
Fabiano Cupertino Botelho

Supervisor - Nivio Ziviani

Near-Optimal Space

Perfect Hashing Algorithms

PhD. dissertation presented to the Grad-

uate Program in Computer Science of the

Federal University of Minas Gerais as a par-

tial requirement to obtain the PhD. degree

in Computer Science.

Belo Horizonte

September 29, 2008

To my dear wife Janáına.

To my dear parents Maria Lúcia and José Vı́tor.

To my dear sisters Gleiciane and Cristiane.

Acknowledgements

To God for having granted me life and wisdom to realize a dream of childhood and for

the great help in difficult moments.

To my dear wife Janáına Marcon Machado Botelho for the love, understanding by several

times when I could not give her the attention she deserves, companionship and en-

couragement during moments in which I desired to give up everything. Jana thank

you for sharing your life with me and the victories won during the entire doctorate.

With the grace of God in our lives we will continue to be very happy.

To my dear parents Maria Lúcia de Lima Botelho and José Vitor Botelho for sacrifices

made in the past that have given support for this achievement.

To my dear sisters Cristiane Cupertino Botelho and Gleiciane Cupertino Botelho for the

love of the best two sisters in the world.

To my dear aunt Márcia Novaes Alves and my dear uncle Sudário Alves for always welcome

me with affection, giving me much support throughout my doctorate.

To Prof. Nivio Ziviani for the excellent work of supervision and for being an example

of professionalism and dedication to work. His extensive experience in academic

research, and particularly in the areas of information retrieval and algorithms have

been of extreme importance to realize this work. In addition, his excellent support,

attention and encouragement were of great importance not only for completing the

doctorate, but also for my academic and professional life.

To Prof. Rasmus Pagh with whom I’ve learned a lot about techniques for designing and

analyzing hashing algorithms, being crucial his participation in this thesis.

To Prof. Yoshiharu Kohayakawa for the attention dedicated to the discussions that con-

tributed to improve the quality of this work. Thanks also to receive me at the

Institute of Mathematics and Statistics at the University of São Paulo and for all the

support given to my work during the time I spent in São Paulo.

To Prof. Edleno Silva de Moura for trusting on me and for always encouraging me.

Thanks also to receive me at the Department of Computer Science at the Federal

University of Amazonas during the time I spent in Manaus.

To the other Professors that evaluated this thesis, namely, Gaston Gonnet, Antônio Al-

fredo Loureiro, Wagner Meira Jr. and Jayme Luiz Szwarcfiter for having accepted

to participate of the PhD. defense and for the relevant criticisms and suggestions.

To Djamal Belazzougui for the intelligent suggestions and contributions made to this

thesis and to the CMPH library.

To Davi Reis for having conceived the idea of the CMPH library, which was fundamental

to disseminate the results obtained in this thesis.

To my colleague and friend Marco Antônio Pinheiro de Cristo for the fun moments we

spent together during our English classes and for always encoraging me.

To my colleague and friend Thierson Couto for his friendship, and to be always ready to

cooperate.

To my colleague and friend David Menotti for the discussions, suggestions and criticisms

that contributed much in the beginning of this work.

To my colleague and friend David Fernandes for having received me in your home during

the time I spent in Manaus and for his endless friendship.

To my colleagues and friends of our great and unforgettable soccer team Curucu and their

wives for the friendship conquered during the period we spent together. Thanks Pedro

Neto, Mauŕıcio Figueiredo, Eduardo Freire Nakamura, Ruiter Caldas, André Lins,

José Pinheiro, Guillermo Camara Chavez, Martin Gomez Ravetti, David Patricio

Viscarra del Pozo and David Menotti for the amazing and fun moments that served

to relieve the stress of this difficult period of doctorate.

To colleagues and friends from that period of our undergraduate course that, through

the mailing list intrigas99, always supported me being close or distant. I thank also

for all the good laughs that I gave when I was reading some posts of the list, which

certainly helped a lot to ease the tension in difficult times.

To my colleagues and friends of the Laboratory for Treating Information (LATIN) Ańısio

Mendes Lacerda, Álvaro Pereira Jr., Charles Ornelas Almeida, Claudine Santos

Badue, Daniel Galinkin, Denilson Pereira, Guilherme Vale Menezes, Hendrickson

R. Langbehn, Humberto Mossri, Marco Antônio Pinheiro de Cristo, Marco Aurélio

Barreto Modesto, Pável Calado and Wladmir Cardoso Brandão for the criticism and

suggestions provided during the defense preparation and for the climate of friendship

we have established within LATIN.

To Professors and employees of the Department of Computer Science at the Federal

University of Minas Gerais that in various ways contributed to the completion of this

work.

To Professors and employees of the Department of Computer Engineering at the Federal

Center for Technological Education of Minas Gerais for having received me so well

and in a so respectful manner to integrate the department team.

To the scholarships granted by CAPES (Coordination of Improvement of Higher Edu-

cation) and CNPq (National Council for Scientific and Technological Development),

which served as subsidy for the time dedicated to this thesis.

Abstract

A perfect hash function (PHF) h : S → [0, m − 1] for a key set S ⊆ U of size n, where

m ≥ n and U is a key universe, is an injective function that maps the keys of S to unique

values. A minimal perfect hash function (MPHF) is a PHF with m = n, the smallest possi-

ble range. Minimal perfect hash functions are widely used for memory efficient storage and

fast retrieval of items from static sets, such as words in natural languages, reserved words

in programming languages or interactive systems, universal resource locations (URLs) in

web search engines, or item sets in data mining techniques.

In this thesis we present a simple, highly scalable and near-space optimal perfect hashing

algorithm. Evaluation of a PHF on a given element of S requires constant time, and the

dominating phase in the construction algorithm consists of sorting n fingerprints of O(log n)

bits in O(n) time. The space usage depends on the relation between m and n. For m = n

the space usage is in the range 2.62n to 3.3n bits, depending on the constants involved

in the construction and in the evaluation phases. For m = 1.23n the space usage is in

the range 1.95n to 2.7n bits. In all cases, this is within a small constant factor from the

information theoretical minimum of approximately 1.44n bits for MPHFs and 0.89n bits for

PHFs, something that has not been achieved by previous algorithms, except asymptotically

for very large n. This small space usage opens up the use of MPHFs to applications for

which they were not useful in the past.

We demonstrate the scalability of our algorithm by constructing an MPHF for a set of

1.024 billion URLs from the World Wide Web of average length 64 characters in approx-

imately 50 minutes, using a commodity PC. We also present a distributed and parallel

implementation of the algorithm, which generates an MPHF for the same URL set, using

a 14 computer cluster, in approximately 4 minutes, achieving an almost linear speedup.

Also, for 14.336 billion 16-byte random integers distributed among the 14 participating ma-

chines, the algorithm outputs an MPHF in approximately 50 minutes, with a performance

degradation of 20%.

Resumo

Uma função hash perfeita (FHP) h : U → [0, m−1] para um conjunto de chaves S ⊆ U

de tamanho n, onde m ≥ n e U é um universo de chaves, é uma função injetora que

mapeia as chaves de S para valores únicos. Uma função hash perfeita mı́nima (FHPM)

é uma FHP com m = n, o menor intervalo posśıvel. Funções hash perfeitas mı́nimas são

amplamente utilizadas para armazenamento eficiente e recuperação rápida de itens de con-

juntos estáticos, como palavras em linguagem natural, palavras reservadas em linguagens

de programação ou sistemas interativos, URLs (universal resource locations) em máquinas

de busca, ou conjuntos de itens em técnicas de mineração de dados.

Nesta tese nós apresentamos um algoritmo de hashing perfeito altamente escalável e

de espaço quase ótimo. A avaliação de uma FHP sobre um dado elemento de S requer

tempo constante, e a fase dominante no algoritmo de construção consiste da ordenação

de n fingerprints de O(log n) bits em tempo O(n). A utilização de espaço depende da

relação entre m e n. Para m = n a utilização de espaço está dentro do intervalo 2, 62n

à 3, 3n bits, dependendo das constantes envolvidas nas fases de construção e avaliação.

Para m = 1, 23n a utilização de espaço está dentro do intervalo 1, 95n à 2, 7n bits. Em

todos os casos, isto está distante por um pequeno fator constante do mı́nimo teórico de

aproximadamente 1, 44n bits para FHPMs e 0, 89n bits para FHPs, uma coisa que não

foi alcançada por algoritmos anteriores, exceto assintóticamente para valores de n muito

grandes. Esta pequena utilização de espaço permitiu o uso de FHPMs em aplicações para

as quais elas não eram úteis no passado.

Nós demonstramos a escalabilidade do nosso algoritmo ao construir uma FHPM para

um conjunto de 1, 024 bilhões de URLs da World Wide Web de tamanho médio igual a

64 caracteres em aproximadamente 50 minutos, usando um PC comodite. Nós também

apresentamos uma implementação distribúıda e paralela do algoritmo, a qual gera uma

FHPM para o mesmo conjunto de URLs, usando um cluster de 14 computadores, em

aproximadamente 4 minutos, alcançando um speedup quase linear. Além disso, para 14, 336

bilhões de números inteiros de 16 bytes gerados aleatoriamente e distribúıdos entre as 14

máquinas participantes, o algoritmo gera uma FHPM em aproximadamente 50 minutos,

com uma degradação de desempenho de 20%.

Papers

Published

1. F.C. Botelho, Y. Kohayakawa, and N. Ziviani. A practical minimal perfect hashing

method. In Proceedings of the 4th International Workshop on Efficient and Experi-

mental Algorithms (WEA’05), pages 488–500. Springer LNCS vol. 3503, 2005.

2. F.C. Botelho, R. Pagh, and N. Ziviani. Simple and Space-Efficient Minimal Perfect

Hash Functions. In Proceedings of the 10th Workshop on Algorithms and Data

Structures (WADS’07), pages 139–150. Springer LNCS vol. 4619, 2007.

3. F.C. Botelho, and N. Ziviani. External Perfect Hashing for Very Large Key Sets.

In Proceedings of the 16th Conference on Information and Knowledge Management

(CIKM’07), pages 653–662, ACM Press, 2007.

4. F.C. Botelho, D. Galinkin, W. Meira Jr., and N. Ziviani. Distributed Perfect Hashing

for Very Large Key Sets. In Proceedings of the 3rd International ICST Conference

on Scalable Information Systems (InfoScale’08), Naples, Italy, June 2008.

5. F.C. Botelho, H.R. Langbehn, G.V. Menezes, and N. Ziviani. Indexing Internal

Memory with Minimal Perfect Hash Functions. In Proceedings of the 23rd Brazilian

Symposium on Database (SBBD’08), Campinas, Brazil, October 2008.

Accepted After The PhD. Defense

1. F.C. Botelho, and N. Ziviani. Near-optimal space perfect hashing algorithms. In

Proceedings of the 22nd SBC Theses and Dissertations Contest (CTD’09), Bento

Gonçalves, Brazil, July 2009.

2. D. Belazzougui, F.C. Botelho, and M. Dietzfelbinger. Hash, Displace, and Com-

press. In Proceedings of the 17th European Symposium on Algorithms (ESA’09),

Copenhagen, Denmark, September 2009.

Submitted After The PhD. Defense

1. F.C. Botelho, A. Lacerda, G.V. Menezes, and N. Ziviani. Minimal perfect hashing:

A competitive method for indexing internal memory. Submitted to a Special Issue

of Information Sciences Journal, 2009.

2. F.C. Botelho, R. Pagh, and N. Ziviani. A scalable and near-optimal space perfect

hashing algorithm. Submitted to ACM Transactions on Algorithms, 2009.

3. F.C. Botelho, N. Wormald, and N. Ziviani. Cores of Random r-Partite Hypergraphs.

Submitted to Information Processing Letters, 2009.

4. F.C. Botelho, R. Pagh, and N. Ziviani. Perfect Hashing in Practice. Submitted to a

Special Issue of Software Practice and Experience Journal, 2009.

5. F.C. Botelho, W.C. Brandão, and N. Ziviani. Minimal Perfect Hashing and Bloom

Filters Made Practical. Submitted to 24th Brazilian Symposium on Database

(SBBD’09), Fortaleza, Brazil, October 2009.

Contents

List of Figures v

List of Tables ix

1 Introduction 1

1.1 Motivation . 1

1.2 Definitions and Notation . 4

1.3 The Information Theoretical Lower Bound to Describe PHFs and MPHFs . 5

1.4 Uniform Hashing Versus Universal Hashing 6

1.4.1 Family of Uniform Hash Functions 6

1.4.2 Family of Universal Hash Functions 7

1.5 Random Graphs . 9

1.6 Related Work . 10

1.6.1 Theoretical Results . 10

1.6.2 Practical Results . 11

1.6.3 Heuristics . 13

1.7 Technical Overview of this Work . 14

1.8 Contributions . 16

1.9 Road Map . 20

2 The Internal Perfect Hashing Algorithm 23

2.1 The Family of Functions . 24

2.1.1 Mapping Step . 27

2.1.2 Assigning Step . 28

2.1.3 Ranking Step . 30

2.1.4 Evaluating the Resulting Functions 31

2.2 Analytical Results . 33

i

2.2.1 The Linear Time Complexity . 33

2.2.2 Space Requirements to Describe the Functions 36

2.2.3 The 2-graph Instance . 37

2.2.4 The 3-graph Instance . 39

2.2.5 The Use of Universal Hashing . 39

2.2.6 The Space Requirements to Generate the Functions 40

2.3 Experimental Results . 41

2.3.1 Performance of the RAM Algorithm 41

2.3.2 Comparison with the Main Practical Results in the Literature . . . 43

2.4 Conclusions . 46

3 Using Split-and-Share to Simulate Uniform Hash Functions 49

3.1 Splitting . 50

3.2 Simulating Uniform Hash Functions . 52

3.2.1 The Shared Function . 52

3.2.2 Using the Shared Function . 53

3.2.3 Analysis of The Shared Function 53

3.2.4 Implementation Details . 54

3.3 Conclusions . 55

4 The External Cache-Aware Perfect Hashing Algorithm 57

4.1 Design of the EM Algorithm . 58

4.1.1 Partitioning Step . 60

4.1.2 Searching Step . 62

4.2 Analytical Results . 63

4.2.1 The Linear Time Complexity . 63

4.2.2 The Space Requirements to Describe the Functions 65

4.2.3 The Space Requirements to Generate the Functions 66

4.3 Experimental Results . 66

4.3.1 Performance of the EM Algorithm 67

4.3.2 Comparison with RAM and FCH Algorithms 70

4.4 Conclusions . 73

5 A Highly Scalable and Parallel Perfect Hashing Algorithm 75

5.1 Metrics Used to Evaluate The PEM Algorithm 76

ii

5.2 Parallel Algorithm . 77

5.2.1 Parallel Construction . 77

5.2.2 Centralized Evaluation of the Resulting Functions 81

5.2.3 Parallel Evaluation of the Resulting Functions 81

5.2.4 Implementation Decisions . 82

5.3 Experimental Results . 84

5.3.1 Key Size Impact . 84

5.3.2 Communication Overhead . 86

5.3.3 Load Balancing . 88

5.3.4 Parallel Evaluation . 89

5.4 Conclusions . 90

6 MPHFs and Random Graphs With Cycles 91

6.1 The BKZ Algorithm . 92

6.1.1 The CHM algorithm . 92

6.1.2 Design of The BKZ Algorithm . 94

6.1.3 Comparing the BKZ and CHM Algorithms 103

6.2 The RAM Algorithm: Dealing with Connected Components with a Single

Cycle for r = 2 . 106

6.2.1 Design of the Optimized Version of The RAM Algorithm 106

6.2.2 Comparing the two Versions of the RAM Algorithm 110

6.3 Conclusions . 112

7 Indexing Internal Memory With MPHFs 113

7.1 The Algorithms . 114

7.1.1 Linear Hashing . 115

7.1.2 Quadratic Hashing . 115

7.1.3 Double Hashing . 116

7.1.4 Cuckoo Hashing . 117

7.1.5 Sparse Hashing . 118

7.1.6 Minimal Perfect Hashing . 120

7.2 Experimental Results . 122

7.2.1 Key Sets . 123

7.2.2 Minimal Perfect Hashing Versus Linear Hashing, Quadratic Hashing

and Double Hashing . 125

iii

7.2.3 Minimal Perfect Hashing Versus Dense and Sparse Hashing 128

7.2.4 Minimal Perfect Hashing Versus Cuckoo Hashing 129

7.3 Conclusions . 130

8 Conclusions and Future Work 133

8.1 Conclusions . 133

8.2 Future Work . 135

Bibliography 139

iv

List of Figures

1.1 (a) Perfect hash function (b) Minimal perfect hash function. 2

1.2 The two steps of the algorithm. 15

2.1 (a) The mapping step generates an acyclic bipartite random 2-graph. (b)

The assigning step builds an array g so that each edge is uniquely assigned

to a vertex. (c) The ranking step builds the data structure used to compute

function rank : V → [0, n − 1] in O(1) time. 26

2.2 The RAM algorithm. 27

2.3 Mapping step. 28

2.4 Output of the test to check whether a hypergraph has cycles. 28

2.5 Assigning step. 29

2.6 Example of the assigning step. 30

2.7 Ranking step. 30

2.8 Example of the ranking step. 31

2.9 Generation of the lookup table Tr. 31

2.10 Pseudo code for the resulting PHFs. 32

2.11 Pseudo code for the resulting MPHFs. 32

2.12 Values of c(r) for r ∈ {2, 3, . . . , 10}. 35

2.13 Number of keys in S versus generation time for the RAM algorithm that

works on acyclic random graphs with r = 2. The solid line corresponds to

a linear regression model for the generation time (R2 = 66%). 42

2.14 Number of keys in S versus generation time for the RAM algorithm that

works on acyclic random hypergraphs with r = 3. The solid line corresponds

to a linear regression model for the generation time (R2 = 99%). 43

4.1 The EM algorithm. 60

4.2 Partitioning step. 61

v

4.3 Situation of the buckets at the end of the partitioning step: (a) Logical view

(b) Physical view. 61

4.4 Searching step. 62

4.5 Reading a bucket. 63

4.6 Number of keys in S versus generation time for the EM algorithm and the

heuristic EM algorithm. The solid and dashed lines correspond to a linear

regression model for the generation time (R2 = 99%). 68

5.1 The manager/worker scheme. 78

5.2 The partitioning step in the worker. 79

5.3 The searching step in the worker. 80

5.4 The actual partitioning step used in the experiments. 83

5.5 The actual searching step used in the experiments. 83

5.6 Speedup obtained with a confidence level of 95% for both the PEM-CE and

PEM-DE algorithms considering 1.024 billion keys (73,142,857 keys in each

machine). 86

5.7 Scale-up obtained with a confidence level of 95% for both the PEM-CE and

PEM-DE algorithms considering 1.024 billion keys (73,142,857 keys in each

machine). 88

6.1 Perfect assignment problem for a graph with six vertices and five edges. . . 94

6.2 Main steps of the algorithm for constructing a minimal perfect hash function. 95

6.3 Ordering step for a graph with 9 vertices and 8 edges. 99

6.4 Example of the assignment of values to critical vertices. 100

6.5 Example of the assignment of values to non-critical vertices. 101

6.6 (a) Assignment for a connected component with a single cycle with 4 vertices

and 4 edges. (b) Order in which a depth-first search algorithm will visit each

vertex starting from vertex 0. 107

6.7 (a) A non-assignable cycle with 6 vertices and 6 edges. (b) Order in which

a depth-first search algorithm will visit each vertex starting from vertex 0. 108

6.8 Number of keys in S versus generation time for the RAM algorithm that

works on random hypergraphs with a single cycle per connected component

for r = 2. The solid line corresponds to a linear regression model for the

generation time (R2 = 71%). 111

vi

7.1 Hash table used for linear hashing, quadratic hashing, double hashing, dense

hashing and cuckoo hashing. 114

7.2 Hash table used in the sparse hashing method. 119

7.3 Group 0 after an insertion. 120

7.4 Hash table used in the perfect hashing method. 121

7.5 (a) The mapping step generates an acyclic bipartite random 2-graph. (b)

The assigning step builds an array g so that each edge is uniquely assigned

to a vertex. (c) The ranking step builds the data structure used to compute

function rank : V → [0, n − 1] in O(1) time. 122

7.6 Probability distribution of query term lookups. 124

vii

viii

List of Tables

2.1 Comparison of the two versions of the RAM algorithm considering genera-

tion time and storage space, and using n = 1, 12, and 24 million keys for

the two collections. 44

2.2 Comparison of the algorithms for constructing MPHFs considering genera-

tion time and storage space, and using n = 3, 541, 615 for the two collections. 45

2.3 Comparison of the algorithms considering evaluation time and using the

collections IPs and URLs with n = 3, 541, 615. 45

2.4 Comparison of the algorithms considering evaluation time and using the

collections IPs and URLs with n = 15, 000, 000. 46

2.5 Comparison of the PHFs and MPHFs generated by the RAM algorithm,

considering generation time, evaluation time and storage space metrics using

n = 3, 541, 615 for the two collections. For packed schemes see Sections 2.2.3

and 2.2.4. 46

4.1 Space usage to respectively store the resulting PHFs and MPHFs of the EM

algorithm and the Heuristic EM algorithm. 69

4.2 Influence of the internal memory area size (µ) in the runtime of both versions

of the EM algorithm to construct PHFs or MPHFs for 1.024 billion URLs

(time in minutes). 70

4.3 Comparison of the algorithms for constructing MPHFs considering genera-

tion time and storage space, and using n = 3, 541, 615 for the two collections. 71

4.4 Comparison of the algorithms considering evaluation time and using the

collections IPs and URLs with n = 3, 541, 615. 72

4.5 Comparison of the PHFs and MPHFs generated by our algorithms, con-

sidering generation time, evaluation time and storage space metrics using

n = 3, 541, 615 for the two collections. For packed schemes see Sections 2.2.3

and 2.2.4. 72

ix

5.1 Collections used for the experiments. 84

5.2 Time in minutes of the sequential algorithm (EM) to construct an MPHF

for 1.024 billion keys. 85

5.3 Speedup obtained with a confidence level of 95% for both the PEM-CE and

PEM-DE algorithms considering 1.024 billion keys (73,142,857 keys in each

machine). 86

5.4 Scale-up obtained with a confidence level of 95% for the PEM-DE algorithm

considering 14.336 billion keys (1.024 billion keys in each machine). 87

5.5 Scale-up obtained with a confidence level of 95% for both the PEM-CE and

PEM-DE algorithms considering 1.024 billion keys (73,142,857 keys in each

machine). 87

5.6 Worst, best and expected percentage of keys sent by a worker to the net. . 88

5.7 Fastest worker time (tfw), slowest worker time (tsw), and difference between

tsw and tfw to show the load balancing among the workers for 1.024 billion

64-byte URLs distributed in p machines. The times are in minutes. 89

5.8 Evaluation time in minutes for both the sequential algorithm EM and the

parallel algorithm PEM-DE algorithm, considering 1 billion keys. 90

6.1 Determining the c value theoretically. 97

6.2 Probability P|Ecrit| that |E(Gcrit)| ≤ n/2 for different c values and different

number of keys for a collections of URLs. 97

6.3 The maximal value of Nt for different number of URLs. 103

6.4 Main characteristics of the algorithms. 104

6.5 Time measurements for the BKZ algorithm and the CHM algorithm to gen-

erate MPHFs. 105

6.6 Time measurements for the BKZ algorithm to generate MPHFs, tuned with

c = 1.00 and c = 0.93. 105

6.7 Comparison of the two versions of the RAM algorithm considering genera-

tion time and storage space, and using n = 1, 12, and 24 millions of keys

for the two collections. 112

7.1 Symbols and acronyms used throughout this section. 123

7.2 Characteristics of the key sets used for the experiments. 124

7.3 Load factor influence on the time to successfully look up 10, 20 and 250

million keys in the AllTheWeb, URLs-10 and URLs-37 key sets, respectively. 126

x

7.4 Load factor influence on the time to unsuccessfully look up 10, 20 and 250

million keys in the AllTheWeb, URLs-10 and URLs-37 key sets, respectively. 127

7.5 Comparison of MPH with LH, QH and DH, considering the space overhead

and the time to successfully look up 10, 20 and 250 million keys in the

AllTheWeb, URLs-10 and URLs-37 key sets, respectively. 128

7.6 Comparison of MPH with LH, QH and DH, considering the space overhead

and the time to unsuccessfully look up 10, 20 and 250 million keys in the

AllTheWeb, URLs-10 and URLs-37 key sets, respectively. 128

7.7 Comparison of MPH with DeH and SH, considering the space overhead and

the time to successfully look up 10 and 20 million keys in the AllTheWeb

and URLs-10 key sets, respectively. 129

7.8 Comparison of MPH with DeH and SH, considering the space overhead and

the time to unsuccessfully look up 10 and 20 million keys in the AllTheWeb

and URLs-10 key sets, respectively. 129

7.9 Comparison of MPH with CH, considering the space overhead and the time

to successfully look up 10, 20 and 250 million keys in the AllTheWeb, URLs-

10 and URLs-37 key sets, respectively. 130

7.10 Comparison of MPH with CH, considering the space overhead and the time

to unsuccessfully look up 10, 20 and 250 million keys in the AllTheWeb,

URLs-10 and URLs-37 key sets, respectively. 130

xi

xii

Chapter 1

Introduction

1.1 Motivation

The need to access items based on the value of a key is ubiquitous in areas including

artificial intelligence, data structures, database, data mining and information retrieval.

