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Abstract. A perfect hash function (PHF) is an injective function thatps keys
from a setS to unique values. Since no collisions occur, each key carebe r
trieved from a hash table with a single probe. A minimal petrfeash function
(MPHF) is a PHF with the smallest possible range, that is, ltlash table size
is exactly the number of keys 1 Differently from other hashing schemes,
MPHFs completely avoid the problem of wasted space and daste to deal
with collisions. The study of perfect hash functions staiehe early 80s, when
it was proved that the theoretic information lower bound &sctibe a minimal
perfect hash function was approximatély4 bits per key. Although the proof
indicates that it would be possible to build an algorithm abfe of generating
optimal functions, no one was able to obtain a practical aitjon that could be
used in real applications. Thus, there was a gap betweenryhetd practice.
The main result of the thesis filled this gap, lowering thecgpeomplexity to
represent MPHFs that are useful in practice frénin logn) to O(n) bits. This
allows the use of perfect hashing in applications to whiakids not considered
a good option. This explicit construction of PHFs is somegghthat the data
structures and algorithms community has been looking facesthe 1980s.

1. Introduction

The need to access items based on the value of a key is uhigut&Computer Science.
Some types of databases are updated only rarely, typicgliyelbiodic batch updates.
This happens for most data warehousing applications (s&tz g8 2005] for more exam-
ples and discussion). In applications where the key setesl figr a long period of time
the construction of a minimal perfect hash function can beedas part of the prepro-
cessing phase. For example, On-Line Analytical Processpmlications use extensive
preprocessing of data to allow very fast evaluation of ¢erttgpes of queries. More for-
mally, given astatickey setS C U of sizen from a key universé/ of sizeu, where each
key is associated with satellite data, the question we &eedsted in is: what are the data
structures that provide the best tradeoff between spageusa lookup time?

Perfect hashings a space-efficient way of creating compact representéioa
static setS of n keys. For applications with successful searéhibe representation of a
key x € S is simply the valué:(x), whereh is a perfect hash function (PHF) for the set
S of values considered. The word “perfect” refers to the faet the function will map

1A successful seardimppens when the queried key is found in the hash table amdsarccessful search
happens otherwise.
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Figure 1. (a) Perfect hash function (b) Minimal perfect hash function.

the elements of to unique values (is identity preservindgjinimal perfect hash function
(MPHF) produces values that are integers in the rdfge — 1], which is the smallest
possible range. Figure 1(a) illustrates a PHF and Figurgilliibtrates an MPHF.

The study of perfect hash functions started in the early @@®n it was proved
that the theoretic information lower bound to describe aimah perfect hash function
was approximately .44 bits per key [Mehlhorn 1984]. Although the proof indicatkatt
it would be possible to build an algorithm capable of genegabptimal functions, no
one was able to obtain a practical algorithm that could bd usesal applications. Thus,
there was a gap between theory and practice. The main redsthe ahesis filled this
gap, lowering the space complexity to represent minimdegehash functions that are
useful in practice fron®(nlogn) to O(n) bits. This allows the use of perfect hashing in
applications to which it was not considered a good options Explicit construction of
PHFs is something that the data structures and algorithmsncmity has been looking
for since the 1980s, as said by a reviewer of a prior submmisSitaking into account the
fact that people had been looking for such constructionghalitime since the 1980s, this
is a big achievement and might make the central result of #@pepa candidate for.

The remainder of this paper is organized as follows. Se&idiscusses the main
contributions. Section 3 discusses the impact of the res@éection 4 presents the con-
clusions. Section 5 discusses some ongoing work and fulrgetions.

2. Key Contributions

The attractiveness of using PHFs and MPHFs depends on tHewiiod is-
sues [Hagerup and Tholey 2001]: (i) the amount of CPU timeiired for generating
the functions; (ii) the space requirements for generatieganctions; (iii) the amount of
CPU time required by the functions for each retrieval; amjitfie space requirements of
the description of the resulting functions to be used aienedtf time.

No previously known algorithm performs well for all thesgue@ements. Usu-
ally, the space requirement for generating the functiors/eslooked. That is why the
algorithms in the literature cannot scale for key sets ormthder of billions of keys. Also,
as mentioned before, there is a gap between theory andqaactiperfect hashing algo-
rithms [Botelho 2008]. So, the main contributions of thesikare:

1. We present a simple, practical and highly scalable pehi@ehing algorithm that
takes into account the four aforementioned requirementge]Bo et al. 2007,
Botelho and Ziviani 2007, Botelho et al. 2009b]. When theuinkey set fits in



the internal memory available, it becomes an internal reandccess memory al-
gorithm, referred to aRAM algorithmfrom now on; otherwise, it becomes an
external memory algorithm, referred to @M algorithmfrom now on.

