make the union of the prefixes in a warp as 

small as possible
• group spatially nearby bodies together  kernel 4!

• Little computation to hide memory access
– Optimization: Allow only one thread in a warp 

to read the pertinent data and cache them in 
shared memory.



Summary of Optimizations



Summary of Optimizations



Summary of Optimizations



Results

CPU: 2.53GHz Xeon E5540 CPU
GPU: 1.3 GHz Quadro FX 5800



Conclusions

• We did not cover all APIs of CUDA, but the 
main ones. 

• Keep an eye on NVIDIA documentation, as more 
API are introduced and some are deprecated. 

• To get the best performance:
1. Pick the best (i.e. GPU friendly) algorithms
2. Write a working problem 
3. Increase utilization
4. Profile
5. Optimize
6. Goto step 4