Some types of databases are updated only rarely, typically by periodic batch updates. This

is true, for example, for most data warehousing applications (see [71] for more examples

and discussion). In such scenarios it is possible to improve query performance by creating

very compact representations of keys by minimal perfect hash functions.

In applications where the key set is fixed for a long period of time the construction

of a minimal perfect hash function can be done as part of the preprocessing phase. For

example, On-Line Analytical Processing (OLAP) applications use extensive preprocessing

of data to allow very fast evaluation of certain types of queries. More formally, given a

static key set S ⊆ U of size n from a key universe U of size u, where each key is associated

with satellite data, the question we are interested in is: what are the data structures that

provide the best trade-off between space usage and lookup time?

An efficient way to represent a key set in terms of lookup time is using a table indexed

by a hash function. Considering S ⊆ U and given a key x ∈ S, a hash function h computes

an integer in [0, m − 1] for the storage or retrieval of x in a hash table. Hashing methods

for non-static key sets can be used to construct data structures storing S and supporting

membership queries of the type “x ∈ S?” in expected O(1) time. However, they involve a

certain amount of wasted space owing to unused locations in the table and wasted time to

resolve collisions when two or more keys are hashed to the same table location.

1

2 CHAPTER 1. INTRODUCTION

Perfect hashing is a space-efficient way of creating compact representation for a static

set S of n keys. For applications with successful searches, the representation of a key x ∈ S

is simply the value h(x), where h is a perfect hash function (PHF) for the set S of values

considered. The word “perfect” refers to the fact that the function will map the elements

of S to unique values (is identity preserving). Minimal perfect hash function (MPHF)

produces values that are integers in the range [0, n − 1], which is the smallest possible

range. Figure 1.1(a) illustrates a perfect hash function and Figure 1.1(b) illustrates a

minimal perfect hash function.

0 n−1...21

0 n−1...21

Hash Table

Key Set

0 n−121 ...

(b)

210 ... m−1

Key Set

Hash Table

(a)

Figure 1.1: (a) Perfect hash function (b) Minimal perfect hash function.

Since PHFs and MPHFs are collision free, each key can be retrieved from the table with

a single probe. MPHFs completely avoid the problem of wasted space and time. Better

still, it was observed in [56] that MPHFs also avoid cache misses that arise due to collision

resolution schemes like open addressing and chaining [51].

Minimal perfect hash functions are used for memory efficient storage and fast retrieval of

items from static sets, such as words in natural languages, reserved words in programming

languages or interactive systems, item sets in data mining techniques [21, 22], routing

tables and other network applications [66], sparse spatial data [54], graph compression [7]

and, to represent large web maps [27].

A PHF depends on the set S of distinct key values that occur. It is known that

maintaining a PHF dynamically under insertions into S is only possible using space that

is super-linear on n [28]. However, in this work we consider the case where S is fixed, and

construction of a PHF can be done as part of the preprocessing of data (e.g., in a data

warehouse).

To the best of our knowledge, previously perfect hashing methods have not been able to

generate functions for realistic data sizes that require a constant number of bits to store the

1.1. MOTIVATION 3

functions. All previous methods suffer from either an incomplete theoretical understanding

(so there is no guarantee that they work well on a given data set) or seems impractical due

to a very intricate and time-consuming evaluation procedure.

Until now, because of the limitations of current algorithms, the use of MPHFs is re-

stricted to scenarios where the key set being hashed is relatively small. However, in many

cases the demand to deal in an efficient way with very large key sets is growing. For in-

stance, search engines are nowadays indexing tens of billions of pages and algorithms like

PageRank [16], which uses the web graph to derive a measure of popularity for web pages,

would benefit from an MPHF to map long URLs to smaller integer numbers that are used

as identifiers to web pages, and correspond to the vertex set of the web graph.

Though there has been considerable work on how to construct good PHFs, there is

a gap between theory and practice among all previous methods on perfect hashing. On

one hand, there are good theoretical results without experimentally proven practicality

for large key sets. On the other hand, there are the algorithms that assume unrealistic

assumptions to theoretically analyze their run time and space usage.

In this thesis we present new algorithms for constructing PHFs and MPHFs that out-

perform the main practical algorithms available in the literature and are theoretically

well-understood. Therefore we give an important step in the way of bridging the gap

between theory and practice on perfect hashing. We also show that the new algorithms

have made it viable to use MPHFs for applications that was not possible in the past. The

algorithm we propose to construct MPHFs can easily scale to billions of entries.

In Section 1.2 we present some definitions and notation used throughout this work.

In Section 1.3 we present the information theoretical lower bound to describe PHFs and

MPHFs. In Section 1.4 we present two important concepts used in the analysis of hashing

schemes. In Section 1.5 we disscuss some facts on random graphs used to analyze the

algorithms designed in this work. In Section 1.6 we present the main results available in

the literature on perfect hashing and also discuss the aforementioned gap between theory

and practice on perfect hashing. In Section 1.7 we present our objectives and a technical

overview of this work. In Section 1.8 we present the main contributions of this work.

Finally, in Section 1.9 we present the road map of this thesis.

4 CHAPTER 1. INTRODUCTION

1.2 Definitions and Notation

The aim of this section is to establish a common vocabulary to be used throughout this

work.

Definition 1 A key is made up by symbols from a finite and ordered alphabet Σ of size

|Σ|.

Definition 2 Let Φ denote the maximum key length. Then L = Φ log |Σ| is the maximum

key length in bits1. Then we define a key universe U of size u = 2L.

Throughout this thesis we consider that L = O(1) and that log u fits in O(1) computer

words. Therefore, all algorithms we will consider are analyzed for the Word RAM model

of computation [41]. In this model an element of the universe U fits into one machine word,

and arithmetic operations and memory accesses have unit costs.

Definition 3 Let S be a subset of U containing n keys, where n ≪ u.

Definition 4 Let h : U → M be a hash function that maps the keys from U to a given

interval of integers M = [0, m − 1] = {0, 1, . . . , m − 1} (i.e., given a key x ∈ U , the hash

function h computes an integer in [0, m − 1]).

Definition 5 Given two keys x, y ∈ U , where x 6= y, and a hash function h : U → M , a

collision occurs when h(x) = h(y).

Definition 6 A perfect hash function phf : S → M is an injection on S ⊆ U(i.e., for all

pair s1, s2 ∈ S such that s1 6= s2, then phf (s1) 6= phf (s2), where m ≥ n). For being an

injection, phf maps each key in S to a unique integer in M . As no collision occurs, if phf

is used to index a hash table of size m with n records identified by the n keys in S, each

record can be retrieved in one probe.

Definition 7 A minimal perfect hash function mphf : S → M is a bijection on S ⊆ U

(i.e., each key in S is mapped to a unique integer in M and m = n).

Definition 8 A perfect hash function is order-preserving if for any pair of keys si and

sj ∈ S then phf (si) < phf (sj) if and only if i < j.

1Throughout this work we denote log2 x as log x.

1.3. THE INFORMATION THEORETICAL LOWER BOUND TO DESCRIBE PHFS AND MPHFS 5

1.3 The Information Theoretical Lower Bound to De-

scribe PHFs and MPHFs

One of the most important metrics related to PHFs and MPHFs is the amount of space

required to describe a function. The information theoretical lower bound to describe a

PHF was first studied in [57]. Fredman and Komlós [40] proved a lower bound for MPHFs.

A simpler proof of this was later given in [68]. The following two theorems present the

information theoretical lower bound to describe a PHF and an MPHF, respectively. Here

we use Stirling’s approximation and so we obtained a more precise result up to an additive

constant, because Stirling’s approximation is tight within a constant factor. For simplicity

of exposition, we consider in this thesis the case log u ≪ n, which allows us to ignore terms

in the space usage that depend on u.

Theorem 1 Every perfect hash function phf : S → M , where |S| = n and |M | = m,

requires at least (1 + (m/n − 1 + 1/2n) ln(1 − n/m)) n log e bits to be stored.

Proof. The probability of randomly mapping n elements into a range of size m without

collisions (i.e., probability of getting a PHF) is:

Prph(n, m) =
(m − 1)(m − 2) . . . (m − n + 1)

mn
=

m!

mn(m − n)!

By using Stirling’s approximation n! ≈ nne−n
√

2πn we obtain:

Prph(n, m) ≈ m(m−n) · (m − n)−(m−n) · e−n

√

m

m − n

Therefore, at least 1/ Prph(n, m) hash functions are required to obtain a PHF. Thus, at

least log(1/Prph(n, m)) = (1 + (m/n − 1 + 1/2n) ln(1 − n/m)) n log e bits are required to

encode that set of hash functions.

Theorem 2 Every minimal perfect hash function mphf : S → M , where |S| = n and

|M | = m = n, requires at least n log e − O(log n) bits to be stored.

Proof. The probability of finding an MPHF (where n = m) is:

Prmph(n, n) =
n!

nn
=

nn
√

2πn

nnen
= e−n

√
2πn

which also uses the aforementioned Stirling’s approximation. Therefore, the expected

number of bits needed to describe these rare minimal perfect hash functions is at least

log(1/ Prmph(n, n)) = n log e − O(log n).

6 CHAPTER 1. INTRODUCTION

1.4 Uniform Hashing Versus Universal Hashing

All perfect hashing algorithms need to use hash functions chosen uniformly at random

from a fixed family H of hash functions for constructing PHFs or MPHFs. There are two

families of hash functions used in the classical analysis of hashing schemes: (i) uniform hash

functions and (ii) universal hash functions. In this section we define these two families of

hash functions.

1.4.1 Family of Uniform Hash Functions

The classic analysis of hashing schemes often entails the assumption that the hash functions

used are uniformly chosen at random from a family of uniform hash functions, defined as

follows.

Definition 9 Let H be the family of all mu possible hash functions from U to [0, m−1]. A

uniform hash function is a function that has independent function values and is uniformly

chosen at random from H.

The problem with uniform hash functions is the space required to describe a single

function, which is Ω(u log m) bits. This space requirement usually far exceeds the available

storage and is often overlooked in the analysis of practical perfect hashing schemes available

in the literature.

Lemma 1 [20] Let H be a family of uniform hash functions and h : U → M be a hash

function taken from H with probability 1
|H|

. Let Ch(x, y) = 1 if x ∈ U and y ∈ U collide by

using a hash function h and 0 otherwise, where x 6= y. The probability of collision between

two different keys x, y ∈ U corresponds to the expected value of Ch(x, y) and is given by:

E[Ch(x, y)] ≥ 1

m
− 1

u

Proof. Let Ch(x, U) denote the total number of keys in U that collides with a given

key x ∈ U by using a hash function h. So, Ch(x, U) =
∑

y∈U,y 6=x Ch(x, y). Let Ch(U, U)

denote the total number of collisions for all x ∈ U by using a hash function h. So,

Ch(U, U) =
∑

x∈U Ch(x, U). Let H be a family or a collection of hash functions. Thus,

CH(U, U) =
∑

h∈H Ch(U, U) denotes the total number of collisions for all x ∈ U and for

all hash functions from H. Let us think of M = [0, m − 1] as a range of indexes of a hash

table with m buckets and the values in M are computed by a hash function h : U → M

1.4. UNIFORM HASHING VERSUS UNIVERSAL HASHING 7

taken with probability 1
|H|

from a family H of uniform hash functions. After mapping all

keys to the range M , if a bucket i ∈ M has three keys {k1, k2, k3}, then k1 collides with

each of {k2, k3}, k2 collides with each of {k1, k3}, and k3 collides with each of {k1, k2}, so

we have 6 collisions in bucket i. In the worst case, when all keys from U are mapped to the

same bucket i, this corresponds to the number of ordered pairs we can form from the key

universe U of size u considering a hash function h ∈ H, which is given by Ch(U, U) = u2−u.

Therefore, CH(U, U) = |H|(u2 − u). As we have m buckets, then the expected number of

collisions for all hash functions in H is:

E[CH(U, U)] = u2|H|
(

1

m
− 1

mu

)

Thus, by the pigeon hole principle2 there exists x, y ∈ U and h ∈ H such that

E[Ch(x, y)] =
1

m
− 1

mu
≥ 1

m
− 1

u

1.4.2 Family of Universal Hash Functions

As mentioned in Section 1.4.1, the amount of space to represent a uniform hash function

is prohibitive in practice. Fortunately in most cases heuristic hash functions behave very

closely to the expected behavior of uniform hash functions, but there are cases when

rigorous probabilistic guarantees are necessary [18]. For instance, various adaptive hashing

schemes presume that a hash function with certain prescribed properties can be found in

constant expected time. This holds if the function is chosen uniformly at random from all

possible functions until a suitable one is found but not necessarily if the search is limited

to a smaller set of functions. This situation has led Carter and Wegman [20] to the concept

of universal hashing.

Definition 10 A family of hash functions H is defined as weakly universal or just universal

if for any pair of distinct elements x1, x2 ∈ U and h chosen uniformly at random from H
then

Pr(h(x1) = h(x2)) ≤ 1

m
·

2The pigeonhole principle states that, given two natural numbers n and m with n > m, if n pigeons

are put into m pigeonholes, then at least one pigeonhole must contain more than one pigeon.

8 CHAPTER 1. INTRODUCTION

Definition 11 A family of hash functions H is defined as strongly universal or pair-wise

independent if for any pair of distinct elements x1, x2 ∈ U and arbitrary y1, y2 ∈ M then

Pr(h(x1) = y1 and h(x2) = y2) =
1

m2
·

It turns out that in many situations the analysis of various hashing schemes can be

completed under the weaker assumption that h is chosen uniformly at random from a

family of universal hash functions, rather than the assumption that h is chosen uniformly

at random from all possible hash functions. In other words, limited randomness suffices in

practice [70]. For instance, when we are hashing a key universe much larger than the hash

function range M = [0, m − 1], which is the case for most hashing applications, universal

hash functions behave very closely to the expected behavior of uniform hash functions.

This can be seen by comparing the result of Lemma 1 with the probability of collision for

universal hash functions, which is given in Definition 10. We notice that there are cases

where rigorous probabilistic guarantees are necessary [18, 2]. Let us illustrate this with the

following three scenarios, which have been extensively used in various settings and were

reported in [2].

1. Consider that a key set S ⊆ U of size n is hashed to m buckets. The question is:

how many buckets m are needed to get no collisions? By using a universal hash

function we need m = O(n2) to get no collisions with probability more than 1/2.

By using a uniform hash function, it is well known that o(n2) is not enough to get

no collisions, as exemplified by the birthday paradox3. Therefore, nothing is lost by

using a universal hash function in this scenario.

2. Consider that the key set S ⊆ U is hashed to m = n buckets. The question is: what

is the size of S to cover all buckets (i.e., no bucket is left empty)? By using a universal

hash function, if the size of S is 2n2, then, all buckets are covered with probability

more than 1/2. By using a uniform hash function, it is well known that a key set S of

size θ(n log n) would be enough to cover all buckets with high probability4. Therefore,

by using a uniform hash function in this scenario, a polynomial gain is obtained by

going from O(n2) to θ(n log n).

3. Consider that the key set S of size n is hashed to m = n buckets. The question is:

what is the size of the largest bucket? By using a universal hash function, the largest

3The birthday paradox says that if 23 or more people are grouped together at random, the probability

that at least two people have a common birthday exceeds 50%, as can be seen in Feller [36, Page 33].
4Throughout this thesis we write “with high probability” to mean with probability 1 − n−δ for δ > 0.

1.5. RANDOM GRAPHS 9

bucket will contain O(n1/2) keys. By using a uniform hash function, it is well known

that the largest bucket will contain θ(log n/ log log n) keys. Therefore, by using a

uniform hash function in this scenario, it is obtained an exponential gain by going

from O(n1/2) to θ(log n/ log log n).

1.5 Random Graphs

We now discuss some facts on random graphs that are important for analyzing our al-

gorithms. A random graph is a graph generated by some random procedure. There are

many non-equivalent ways to define random graphs and now we present two closely re-

lated models. The study of random graphs goes back to the classical work of Erdős and

Rényi [33, 34, 35] (for a modern treatment, see [8, 49]).

Definition 12 Let G = (V, E) be a random graph in the uniform model G(m, n), the

model in which all the
((m

2
)

n

)

graphs on V with n edges are equiprobable. In this model,

graph G starts with a fixed number of vertices |V | = m and |E| = n edges are randomly

chosen without replacement from the set of all
(

m
2

)

possible edges. A similar model, denoted

by G(m, p), where 0 ≤ p ≤ 1, is obtained by taking the same vertex set but now each edge

is selected with probability p and independently of all other edges and therefore repetitions

are allowed.

As presented in [48], it is often useful to regard the random graph as evolving in

time by a stochastic process, starting with a vertex set without edges and then inserting

edges until the complete graph is obtained. For instance, the process of adding each edge

independently of the others at some random time, for example, uniformly distributed in

the range (0, 1), will give a random graph of type G(m, p) at a fixed time p ∈ (0, 1) and a

random graph of type G(m, n) at the random time at which the n-th edge appears.

Our best result generates a family F of PHFs or MPHFs based on random acyclic

r-partite hypergraphs, defined as follows.

Definition 13 A hypergraph is the generalization of a standard undirected graph where

each edge connects r ≥ 2 vertices.

Definition 14 Let Gr = (V, E) be a random r-partite r-uniform hypergraph for r ≥ 2,

where V is a disjoint union of the r parts V0, V1, . . . , Vr−1, |Vi| = ρ, |V | = m = rρ, and

10 CHAPTER 1. INTRODUCTION

|E| = n. The edges are inserted into Gr one at a time, each being picked at random from

all ρr possible edges, allowing repetitions.

Definition 15 A hypergraph is acyclic if and only if some sequence of repeated deletions

of edges containing vertices of degree 1 yields a hypergraph without edges [26, Page 103].

1.6 Related Work

In this section we review some of the most important theoretical, practical, and heuristic

results on perfect hashing. Czech, Havas and Majewski [26] provided a more comprehensive

survey until 1997.

As mentioned before, there is a gap between theory and practice among minimal perfect

hashing methods. On one hand, there are good theoretical results without experimentally

proven practicality for large key sets. We will argue below that these methods are indeed

not practical. On the other hand, there are two categories of practical algorithms: the

theoretically analyzed time and space usage algorithms that assume uniform hash functions

for their methods, which is an unrealistic assumption because each uniform hash function

h : U → [0, m−1] require at least u log m bits of storage space, and the heuristic algorithms

that present only empirical evidences. The aim of this section is to discuss the existent

gap among these three types of algorithms available in the literature.

1.6.1 Theoretical Results

In this section we review some of the most important theoretical results on minimal perfect

hashing, which do not assume that uniform hash functions are available for free. Fredman

and Komlós [40] proved that at least n log e + log log u − O(log n) bits are required to

represent an MPHF (in the worst case over all sets of size n), provided that u ≥ nα for

some α > 2. Mehlhorn [57] showed that the Fredman-Komlós bound is almost tight by

providing an algorithm that constructs an MPHF that can be represented with at most

n log e + log log u + O(log n) bits. However, his algorithm is far from practice because its

generation and evaluation time are exponential on n (i.e., nθ(nenu log u)).

Schmidt and Siegel [70] proposed the first algorithm for constructing an MPHF with

constant evaluation time and description size O(n+log log u) bits. Their algorithm, as well

as all other algorithms we will consider, is for the Word RAM model of computation [41]

(see Section 1.2). From a practical point of view, Schmidt and Siegel’s algorithm is not

1.6. RELATED WORK 11

attractive. The scheme is complicated to implement and the constant of the space bound

is large: For a set of n keys, at least 29n bits are used, which means a space usage similar

in practice to the best schemes using O(n log n) bits. Though it seems that [70] aims

to describe its algorithmic ideas in the clearest possible way, not trying to optimize the

constant, it is hard to improve the space usage significantly.