2. We provide a scalable parallel implementation of the E§pathm, referred to as
parallel external memoryPEM) algorithm from now on [Botelho et al. 2008a].

3. We present techniques that allow the generation of PHEIVHPHFSs based on
random graphs containing cycles [Botelho et al. 2005].

4. We show that the PHFs and MPHFs we have designed can nowebefars
applications in which they were not considered a good opiiothe past. In
[Botelho et al. 2008b, Botelho et al. 2009a] we show that MPpifevide the best
tradeoff between space usage and lookup time when compatigér hashing
schemes for indexing internal memory when static key setgaolved.

5. We have created the C Minimal Perfect Hashing Library §Buai et al. 2006],
referred to a&€MPH Libraryfrom now on, that is a free software library available
under the GNU Lesser General Public License (LGPL). Thafijwas conceived
for two reasons. First, we would like to make available ogoathms to test their
applicability in practice. Second, we realized that theesva lack of similar
libraries in the open source community.

We now describe the key contributions in the order they appethe original
thesis document [Botelho 2008]. For the sake of space, wetaravide extended details
about each contribution. Please check the thesis documahttails about the algorithms
and implementations related to each contribution.

2.1. Random Access Memory and External Memory Algorithms

The RAM algorithm [Botelho et al. 2007, Botelho et al. 200%jrks on acyclic ran-
dom graphs given by function values of uniform hash fundion the keys of5 (see
[Botelho 2008] for the definition of uniform hashing). Theeaof basing perfect hash-
ing on acyclic random graphs is not new, see e.g. [Majewsi. €996], but we pro-
ceed differently to achieve a space usag@¢f) bits per key rather tha®(logn) bits
per key. We use hash functions and acyclic hypergraphs with hyperedde$ =
{ho(x),...,h,_1(x)}, for x a key, but add two tricks: (i) to key assign an element
hi(x) of e(x) such that the assignment— h;,(z) is one-to-one o (ii) use a linear
equation to calculate the indekz) € [0, — 1] from z. This makes it possible to ob-
tain a space usage ofr)[log(r + 1)] bits per key, for certain numbet$2), ¢(3) . . .; the
value that minimizes the cost per keyris= 3. The connection to acyclic random graphs
allows us to perform a tight analysis and to optimize the spsage constant by using
appropriate succinct data structures in a theoreticalljpdavay.

The EM algorithm [Botelho and Ziviani 2007, Botelho et al020] is a result of
a careful engineering process that uses a number of teasioum the literature to allow
the generation of PHFs or MPHFs for sets on the order of bsliof keys. The EM
algorithm is the first step aiming to bridge the gap betweeomhand practice on perfect
hashing. Therefore, it is the first algorithm that can be us@dactice, has time and space
usage carefully analyzed without unrealistic assumptiand scales for billions of keys.
We have designed two versions of the EM algorithm. The firstuses the hash functions
described in [Botelho 2008], which guarantee that the EM#élgm can be made to work
for every key set. The second one uses faster and more copgaatio random hash
functions proposed in [Jenkins 1997], referred to as hearf&M algorithm, or simply



HEM algorithmfrom now on, because it is not guaranteed that it can be madertofor
every key set. However, limited randomness often sufficggantice [Alon et al. 1999],
and the HEM algorithm has worked for all key sets we have agptito.

The RAM and EM algorithms generate in linear time PHFs and M&Hhat are
evaluated inO(1) time. The space requirements to describe the resultingiingcde-
pend on the relation between andn. Form = n, the space usage is approximately
2.62n for the RAM algorithm and approximateB.3n bits for the EM algorithm. For
m = 1.23n, the space usage is approximately5n bits for the RAM algorithm and ap-
proximately2.7n bits for the EM algorithm. In all cases, this is within a smadhstant
factor from the information theoretical minimum of appnately1.44n bits for MPHFs
and0.89n bits for PHFs, something that has not been achieved by preatgorithms,
except asymptotically for very large

The main practical perfect hashing algorithms we found eliterature to com-
pare the RAM, EM and HEM algorithms with are: Botelho, Koheyawa and Zi-
viani [Botelho et al. 2005] (referred to as BKZ), Fox, Cheml ateath [Fox et al. 1992]
(referred to as FCH), Majewski, Wormald, Havas and Czeché¢Mski et al. 1996] (re-
ferred to as MWHC), and Pagh [Pagh 1999] (referred to as PAG&t)the MWHC algo-
rithm we used the version based on random hypergraphs-wit8. We did not consider
the one that uses random graphs with: 2 because it is shown in [Botelho et al. 2005]
that the BKZ algorithm outperforms it.