More recently, Hagerup and Tholey [43] have come up with the best theoretical result

we know of. The MPHF obtained can be evaluated in O(1) time and stored in n log e +

log log u+O(n(log log n)2/ log n+log log log u) bits. The generation time is O(n+log log u)

using O(n) words of space. In spite of its theoretical importance, the Hagerup and Tholey

algorithm also is not practical, as it only emphasizes asymptotic space complexity. (It

is also very complicated to implement, but we will not go into that.) For n < 2150 the

scheme is not well-defined, as it relies on splitting the key set into buckets of size n̂ ≤
log n/(21 log log n). If we fix this by letting the bucket size be at least 1, then buckets

of size one will be used for n < 2300, which means that the space usage will be at least

(3 log log n + log 7) n bits. For a set of a billion keys, this is more than 17 bits per element.

Since 2300 exceeds the number of atoms in the known universe, it is safe to conclude that

the Hagerup-Tholey MPHF is not space efficient in practical situations. While we believe

that their algorithm has been optimized for simplicity of exposition, rather than constant

factors, it seems difficult to significantly reduce the space usage based on their approach.

1.6.2 Practical Results

We now describe some of the main “practical” results upon which our work is based. They

are characterized by simplicity and (provably) low constant factors. In general, they are

analyzed upon the unrealistic assumption that uniform hash functions are available for

free.

The algorithm proposed by Czech, Havas and Majewski [25] assumes uniform hash

functions to be available for free (i.e., they use universal hash functions) to construct order

preserving MPHFs. The method uses two uniform hash functions h1 : S → [0, cn− 1] and

h2 : S → [0, cn − 1] to generate MPHFs in the following form: mphf (x) = (g[h1(x)] +

g[h2(x)] mod n where c > 2. The resulting MPHFs can be evaluated in O(1) time and

stored in O(n log n) bits (that is optimal for an order preserving MPHF). The resulting

MPHF is generated in expected O(n) time.

Botelho, Kohayakawa and Ziviani [12] improved the space requirement at the expense

of generating functions in the same form that are not order preserving. Their algorithm

12 CHAPTER 1. INTRODUCTION

is also linear on n, but runs faster than the ones by Czech et al [25] and the resulting

MPHFs are stored using half of the space because c ∈ [0.93, 1.15]. However, the resulting

MPHFs still need O(n log n) bits to be stored. It was found experimentally in [12] that

their generation procedure works well in practice.

Majewski et al [55] proposed an algorithm to generate a family of MPHFs based on

r-uniform hypergraphs (i.e., with edges of size r). It is a generalization of the algorithm

in [25]. The resulting functions can be evaluated in O(1) time and stored in O(n log n)

bits. Although the resulting functions are almost as compact as the ones generated by the

work in [12], they still require O(n log n) bits to be stored. Botelho, Pagh and Ziviani [14]

designed a family of algorithms that improves the space requirement from O(n log n) to

O(n) bits at the expense of generating functions that are not order preserving.

Since the space requirements for uniform hash functions makes them unsuitable for

implementation, one has to settle for a more realistic setup. The first step in this direction

was given by Pagh [61]. He proposed a family of randomized algorithms for constructing

MPHFs of the form mphf (x) = (f(x) + d[g(x)]) mod n, where f and g are chosen from a

family of universal hash functions (see Definition 10) and d is a set of displacement values

to resolve collisions that are caused by the function f . Pagh identified a set of conditions

concerning f and g and showed that if these conditions are satisfied, then a minimal perfect

hash function can be computed in expected O(n) time and stored in (2 + ǫ)n log n bits,

which is suboptimal.

Dietzfelbinger and Hagerup [29] improved [61], reducing the space usage to (1+ǫ)n log n

bits, but in their approach f and g must be chosen from a class of hash functions that meet

additional requirements. Woelfel [75] has shown how to decrease the space usage further,

to O(n log log n) bits asymptotically, still with a quite simple algorithm. However, there is

no empirical evidence on the practicality of this scheme.

Galli, Seybold and Simon [42] proposed an algorithm to generate MPHFs similar to the

ones generated in the works [61, 29]. However, in their MPHFs the two functions f and g are

defined as f(x) = hc(x) mod n and g(x) = ⌊hc(x)/n⌋, where hc(k) = (ck mod p) mod n2,

1 ≤ c ≤ p−1 and p is a prime larger than u. The resulting MPHFs are generated in linear

time and stored in O(n log n) bits. The main advantage of their approach is that it can be

easily adapted for dynamic key sets, but just for PHFs.

Prabhakar and Bonomi [66] designed perfect hash functions to be used for storing

routing tables in routers for networking applications. They have shown that the storage

requirement for the resulting functions goes to 2en when n goes to infinity. In their

1.6. RELATED WORK 13

simulations the resulting functions were stored in 8.6n bits. The main advantage of their

scheme is that it is simple enough to be implemented in hardware.

Randomized algorithms of Las Vegas5 type were designed in all previous work and also

in this work. Conversely, the works [4, 73] present deterministic algorithms to construct

PHFs and MPHFs. The resulting functions require O(n log(n) + log(log(u))) bits of stor-

age space and are evaluated in O(log(n) + log(log(u))). Thus, the resulting functions are

not evaluated in O(1) time and are within a factor of log n bits from the information

theoretical lower bounds to describe PHFs and MPHFs, which are presented in Theo-

rems 1 and 2, respectively. The average and worst case complexity of the algorithms are

O(n log(n) log(log(u))) and O(n3 log(n) log(log(u))), respectively.

1.6.3 Heuristics

In this section we consider works designed for specific applications and, in general, just

experimental evidences of the behavior of the algorithms are provided.

Fox et al. [39] created the first scheme with good average-case performance for large

datasets, i.e., n ≈ 106. They have designed two algorithms, the first one generates an

MPHF that can be evaluated in O(1) time and stored in O(n log n) bits. The second al-

gorithm uses quadratic hashing and adds branching based on a table of binary values to

get an MPHF that can be evaluated in O(1) time and stored in c(n + 1/ log n) bits. They

argued that c would be typically lower than 5, however, it is clear from their experimenta-

tion that c grows with n and they did not discuss this. They claimed that their algorithms

would run in linear time, but, it is shown in [26, Section 6.7] that the algorithms have

exponential running times in the worst case, although the worst case has small probability

of occurring.

Fox, Chen and Heath [38] improved the above result to get a function that can be

stored in cn bits. The method uses four uniform hash functions h10 : S → [0, n − 1],

h11 : [0, p1 − 1] → [0, p2 − 1], h12 : [p1, n − 1] → [p2, b − 1] and h20 : S × {0, 1} → [0, n − 1]

to construct an MPHF that has the following form:

mphf (x) = (h20(x, d) + g(i(x))) mod n

i(x) =







h11 ◦ h10(x) if h10(x) < p1

h12 ◦ h10(x) otherwise.

5A random algorithm is Las Vegas if it always produces correct answers, but with a small probability

of taking a long time to execute.

14 CHAPTER 1. INTRODUCTION

where p1 = 0.6n and p2 = 0.3n were experimentally determined, and b = ⌈cn/(log n + 1)⌉.
Again c is only established for small values of n. It could very well be that c grows with

n. So, the limitation of the three algorithms is that there is no warranty that the number

of bits per key to store the function will be fixed as n increases.

The work by Lefebvre and Hoppe [54] has the same problem of not providing any

warranty that the storage space of the resulting functions will be a constant number of bits

per key. They have designed a PHF method to specifically represent sparse spatial data

and the resulting functions require more than 3 bits per key to be stored. In the same

trend, Chang, Lin and Chou [21, 22] have designed MPHFs tailored for mining association

rules and traversal patterns in data mining techniques.

1.7 Technical Overview of this Work

Our primary objective was to design perfect hashing algorithms that are theoretically well-

founded and can be efficiently used in practice. For that we investigate ways to bridge the

existent gap between theory and practice among the minimal perfect hashing algorithms

available in the literature.

In this work we used a two-step approach in order to design an algorithm that achieves

our primary objective. In the first step, we partition the input key set into small buckets.

This step is equivalent to the process of generating runs in an external multi-way merge

sort, which is carefully engineered to make it work in linear time. In the second step, we

generate a PHF or an MPHF for each bucket.

Figure 1.2 illustrates the two steps of the algorithm: the partitioning step and the

searching step. The partitioning step takes a key set S of size n and uses a hash function

h0 to partition S into Nb buckets. The searching step generates an MPHF (or equivalently

a PHF) for each bucket i, 0 ≤ i ≤ Nb − 1, and computes the offset array. The evaluation

of the resulting MPHF for a key x is:

MPHF (x) = MPHF i(x) + offset [i]

where i = h0(x) indicates the bucket where key x is, MPHF i(x) is the position of x in

bucket i, and offset [i] gives the total number of entries before bucket i in the hash table.

If the key set size n fits in the internal memory available, then the first step of the

algorithm is not necessary. In this situation, we just make the bucket size equal to the

input size n and generate a PHF or an MPHF for this bucket. Therefore, the algorithm

1.7. TECHNICAL OVERVIEW OF THIS WORK 15

...

...

...

Key Set S

0 1

0

Partitioning

0 1 2
Searching

1

Buckets

MPHF0 MPHF2 MPHFN
b
−1

Nb − 1

MPHF1

Hash Table

m−1

n−1

h0

Figure 1.2: The two steps of the algorithm.

becomes an internal random access memory algorithm, referred to as RAM algorithm from

now on. If the key set size n is larger than the size of the internal memory available, then

the first step is performed to partition the input set into small buckets and the algorithm

becomes an external memory algorithm, referred to as EM algorithm from now on. The

external algorithm is also cache-aware because the buckets are small enough to fit in the

CPU cache. Therefore, the EM algorithm accesses memory in a less random fashion when

compared with the RAM algorithm.

We refine and combine a number of existing techniques in the design and implementa-

tion of the algorithm, as follows:

1. To generate PHFs or MPHFs for the buckets we could choose from a number of

alternatives, emphasizing either space usage, construction time, or evaluation time.

All methods that assume uniform hash functions can be made to work, by using the

split-and-share technique presented in [30] to split the problem into small buckets, and

simulate uniform hash functions on each bucket. In Chapter 3 we present a particular

engineering of this idea, with a refinement that, without extra space usage, gives a

family of uniform hash functions on each bucket.

2. The RAM algorithm is used to compute PHFs or MPHFs on the buckets because

it generates near-space optimal functions and outperforms the main practical algo-

rithms available in the literature, including our previous result presented in [12].

We take a PHF generation implicit in [23] as a starting point, which was also inde-

pendently suggested by Belazzougui [5]. Then, we improve the analysis, refine the

generation algorithm to make it succeed with high probability, extend it to gener-

ate MPHFs as well, and show how to implement everything in a near space-optimal

manner. When the key set fits in the internal memory we have just one bucket of size

16 CHAPTER 1. INTRODUCTION

n, otherwise several small buckets are handled. The RAM algorithm is presented in

Chapter 2.

3. External sorting (see, e.g., [74, 53]) is used to group the keys into buckets when the

key set does not fit in the internal memory. Then, we handle each bucket separately.

The important insight here is that we split the problem in small buckets and this

has both theoretical and practical implications. From the theoretical point of view

we showed that, by refining the split-and-share technique to simulate uniform hash

functions on the small buckets, we were able to prove that the EM algorithm will

work for every key set with high probability. From the practical point of view, an

important feature of this is that we may make buckets that are small enough to fit

in the CPU cache, resulting in a significant speedup (in processing time per element)

compared to other methods. To generate the runs of the external memory sorting,

we use radix sorting [24] to perform this in linear time.

Offset tables are used to put everything together to a single PHF or MPHF. This has

been done in several theoretical works (see, e.g. [70, 43]). In Chapter 4 we show how

to implement this with low space overhead in practice and present the EM algorithm.

4. The EM algorithm has a high degree of parallelism because it is based on the external

multi-way merge sort algorithm. In Chapter 5 we exploit this fact to design a parallel

version of the EM algorithm.

5. The techniques designed in our previous work presented in [12] to generate MPHFs

based on random graphs with cycles were used to optimize one version of the RAM

algorithm presented in Chapter 2. This is presented in Chapter 6.

1.8 Contributions

The attractiveness of using PHFs and MPHFs depends on the following issues [43]:

1. The amount of CPU time required for generating the functions.

2. The space requirements for generating the functions.

3. The amount of CPU time required by the functions for each retrieval.

4. The space requirements of the description of the resulting functions to be used at

retrieval time.

1.8. CONTRIBUTIONS 17

No previously known algorithm performs well for all these requirements. Usually, the

space requirement for generating the functions is overlooked. That is why the algorithms in

the literature cannot scale for key sets on the order of billions of keys. Also, as mentioned

before, there is a gap between practical and theoretical algorithms. On one hand, practical

algorithms analyze the space requirement to describe the resulting functions under the

unrealistic assumption that uniform hash functions are available to be used with no extra

cost of space. On the other hand, the theoretical algorithms are analyzed with no unrealistic

assumption, but they emphasize asymptotic space complexity and are too complicated to

implement.

The main contributions of this thesis are:

1. We present a simple, practical and highly scalable perfect hashing algorithm that

takes into account the four requirements aforementioned. When the input key set

fits in main memory, it becomes an internal random access memory algorithm (RAM

algorithm); otherwise, it becomes an external memory algorithm (EM algorithm).

Preliminary versions of the RAM and the EM algorithms were presented in [14] and

in [15], respectively. We now present more details on the two algorithms.

(a) The RAM algorithm works on random acyclic r-partite hypergraphs given by

function values of uniform hash functions on the keys of S. The idea of basing

perfect hashing on random acyclic hypergraphs is not new, see e.g. [55], but we

proceed differently to achieve a space usage of O(1) bits per key rather than

O(log n) bits per key, reducing the complexity order to store the functions from

O(n log n) to O(n) bits. The RAM algorithm is presented in Chapter 2.

We now comment on the four aforementioned requirements:

i. It generates PHFs or MPHFs in linear time. The PHFs are equivalent to

the ones suggested by Belazzougui [5], which were previously suggested in

a more general way by Chazelle et al in [23].

ii. It requires O(n) computer words to generate PHFs or MPHFs. That is why

it is appropriated for key sets that can be handled in internal memory.

iii. It generates PHFs or MPHFs that take O(1) time to be evaluated.

iv. It generates near space-optimal PHFs and MPHFs. The space requirements

of the description of the resulting functions depend on the relation between

m and n. For m = n, the space usage is approximately 2.62n bits. For

m = 1.23n, the space usage is approximately 1.95n bits. In all cases, this is

18 CHAPTER 1. INTRODUCTION

within a small constant factor from the information theoretical minimum of

approximately 1.44n bits for MPHFs and 0.89n bits for PHFs, something

that has not been achieved by previous practical algorithms.

(b) The EM algorithm uses a number of techniques from the literature to allow

the generation of PHFs or MPHFs for sets on the order of billions of keys. It

increases one order of magnitude in the size of the greatest key set for which

an MPHF was obtained in the literature [12]. This improvement comes from a

combination of a novel, theoretically sound perfect hashing scheme that greatly

simplifies previous methods, and the fact that it is designed to make good use of

the memory hierarchy, since it is fundamentally a divide-to-conquer technique.

The EM algorithm is the first step aiming to bridge the gap between theory and

practice on perfect hashing. Therefore, the EM algorithm is the first algorithm

that can be used in practice, has time and space usage carefully analyzed without

unrealistic assumptions, and scales for billions of keys.

We demonstrate the scalability of the EM algorithm by generating an MPHF

for a set of 1.024 billion URLs from the World Wide Web of average length

64 characters in approximately 50 minutes, using a commodity PC. The EM

algorithm is presented in Chapter 4.

We now comment on the four aforementioned requirements:

i. It generates PHFs or MPHFs in linear time and the dominating step in the

generation algorithm consists of sorting n fingerprints of O(log n) bits.

ii. It requires O(nǫ) computer words to have linear time complexity, where

0 < ǫ < 1. This is because it only needs a heap in main memory to

multi-way merge files stored on disk, and the size of the heap is the relation

between the size of the input key set and the amount of the internal memory

available, both in bytes. In our case, as we want to perform the merge

operation in one pass, we need ǫ = 0.5 (see, e.g., [1, Theorem 3.1]). This is

one of the reasons that enables the EM algorithm to scale for sets on the

order of billions of keys.

iii. It generate PHFs or MPHFs that take O(1) time to be evaluated.

iv. It also generates near space-optimal PHFs and MPHFs, but now we do not

assume that uniform hash functions are available with no additional cost of

space. For that we designed in Chapter 3 a way of simulating uniform hash

1.8. CONTRIBUTIONS 19

functions on the small buckets with only a constant factor space overhead.

This enabled us to use the RAM algorithm to build the MPHFs of each

bucket without unrealistic assumptions. As for the RAM algorithm, the

space requirements of the description of the resulting functions also depend

on the relation between m and n. For m = n, the space usage is approxi-

mately 3.3n bits. For m = 1.23n, the space usage is approximately 2.7n bits.

Again, this is within a small constant factor from the information theoreti-

cal minimum for PHFs and MPHFs, something that has not been achieved

by previous practical and theoretical algorithms, except asymptotically for

very large n.

2. We provide a scalable parallel implementation of the EM algorithm, referred to as

Parallel External Memory (PEM) algorithm from now on. The PEM algorithm allows

to distribute the construction, description and evaluation of the resulting functions.

For instance, using a 14-computer cluster the parallel EM generates an MPHF for

1.024 billion URLs in approximately 4 minutes, achieving an almost linear speedup.

Also, for 14.336 billion 16-byte random integers evenly distributed among the 14

participating machines the PEM algorithm outputs an MPHF in approximately 50

minutes, resulting in a performance degradation of 20%. To the best of our knowledge

there is no previous result in the perfect hashing literature that can be implemented in

a parallel way to obtain better scalability and performance than the results presented

by the PEM algorithm. The PEM algorithm is presented in Chapter 5. A preliminary

version of the PEM algorithm was presented in [11].

3. We present techniques that allow the generation of PHFs and MPHFs based on

random graphs containing cycles. A preliminary result was presented in [12]. It

improved the space requirement of the algorithm by Czech, Havas and Majewski [25]

at the expense of generating functions in the same form that are not order preserving.

Both algorithms are linear on n, but our algorithm runs 59% faster than the one

in [25], and the resulting MPHFs are stored using half of the space.

However, the resulting MPHFs still need O(n log n) bits to be stored. As in [25],

the algorithm assumes uniform hashing and needs O(n) computer words of the Word

RAM model to construct the functions. Recently, using ideas similar to the ones

presented in [12], we have optimized the version of the RAM algorithm that works

on random bipartite graphs to output the resulting functions 40% faster when cycles

are allowed. These results are presented in Chapter 6.

20 CHAPTER 1. INTRODUCTION

4. We show that the PHFs and MPHFs designed in this thesis can now be used for

applications in which they were not considered a good option in the past. This is

a consequence of the fact that the resulting functions need O(1) number of bits per

key to be stored. In Chapter 7 we show that MPHFs provide the best trade-off

between space usage and lookup time when compared to other hashing schemes. A

preliminary version of this result was presented in [13].

5. Finally, we have created the C Minimal Perfect Hashing Library that is available at

http://cmph.sf.net under the GNU Lesser General Public License (LGPL). The

library was conceived for two reasons. First, we would like to make available our

algorithms to test their applicability in practice. Second, we realized that there was

a lack of similar libraries in the open source community. We have received very good

feedbacks about the practicality of the library. For instance, it has received more

than 2, 482 downloads (August 2008) and is incorporated by two Linux distributions:

Debian6 and Ubuntu7.

1.9 Road Map

This text is organized as follows: Chapter 2 presents the internal random access memory

algorithm (RAM algorithm), which generates a family of near space-optimal PHFs or

MPHFs based on random acyclic r-partite r-uniform hypergraphs, for r ≥ 2. Chapter 3

presents a way of simulating uniform hash functions on small key buckets. Chapter 4

presents the external memory algorithm (EM algorithm), which is the first algorithm that

is theoretically well-understood and can be applied to sets on the order of billion keys.

Chapter 5 presents a parallel version of the EM algorithm. Chapter 6 shows how to generate

PHFs or MPHFs based on random graphs with cycles. Chapter 7 presents applications

6Debian is a volunteer project to develop a GNU/Linux distribution, which is available

at http://www.debian.org. Debian was started more than a decade ago and has since grown to comprise

more than 1000 members with official developer status and many more volunteers and contributors. It has

expanded to encompass over 20,000 “packages” of free and open source applications and documentation.
7The Ubuntu project, available at http://www.ubuntu.com, attempts to work with Debian to address

the issues that keep many users from using Debian. Ubuntu provides a system based on Debian with

frequent time-based releases, corporate accountability, and a more considered desktop interface. Ubuntu

provides users with a way to deploy Debian with security fixes, release critical bug fixes, a consistent

desktop interface, and to never be more than six months away from the latest version of anything in the

open source world.

1.9. ROAD MAP 21

in which the use of PHFs and MPHFs became interesting as a consequence of the results

of this work. Finally, Chapter 8 presents the conclusions and some suggestions regarding

future steps to be taken in this research.

22 CHAPTER 1. INTRODUCTION

Chapter 2

The Internal Perfect Hashing

Algorithm

In this chapter we present a simple and efficient internal random access memory algorithm

(RAM algorithm) to generate a family F of near space-optimal PHFs1 or MPHFs. Its

name comes from the fact that the RAM algorithm does not take into account the mem-

ory hierarchy to optimize efficiency, as the one presented in Chapter 4 does. The RAM

algorithm generates a family F of PHFs or MPHFs based on random acyclic r-partite

hypergraphs (see Section 1.5) given by function values of r uniform random hash functions

on S. It is designed for key sets that induce random acyclic r-partite hypergraphs that fit

in the internal random access memory. The resulting PHFs and MPHFs are stored in near

optimal space (i.e., O(n) bits.) Acyclic random hypergraphs has been used in previous

MPHF constructions [55], but we will proceed differently to achieve a space usage of O(n)

bits rather than O(n log n) bits, diminishing the complexity order to store the functions

from O(n log n) to O(n) bits. A previous version of the RAM algorithm was presented

1Chazelle et al [23] present a way of constructing PHFs that is equivalent to the ones presented in this

chapter. It is explained as a modification of the “Bloomier Filter” data structure, but it is not explicit

that a PHF is constructed. We have independently designed an algorithm to construct a PHF that maps

keys from a key set S of size n to the range [0, (2.0 + ǫ)n − 1] based on random 2-graphs, where ǫ > 0.

The resulting functions require 2.0 + ǫ bits per key to be stored. Belazzougui [5] suggested a method

to construct PHFs that map to the range [0, (1.23 + ǫ)n − 1] based on random 3-graphs. The resulting

functions are stored in 2.46 bits per key and this space usage was further improved to 1.95 bits per key by

using arithmetic coding. Thus, the simple construction of a PHF described must be attributed to Chazelle

et al [23]. The new contribution of this chapter is to analyze and optimize the constant of the space usage

considering implementation aspects as well as a way of constructing MPHFs from those PHFs.

23

24 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

in [14].

This chapter is organized as follows. In Section 2.1 we describe the family F of PHFs or

MPHFs and the RAM algorithm. In Section 2.2 we present analytical results of the RAM

algorithm. In Section 2.3 we present some experimental results. Finally, in Section 2.4 we

conclude this chapter.

2.1 The Family of Functions

The RAM algorithm is a three-step randomized algorithm of Las Vegas type because it

needs to generate a random acyclic r-partite hypergraph in its first step. Once the hyper-

graph is obtained, the two other steps are deterministic. To make the exposition as clear

as possible we first present our approach for r = 2 and, then, generalize it for r > 2. Later

on, we show that the two interesting cases from the family F of PHFs or MPHFs are based

on 2-graphs and 3-graphs.

The general idea of the algorithm for r = 2 is as follows. For a given undirected

bipartite 2-graph G = (V, E), |E| = n, |V | = m and m > n, build an array g such that the

following function phf : E → [0, m − 1] is a perfect hash function on E:

phf (e = {u, v} ∈ E) =







u, if (g[u] + g[v]) mod 2 = 0

v, if (g[u] + g[v]) mod 2 = 1
(2.1)

The problem to solve is to look for an assignment of values from {0, 1, r} to vertices so

that for each edge the sum of values associated with its endpoints taken modulo r (r = 2 in

this case) indicates a unique value in the range [0, m − 1]. This assignment is represented

by a function g : V → {0, 1, . . . , r}, which is implemented as the array g in Eq. (2.1).

This assignment of values to vertices can be always solved if the graph (or hypergraph)

is acyclic [55]. The special value r = 2 is used to represent non-assigned vertices. So, we

define:

Definition 16 A vertex v ∈ V is assigned if g[v] 6= r and non-assigned otherwise.

We now show how each key x ∈ S is mapped to each edge e ∈ E. Each key x ∈ S is

assigned to edge e = {u, v} as follows:

2.1. THE FAMILY OF FUNCTIONS 25







u = h0(x)

v = h1(x)

where we assume h0 : U → [0, m/2 − 1] and h1 : U → [m/2, m − 1] as two uniform

hash functions. The uniform hash assumption is discussed in Section 2.2.5. Each different

pair of functions (h0, h1) induces a different bipartite random graph G = G(h0, h1) and

we iteratively select (h0, h1) until the induced graph G to be acyclic. In Section 2.2.1 we

show how to obtain an acyclic bipartite random graph in an expected constant number of

iterations.

To obtain an MPHF we observed that the resulting PHF presented in Eq. (2.1) asso-

ciates n vertices from V to n edges of S and, by construction, all associated vertices are

assigned according to Definition 16. This led us to a well-studied primitive in the succinct

data structure area (see e.g. [62, 59, 69]), defined as:

Definition 17 Let rank : V → [0, n − 1] be a function defined as:

rank(v) = |{y ∈ V | y < v ∧ g[y] 6= r}|. (2.2)

Function rank(v) counts how many vertices are assigned before a given vertex v ∈ V , which

is uniquely associated with a key x ∈ S.

Therefore, our problem is reduced to computing the array g such that a function mphf :

E → [0, n − 1] is a bijection on E, i.e., an MPHF on E and, consequently, an MPHF on

S since there is a one-to-one mapping between S and E by using r = 2 uniform hash

functions:

mphf (e = {u, v} ∈ E) = rank(phf (e)) (2.3)

The main insights that allow us to build functions that are evaluated in constant time

and stored in O(n) bits instead of O(n log n) bits are twofold. First, the values in the range

of g are small enough to be encoded by a constant number of bits, actually β = ⌈log(r+1)⌉
bits. Second, It is possible to build a data structure that allows the computation of function

rank presented in Eq. (2.2) in constant time by using o(m) additional bits of space.

Figure 2.1 gives an overview of the three-step RAM algorithm for r = 2, on a key set

S ⊆ U containing the first 4 month names abbreviated to the first three letters, i.e., S =

{jan, feb, mar, apr}. The mapping step in Figure 2.1(a) builds an acyclic random bipartite

graph for n = 4 keys or, equivalently, |E| = n = 4, and |V | = m = 8. The assigning step

26 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

in Figure 2.1(b) builds the array g so that each edge is uniquely associated with one of its

r = 2 vertices. For instance, jan is mapped to 2 because (g[2] + g[5]) mod 2 = 0, feb to 6

because (g[2]+g[6]) mod 2 = 1, and so on. The ranking step builds the data structure used

to compute function rank : V → [0, n − 1] (see Definition 17) in O(1) time. To illustrate,

rank(7) = 3 means that there are three vertices assigned before vertex 7, which are the

vertices 0, 2 and 6. We are now ready to formally define our family F of PHFs or MPHFs.

h (x)1

0
1
2
3
4
5
6
7

3
2
1
0

g

Hash Table

(c)(a)

0h (x)

(b)

Assigning

1

Mapping

1 3

54

S

jan

feb

mar

apr 6

20

0

mar
jan
feb
apr

1

0
r

r
r
r

Rankingm
ar ja

n feb

apr
7

Figure 2.1: (a) The mapping step generates an acyclic bipartite random 2-graph. (b) The

assigning step builds an array g so that each edge is uniquely assigned to a vertex. (c) The

ranking step builds the data structure used to compute function rank : V → [0, n − 1] in

O(1) time.

Definition 18 Let H be a family of uniform hash functions as presented in Definition 9.

Let hi : U → [im
r
, (i + 1)m

r
− 1], 0 ≤ i < r, be r uniform hash functions from H. The r

functions and the set S define, in a natural way, a random r-uniform r-partite hypergraph.

Let Gr = Gr(h0, h1 . . . , hr−1) be such a hypergraph with vertex set V = [0, m − 1] and

edge set E = {{h0(x), h1(x), . . . , hr−1(x)} | x ∈ S}. Let g : V → {0, 1, . . . , r} be a

function, which is implemented as an array g, such that for each edge the sum of values

in g associated with its endpoints taken modulo r indicates a unique value in the range

[0, m− 1]. Let PHF be a family of PHFs from S to [0, m− 1] with parameters r ≥ 2 and

a class H of uniform hash functions, defined as:

PHF(r,H) =

{

phf | phf (x) = hi(x), i =

(

r−1
∑

i=0

g[hi(x)]

)

mod r, hi ∈ H
}

(2.4)

Let MPHF be a family of MPHFs from S to [0, n− 1] with parameter PHF and defined

as:

MPHF(PHF) = {mphf | mphf (x) = rank(phf (x)), phf ∈ PHF} (2.5)

2.1. THE FAMILY OF FUNCTIONS 27

Then, we define:

F(PHF ,MPHF) = {h | h ∈ PHF or h ∈ MPHF} (2.6)

From now on we are going to design and analyze the RAM algorithm to prove the

following theorem:

Theorem 3 For a given key set S with n keys, a given r ∈ D = {x | x ≥ 2}, a given

class of uniform hash functions H, and an induced random acyclic r-partite hypergraph

Gr = (V, E), where |E| = n, |V | = m = c(r)n and c : D → ℜ, it is possible to find in

expected linear time an array g that implements a function g : V → {0, 1, . . . , r} and a

data structure rankTable so that a function h ∈ F can be computed in O(1) time and

described in βm bits if h is a PHF and in (β + ǫ)m + o(m) bits if h is an MPHF, where

β = ⌈log(r + 1)⌉ and 0 < ǫ < 1. For that O(n) computer words are required.

Figure 2.2 presents a pseudo code for the RAM algorithm. If we strip off the third

step we will build PHFs instead of MPHFs. The algorithm receives as input a key set S,

|S| = n, an edge size r and a family H of uniform hash functions, and produces in expected

O(n) time the resulting functions represented by the array g and a data structure, referred

to as rankTable, used to allow the computation of Eq. (2.2) in O(1) time. We now describe

and analyze each step in detail.

procedure RAM (S , r , H , g , rankTable)
Mapping (S , H , Gr , L) ;
Assigning (Gr , L , g) ;
Ranking (g , rankTable) ;

Figure 2.2: The RAM algorithm.

2.1.1 Mapping Step

The mapping step takes a key set S and a family H of uniform hash functions as input,

and creates a random acyclic r-partite hypergraph Gr and a list of edges L. We used an

edge-oriented data structure proposed in [32] to represent the hypergraphs, where each

edge is explicitly represented as an array of r vertices and, for each vertex v, there is a list

of edges that are incident on v. Figure 2.3 presents a pseudo code for the mapping step.

28 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

procedure Mapping (S , H , Gr , L)
1. repeat

2. E(Gr) = ∅ ;
3. select h0, h1, . . . , hr−1 uniformly at random from H ;

4. for each x ∈ S do

5. e = {h0(x), h1(x) . . . , hr−1(x)} ;
6. addEdge (Gr , e) ;
7. L = isAcyclic (Gr) ;
8. until E(Gr) i s empty

Figure 2.3: Mapping step.

The list L is obtained whenever we test whether Gr is acyclic. For that we iteratively

delete edges that are incident on vertices of degree one. The list L stores the deleted edges

in the order of deletions (i.e., the first edge in L was the first deleted edge, the second edge

in L was the second deleted edge, and so on.) The following algorithm can do this test:

1. Traverse Gr and store in a queue Q every edge that has at least one of its vertices

with degree one.

2. Until Q is not empty, dequeue one edge from Q, remove it from Gr, store it in L,

and check if any of its vertices is now of degree one. If it is the case, enqueue the

only edge that contains that vertex.

Figure 2.4 presents one possible output when applied to the random acyclic bipartite

hypergraph G2 presented in Figure 2.1. The three edges containing vertices of degree one

were, first, deleted and stored in L. Then the only edge containing vertices of degree two

and three was deleted and stored in L.

{0,5} {2,6} {2,7} {2,5}
0 1 2 3

L

Figure 2.4: Output of the test to check whether a hypergraph has cycles.

2.1.2 Assigning Step

The assigning step takes the random acyclic r-partite hypergraph Gr and the list of edges

L as input, and produces an assignment of values to the vertices of Gr that is represented

2.1. THE FAMILY OF FUNCTIONS 29

by the array g. The assignment is created as follows. Let Visited be a boolean vector of size

m that indicates whether a vertex has been visited. We first initialize g[i] = r (i.e., each

vertex is unassigned) and Visited [i] = false, 0 ≤ i ≤ m−1. Then, for each edge e ∈ L from

tail to head, we look for the first vertex u belonging to e not yet visited. Let j, 0 ≤ j ≤ r−1

be the index of u in e. Then, we set g[u] = (j −∑v∈e∧Visited [v]=true g[v]) mod r. Whenever

we pass through a vertex u from e, if it has not yet been visited, we set Visited [u] = true.

Figure 2.5 presents a pseudo code for the assigning step.

procedure Assigning (Gr , L , g)
1. for u = 0 to m − 1 do

2. Visited [u] = false ;

3. g[u] = r ;
4. for i = |L| − 1 to 0 do

5. e = L [i] ;
6. sum = 0;

7. for k = r − 1 to 0 do

8. i f (not Visited [e[k]])
9. Visited [e[k]] = true ;
10. u = e[k] ;

11. j = k ;
12. else sum += g[e[k]] ;
13. g[u] = (j − sum) mod r ;

Figure 2.5: Assigning step.

Figure 2.6 presents a step by step example for the list of edges of our example presented

in Figure 2.4. The initial state is shown in Figure 2.6(a). In Figure 2.6(b), the vertices 2 and

5 of edge L[3] are marked as visited and g[2] = (0− g[5]) mod 2 = 0. In Figure 2.6(c), the

vertex 7 of edge L[2] is marked as visited and g[7] = (1−g[2]) mod 2 = 1. In Figure 2.6(d),

the vertex 6 of edge L[1] is marked as visited and g[6] = (1 − g[2]) mod 2 = 1. Finally, in

Figure 2.6(e), the vertex 0 of edge L[0] is marked as visited and g[0] = (0−g[5]) mod 2 = 0.

The reason to traverse the edges in the reverse order they were deleted is to assure that

each edge will contain at least one vertex that is traversed for the first time. For example,

if the deleted edges were stored in L in the following order: e1, e2, . . . , ei, ei+1, . . . , en and

we consider edge ei, then we know that ei will have at least one of its vertices of degree one

by removing the edges e1, e2, . . . , ei−1. Let us refer to that vertex as v. Thus, by removing

ei, v will become of degree 0. Therefore, v is not contained in any of the edges ei+1, . . . , en.

So, by traversing from en to e1, at least one of the vertices in the edges will be traversed

30 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

r r r r r
2 3 4 5 6 7

g
0 1

r0 r

r r r r
2 3 4 5 6 7

g
0 1

r0 r 1 r r r
2 3 4 5 6 7

g
0 1

r0 r 11 r r

r r rr r r r r

d)

3210
L

e)

321
L

0

a)
L{0,5} {2,6} {2,7} {2,5}

0 1 2 3

b)

321
L

0

c)

321
L

0

2 3 4 5 6 7
g

0 1
r0 r 110

2 3 4 5 6 7
g

0 1

{2,6} {2,7} {2,5}{0,5} {0,5} {2,6} {2,7} {2,5}

{2,6} {2,7} {2,5}{0,5}

{2,6} {2,7} {2,5}{0,5}

Figure 2.6: Example of the assigning step.

for the first time and such a vertex can be used to uniquely represent the edge.

2.1.3 Ranking Step

The ranking step receives the array g as input and produces the data structure rankTable,

which allows the computation of function rank presented in Eq. (2.2) in O(1) time. We

now present a practical variant described in [62] that uses ǫ m additional bits of space,

where 0 < ǫ < 1. We remark that it is possible to join, in a single and more succinct data

structure, the array g and the data structure used to compute function rank in constant

time (see, e.g., [59, 69]).

Conceptually, the scheme is very simple: store explicitly the rank of every kth index

in a rankTable, where k = ⌊log(m)/ǫ⌋. In the implementation we let the parameter k to

be set by the users so that they can trade-off space for evaluation time and vice-versa. In

the experiments we set k to 256 in order to spend less space to store the resulting MPHFs.

This means that we store in rankTable the number of assigned vertices before every 256th

entry in the array g. Figure 2.7 presents a pseudo code for the ranking step.

procedure Ranking (g , rankTable)
1. sum = 0;

2. for i = 0 to |g| − 1 do

3. i f (i mod k == 0) rankTable [i/k] = sum;
4. i f (g[i] 6= r) sum++;

Figure 2.7: Ranking step.

Figure 2.8 illustrates the ranking step on the array g of Figure 2.6 (e) considering k = 3.

It means that there is no assigned vertex before g[0], there are two assigned vertices before

2.1. THE FAMILY OF FUNCTIONS 31

g[3], and two before g[6].

1 2 3 4 5 6 7
g

0

0 1 2
rankTable for k=3

0 110 r r r r

20 2

Figure 2.8: Example of the ranking step.

2.1.4 Evaluating the Resulting Functions

To compute rank(u), where u is given by a perfect hash function phf ∈ PHF (see

Eq. (2.4)), we look up in rankTable the rank of the largest precomputed index v ≤ u,

and count the number of assigned vertices from position v to u − 1. To do this in time

O(1/ǫ) we use a lookup table Tr that allows us to count the number of assigned vertices

in ♭ = ǫ log m bits in constant time for any 0 < ǫ < 1. For simplicity and without loss

of generality we let ♭ be a multiple of the number of bits β used to encode each entry of

g. Then, the lookup table Tr can be generated a priori by the pseudo code presented in

Figure 2.9, where LS(i′,β) stands for the value of the β least significant bits of i′ and >>

is the right shift of bits. Note that for each r ≥ 2 a different lookup table Tr is required.

procedure GenLookupTable (β , ♭ , Tr)

1. for i = 0 to 2♭ − 1 do

2. sum = 0;

3. i′ = i ;
4. for j = 0 to ♭/β − 1 do

5. i f (LS(i′, β) 6= r) sum++;
6. i′ = i′ >> β ;

7. Tr[i] = sum;

Figure 2.9: Generation of the lookup table Tr.

In the experiments, we have used a lookup table that allows us to count the number of

assigned vertices in 8 bits in constant time. Therefore, to compute the number of assigned

vertices in 256 bits we need 32 lookups. Such a lookup table fits entirely in the CPU cache

because it takes 28 bytes of space.

We use the implementation just described because the smallest hypergraphs are ob-

tained when r = 3 (see Section 2.2.1). Therefore, the most compact and efficient functions

32 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

are generated when r = 2 and r = 3. That is why we have chosen these two instances of

the family to be discussed in Sections 2.2.3 and 2.2.4.

Figure 2.10 presents the pseudo code for the resulting PHFs. Note that the resulting

functions can be computed in O(r) time. As the practical instances are for r = 2 and r = 3,

then the computational cost is O(1) and it is quite simple to be computed, an important

characteristic at retrieval time.

function phf (x , g , r)
1. e = {h0(x), h1(x), . . . , hr−1(x)} ;

2. sum = 0;
3. for i = 0 to r − 1 do sum += g[e[i]] ;
4. return e[sum mod r] ;

Figure 2.10: Pseudo code for the resulting PHFs.

Figure 2.11 presents the pseudo code for the resulting MPHFs. The variable Tr counts

the number of assigned vertices in E entries of g or in ♭ = βE = ǫ log m bits. We use the

notation g[i → j] to represent the values stored in the entries from g[i] to g[j] for i ≤ j.

If j ≥ |g| or (j − i + 1) < E , then the value r, which is used to represent unassigned

vertices, is appended to fulfill the entries to be looked up in Tr. It is easy to see that the

computational cost is O(1/ǫ).

function mphf (x , g , r , rankTable , k)
1. u = phf(x , g , r) ;
2. j = u/k ;

3. rank = rankTable [j] ;
4. for i = j ∗ k to u − 1 step E do

5. rank += Tr[g[i → i + E]] ;
6. return rank;

Figure 2.11: Pseudo code for the resulting MPHFs.

2.2. ANALYTICAL RESULTS 33

2.2 Analytical Results

2.2.1 The Linear Time Complexity

In this section we show that the RAM algorithm runs in expected O(n) time. For that we

need to show that the mapping, assigning and ranking steps run in expected O(n) time.

Analysis of the Mapping Step

We start by showing how to obtain a random acyclic r-partite hypergraph Gr =

Gr(h0, h1, . . . , hr−1) with n edges and m = c(r)n vertices with high probability, where

r ∈ D = {x | x ≥ 2} and c(r) is a function with real values on D. We will firstly analyze

the case for r = 2 and, in the following, the case for r ≥ 3.

Theorem 4 Let G2 = (V, E) be a bipartite random graph with n edges and m vertices.

Then, if m = cn holds for c > 2, the probability that G2 is a forest (acyclic), for n → ∞,

is:

Pra =

√

1 −
(

2

c

)2

(2.7)

Proof. Let G2 = (V, E) be a bipartite random graph with |V | = 2ρ = m, and |E| =

dm/2 = n, where d = 2n/m is the average degree of G2. To build G2, each edge is

independently taken at random with probability p from all ρ2 possible edges. As there are

m = 2ρ vertices, and each edge is connected to an average of d edges, then we can conclude

that p = d/ρ = 2d/m. Let ∁2t be the set of cycles of length 2t in the complete bipartite

graph Km, for t ≥ 1 and each m. A cycle in ∁2t can be represented as a sequence of 2t

distinct vertices in Km by choosing a starting point. Therefore, the cardinality of ∁2t is

given by:

|∁2t| =
1

2t
((ρ)t)

2, (2.8)

where ρ = m
2

and (ρ)t = ρ(ρ−1) . . . (ρ−t+1). As each edge in G2 is selected independently

of the others and with probability p = 2d
m

, then, each cycle in ∁2t occurs with probability:

Pr2t(d) = p2t (2.9)

Let C2t(G2) be a random variable that measures the number of cycles of length 2t in G2.

Let Ce(G2) be a random variable that measures the number of cycles of any even length in

G2. The probability distribution of C2t(G2) and Ce(G2) converge to a Poisson distribution

34 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

with parameters λ2t and λe, respectively. For a more detailed proof of a similar statement

see [48, Page 16]. To conclude the proof we are going to show how to get λ2t and λe, which

represents the average number of cycles of length 2t in G2 and the average number of cycles

of even length in G2, respectively. It is easy to see that, for m → ∞:

λ2t = Pr2t(d) × |∁2t| =

(

2d

m

)2t
1

2t
((ρ)t)

2 =
1

2t
d2t (2.10)

and

λe =
∞
∑

t=1

λ2t =
1

2
d2 +

1

4
d4 +

∞
∑

t=3

1

2t
d2t = −1

2
ln(1 − d2). (2.11)

As in [48], we use
∑∞

t=3
1
2t

xt = −1
2

ln(1 − x) − 1
2
x − 1

4
x2, where x = d2. Therefore, the

probability that G2 is a forest is given by:

Pra(Ce(G2) = 0) = e−λe =
√

1 − d2. (2.12)

Note that d is restricted to be in the range (0, 1). As G2 has m = cn vertices and n = dm/2

edges, then d = 2/c and we obtain:

Pra =

√

1 −
(

2

c

)2

(2.13)

for c > 2.

For example, when c = 2.09 we have Pra = 0.29. This is very close to 0.294 that

is the value we got experimentally by generating 1, 000 random bipartite 2-graphs with

n = 107 keys (edges). A rigorous bound on Pra for r > 2 seems to be technically difficult

to obtain. However, the heuristic argument presented in [26, Theorem 6.5], which was

rigorously proved in [19], also holds for our random r-partite hypergraphs. Thereby we

have the following theorem.