Table 1 shows that the RAM (for= 3), EM and HEM algorithms are the fastest
ones to generate the functions and the resulting functiomshe most compact. The
performance of both EM and HEM algorithms is quite surpgsimce they use external
memory at generation time and the other algorithms do notweder, as the key set
is stored in external memory, all the other algorithms stewthole key set everytime
a failure occurs, whereas both EM and HEM algorithms simphnsthe whole key set
once and maps it to a set of fixed length fingerprints. Alsowthele key set is broken
into buckets with at most 256 keys and the memory is accessetess random fashion,
implying in fewer cache misses.

Table 1. Comparison of the algorithms for constructing MPHFs considering gen-
eration time and storage space, and using n = 3,541,615 for the two collections.

Algorithms Generation Time (sec) Storage Space
4-byte Integers URLs Bits/Key | Size (MB)

RAM | m=2 11.39+1.33 16.73 +1.89 3.60 1.52

r=3 5.46 £ 0.01 6.74 £0.01 2.62 1.11

EM 5.86 £0.17 7.68 £0.22 3.31 1.40

Heuristic EM 5.56 £ 0.16 6.27 £0.11 3.17 1.34

BKZ 9.22 +0.63 11.33 £0.70 21.76 9.19

FCH 2,052.7 £ 530.96 | 2,400.1 £ 711.60 4.22 1.78

MWHC 5.98 £ 0.01 7.18 £0.01 26.76 11.30

PAGH 39.18 4+ 2.36 42.84 + 2.42 44.16 18.65

Figure 2 illustrates that the both versions of the EM aldponitis able to generate
an MPHF for a key set of 1.024 billion keys in less than 46 nesutising a commodity
PC. There is no algorithm in the perfect hashing literatbes gjets even close.

2.2. Parallel External Memory Algorithm

The Parallel External Memory (PEM) algorithm [Botelho et2008a] allows to dis-
tribute the construction, description and evaluation ef tesulting functions, which is
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Figure 2. Number of keys in S versus generation time for the EM algorithm and
the heuristic HEM algorithm. The solid line corresponds to a linear regression
model for the generation time.

of fundamental importance when the key set size increasesderably. For instance,
using a 14-computer cluster the PEM algorithm generates BrRIfVifor 1.024 billion
URLs in approximately 4 minutes, achieving an almost lirga@edup. Also, foi4.336
billion 16-byte random integers evenly distributed amadmg 14 participating machines
the PEM algorithm outputs an MPHF in approximat&lyminutes, resulting in a perfor-
mance degradation @)%. To the best of our knowledge there is no previous result in
the perfect hashing literature that can be implemented iarallel way to obtain better
scalability and performance than the results presentedd? EM algorithm.

2.3. MPHFsand Random Graphswith Cycles

The reason to use random graphs with cycles comes from théh&tcthe functions are
generated faster and are more compact than the ones genleaatxl on acyclic random
graphs. This is because both the generation time and the gfsage of the resulting
functions depend on the number of vertices in the randomhgrapd the acyclic ones are
more sparse. That is, the ratio between the number of verticd number of edges must
be larger than two.

Our result presented in [Botelho et al. 2005] improved thecsprequirement of
one instance of the algorithms proposed in [Majewski et@96]. Both algorithms are
linear onn, but our algorithm run$9% faster than the one in [Majewski et al. 1996],
and the resulting MPHFs are stored using half of the space. r@sulting MPHFs still
needO(nlogn) bits to be stored. As in [Majewski et al. 1996], the algoritassumes
uniform hashing and needs(n) computer words of the Word RAM model to construct
the functions. Recently, using ideas similar to the onesegreed in [Botelho et al. 2005],
we have optimized the version of the RAM algorithm that woodksrandom bipartite
graphs to output the resulting functiof® faster when cycles are allowed. These results
are presented in [Botelho 2008, Chapter 6] and are beingpzdgor publication.