Theorem 5 The threshold for the appearance of a 2-core (a subgraph of minimum degree

2) in a random r-partite hypergraph for r > 2 is r/τ , where

τ = min
x>0

{

x

(1 − e−x)r−1

}

(2.14)

From Theorems 4 and 5 we can conclude that with Pra bounded by a constant (Pra =

Ω(1)) and c(r) given by

c(r) =







2 + ε, ε > 0 for r = 2

r
(

minx>0

{

x
(1−e−x)r−1

})−1

for r > 2,
(2.15)

2.2. ANALYTICAL RESULTS 35

the random acyclic r-partite hypergraphs dominate the space of random r-partite hyper-

graphs. The value c(3) ≈ 1.23 is a minimum value for Eq. (2.15), as shown in Figure 2.12,

previously reported in [55]. This implies that the random acyclic r-partite hypergraphs

with the smallest number of vertices happen when r = 3. In this case, we have got exper-

imentally Pra ≈ 1 by generating 1, 000 random 3-partite hypergraphs with n = 107 keys

(hyperedges).

1.8

1.4

r

1.2
1098765432

c(r)

2.0

1.6

Figure 2.12: Values of c(r) for r ∈ {2, 3, . . . , 10}.

It is interesting to remark that the problems of generating random acyclic r-partite

hypergraphs for r = 2 and for r > 2 have different natures. For r = 2, the probability Pra

varies continuously with the constant c. But for r > 2, there is a phase transition. That

is, there is a value c(r) such that if c ≤ c(r) then Pra tends to 0 when n tends to ∞ and if

c > c(r) then Pra tends to 1. This phenomenon has also been reported in [55] for random

r-uniform hypergraphs.

We now show that the expected number of iterations of the mapping step is bounded by

a constant. When a random r-partite hypergraph with cycles occurs we abort and select

randomly a new tuple of hash functions (h0, h1, . . . , hr−1) from H. Then, we can model the

number of iterations to generate a random acyclic r-partite hypergraph Gr as a random

variable Z that follows a geometric distribution, since the probability Pra of generating a

random acyclic r-partite hypergraph is Ω(1). Thus, Pr(Z = i) = Pra(1−Pra)i−1 and the

mean of Z is 1/Pra, which corresponds to the expected number of iterations to obtain Gr.

Therefore, as Pra is Ω(1), the expected number of iterations is O(1).

To conclude the analysis of the mapping step presented in Figure 2.3 we need to show

that each iteration runs in O(n) time. Statements 4 and 7 are the critical ones in the

mapping step, once statements 2 and 3 have costs equal to O(1) and O(r).

It is easy to see that statement 5 in Figure 2.3 has cost O(r). Statement 6 also has

36 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

cost O(r) because it needs to insert a given edge e in r lists of incident edges, one for

each vertex in e. Thereby, statement 4 has cost O(n) for r = O(1). Therefore, it is safe to

conclude that the mapping step takes expected O(n) time because it is known (see e.g. [55,

Theorem 2.2]) that the algorithm to test whether a hypergraph contains cycles performed

in statement 7 also runs in O(n) time.

Analysis of the Assigning Step

It is easy to see in the assigning step presented in Figure 2.5 that the loops of statement

1 and 4 have costs equal to O(m) and O(rn), respectively. This comes from the fact that

the operations involved in all other statements have cost O(1). As the number of vertices

in Gr is a linear function of the number of edges, i.e., m = c(r)n, then, for r = O(1), the

assigning step runs in O(n) time.

Analysis of the Ranking Step

It is also easy to see in the ranking step presented in Figure 2.7 that the ranking step runs

in O(n) time. This is because statement 2 just loops over the m = c(r)n entries of the

array g, performs operations in O(1) time, and c(r) is a constant fixed a priori.

In conclusion, the RAM algorithm takes expected O(n) time because the mapping,

assigning and ranking steps run in expected O(n) time.

2.2.2 Space Requirements to Describe the Functions

In this section we present the space required to store the resulting functions disregarding

the space for storing the r uniform hash functions, which is discussed in Section 2.2.5.

The description of the resulting functions is compounded by the array g, the rankTable

and the lookup table Tr. The resulting array g contains values in the range [0, r] and its

domain size is equal to the number of vertices in Gr, i.e., m = c(r)n. Then, we can use

β = ⌈log(r + 1)⌉ bits to encode each value in g. Therefore, g requires βm bits of storage

space. The rankTable is stored in ǫm bits because it has m/k entries of size log m bits and

k = ⌊log(m)/ǫ⌋ for 0 < ǫ < 1. The lookup table Tr is stored in o(m) bits because it has mǫ

entries of size log log m bits. Putting all together we have that the number of bits required

to store the resulting PHFs and MPHFs are βm and (β + ǫ)m + o(m) bits, respectively.

2.2. ANALYTICAL RESULTS 37

2.2.3 The 2-graph Instance

The use of acyclic bipartite 2-graphs allows us to generate the PHFs of Eq. (2.4) that give

values in the range [0, m − 1], where m = (2 + ε)n for ε > 0 (see Section 2.2.1). The

significant values in the range of the array g for a PHF are {0, 1}, because we do not need

to represent information to calculate the function rank (i.e., r = 2). Then, we can use

just one bit to represent the value assigned to each vertex, i.e., β = 1. Therefore, the

resulting PHF requires m bits to be stored. For ε = 0.09, the resulting PHFs are stored in

approximately 2.09n bits and map to the range [0, 2.09n − 1].

To generate the MPHFs of Eq. (2.5) we need to include the ranking information. Thus,

we must use the value r = 2 to represent unassigned vertices and now two bits are required

to encode each value assigned to the vertices, i.e., β = 2. Then, the resulting MPHFs

require (2+ǫ)m+o(m) bits to be stored (remember that the ranking information requires ǫm

bits and the lookup table T2 requires o(m) bits), which corresponds to (2+ǫ)(2+ε)n+o(n)

bits for any ǫ > 0 and ε > 0. In the experiments, for ǫ = 0.125 and ε = 0.09 the resulting

functions are stored in approximately 4.44n bits. We now present two packing schemes

that give more compact MPHFs and can be done in O(n) time.

Packing the Resulting MPHFs for r = 2 with Arithmetic Coding

The range of significant values assigned to the vertices is clearly [0,2]. Hence, we need

log(3) bits to encode the value assigned to each vertex. Theoretically we use arithmetic

coding as block of values. Therefore, we can compress the resulting MPHF to use (log(3)+

ǫ)(2 + ε)n + o(n) bits of storage space by using a simple packing technique. In practice,

we can pack the values assigned to every group of 5 vertices into one byte because each

assigned value comes from a range of size 3 and 35 = 243 < 256. At generation time we

should use a small lookup table of size 5 containing: pow3 table[5] = {1, 3, 9, 27, 81}. To

assign a value x ∈ [0, 2] to a vertex u ∈ V we use:

byte = g[u/5] ;

byte += x ∗ pow3 table [u mod 5] ;
g[u/5] = byte ;

At retrieval time we should use a lookup table Tlookup of size 5*256=1280 bytes to speed

up the recovery of the value x assigned to a given vertex u, as shown below.

byte = g[u/5] ;

38 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

x = Tlookup[u mod 5][byte] ;

Each entry of the lookup table Tlookup is computed by:

Tlookup[i][j] = (j/pow3 table[i]) mod 3, (2.16)

where 0 ≤ i < 5 and 0 ≤ j < 256. In the experiments, for ǫ = 0.125 and ε = 0.09, the

resulting functions are stored in approximately 3.6n bits.

A More Effective Packing Scheme for r = 2

We now present a more effective packing scheme that allows us to compress the resulting

MPHFs to use (3+ ǫ)n bits, for ǫ > 0. The basic idea is to put the information to compute

the array g and the information to compute the function rank in different data structures.

Therefore, the range of the values in the array g is narrowed to [0, 1] instead of [0, 2]. Then,

it is now possible to spend just β = 1 bit for each one of the m values of g. This implies

that the array g is used to represent a phf ∈ PHF .

Let Va = {phf(x) | x ∈ S ∧ phf ∈ PHF} be the set of assigned vertices in V . To

compute function rank somehow we need to represent Va. Let R be a bit vector of size

|V | = m used to represent Va. That is, R[v] = 1 if v ∈ Va and R[v] = 0 otherwise. Thereby

we can redefine the function rank as follows.

Definition 19 Let rank : V → [0, n − 1] be a function defined as:

rank(v) = |{y ∈ V | y < v ∧R(y) = 1}|. (2.17)

In this case it would be required to store the array g and the vector R, both with m

one-bit entries, plus o(m) bits required to compute function rank in O(1) time. However,

we can create a compressed representation that uses just over 3 bits per key by noticing

that there exist exactly n assigned vertices in V , i.e., |Va| = n, and the value of g for all

non-assigned vertices Vna = V − Va is equal to 0. Thus, the contents of g and R are not

independent. For instance, there can be a non-zero bit in g[v] only if R[v] = 1. Therefore,

it is possible to create a compressed representation g′ that uses only n bits and enables

us to compute any bit of g in constant time. First of all, if R[v] = 0 we can conclude

that g[v] = 0. We want to initialize g′ such that g[v] = g′[rank(v)] whenever R[v] = 1,

i.e., v ∈ Va. This is possible since rank(v) is 1-1 on elements in Va. In conclusion, we can

replace g by g′ and reduce the space usage to n + m + o(m) bits. By using m = (2 + ǫ/2)n

2.2. ANALYTICAL RESULTS 39

for ǫ > 0 and (ǫ/2)n bits of extra space to support rank operations efficiently, the total

space is (3 + ǫ)n bits.

2.2.4 The 3-graph Instance

The use of 3-graphs allows us to generate more compact PHFs and MPHFs at the expense

of one more hash function h2. An acyclic 3-partite random 3-graph is generated with

probability Ω(1) for m ≥ c(3)n, where c(3) ≈ 1.23 is the minimum value for c(r) (see

Section 2.2.1). Therefore, we will be able to generate the PHFs of Eq. (2.4) so that they

will produce values in the range [0, (1.23 + ε)n − 1] for any ε ≥ 0. The values assigned to

the vertices are drawn from {0, 1, 2, 3} and, consequently, each value requires β = 2 bits to

be represented. Thus, based on the fact that for PHFs no ranking information is needed

(i.e., ǫ = 0), the resulting PHFs require 2(1.23 + ε)n bits to be stored, which corresponds

to 2.46n bits for ε = 0.

We can generate the MPHFs of Eq. (2.5) from the PHFs that take into account the

special value r = 3. The resulting MPHFs require (2 + ǫ)(1.23 + ε)n + o(n) bits to be

stored for any ǫ > 0 and ε ≥ 0, once the ranking information must be included. In the

experiments, for ǫ = 0.125 and ε = 0, we have got MPHFs that are stored in approximately

2.62n bits.

Packing the Resulting PHFs for r = 3 with Arithmetic Coding

For PHFs that map to the range [0, (1.23+ε)n−1] we can get still more compact functions.

This comes from the fact that the only significant values assigned to the vertices that

are used to compute Eq. (2.4) are {0, 1, 2}. Then, we can apply the arithmetic coding

technique aforementioned to get PHFs that require log(3)(1.23 + ε)n bits to be stored,

which is approximately 1.95n bits for ε = 0. For this we must replace the special value

r = 3 to 0.

2.2.5 The Use of Universal Hashing

The uniform hashing assumption is not feasible because each hash function hi : U →
[im

r
, (i + 1)m

r
− 1] for 0 ≤ i < r would require at least n log m

r
bits to be stored plus

the space for the PHFs. As mentioned in Chapter 1 (Section 1.4) limited randomness

represented by universal hash functions is often as good as total randomness when the key

universe U is much larger than the functions range.

40 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

For our experiments we choose hi from a family of heuristic hash functions proposed

in [50] with very good performance in practice but with no theoretical foundation. These

functions do not impose any upper bound for the key sizes and their description requires

just the storage of an integer that is used as a seed for a pseudo random number generator.

The function just loops over the key doing bitwise operations on blocks of 12 bytes and,

at the end, a 12 byte long integer is generated.

From a theoretical perspective, the uniform hashing assumption is not too harmful,

as we can use the split-and-share approach [30] to simulate a uniform hash function by

using o(n) bits of extra space. We use this in the design of the EM algorithm presented in

Chapter 4. In Chapter 3 we show how to use this idea to create uniform hash functions

for the small buckets generated in the EM algorithm.

2.2.6 The Space Requirements to Generate the Functions

In this section we show that the RAM algorithm presented in Figure 2.2 needs O(n)

computer words of main memory to generate functions of F . For that we will assume

that the key set S is kept in external memory and just the data structures involved in the

generation process are kept in internal memory. We need to maintain the following data

structures in internal memory.

1. The r uniform hash functions h0, h1, . . . , hr−1. Each function can be described in

o(n) bits by using the split-and-share technique.

2. The random acyclic r-partite hypergraph Gr. As m = c(r)n, it is possible to store

Gr in O(rn) computer words by using the data structure proposed in [32].

3. The list L of deleted edges obtained when we test whether Gr is a forest. It is also

stored in O(rn) computer words.

4. The description of a resulting function h ∈ F . This corresponds to βm bits if

h ∈ PHF and (β + ǫ)m + o(m) bits if h ∈ MPHF .

Therefore, for r = O(1), we need O(n) computer words to generate the functions of F .

This ends the proof of Theorem 3.

2.3. EXPERIMENTAL RESULTS 41

2.3 Experimental Results

The purpose of this section is to evaluate the performance of the RAM algorithm and to

compare it with the main practical perfect hashing algorithms we found in the literature.

In Section 2.3.1 we consider key sets that can be handled in internal memory by the RAM

algorithm. The experimental results for the RAM algorithm match the analytical results

presented in Section 2.2. In Section 2.3.2 we compare the RAM algorithm with the main

ones found in the literature.

The algorithms were implemented in the C language and are available under the GNU

Lesser General Public License (LGPL) at http://cmph.sf.net. The experiments were

carried out on a computer running the Linux operating system, version 2.6, with a 1.86

gigahertz Intel Core 2 processor with a 4 megabyte L2 cache and 1 gigabyte of main

memory. For the experiments we used two collections: (i) a set of 150 million randomly

generated 4 byte long IP addresses, and (ii) a set of 1, 024 million 64 byte long (on average)

URLs collected from the Web.

To compare the algorithms we used the following metrics: (i) The amount of time to

generate PHFs or MPHFs, referred to as Generation Time. (ii) The space requirement

for the description of the resulting PHFs or MPHFs to be used at retrieval time, referred

to as Storage Space. (iii) The amount of time required by a PHF or an MPHF for each

retrieval, referred to as Evaluation Time.

2.3.1 Performance of the RAM Algorithm

In this section we evaluate the performance of the RAM algorithm considering generation

time and storage space as metrics. We will consider two versions of the RAM algorithm:

(i) the version that works on random graphs with no cycles when r = 2 and, (ii) the version

that works on random hypergraphs with no cycles when r = 3.

Let us start with the version of the RAM algorithm that works on random graphs (i.e.,

r = 2) with no cycles. We can consider the runtime of the algorithm to have the form αnZ

for an input of n keys, where α is some machine dependent constant that further depends

on the length of the keys and Z is a random variable with geometric distribution with

mean 1/Pra, where Pra =
√

1 − (2/c)2 (see Theorem 4). All results in our experiments

for this version were obtained taking c = 2.09; the larger is c the faster is the algorithm

because Pra increases continuously with c.

The values chosen for n were 1, 2, 4, 8, 12, 16, 20 and 24 million keys. Although we

42 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

have 150 million random IPs and 1, 024 million URLs, on a PC with 1 gigabyte of main

memory, the RAM algorithm is able to handle an input with at most 24 million keys.

This is mainly because the sparse random hypergraph required to generate the functions

is memory demanding.

In order to estimate the number of trials for each value of n we used a statistical method

for determining a suitable sample size (see, e.g., [47, Chapter 13]). As we obtained different

values for each n, we used the maximal value obtained, namely, 300 trials in order to have

a confidence level of 95%.

Figure 2.13 presents the runtime for each trial. In addition, the solid line corresponds

to a linear regression model obtained from the experimental measurements. As we can

see, the runtime for a given n has a considerable fluctuation, which gives a coefficient of

determination R2 = 66%. However, the fluctuation also grows linearly with n, as explained

in the following.

0
20

0
40

0
60

0

T
im

e
(s

)

0 5 10 15 20 25

Number of keys (millions)

IPs (r = 2) Linear regression

(a) IPs collection

0
20

0
40

0
60

0
80

0

T
im

e
(s

)

0 5 10 15 20 25

Number of keys (millions)

URLs (r = 2) Linear regression

(b) URLs collection

Figure 2.13: Number of keys in S versus generation time for the RAM algorithm that works

on acyclic random graphs with r = 2. The solid line corresponds to a linear regression

model for the generation time (R2 = 66%).

The observed fluctuation in the runtimes is as expected; recall that this runtime

has the form αnZ with Z a geometric random variable with mean 1/Pra = 1/0.29

for c = 2.09. Thus, the runtime has mean αn/Pra = 3.45αn and standard devia-

tion αn
√

(1 − Pra)/(Pra)2 = 2.91αn. Therefore, the standard deviation also grows lin-

early with n, as experimentally verified in Figure 2.13.

The version of the RAM algorithm that works on hypergraphs with no cycles, where

r = 3, is the fastest version. This is a consequence of Theorem 5, because the probability

of obtaining a hypergraph with no cycles for r > 2 tends to 1 for c > c(r), where c(r) is

given in Eq. (2.15). For r = 3, c(3) ∈ (1.22, 1.23) and therefore we use c = 1.23 in our

experiments. We again use the statistical method for determining a suitable sample size

2.3. EXPERIMENTAL RESULTS 43

to estimate the number of trials to be run for each value of n. We got that just one trial

for each n would be enough with a confidence level of 95%. However, we made 25 trials.

This number of trials seems rather small, but, as shown in Figure 2.14, the behavior of this

version of the RAM algorithm is very stable and its runtime is almost deterministic (i.e.,

the standard deviation is very small), which gives a coefficient of determination R2 = 99%

for the linear regression model obtained.

0
10

20
30

40
50

T
im

e
(s

)

0 5 10 15 20 25

Number of keys (millions)

IPs (r = 3) Linear regression

(a) IPs collection

0
20

40
60

T
im

e
(s

)

0 5 10 15 20 25

Number of keys (millions)

URLs (r = 3) Linear regression

(b) URLs collection

Figure 2.14: Number of keys in S versus generation time for the RAM algorithm that

works on acyclic random hypergraphs with r = 3. The solid line corresponds to a linear

regression model for the generation time (R2 = 99%).

To conclude this section we now compare the two versions of the RAM algorithm by

taking n = 1, 12 and 24 million keys in the two collections and by considering generation

time and storage space as metrics. Table 2.1 presents the respective confidence intervals

for the generation time, which is given by the average time ± the distance from average

time considering a confidence level of 95%, and the respective values for the storage space.

It is possible to see that the generation time, as expected, is influenced by the key length

(IPs are 4 bytes long and URLs are 64 bytes long on average), and the storage space is

not. It is also possible to see that the fastest algorithm, for r = 3, also generates the most

compact functions.

2.3.2 Comparison with the Main Practical Results in the Liter-

ature

The main practical perfect hashing algorithms we found in the literature to compare the

RAM algorithm with are: Botelho, Kohayakawa and Ziviani [12] (referred to as BKZ),

Fox, Chen and Heath [38] (referred to as FCH), Majewski, Wormald, Havas and Czech [55]

44 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

n RAM algorithm Generation Time (sec) Storage Space

IPs URLs Bits/Key Size (MB)

1 × 106 r = 2 3.09 ± 0.28 4.00 ± 0.34 3.60 0.43

r = 3 1.32 ± 0.01 1.61 ± 0.01 2.62 0.31

12 × 106 r = 2 48.30 ± 4.42 59.04 ± 5.47 3.60 5.15

r = 3 23.2 ± 0.02 26.31 ± 0.06 2.62 3.75

24 × 106 r = 2 101.59± 9.13 125.65± 11.35 3.60 10.30

r = 3 51.19 ± 0.03 57.39 ± 0.04 2.62 7.50

Table 2.1: Comparison of the two versions of the RAM algorithm considering generation

time and storage space, and using n = 1, 12, and 24 million keys for the two collections.

(referred to as MWHC), and Pagh [61] (referred to as PAGH). For the MWHC algorithm

we used the version based on random hypergraphs with r = 3. We did not consider the one

that uses random graphs because it is shown in [12] that the BKZ algorithm outperforms

it. The BKZ algorithm is presented in Chapter 6.

We used the hash function presented in [50] for all the algorithms. For all the experi-

ments we used n = 3, 541, 615 keys for the two collections. The reason to choose a small

value for n is because the FCH algorithm has exponential time on n for the generation

phase, and the times explode even when a number of keys are a little over.

We first compare the RAM algorithm for constructing MPHFs with the other algo-

rithms, considering generation time and storage space. Table 2.2 shows that the RAM

algorithm for r = 3, and the MWHC algorithm are faster than the others in generating

MPHFs. This is because they work on random acyclic hypergraphs with r = 3 and the

probability of obtaining such a hypergraph tends to 1 as n tends to infinity. Therefore,

they scan the whole key set stored in external memory once with high probability, whereas

all the other algorithms scan the whole key set everytime a failure occurs and they have a

higher probability of failure.

It is also important to note that the resulting functions of the RAM algorithm are the

most compact functions. The storage space requirements in bits per key for the two versions

of the RAM algorithm are 3.6 when r = 2, and 2.62 when r = 3. For the BKZ, MWHC

and PAGH algorithms they are log n, 1.23 log n and 2.03 log n bits per key, respectively.

Therefore, the RAM algorithm is the best choice for sets that can be handled in main

memory.

We now compare the algorithms considering evaluation time. Table 2.3 shows the

2.3. EXPERIMENTAL RESULTS 45

Algorithms Generation Time (sec) Storage Space

IPs URLs Bits/Key Size (MB)

RAM
r = 2 11.39± 1.33 16.73± 1.89 3.60 1.52

r = 3 5.46 ± 0.01 6.74 ± 0.01 2.62 1.11

BKZ 9.22 ± 0.63 11.33± 0.70 21.76 9.19

FCH 2, 052.7± 530.96 2, 400.1± 711.60 4.22 1.78

MWHC 5.98 ± 0.01 7.18 ± 0.01 26.76 11.30

PAGH 39.18± 2.36 42.84± 2.42 44.16 18.65

Table 2.2: Comparison of the algorithms for constructing MPHFs considering generation

time and storage space, and using n = 3, 541, 615 for the two collections.

evaluation time for a random permutation of the n keys. Although the number of memory

probes at retrieval time of the MPHF generated by the PAGH algorithm is optimal [61]

(it performs only 1 memory probe), it is important to note in this experiment that the

evaluation time is smaller for the FCH and the RAM algorithms because the generated

functions fit entirely in the machine’s L2 cache (see the storage space size for the RAM

algorithm and the FCH algorithm in Table 2.2). Therefore, the more compact an MPHF

is, the more efficient it is if its description fits in the cache. For example, for sets of size

up to 13 million keys of any type the resulting functions generated by the RAM algorithm

with r = 3 will entirely fit in a 4 megabyte L2 cache.

Algorithms RAM BKZ FCH MWHC PAGH
r = 2 r = 3

Evaluation IPs 1.19 1.16 1.33 0.75 1.53 1.30

Time (sec) URLs 2.12 2.11 2.24 1.61 2.46 2.20

Table 2.3: Comparison of the algorithms considering evaluation time and using the collec-

tions IPs and URLs with n = 3, 541, 615.

In a converse situation, where the functions do not fit in the cache, the MPHFs gener-

ated by the PAGH algorithm are the most efficient, as shown in Table 2.4.

Finally, we compare the PHFs and MPHFs generated by the different versions of the

RAM algorithm. Table 2.5 shows that the generation times for PHFs and MPHFs are

almost the same, with the algorithms for r = 3 being the fastest because the probability

of obtaining an acyclic 3-graph for c = 1.23 tends to one, whereas the probability for a

2-graph where c = 2.09 tends to 0.29 (see Section 2.2.1). For PHFs with m = 1.23n,

the storage requirement drops from 2.62 to 1.95 bits per key when r = 3. The PHFs with

46 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

Algorithms RAM BKZ FCH MWHC PAGH
r = 2 r = 3

Evaluation IPs 7.11 8.02 4.86 − 6.29 4.60

Time (sec) URLs 10.17 11.49 9.29 − 9.61 9.25

Table 2.4: Comparison of the algorithms considering evaluation time and using the collec-

tions IPs and URLs with n = 15, 000, 000.

m = 2.09n, and m = 1.23n are the fastest at evaluation time because no ranking or packing

information needs to be computed.

RAM
m

Generation Time (sec) Eval. Time (sec) Sto. Space

r Packed IPs URLs IPs URLs Bits/Key

2
no 2.09n 10.50 ± 1.24 14.79 ± 1.58 0.68 1.63 2.09

yes n 11.39 ± 1.33 16.73 ± 1.89 1.19 2.12 3.60

no 1.23n 5.51 ± 0.01 6.76 ± 0.01 0.79 1.68 2.46

3 yes 1.23n 5.54 ± 0.01 6.78 ± 0.02 0.79 1.71 1.95

no n 5.46 ± 0.01 6.74 ± 0.01 1.16 2.11 2.62

Table 2.5: Comparison of the PHFs and MPHFs generated by the RAM algorithm, con-

sidering generation time, evaluation time and storage space metrics using n = 3, 541, 615

for the two collections. For packed schemes see Sections 2.2.3 and 2.2.4.

2.4 Conclusions

We have presented an efficient algorithm to generate a family of near-space optimal PHFs

or MPHFs for key sets that can be handled in the internal memory. The algorithm accesses

memory in a random fashion and then was called internal random access algorithm (RAM).

The space necessary to describe the functions takes a constant number of bits per key.

The space usage depends on the relation between the size m of the hash table and the size

n of the input. For m = n, the space usage is in the range 2.62n to 4.44n bits, depending on

the constants involved in the construction and in the evaluation phases. For m = 1.23n the

space usage is in the range 1.95n to 2.46n bits. In all cases, this is within a small constant

factor from the information theoretical minimum of approximately 1.44n bits for MPHFs

and 0.89n bits for PHFs, something that has not been achieved by previous algorithms,

except asymptotically for very large n (i.e, n > 2300).

2.4. CONCLUSIONS 47

The resulting functions are evaluated for a given element of a key set in constant

time. Moreover, as the generated function is space economical, its evaluation is likely to

be performed in the CPU cache, which is very efficient in time. However, the resulting

MPHFs still assume uniform hashing. In Chapter 3 we present a particular engineering of

the split-and-share technique [30] to simulate a uniform hash function on small key buckets.

This result is used by the EM algorithm presented in Chapter 4 to generate simple and

near space-optimal PHFs and MPHFs without assuming uniform hashing.

48 CHAPTER 2. THE INTERNAL PERFECT HASHING ALGORITHM

Chapter 3

Using Split-and-Share to Simulate

Uniform Hash Functions

In this chapter we show how to use the split-and-share approach presented in [30] to

simulate uniform hash functions on each of the small key buckets generated by the EM

algorithm (the EM algorithm is described in detail in Chapter 4). Our implementation

has two advantages compared to the implementation described in [30]. First, it generates

a family of hash functions for each bucket, with only a constant factor of space overhead.

This is necessary because the RAM algorithm needs to be able to choose new hash functions

when it fails because the random graph induced by the current hash functions contains

cycles. Second, the hash function is well suited for string data, and the buckets obtained

are provably very small – a fact that we exploit in the implementation.

We describe how to implement a single hash function in the family. To get the r

hash functions needed for the RAM algorithm we conceptually just keep r representations

(r = 3). In the implementation we exploit the fact that the number of random accesses can

be kept down by merging the hash function representations, as explained in Section 3.2.2.

A previous version of this result was presented in [15].

This chapter is organized as follows. In Section 3.1 we show how to split the key set

into small buckets. In Section 3.2 we show how to simulate uniform hash functions on the

small buckets. Finally, in Section 3.3 we conclude this chapter.

49

50 CHAPTER 3. USING SPLIT-AND-SHARE TO SIMULATE UNIFORM HASH FUNCTIONS

3.1 Splitting

The first ingredient we need is a hash function that maps the keys of S to Nb = 2b buckets,

such that all buckets are of approximately the same size. If a uniform hash function is

used and Nb < n/ log n, it is well known that the largest bucket will contain O(n/Nb) keys

with high probability. Most explicitly defined hash functions (e.g., universal or polynomial

hash functions) have much weaker guarantees. However, in [2] it is shown that if we fix a

concrete family of universal hash functions, it is possible to considerably diminish the loss

by using universal hash functions. We want to apply the following result presented in [2],

where Nb is assumed to be a power of 2:

Theorem 6 [2] Let H be the family of all linear transformations over Galois field 2, or

simply GF(2), the field of two elements, mapping {0, 1}L to {0, 1}b. Let Nb = 2b and

suppose that Nb ≤ n/ log n. Let S ⊆ {0, 1}L be a set of size n, and pick h0 ∈ H uniformly

at random. Then the expected size of the largest bucket when hashing S using h0 is

O(n log log(n)/Nb).

To apply the above result we need to identify strings with bit vectors in {0, 1}L. Since

we are dealing with zero-terminated strings, this is simple: Just pad with extra zeros at

the end to get a string of L bits. As we will see shortly, the time to hash a string will be

proportional to its length, not proportional to L.

The theorem says that the expected size of the largest bucket is within a factor

O(log log n) of the average bucket size. This means that with a function from H we can

split the set into O(n log log(n)/ℓ) buckets of maximum size ℓ. Thus, for a given constant

κ > 0 we have:

2b ≤ κn log log(n)

ℓ
b ≤ log n + log log log n − log ℓ + log κ (3.1)

For the EM algorithm to generate functions with space complexity O(n) bits we have

to impose the following restriction on ℓ:

Nb ≤ n

log n
ℓ ≥ κ log n log log n

ℓ = Ω(log n log log n) (3.2)

We will not analyze the constant in the number of buckets – instead, our algorithm

simply chooses the smallest number of buckets possible with a given hash function. Tech-

3.1. SPLITTING 51

nically this means that the space usage of the EM algorithm, as it is implemented, will be

O(n) bits only in expectation. However, given an upper bound on the constant of Theo-

rem 6 we may turn this into a worst-case space bound by picking a new function h0 until

the maximum bucket size is close to the expectation. Our implementation is engineered

to work with maximum bucket size ℓ = 256. For extremely large sets (hundreds of billions

of keys) a larger maximum bucket size ℓ is needed to keep the space at O(n) bits. This

happens because ℓ increases asymptotically with n, as shown in Eq. (3.2).

Let h0 : {0, 1}L → {0, 1}b be a function from the family H of Theorem 6 with the

following form: h0 = Ax, where A is a b × L matrix with entries in GF(2). To represent

h0 we need to store the bL bits of the matrix A. A matrix-vector product Ax can be

implemented by adding the columns corresponding to 1s in x. Note that addition of vectors

over GF(2) corresponds to bit-wise exclusive-or. For example, let us consider L = 3 bits,

b = 3 bits, x = 110 and

A =







1 0 1

0 0 1

1 1 0






·

Then

h0(x) =







1 0 1

0 0 1

1 1 0













1

1

0






=







1

0

1






+







0

0

1






=







1

0

0







The evaluation time for this is O(L), assuming that a column vector can be stored in

one machine word. To obtain faster evaluation we use a tabulation idea from [3] that gives

evaluation time O(L/ log σ) by using space O(σL/ log σ log n) for σ > 0. Note that if x is

short, e.g. 8 bits, we can simply tabulate all the function values and compute h0(x) by

looking up the value in an array. To make the same thing work for longer keys, split the

matrix A into parts of 8 columns each: A = A1|A2| . . . |A⌈L/8⌉, and create a lookup table

h0,i for each submatrix. Similarly split x into parts of 8 bits, x = x1x2 . . . x⌈L/8⌉. Now h0(x)

is the bit-wise exclusive-or of h0,i[xi], for i = 1, . . . , ⌈L/8⌉. Therefore, we have set σ to 256

so that keys of size L can be processed in chunks of log σ = 8 bits. Observe that all zero

characters in a string can simply be skipped, since their contribution to the matrix-vector

product will be zero. This means that the evaluation time is proportional to the number

of characters in the input string.

52 CHAPTER 3. USING SPLIT-AND-SHARE TO SIMULATE UNIFORM HASH FUNCTIONS

3.2 Simulating Uniform Hash Functions

The second ingredient of split-and-share is a single hash function ρ that, when applied to the

keys of a single bucket, behaves like a fully random hash function with high probability.

This function can then be shared among all buckets. As stated earlier, we will in fact

present a way of generating a family of hash functions such that for any bucket, each

function behaves like a fully random function with high probability. Technically, this is

done by making ρ a function of two parameters (see Eq. (3.3)), where the second parameter

s describes which function in the family is used. To make the analysis go through we need

the fact that for any bucket, the functions in the family are pairwise independent.

3.2.1 The Shared Function

Let y1, . . . , yk be independently chosen functions from a pairwise independent family of

functions from {0, 1}L to {0, 1}δ, where 2δ ≫ ℓ is a parameter to be chosen later. Also,

let p be a prime number, and k a positive integer. We will use a variation of a family due

to [31] that achieves full independence with high probability on small sets:

ρ(x, s)=

(

k
∑

j=1

tj [yj(x)] + s × t′j [yj(x)]

)

mod p. (3.3)

The tables t1, . . . , tk and t′1, . . . , t
′
k contain 2δ random values from {0, . . . , p − 1}. We

prove the following lemma to obtain the independence property we need:

Lemma 2 For any si, s
′
i ∈ {1, . . . , p − 1}, si 6= s′i, Bi ⊆ S of size |Bi|, where Bi is the set

of keys in bucket i, the following holds: With probability at least 1 − |Bi| (|Bi|/2δ)k over

the choice of y1, . . . , yk the function values ρ(x, s), x ∈ Bi, s ∈ {si, s
′
i} are independent and

uniformly distributed in {0, . . . , p − 1}.

Proof. Consider arbitrary values vx,s ∈ {0, . . . , p−1}, for x ∈ Bi, s ∈ {si, s
′
i}. Indepen-

dence means that the probability that ρ(x, s) = vx,s for all x ∈ Bi, s ∈ {si, s
′
i} is p−2|Bi|. To

arrive at a sufficient condition for independence, consider how the entries of t1, . . . , tk and

t′1, . . . , t
′
k are accessed when computing ρ(x, s) for x ∈ Bi and s ∈ {si, s

′
i}. Assume that

a key x ∈ Bi has an associated unique entry yjx
(x) in tjx

and t′jx
, that is not read when

evaluating ρ on keys in Bi −{x}. Then for any choice of values in other entries, the values

ρ(x, si) and ρ(x, s′i) are independent and uniformly distributed in {0, . . . , p − 1}. This is

because there is exactly one choice of tjx
[yjx

(x)] and t′jx
[yjx

(x)] for each value of vx,si
, vx,s′i

3.2. SIMULATING UNIFORM HASH FUNCTIONS 53

(two independent linear equations with two variables in GF(p)). In conclusion, a sufficient

condition for independence is that we can assign a unique entry to each x ∈ Bi.

Since y1, . . . , yk are chosen from a pairwise independent family we know that for any

x ∈ Bi the probability that x does not have a unique entry is at most (|Bi|/2δ)k. By the

union bound, the probability that some key in Bi does not have a unique entry is at most

|Bi| (|Bi|/2δ)k.

3.2.2 Using the Shared Function

We want to use the shared function to implement the RAM algorithm on the buckets. In

fact, we will use three independent shared functions ρ0, ρ1, ρ2, one for each hash function

needed by RAM. However, for reasons explained below all three functions will use the same

functions y1, . . . , yk.

Definition 20 Let |Bi| denote the number of keys mapped by h0 to bucket Bi and mi =
c|Bi|

3
, for c ≥ 1.23, then

hi0(x) = ρ0(x, si) mod mi

hi1(x) = ρ1(x, si) mod mi + mi

hi2(x) = ρ2(x, si) mod mi + 2mi

The variable si is specific for bucket i. The algorithm randomly selects si from

{1, . . . , p − 1} until the functions hi0, hi1, and hi2 work with the RAM algorithm of Sec-

tion 2.2.4, which is used to generate a PHF or an MPHF for each bucket. We will prove

in Section 3.2.3 that, with high probability, a constant fraction of the set of all choices of

si works.

In the implementation we have focused on ways to make the memory access pattern

more local when computing hi0, hi1, hi2. This is to make better use of the CPU cache.

The idea is that the tables used for storing the function descriptions are merged, such that

all 6 values looked up using y1(x) (two in each function ρj , where 0 ≤ j ≤ 2) are stored in

consecutive memory locations, and so on for y2(x), . . . , yk(x).

3.2.3 Analysis of The Shared Function

By Lemma 2 the probability that we fail to get a family of fully random hash functions

for all buckets is at most
∑

i |Bi| (|Bi|/2δ)k ≤ n(ℓ/2δ)k. If we choose, for example, δ =

54 CHAPTER 3. USING SPLIT-AND-SHARE TO SIMULATE UNIFORM HASH FUNCTIONS

⌈log(3
√

nℓ)⌉ and k ≥ 4, we have that this probability is o(1/n). Then, it will succeed with

high probability, i.e., 1 − o(1/n).

Finally, we need to show that it is possible to obtain, with high probability, a value

of si such that the functions hi0, hi1, and hi2 make the RAM algorithm work for Bi.

There are two issues. First, the functions hi0, hi1, and hi2 do not produce values that

are exactly uniformly distributed in {0, . . . , |Bi| − 1}, because |Bi| does not divide p.

However, it is not hard to see that the probability of a particular set of hash function

values (or, in the analysis of RAM, of a particular graph) is close to the probability in the

uniformly distributed case. More specifically, the probability is at most a factor emi|Bi|/p

higher, because the probability of getting a given set of hash values is upper bounded by

⌈p/mi⌉|Bi|/p|Bi| ≤ (1 + mi/p)|Bi|m
−|Bi|
i ≤ emi|Bi|/pm

−|Bi|
i . Since p ≫ ℓ ≥ |Bi| this means

that the failure probability will be very close to the uniform case.

The second issue is to show that even though any single choice of si makes RAM fail

with constant probability, εerr < 1, then with high probability there are many values of si

that will make RAM work. We may assume that the choice of y1, . . . , yk was successful, i.e.,

that all functions in Definition 20 are fully random on all buckets. The expected number X

of choices of si that makes the hash functions fail is εerrp, since there are p possible values

for si. Lemma 2 tells us that the events that the hash functions fail, for any two different

values of si, are independent. This means that Var(X) is bounded by the expectation,

and consequently Var(X) ≤ εerrp. Chebyshev’s inequality (see e.g. [58]) then says that

the probability that more than p(1 + εerr)/2 choices of si make the hash functions fail is

bounded by (1 − εerr)
2/p.

3.2.4 Implementation Details

The family of linear hash functions over GF(2) enables us to compute the functions h0,

y1, y2, y3, . . . , yk in parallel. The idea is to take a linear function h′ : {0, 1}L → {0, 1}γ from

the family of linear hash functions analyzed in [2] that produces a γ-bit fingerprint for each

key x ∈ S ⊆ {0, 1}L with sufficiently many bits, and chop the hash function values into

(disjoint) parts. Clearly, these functions will be independent.

The keys in S are mapped to a γ-bit fingerprint set F . The value of γ must be encoded

by at least b + kδ bits so that a single fingerprint will be able to represent the values of

functions h0, y1, y2, y3, . . . , yk. As the keys in S are assumed to be all distinct, then all

fingerprints in F should be distinct as well. As the function h′ comes from a family of

universal hash functions [2], the probability that there exist two keys that have the same

3.3. CONCLUSIONS 55

values under all functions is at most
(

n
2

)

/2b+kδ. This probability can be made negligible by

choosing k and δ appropriately.

In the implementation we used a function that produces γ = 96 bits. The 32 most

significant bits are used to compute h0, i.e., h0(x) = h′(x)[65, 96] >> (32− b), where x ∈ S

and the symbol >> denotes the right shift of bits. The other 64 bits correspond then to

the values of y1(x), y2(x), . . . yk(x), for k = 4, leading to δ = 16. However, to save space

for storing the tables used for computing hi0, hi1, and hi2, we hard coded the linear hash

function to make the most significant bit of each chunk of 16 bits equal to zero. Therefore,

δ = 15.

The last parameter related to the hash functions we need to talk about is the prime

number p. It should be chosen as large as possible, and in all cases p ≫ ℓ. In the

implementation we set it to the largest 32-bit integer that is prime, i.e, p = 4294967291.

Although it is always possible to set up a configuration in which the EM algorithm

will work with high probability, the implementation is engineered for ℓ = 256. We have

two reasons for choosing ℓ = 256. The first one is to keep the bucket size small enough to

be represented by 8-bit integers. The second is to allow the memory accesses during the

generation time and the resulting function evaluation to be done in the CPU cache most

of the time.

In experiments we noticed that the constant κ presented in Eq. (3.1) and in Eq. (3.2)

is in the range 0 < κ < 1. For instance, taking n = 1, 024 billion keys we got b = 23 and

therefore κ ≈ 0.42. This holds for smaller values of n, see Section 4.3.1. Therefore, based

on those experimental results, it is possible to estimate the largest problem we can solve in

32-bit and 64-bit architectures. The largest problem we can solve in a 32-bit architecture

is a key set with 500 billion keys. The problem here is that for larger sets more than 32

bits would be required to address a single bucket, i.e., b > 32. But in 64-bit architecture

we can deal with sets of sizes up to 1, 8× 1021 keys with high probability. For larger sets b

would require more than 64 bits. We remark that these estimates are based on the constant

κ ≈ 0.42 obtained experimentally and this can change for n asymptotically large.

3.3 Conclusions

We have presented a particular engineering of the split-and-share technique [30] to simulate

a uniform hash function on the small buckets generated by the EM algorithm presented in

Chapter 4. The main contribution is that we are able to generate a family of uniform hash

functions for each bucket with only a constant factor of space overhead. This is necessary

56 CHAPTER 3. USING SPLIT-AND-SHARE TO SIMULATE UNIFORM HASH FUNCTIONS

because the RAM algorithm needs to be able to choose new hash functions when it fails

due to the occurrence of cycles in the random graph induced by the current hash functions.

Chapter 4

The External Cache-Aware Perfect

Hashing Algorithm

In this chapter we use a number of techniques from the literature to obtain a novel external

memory perfect hashing algorithm, referred to as EM algorithm, which is cache-aware. The

EM algorithm is for key sets that do not fit in the internal memory. The main novelties

are: (i) it uses external memory to allow the generation of PHFs or MPHFs for sets on

the order of a billion keys; (ii) it generates the resulting functions without assuming that

uniform hash functions are available for free; and (iii) it partitions the input into buckets

small enough to fit in the CPU cache.

The EM algorithm produces MPHFs that requires approximately 3.3 bits per key of

storage space. For PHFs with range {0, . . . , 1.23n − 1} the space usage drops to approx-

imately 2.7 bits per key. The main insight supporting the EM algorithm is that it splits

the incoming key set S into small buckets containing at most ℓ = 256 keys. Then, a PHF

or an MPHF is generated for each bucket and using an offset array we obtain a PHF or an

MPHF for the whole set S. Therefore, the EM algorithm works on subsets of size lower

than 256 and this increases the probability of cache hits. That is why the EM algorithm

generates the functions as fast as the algorithms that operate only on data structures stored

in internal memory.

The EM algorithm increases one order of magnitude in the size of the greatest key set

for which an MPHF was obtained in the literature [12]. This improvement comes from a

combination of a novel perfect hashing scheme that greatly simplifies previous methods,

and the fact that the EM algorithm is designed to make good use of memory hierarchy.

Also, the algorithm is theoretically sound because we have completely analyzed its time

57

58 CHAPTER 4. THE EXTERNAL CACHE-AWARE PERFECT HASHING ALGORITHM

and space usage without unrealistic assumptions. This is a accomplished because the RAM

algorithm used to generate an MPHF for each bucket uses the hash functions designed in

Chapter 3, which simulate uniform hash functions on small buckets.

We demonstrate the scalability of the EM algorithm by considering a set of 1.024

billion strings (URLs from the world wide web of average length 64), for which we con-

struct a MPHF on a commodity PC in approximately 50 minutes. If we use the range

{0, . . . , 1.23n− 1}, the space for the PHF is less than 324 MB, and we still get hash values

that can be represented in a 32 bit word. Certainly, the EM algorithm will be useful for a

number of current and practical data management problems that were not possible before.

A previous version of the EM algorithm was presented in [15].

This chapter is organized as follows. In Section 4.1 we present the EM algorithm. In

Section 4.2 we analyze the EM algorithm. In Section 4.3 we evaluate the EM algorithm

experimentally. Finally, in Section 4.4 we conclude this chapter.

4.1 Design of the EM Algorithm

The EM algorithm is also a two-step randomized algorithm of Las Vegas type because it

uses the Las Vegas type RAM algorithm in its second step, as illustrated in Figure 1.2.