2.4. Indexing Internal Memory with MPHFs

We have shown that MPHFs provide the best tradeoff betweewespsage and
lookup time when compared to other hashing schemes for ingestatic key sets
in internal memory [Botelho et al. 2008b]. It was not the casehe past because
the space overhead to store MPHFs wad8ogn) bits per key for practical algo-
rithms [Majewski et al. 1996]. However, the MPHFs generangth the RAM algo-
rithm [Botelho et al. 2007, Botelho et al. 2009b] requirer@xmmately2.6 bits per key of
space to describe the function and can be evaluatédintime, and completely changed
that scenario. In [Botelho et al. 2009a] we extended our @tiady in two aspects. First,
we have designed an optimization of the MPHFs that conditienaproves their lookup
time performance. Second, we have surveyed the main hastinmggmnes available in the
literature and added four other methods to our comparattixgy's

We have shown that other hashing schemes cannot outperfarmmah perfect
hashing considering lookup time even when the hash tablepaecy is lower thag0%.
An MPHF requiring just 2.6 bits per key of storage space is ébbkstore sets in the order
of 10 million keys ina 4 MB CPU cache, which is enough for a¢argnge of applications.
Besides, the space overhead of minimal perfect hashingligna factor ofO(log n) bits
lower than other hashing schemes.

2.5. CMPH Library

The CMPH Library [Botelho et al. 2006] contains a professiamplementation of our
main results and is the state-of-the-art software for péti@shing. We have received
very good feedbacks about the practicality of the librargr istance, it has received
more than3, 300 downloads (July 2009) and is incorporated by two Linux distiions:
Debian and Ubuntu This have contributed to make the restltBi® thesis becoming
widely used in a short period of time, which usually takes monmore time.

3. Impact of the Results

Three published papers have 21 citations (excluding s&fi@ns) and one of them has
more than 145ownloadsin the ACM Portal in the last 12 months. Two papers that
cite our results mention that we have the first really pratgperfect hashing result in
20 years of research [Edelkamp and Sulewski 2008]. As mesdidefore, the CMPH
library has more thaf, 300 downloads up to July 2009 and is incorporated by two Linux
distributions: Debian and Ubuntu, and has been used forcapipins that were inviable in
the past. For instance, the results are being used into tuipis of two big companies
hosted in California, United States: (i) Symantec Incogbon, and (ii) Data Domain
Incorporation. Due to the impact of the results in the presiwd Data Domain Inc.
(company with a net revenue exceeding 270 million dollarg(68 and an expected
growth of 100% in 2009), Fabiano C. Botelho was offered a position and will join the
team of the company from Augu2t09 on. Besides, some of the knowledge acquired in
the doctorate process was used in a book [Ziviani and Bo@0i@é] that has sold more
than1, 500 copies.

4. Conclusions

In the thesis here summarized we have designed a time effibighly scalable and near-
optimal space perfect hashing algorithm. In a 64-bit aeciitre our algorithm is able to



deal with key sets of size up to = 1.8 x 10?'. The resulting functions are evaluated
in O(1) time. The space necessary to describe the functions takasstaat number of
bits per key, and it is within a factor of two from the inforrnmat theoretical minimum of
approximatelyl .44n bits for MPHFs and.89n bits for PHFs, something that has not been
achieved by previous algorithms, except asymptoticaliywgry largen. The algorithm

is theoretically well understood and is the first one withottletical properties that scale
for billions of keys and can be used in practice. The algorithsuitable for a distributed
and parallel implementation, as the one presented in [Botet al. 2008a], which is able
to generate an MPHF for a set bf.336 billion 16-byte integer keys in 50 minutes using
14 commodity PCs, achieving an almost linear speedup. We &hagwn that MPHFs
provide the best tradeoff between space usage and lookepattren compared to other
hashing for indexing internal memory when static key set¢Srarolved.

5. Ongoing and Future Work

We strongly believe that our results on perfect hashing hadtivent of solid state disks,
which are built based on flash memory technology, have a gerfatch to improve the
performance of computer systems in several contexts. Fampbe, this has been suc-
cessfully done in [Edelkamp and Sulewski 2008]. So, we argiwg on very promis-
ing applications in the Information Retrieval field. Besdeve are working on three
more papers to be submitted in 2009. The first paper is a joark with Professor
Nicholas C. Wormald from the Department of Combinatoricd @ptimization at Uni-
versity of Waterloo, the second one is a journal paper thegnebs the results presented
in [Botelho et al. 2008a], and the third one is a journal pdpat extends the results pre-
sented in [Botelho et al. 2005].
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