The first step, referred to as partitioning step, takes a key set S ⊆ {0, 1}L and uses a hash

function h0 : S → {0, 1}b to partition S into Nb = 2b buckets for some integer b. The

second step, referred to as searching step, generates a PHF or an MPHF for each bucket

i, 0 ≤ i < Nb, and computes the offset array. The PHFs or MPHFs for the buckets are

generated with the version of the RAM algorithm described in Section 2.2.4.

The EM algorithm generates a family J of PHFs or MPHFs, defined as follows:

Definition 21 Let Bi = {x ∈ S | h0(x) = i} denote the ith bucket. Let fi ∈
F(PHF ,MPHF) denote a PHF if fi ∈ PHF or an MPHF if fi ∈ MPHF on Bi.

Let Mi be the maximum value of fi on Bi plus one, and offset [i] =
∑i−1

j=0 Mi. Note that, if

fi ∈ MPHF , then Mi = |Bi|. Let H be the family of linear hash functions presented in

Section 3.1. Therefore,

J (F ,H) = {f | f(x) = fi(x) + offset [i], i = h0(x), fi ∈ F , h0 ∈ H} (4.1)

is a family of PHFs or MPHFs for the whole set S. Thus, the problem is reduced to

computing and storing the function fi for each bucket and the offset array.

4.1. DESIGN OF THE EM ALGORITHM 59

Now we are going to design and analyze the EM algorithm to prove the following

theorem:

Theorem 7 For a given key set S ⊆ {0, 1}L with n keys, where L = O(1) is the maximum

key length in bits, the family H of all linear transformations over GF(2), a function h0 : S →
{0, 1}b taken uniformly at random from H, an induced set of buckets ξ = {Bi | Bi = {x ∈
S | h0(x) = i}}, where |ξ| = Nb = 2b, max |Bi| = ℓ, b ≤ log n+log log log n−log ℓ+log κ, ℓ ≥
κ log n log log n, for κ > 0, it is possible to find in expected linear time all functions fi ∈ F ,

0 ≤ i < Nb, and the offset array so that any function f ∈ J can be computed in O(1) time

and described in log(3)cn+o(n)+O(log n) bits if f is a PHF, and in (2+ǫ)cn+o(n)+O(log n)

bits if f is an MPHF, where c ≥ 1.23 and ǫ > 0. For that O(Nf) computer words are

required, where Nf = Ω(nτ) and 0 < τ < 1.

We consider the situation in which the set of all keys may not fit in the internal memory

and so the first step of the algorithm is necessary to deal with the keys stored on disk to

form the buckets. The EM algorithm first scans the list of keys and computes the hash

function values that will be needed afterwards in the algorithm. These values will (with

high probability) distinguish all keys, so we can discard the original keys. It is well known

that hash values of at least 2 log n bits are required to make this work. Thus, for sets of a

billion keys or more we cannot expect the list of hash values to fit in the internal memory

of a standard PC.

To form the buckets we sort the hash values of the keys according to the value of h0.

Since we are interested in scalability for large key sets, this is done using an implementation

of an external memory mergesort [53] with some nuances to make it work in linear time.

The total work on disk consists of reading the keys, plus writing and reading the hash

function values once. Since the h0 hash values are relatively small (less than 15 decimal

digits) we can use radix sort to do the internal memory sorting.

We have designed two versions of the EM algorithm. The first one uses the hash

functions described in Section 3.2, which guarantee that the EM algorithm can be made to

work for every key set with high probability. The second one uses faster and more compact

pseudo random hash functions proposed in [50], referred to as heuristic EM algorithm

from now on, because it is not guaranteed that it can be made to work for every key set.

However, empirical studies show that limited randomness properties are often as good as

total randomness in practice [2], and the heuristic EM has worked for all key sets we have

applied it to so far.

60 CHAPTER 4. THE EXTERNAL CACHE-AWARE PERFECT HASHING ALGORITHM

Figure 4.1 presents a pseudo code for the EM algorithm. The detailed description of

the partitioning and searching steps are presented in Sections 4.1.1 and 4.1.2, respectively.

The internal algorithm presented in Section 2.2.4 uses three hash functions hi0, hi1, and

hi2 to compute a function fi ∈ F . These hash functions, as well as the hash function h0

used in the partitioning step of the algorithm, were described in Section 3.2.

function EM (S , H , {f0, f1, . . . fNb−1} , offset)
Partitioning (S , H , Files)

Searching (Files , {f0, f1, . . . fNb−1} , offset)

Figure 4.1: The EM algorithm.

4.1.1 Partitioning Step

The partitioning step performs two important tasks. First, the variable-length keys are

mapped to γ-bit fingerprints by using a linear hash function h′ : S → {0, 1}γ taken

uniformly at random from the family H of linear hash functions presented in Section 3.1.

That is, the variable-length key set S ⊆ {0, 1}L is mapped to a fixed-length key set F

of fingerprints. Second, the set S of n keys is partitioned into Nb buckets, where b is a

suitable parameter chosen to guarantee that each bucket has at most ℓ = Ω(log n log log n)

keys with high probability (see Eq. (3.2)). It outputs a set of Files containing the buckets,

which are merged in the searching step when the buckets are read from disk. Figure 4.2

presents the partitioning step.

The critical point in Figure 4.2 that allows the partitioning step to work in linear time

is the internal sorting algorithm. We have two reasons to choose radix sort. First, it sorts

each key block Bj in linear time, since keys are short integer numbers (less than 15 decimal

digits). Second, it just needs O(|Bj|) words of extra memory so that we can control the

memory usage independently of the number of keys in S.

At this point one could ask: why not to use the well known replacement selection

algorithm to build files larger than the internal memory area size? The reason is that

the radix sort algorithm sorts a block Bj in time O(|Bj|) while the replacement selection

algorithm requires O(|Bj| log |Bj |). We have tried out both versions and the one using the

radix sort algorithm outperforms the other. A worthwhile optimization we have used is

the last run optimization proposed in [53], where the last block is kept in memory instead

of dumping it to disk to be read again in the second step of the algorithm.

4.1. DESIGN OF THE EM ALGORITHM 61

function Partitioning (S , H , Files)
◮ Let β be the size in bytes of the fixed-length key set F
◮ Let µ be the size in bytes of an a priori reserved internal memory area
◮ Let Nf = ⌈β/µ⌉ be the number of key blocks that will be read from disk

into an internal memory area

1. select h′ uniformly at random from H
2. for j = 1 to Nf do

3. DiskReader (Sj) {read a key block Sj from disk}
4. Hashing (Sj, Bj) {store h′(x), for each x ∈ Sj, into Bj, where |Bj | = µ}
5. BlockSorter (Bj) {cluster Bj into Nb buckets using an indirect radix sort algorithm that

takes h0(x) for x ∈ Sj as sorting key (i.e, the b most significant bits
of h′(x)) and if any bucket Bi has more than ℓ keys restart in the

partitioning step}
6. BlockDumper (Bj, Files [j]) {dump Bj to disk into Files [j]}

Figure 4.2: Partitioning step.

Figure 4.3(a) shows a logical view of the Nb buckets generated in the partitioning step.

In reality, the γ-bit fingerprints belonging to each bucket are distributed among many files,

as depicted in Figure 4.3(b). In the example of Figure 4.3(b), the γ-bit fingerprints in

bucket 0 appear in files 1 and Nf , the γ-bit fingerprints in bucket 1 appear in files 1, 2 and

Nf , and so on.

a)

...

...

b)

...
... ...

Buckets Physical View

Files [1] Files[2] Files [Nf]

0 1 2

Buckets Logical View

Nb − 1

Figure 4.3: Situation of the buckets at the end of the partitioning step: (a) Logical view

(b) Physical view.

This scattering of the γ-bit fingerprints in the buckets could generate a performance

problem because of the potential number of seeks needed to read the γ-bit fingerprints in

each bucket from the Nf files on disk during the second step. But, as we show afterwards

in Section 4.2.1, the number of seeks can be kept small by using buffering techniques.

62 CHAPTER 4. THE EXTERNAL CACHE-AWARE PERFECT HASHING ALGORITHM

4.1.2 Searching Step

Figure 4.4 presents the searching step. The searching step is responsible for generating

a function fi ∈ F for each bucket (using the RAM algorithm presented in Section 2.2.4)

and for computing the offset array. Statement 1 of Figure 4.4 constructs a heap H of

function Searching (Files , {f0, f1, . . . fNb−1} , offset)

◮ Let H be a minimum heap of size Nf

◮ Let the order relation in H be given by
i = x[γ − b + 1, γ] for x ∈ F

1. for j = 1 to Nf do { Heap construction }
2. Read the first γ-bit fingerprint x from Files[j] on disk
3. Insert (i, j, x) in H
4. for i = 0 to Nb − 1 do

5. BucketReader (Files , H, Bi) {Read bucket Bi from disk driven by heap H}
6. i f MPHFGen (Bi, fi) fails then

Restart the partitioning step
7. offset [i + 1] = offset [i] + |Mi|
8. MPHFDumper (fi, offset [i]) {Write the description of fi and offset [i] to the disk}

Figure 4.4: Searching step.

size Nf , which is well known to be linear on Nf . The order relation in H is given by the

bucket address i (i.e., the b most significant bits of x ∈ F). Statement 4 has four steps.

In statement 5, a bucket is read from disk, as described below. In statement 6, a function

fi is generated for each bucket Bi using the internal random access memory algorithm

presented in Section 2.2.4. In statement 7, the next entry of the offset array is computed.

Finally, statement 8 writes the description of fi and offset [i] to disk. Note that to compute

offset [i + 1] we just need Mi (i.e., the maximum value of fi in bucket Bi) and offset [i]. So,

we just need to keep two entries of the offset array in memory all the time.

The algorithm to read bucket Bi from disk is presented in Figure 4.5. Bucket Bi is

distributed among many files and the heap H is used to drive a multiway merge operation.

Statement 2 extracts and removes triple (i, j, x) from H , where i is a minimum value in

H . Statement 3 inserts x in bucket Bi. Statement 4 performs a seek operation in Files[j]

on disk for the first read operation and reads sequentially all γ-bit fingerprints x ∈ F that

have the same index i and inserts them all in bucket Bi. Finally, statement 5 inserts in

H the triple (i′, j, x′), where x′ ∈ F is the first γ-bit fingerprint read from Files[j] (in

statement 4) that does not have the same bucket address as the previous keys.

4.2. ANALYTICAL RESULTS 63

function BucketReader (Files , H , Bi)
1. while bucket Bi is not full do

2. Remove (i, j, x) from H
3. Insert x into bucket Bi

4. Read sequentially all γ-bit fingerprints from Files [j] that have the same i
and insert them into Bi

5. Insert the triple (i′, j, x′) in H, where x′ is the first γ-bit fingerprint read
from Files [j] that does not have the same bucket index i

Figure 4.5: Reading a bucket.

4.2 Analytical Results

4.2.1 The Linear Time Complexity

In this section we show that the EM algorithm runs in expected O(n) time. For that end

we need to show that the partitioning and searching steps run in expected O(n) time.

Analysis of the Partitioning Step

The partitioning step presented in Figure 4.2 runs in expected O(n) time. As in statement

1 we need to select a function h′ from the family H of linear hash functions presented

in Section 3.1 and each function h′ is described in O(L log n) bits, this statement has

cost O(L) in the Word RAM model of computation [41] with a word size equal to log n

bits (recall that L is the maximum key length in bits). Each iteration of the loop for in

statement 2 runs in O(|Bj|) time, 1 ≤ j ≤ Nf , where |Bj | is the number of γ-bit fingerprints

that fit in block Bj of size µ. This is because statement 3 just read |Bj | keys from disk,

statement 4 compute the related fingerprints and stores them all into the internal memory

area of size µ, statement 5 runs a radix sort algorithm that is well known to be linear on

the number of keys it sorts (i.e., |Bj | γ-bit fingerprints), and statement 6 just dumps |Bj|
γ-bit fingerprints to the disk into File[j]. Thus, the loop for runs in

∑Nf

j=1 O(|Bj|) time.

As
∑Nf

j=1 |Bj| = n, then the partitioning step runs in expected O(n) time. It is expected

because the partitioning step can fail in statement 5 whenever a bucket with more than ℓ

keys is generated. However, it will succeed with high probability, as showed in Section 3.2.3

and, in turn, the number of iterations is O(1).

64 CHAPTER 4. THE EXTERNAL CACHE-AWARE PERFECT HASHING ALGORITHM

Analysis of the Searching Step

The searching step presented in Figure 4.4 also runs in expected O(n) time. It is expected

because the RAM algorithm used for the buckets is a randomized algorithm that can

fail with small probability for a given bucket, when we cannot find appropriated hash

functions hi0, hi1 and hi2. When it fails, we restart in the partitioning step. By using the

hash functions designed in Section 3.2, it is possible to make the searching step work with

high probability, then the number of iterations will be bounded by a constant.

Let us, first, analyze the number of heap operations performed in statement 5, which

reads |Bi| γ-bit fingerprints of bucket Bi and is detailed in Figure 4.5. It is well known

that the heap construction of statement 1 runs in O(Nf) time. Each iteration of statement

4 performs two heap operations in statement 5 (see statements 2 and 5 in Figure 4.5) and

each one costs O(log Nf). So, the total cost of statement 4 in terms of heap operations is

2 × Nb × O(log Nf). Considering that: (i) Nb < n
log n

and (ii) Nf ≪ n, we can conclude

that the number of heap operations is O(n).

However, in the worst case the γ-bit fingerprints of bucket i are spread in at most ℓ files

on disk (recall that ℓ is the maximum number of keys found in any bucket). Therefore,

we need to take into account that the critical step in reading a bucket is in statement 4 of

Figure 4.5, where a seek operation in Files [j] may be performed by the first read operation.

In order to amortize the number of seeks performed we use a buffering technique [51].

We create a buffer j of size q = µ/Nf for each file j, where 1 ≤ j ≤ Nf (recall that

µ is the size in bytes of an a priori reserved internal memory area). Every time a read

operation is requested to file j and the data is not found in the jth buffer, q bytes are

read from file j to buffer j. Hence, the number of seeks performed in the worst case is

given by β/q (remember that β is the size in bytes of the fixed-length key set F). For

that we have made the pessimistic assumption that one seek happens every time buffer j

is filled in. Thus, the number of seeks performed in the worst case is γn/8q, since after

the partitioning step we are dealing with γ-bit fingerprints instead of 64-byte URLs, on

average. Therefore, the number of seeks is linear on n and amortized by q.

It is important to emphasize two things. First, the operating system uses techniques

to diminish the number of seeks and the average seek time. This makes the amortization

factor to be greater than q in practice. Second, almost all main memory is available to be

used as file buffers because just the γ-bit fingerprints of the bucket being processed and

O(Nf) words for the heap must be kept in main memory during the searching step.

4.2. ANALYTICAL RESULTS 65

To conclude the searching step analysis we need to show that statements 6 and 8 perform

a number of operations proportional to |Bi|. If this is true, then the rest of statement 4

runs in φ
∑Nb−1

i=0 |Bi| time, where φ is a machine-dependent constant.

Statement 6 runs the algorithm used to generate the function fi of each bucket. That

algorithm is linear on the number of keys it is applied to, as we have shown in Section 2.2.1.

As it is applied to buckets with |Bi| keys, then statement 6 performs a number of operations

proportional to |Bi|.
Statement 8 has time complexity proportional to |Bi| because it writes to disk the

description of each generated function fi and each description is stored in O(|Bi|) bits (see

Section 2.2.2 for details). As
∑Nb−1

i=0 |Bi| = n, then statement 4 runs in O(n) time. In

conclusion, the EM algorithm takes expected O(n) time because both the partitioning and

the searching steps run in expected O(n) time.

4.2.2 The Space Requirements to Describe the Functions

The description of the resulting functions is compounded by the function h0, the offset

array, and the functions fi ∈ F(PHF ,MPHF), 0 ≤ i < Nb. Remember that b is given

by Eq. (3.1) and Nb < n/ log n. The function h0 comes from the family H of linear hash

functions over GF(2) and therefore requires O(L log n) bits to be stored. By assuming that

L = O(1), then h0 takes O(log n) bits of space. The offset array has Nb entries of log n

bits and, then, requires o(n) bits since Nb < n/ log n.

To store each function fi, if fi ∈ PHF then it requires |fi| = log(3)c|Bi| bits of

space, for c ≥ 1.23. If fi ∈ MPHF then it requires |fi| = (2 + ǫ)c|Bi| + o(|Bi|) bits of

space, for c ≥ 1.23 and ǫ > 0. Therefore,
∑Nb−1

i=0 |fi| = log(3)cn bits if fi is a PHF, and
∑Nb−1

i=0 |fi| = (2 + ǫ)cn + o(n) bits if fi is an MPHF.

Additionally, we need to store the hash functions hi0, hi1, and hi2 (see Definition 20).

For this we need to store 6k tables with 2δ entries of log p bits, where p is a large prime

number, and the seed numbers si of log p bits, where 0 ≤ i < Nb. We can assume with no

loss of generality that log p = O(log n). Therefore, as δ = ⌈log(3
√

nℓ)⌉ and k = 4 are values

chosen to make the EM algorithm to work with high probability and Nb < n/ log n, then,

hi0, hi1, and hi2 are stored in o(n) + o(n) = o(n) bits.

Putting this all together, we have that the number of bits required to store a resulting

function f ∈ J is log(3)cn+o(n)+O(log n) bits if f is a PHF and (2+ǫ)cn+o(n)+O(log n)

bits for ǫ > 0 if f is an MPHF.

66 CHAPTER 4. THE EXTERNAL CACHE-AWARE PERFECT HASHING ALGORITHM

4.2.3 The Space Requirements to Generate the Functions

In this section we show that the EM algorithm presented in Figure 4.1 needs O(Nf) com-

puter words of main memory to generate the functions of J . We need to maintain the

following data structures in internal memory.

1. The internal memory area of size µ bytes to be used in the partitioning step and in

the searching step. The size µ is fixed a priori and depends only on the amount of

internal memory available to run the algorithm (i.e., it does not depend on the size

n of the problem).

2. The main memory required to run the indirect radix sort algorithm. It just needs

O(|Bj|) words of extra memory so that we can control the memory usage indepen-

dently of the size of the problem and can be fixed a priori.

3. The additional space required is O(Nf) computer words that corresponds to the size

of the heap H used to drive a Nf -way merge operation in the searching step, which

allows the merge operation to be performed in one pass through each file.

Therefore, as the memory usage in the partitioning step does not depend on the number

of keys in S and, in the searching step, the internal algorithm is applied to problems of size

up to ℓ keys, we can conclude that the EM algorithm requires O(Nf) computer words to

generate a function f ∈ J . As shown in [1, Theorem 3.1], to get a linear time complexity

we need Nf = Ω(nτ) computer words for 0 < τ < 1 and to allow the merge operation to

be performed in one pass we need τ = 0.5. This ends the proof of Theorem 7.

4.3 Experimental Results

The purpose of this section is to evaluate the performance of the EM algorithm and to

compare it with both the RAM algorithm presented in Chapter 2 and the algorithm by

Fox, Chen and Heath [38] (referred to as FCH). We do not consider the other practical

perfect hashing algorithms compared with the RAM algorithm in Section 2.3.2 because the

RAM algorithm outperforms them in the same experimental setup. In Section 4.3.1 we

consider key sets that cannot be handled in internal memory. In this case, the partitioning

in small buckets and the use of external memory are needed by the EM algorithm. The

experimental results for the EM algorithm match the analytical results presented in Section

4.2. In Section 4.3.2 we carry out the comparison.

4.3. EXPERIMENTAL RESULTS 67

The algorithms were implemented in the C language and are available under the GNU

Lesser General Public License (LGPL) at http://cmph.sf.net. The experiments were

carried out on a computer running the Linux operating system, version 2.6, with a 1.86

gigahertz Intel Core 2 processor with a 4 megabyte L2 cache and 1 gigabyte of main

memory. For the experiments we used the same two collections considered in Chapter 2:

(i) a set of 150 million randomly generated 4 byte long IP addresses, and (ii) a set of 1, 024

million 64 byte long (on average) URLs collected from the Web.

To compare the algorithms we used the following metrics: (i) The amount of time to

generate PHFs or MPHFs, referred to as Generation Time. (ii) The space requirement

for the description of the resulting PHFs or MPHFs to be used at retrieval time, referred

to as Storage Space. (iii) The amount of time required by a PHF or an MPHF for each

retrieval, referred to as Evaluation Time.

4.3.1 Performance of the EM Algorithm

In this section we evaluate the performance of the EM algorithm considering generation

time and storage space as metrics. First, we are interested in verifying the claim that the

EM algorithm runs in linear time. Therefore, we run both versions of the algorithm for

several numbers n of keys in the two collections. The values chosen for n were 1, 2, 4, 8,

16, 32, 64, 128, 256, 512 and 1, 024 million keys. The size µ of the a priori reserved internal

memory area was set to 250 megabytes. Subsequently, we show how µ affects the runtime

of the algorithm. The parameter b (see Eq. (3.1)) was set to the minimum value that gives

us a maximum bucket size lower than ℓ = 256. For each value chosen for n, the respective

values for b are 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 and 23 bits.

In order to estimate the number of trials for each value of n we used a statistical

method for determining a suitable sample size [47, Chapter 13]. We got that just one

trial for each n would be enough with a confidence level of 95%. However, we conducted

25 trials. This number of trials seems rather small but, as shown below, the behavior of

the EM algorithm is very stable and its runtime is almost deterministic (i.e., the standard

deviation is very small) because it is a random variable that follows a (highly concentrated)

normal distribution.

Figure 4.6 presents the runtime for each trial in the two collections. In addition, the solid

and dashed lines correspond to a linear regression model obtained from the experimental

measurements for both: (i) the EM algorithm and (ii) the heuristic EM algorithm (HEM).

For both versions of the EM algorithm the coefficient of determination R2 is 99%. As we

68 CHAPTER 4. THE EXTERNAL CACHE-AWARE PERFECT HASHING ALGORITHM

were expecting, the runtime for a given n has almost no variation and the heuristic EM

algorithm is faster than the EM algorithm because it uses a faster pseudo random hash

function, as explained later in this section.
0

50
10

0
15

0
20

0

T
im

e
(s

)

0 50 100 150

Number of keys (millions)

EM Linear regression for EM
HEM Linear regression for HEM

(a) IPs collection
0

10
00

20
00

30
00

T
im

e
(s

)

0 200 400 600 800 1000

Number of keys (millions)

EM Linear regression for EM
HEM Linear regression for HEM

(b) URLs collection

Figure 4.6: Number of keys in S versus generation time for the EM algorithm and the

heuristic EM algorithm. The solid and dashed lines correspond to a linear regression

model for the generation time (R2 = 99%).

An intriguing observation is that the runtime of both versions of the EM algorithm

is almost deterministic. A given bucket i, 0 ≤ i < Nb (recall that Nb = 2b), is a small

key set (at most 256 keys) and, the runtime of the building block algorithm is a random

variable Xi that follows a geometric distribution with mean 1/Pra ≈ 1, because Pra → 1

as n → ∞ for the RAM algorithm where r = 3. Let Y =
∑

0≤i<Nb
Xi denote the runtime of

the searching step of the EM algorithm. Under the hypothesis that the Xi are independent

and bounded, the law of large numbers (see, e.g., [47]) implies that the random variable

Y/Nb converges to a constant as n → ∞. This and the fact that the partitioning step

was never restarted because the parameter b is chosen so that the maximum bucket size

ℓ is lower than or equal to 256 with high probability explains why the runtime is almost

deterministic.

The next important metric on PHFs and MPHFs is the space required to store the

functions. Table 4.1 shows that the EM algorithm can be used for constructing PHFs and

MPHFs that require on average 2.6 and 3.21 bits per key to be stored, respectively. It also

shows that the heuristic EM algorithm outputs PHFs and MPHFs that require on average

2.51 and 3.1 bits per key to be stored, respectively.

The lookup tables used by the hash functions of the EM algorithm require a fixed

storage cost of 3, 345, 409 bytes and this cost is not considered in Table 4.1. To avoid the

space needed for lookup tables we have implemented the heuristic EM algorithm. It uses

4.3. EXPERIMENTAL RESULTS 69

n b EM (Bits/key) Heuristic EM (Bits/key)

PHF MPHF PHF MPHF

105 9 2.41 3.00 2.32 3.04

106 13 2.67 3.29 2.54 3.12

107 16 2.53 3.13 2.42 2.97

108 20 2.74 3.34 2.70 3.21

109 23 2.67 3.29 2.55 3.12

Table 4.1: Space usage to respectively store the resulting PHFs and MPHFs of the EM

algorithm and the Heuristic EM algorithm.

the pseudo random hash function proposed in [50] to replace the hash functions described

in Chapter 3. The Jenkins function just loops around the key, doing bitwise operations

over chunks of 12 bytes. Then, it returns the last chunk. Thus, in the mapping step, the

key set S is mapped to F , which contains 12-byte long fingerprints (recall that γ = 96

bits).

The Jenkins function needs just one random seed of 32 bits to be stored instead of quite

long lookup tables, a major improvement over the 3, 345, 409 bytes necessary to implement

truly random hash functions on the buckets. Therefore, there is no fixed cost to store the

resulting MPHFs, but three random seeds of 32 bits are required to describe the functions

hi0, hi1 and hi2 of each bucket. As a consequence, the MPHFs generation is faster (see

Figure 4.6). The reason is that there are no large lookup tables to cause cache misses. For

example, the generation time for a set of 1, 024 million URLs has dropped from 49.3 down

to 46.2 minutes in the same setup. The disadvantage of using the Jenkins function is that

there is no formal proof that it works for every key set. That is why the hash functions

we have designed in Chapter 3 are required, even being slower. In the implementation

available, the user can choose the hash functions to be used.

Controlling Disk Accesses

In order to lower the number of seek operations on disk we benefit from the fact that both

versions of the EM algorithm leave almost all main memory available to be used as disk

I/O buffer. In this section we evaluate how much the parameter µ affects the runtime of

both versions of the EM algorithm. For that we fixed n in 1, 024 million URLs and used µ

equal to 100, 200, 300, 400, 500, and 600 megabytes.

70 CHAPTER 4. THE EXTERNAL CACHE-AWARE PERFECT HASHING ALGORITHM

Table 4.2 presents the number of files Nf , the buffer size q used for all files, the num-

ber of seeks β/q in the worst case, considering the pessimistic assumption mentioned in

Section 4.2.1, and the time to generate a PHF or an MPHF for 1, 024 million URLs as a

function of the amount of internal memory available. Remember that β is the size in bytes

of the fixed-length key set F , and β = 12n for both the EM algorithm and the heuristic EM

algorithm. Observing Table 4.2 we noticed that the time spent in the generation decreases

as the value of µ increases. However, for µ > 400, the time variation is not as significant

as for µ ≤ 400. This can be explained by the fact that the kernel 2.6 I/O scheduler of

Linux has smart policies for avoiding seeks and diminishing the average seek time (see

http://www.linuxjournal.com/article/6931).

µ (MB) EM Heuristic EM

Nf q (KB) β/q time (min) Nf q (KB) β/q time (min)

100 301 340 47, 059 59.8 226 453 26, 491 56.0

200 119 1, 721 9, 297 50.0 89 2, 301 5, 216 46.4

300 74 4, 151 3, 855 48.5 56 5, 485 2, 188 45.3

400 54 7, 585 2, 110 47.2 41 9, 990 1, 202 44.4

500 43 11, 906 1, 344 47.0 32 16, 000 750 44.0

600 35 17, 554 912 47.0 26 23, 630 508 44.0

Table 4.2: Influence of the internal memory area size (µ) in the runtime of both versions of

the EM algorithm to construct PHFs or MPHFs for 1.024 billion URLs (time in minutes).

4.3.2 Comparison with RAM and FCH Algorithms

We used the hash function presented in [50] for all the algorithms, except for the EM

algorithm, where we used the one designed in Chapter 3. For all the experiments we used

n = 3, 541, 615 keys for the two collections. The reason to choose a small value for n is

because the FCH algorithm has exponential time on n for the generation phase, and the

times explode even when a number of keys are a little over.

We first compare the EM algorithm for constructing MPHFs with both the RAM and

FCH algorithms, considering generation time and storage space. Table 4.3 shows that the

RAM algorithm for r = 3, the EM and heuristic EM algorithms are faster than the FCH

algorithm in generating MPHFs. The performance of both versions of the EM algorithm is

quite surprising once they use external memory at generation time and the other algorithms

do not. The reason is twofold. First, both versions of the EM algorithm simply scan the

4.3. EXPERIMENTAL RESULTS 71

whole key set once and maps it to a set of fixed length fingerprints. Second, as the whole

key set is broken into buckets with at most 256 keys, the memory is accessed in a less

random fashion which implies fewer cache misses.

Algorithms Generation Time (sec) Storage Space

IPs URLs Bits/Key Size (MB)

RAM
r = 2 11.39± 1.33 16.73± 1.89 3.60 1.52

r = 3 5.46 ± 0.01 6.74 ± 0.01 2.62 1.11

EM 5.86 ± 0.17 7.68 ± 0.22 3.31 1.40

Heuristic EM 5.56 ± 0.16 6.27 ± 0.11 3.17 1.34

FCH 2, 052.7± 530.96 2, 400.1± 711.60 4.22 1.78

Table 4.3: Comparison of the algorithms for constructing MPHFs considering generation

time and storage space, and using n = 3, 541, 615 for the two collections.

It is also important to note that the resulting functions of the RAM and EM algorithms

are the most compact functions. The storage space requirements in bits per key for the

two versions of the RAM algorithm are 3.6 when r = 2, and 2.62 when r = 3. For the

EM and heuristic EM algorithms the storage space requirements are 3.21 and 3.17 bits

per key, respectively. Therefore, the RAM algorithm is the best choice for sets that can

be handled in main memory and the EM algorithm is the first one that can be efficiently

applied to sets that do not fit in main memory. We remark that the EM algorithm can also

be applied to key sets that can be handled in internal memory and the RAM algorithm

fails when applied to them, because the RAM algorithm assumes uniform hashing for free

and the EM algorithm does not.

We now compare the algorithms considering evaluation time. Table 4.4 shows the

evaluation time for a random permutation of the n keys. In this experiment the only

resulting MPHF that does not fit entirely in the machine’s L2 cache is the one generated

by the EM algorithm. This is because the size of the lookup tables used to compute the

functions. That is why they are the slowest functions. The MPHFs generated by the FCH

algorithm are the fastest ones because they are optimal in terms of memory probes, as the

ones by Pagh [61]. That is, just one memory probe is performed in their computation (see

the form of those MPHFs in Section 1.6.3.) Thus, the more compact an MPHF is, the

more efficient it is if its description fits in the cache. However, functions that carry out

less memory probes are preferred. The main problem with the FCH algorithm is the time

to generate a MPHF, which is exponential on n.

72 CHAPTER 4. THE EXTERNAL CACHE-AWARE PERFECT HASHING ALGORITHM

Algorithms RAM EM Heuristic FCH
r = 2 r = 3 EM

Evaluation IPs 1.19 1.16 2.72 1.75 0.75

Time (sec) URLs 2.12 2.11 4.36 2.73 1.61

Table 4.4: Comparison of the algorithms considering evaluation time and using the collec-

tions IPs and URLs with n = 3, 541, 615.

Finally, we compare the PHFs and MPHFs generated by the different versions of the

RAM and EM algorithms. Table 4.5 shows that the generation times for PHFs and MPHFs

are almost the same, with the algorithms for r = 3 being the fastest because the probability

of obtaining an acyclic 3-graph for c = 1.23 tends to one, whereas the probability for a

2-graph where c = 2.09 tends to 0.29 (see Sections 2.2.1). For PHFs with m = 1.23n,

the storage requirement drops from 2.62 to 1.95 bits per key when r = 3. The PHFs

with m = 2.09n, and m = 1.23n are the fastest at evaluation time because no ranking or

packing information needs to be computed. The slowest MPHFs are generated by the EM

algorithm. Nevertheless, the difference is not so significant (each key can be evaluated in

few microseconds) and the EM algorithm is the first efficient option for sets that do not

fit in main memory.

RAM
m

Generation Time (sec) Eval. Time (sec) Sto. Space

r Packed IPs URLs IPs URLs Bits/Key

2
no 2.09n 10.50± 1.24 14.79 ± 1.58 0.68 1.63 2.09

yes n 11.39± 1.33 16.73 ± 1.89 1.19 2.12 3.60

no 1.23n 5.51 ± 0.01 6.76 ± 0.01 0.79 1.68 2.46

3 yes 1.23n 5.54 ± 0.01 6.78 ± 0.02 0.79 1.71 1.95

no n 5.46 ± 0.01 6.74 ± 0.01 1.16 2.11 2.62

EM
1.23n 5.82 ± 0.17 7.34 ± 0.05 2.27 3.97 2.76

n 5.86 ± 0.17 7.68 ± 0.22 2.72 4.36 3.31

Heuristic EM
1.23n 5.47 ± 0.16 5.97 ± 0.09 1.44 2.43 2.62

n 5.56 ± 0.16 6.27 ± 0.11 1.75 2.73 3.17

Table 4.5: Comparison of the PHFs and MPHFs generated by our algorithms, considering

generation time, evaluation time and storage space metrics using n = 3, 541, 615 for the

two collections. For packed schemes see Sections 2.2.3 and 2.2.4.

It is important to emphasize that the RAM and FCH algorithms, as well as the other

ones considered in Section 2.3.2 were analyzed under uniform hashing assumption. There-

4.4. CONCLUSIONS 73

fore, the EM algorithm is the first one that has experimentally proven practicality for

large key sets and with both space usage for representing the resulting functions and the

generation time having been carefully proven. Additionally, it constructs the functions ef-

ficiently and the resulting functions are much simpler than the ones generated by previous

theoretically well-founded schemes so that they can be used in practice. Furthermore, it

considerably improves the first step taken by Pagh with his hash and displace method [61]

in the way it joins theory and practice for perfect hashing.

4.4 Conclusions

In this chapter we presented a time efficient, highly scalable and near space-optimal perfect

hashing algorithm. The basic idea to obtain scalability is to partition the input key set

into small buckets. It is an external memory algorithm suitable for key sets larger than

the size of the internal memory available. In this case, it partitions the input key set into

small buckets such that each bucket fits in the CPU cache and then was called cache-aware

external memory algorithm (EM).

We perform an external sorting to partition the input key set into small buckets. Then,

we handle each bucket separately. Splitting the problem into small buckets has both

theoretical and practical implications. From the theoretical point of view we show how to

simulate fully random hash functions on the small buckets, being able to prove that the

EM algorithm will work for every key set with high probability. From the practical point of

view we show how to make buckets that are small enough to fit in the CPU cache, resulting

in a significant speedup in processing time per element compared to other methods known

in the literature.

The dominating phase in the construction of the functions consists of external sorting

n fingerprints of O(log n) bits in O(n) time. The construction algorithm is highly scalable

because it uses a little amount of internal memory to work, basically the space necessary

to accommodate a heap that drives a multiway merge operation, which is O(nǫ) computer

words to have linear time complexity, where 0 < ǫ < 1. In our case, as we want to perform

the merge operation in one pass, we need ǫ = 0.5 (see, e.g., [1, Theorem 3.1]).

The space necessary to describe the functions takes a constant number of bits per key.

The space usage depends on the relation between the size m of the hash table and the size

n of the input. For m = n, the space usage is in the range 3.1n to 3.3n bits, depending

on which version of the algorithm is used (i.e., EM or Heuristic EM). For m = 1.23n the

74 CHAPTER 4. THE EXTERNAL CACHE-AWARE PERFECT HASHING ALGORITHM

space usage is in the range 2.5n to 2.7n bits. In all cases, this is within a small constant

factor from the information theoretical minimum of approximately 1.44n bits for MPHFs

and 0.89n bits for PHFs, something that has not been achieved by previous algorithms,

except asymptotically for very large n. The resulting functions are evaluated for a given

element of a key set in constant time.

The algorithm is theoretically well understood and is the first one with theoretical

properties that scale for billions of keys and can be used in practice. We have illustrated

the scalability of our algorithm by constructing an MPHF for a set of 1.024 billion URLs

from the World Wide Web of average length 64 characters in approximately 50 minutes,

using a commodity PC.

Finally, the algorithm is suitable for a distributed and parallel implementation. For

instance, in the next chapter we present one implementation that is able to generate an

MPHF for a set of 14.336 billion 16-byte integer keys in 50 minutes using 14 commodity

PCs, achieving an almost linear speedup.

Chapter 5

A Highly Scalable and Parallel

Perfect Hashing Algorithm

In this chapter we present a parallel version of the External Memory (EM) algorithm

presented in Chapter 4. The EM algorithm allows the generation of PHFs or MPHFs for

sets in the order of billions of keys. For instance, if we consider an MPHF that requires 3.3

bits per key to be stored, for 1 billion URLs it would take approximately 400 megabytes.

Considering now the time to generate an MPHF, taking the same set of 1.024 billion URLs

as input, the algorithm outputs an MPHF in approximately 50 minutes using a commodity

PC. It is well known that big search engines are nowadays indexing more than 20 billion

URLs. Then, we are talking about approximately 8 gigabytes to store a single MPHF and

approximately 1,000 minutes to construct an MPHF. Thus, two problems arise when the

input key set size increases: (i) the amount of time to generate an MPHF becomes large

for a single machine, and (ii) the storage space to describe an MPHF might be unsuitable

for a single machine.

This motivated us to design parallel implementation of the EM algorithm, referred to

as Parallel External Memory (PEM) algorithm from now on. The algorithm was designed

for the PRAM model [67]. This model consists of a control unit, global memory, and an

unbounded set of processors, each with its own private memory and executing identical

instructions. In our implementation the network was considered the global memory and

the processors share information by exchanging messages.

The PEM algorithm distributes both the construction and the description of the result-

ing functions. For instance, by using a 14-computer cluster the PEM algorithm generates

a PHF or an MPHF for 1.024 billion URLs in approximately 4 minutes, achieving an al-

75

76 CHAPTER 5. A HIGHLY SCALABLE AND PARALLEL PERFECT HASHING ALGORITHM

most linear speedup. Also, for 14.336 billion 16-byte random integers evenly distributed

among the 14 participating machines the PEM algorithm outputs a PHF or an MPHF in

approximately 50 minutes, resulting in a performance degradation of 20%. To the best

of our knowledge there is no previous result in the perfect hashing literature that can be

implemented in a parallel way to obtain better scalability and performance than the results

presented hereinafter. A previous version of the PEM algorithm was presented in [11].

This chapter is organized as follows. In Section 5.1 we present the metrics used for

evaluating the PEM algorithm. In Section 5.2 we describe the PEM algorithm in detail.

In Section 5.3 we evaluate the PEM algorithm experimentally. Finally, we conclude in

Section 5.4.

5.1 Metrics Used to Evaluate The PEM Algorithm

To evaluate the performance of the PEM algorithm we use two metrics: speedup and scale-

up. By fixing the problem size, the speedup refers to how much a parallel algorithm is

faster than a corresponding sequential algorithm, and is defined as:

Definition 22 The speedup Sp of a parallel algorithm using p processors is:

Sp =
T1

Tp
, (5.1)

where T1 is the execution time of the sequential algorithm and Tp is the execution time of

the parallel algorithm with p processors.

Definition 23 The efficiency Ep of a parallel algorithm using p processors is:

Ep =
Sp

Smax
, (5.2)

where

Smax =
p

1 + f × (p − 1)
(5.3)

is the maximum speedup a parallel algorithm can achieve and 0 < f < 1 corresponds to

the sequential portion of the parallel algorithm (i.e., the fraction that cannot be improved

using parallelism). This comes from the Amdahl’s law [67].

By increasing the problem size proportionally to the number of processors p, the scale-

up refers to the ability of solving a problem p times larger in the same amount of time the

5.2. PARALLEL ALGORITHM 77

corresponding sequential algorithm would solve a problem 1/p times lower and is defined

as:

Definition 24 The scale-up Up of a parallel algorithm using p processors is:

Up =
Tp

T1
, (5.4)

where T1 is the execution time of the sequential algorithm to solve a problem of size X

and Tp is the execution time of the parallel algorithm with p processors to solve a problem

of size pX.

5.2 Parallel Algorithm

In this section we describe the Parallel External Memory (PEM) algorithm. As mentioned

before, the main motivation for implementing a parallel version of the EM algorithm is

scalability in terms of the size of the key set that has to be processed. In this case, we

must assume that the keys to be processed will be distributed among several machines.

Further, both the buckets and the construction of the hash functions for each bucket are

also distributed among the participating machines. In this scenario, the partitioning and

the searching steps present different requirements when compared to the sequential version,

as we discuss next.

In Section 5.2.1 we discuss how to speedup the construction of a PHF or an MPHF

by distributing the buckets (during the partitioning phase) and the construction of the

functions fi (remember that fi is either a PHF or an MPHF) for each bucket (during the

searching phase) among the participating machines. In Section 5.2.2 we present a version

of the PEM algorithm where both the description and the evaluation of the resulting

function is centralized in one machine, from now on referred to as PEM-CE. In Section 5.2.3

we present another version of the PEM algorithm where both the description and the

evaluation of the resulting function are distributed among the participating machines, from

now on referred to as PEM-DE.

5.2.1 Parallel Construction

In this section we present the steps that are common to both PEM-CE and PEM-DE

algorithms. We employed two types of processes: manager and worker. This scheme is

shown in Figure 5.1.

78 CHAPTER 5. A HIGHLY SCALABLE AND PARALLEL PERFECT HASHING ALGORITHM

Manager

Worker

0

Worker

1

Worker

p-1
. . .

Figure 5.1: The manager/worker scheme.

The manager acts like the control unit of the PRAM model [67] and is responsible

for assigning tasks to the workers, determining global values during the execution, and

dumping the resulting PHFs or MPHFs received from the workers to disk. This last task

is different for the PEM-CE and PEM-DE algorithms, as we will show later on.

The worker stores a partition of the key set, its buckets and the related PHF or MPHF of

each bucket. Each worker sends and receives data from other workers whenever necessary.

The workers are implemented as thread-based processes, where each thread is responsible

for a task, allowing larger overlap between computation and communication (disk and

network) in both steps of the algorithm.

Our major challenge in producing such a parallel version is that we do not know in

advance which keys will be clustered together in the same bucket. Our strategy in this

case is to migrate data whenever necessary. On the other hand, once we have the buckets,

we are able to generate the functions.

The manager starts the processing by sending the overall assignment of buckets to

workers before each worker starts processing its portion of the keys, so that each worker

becomes aware of the worker to which keys (actually, fingerprints) must be sent. For that

verification, the manager sends the following information: (i) the function h′ ∈ H used to

compute the fingerprints; (ii) the worker identifier i, where 0 ≤ i < p and p is the number

of workers; and (iii) the number of buckets per worker, which is given by Bpw = ⌈Nb/p⌉
(recall that Nb is the number of buckets). Therefore, each worker i is responsible for the

buckets in the range [iBpw, (i + 1)Bpw − 1].

Each worker then starts reading a key k ∈ S, applies the received hash function h′

and verifies whether it belongs to another worker. For that each worker i computes w =

h0(k)/Bpw and checks if w 6= i (recall that h0(k) corresponds to the b most significant bits

of h′(k).) If it is the case, it sends the corresponding fingerprint to the worker w, otherwise,

it stores the fingerprint locally for further processing.

5.2. PARALLEL ALGORITHM 79

Disk
Net

Disk

Reader
Receiver

Hashing
Block

Sorter

Block

DumperDiskNet

Queue 1

Queue 2

Queue 3

Queue 4Queue 5

Sender

Figure 5.2: The partitioning step in the worker.

Figure 5.2 illustrates the partitioning step in each worker. The partitioning step of the

sequential algorithm presented in Figure 4.2 is divided into four major tasks: data reading

(line 3), hashing (line 4), block sorting (line 5), and block dumping (line 6).

As depicted in Figure 5.2, the worker is divided into the following six threads:

1. Disk Reader : it reads the keys from the worker’s portion of the set S and puts them

in Queue 1. When there are no more keys to be read, then an end of file marker is

put in Queue 1.

2. Hashing : it gets the keys from Queue 1 and generates the fingerprints for the keys, as

mentioned in Section 4.1.1. This thread then checks whether the key being currently

analyzed is assigned to another worker. If it is, its fingerprint is passed to the Sender

thread through Queue 5, otherwise its fingerprint is placed in Queue 2. When there

are no more keys to be processed in Queue 1, then an end of file marker is put in

both Queue 2 and 5.

3. Sender : it sends a fingerprint taken from Queue 5 to the worker that is responsible

for it. When there are no more fingerprints in Queue 5, then an end of file marker is

sent to all other workers.

4. Receiver : it receives fingerprints sent from other workers through the net, and puts

them in Queue 3. It finishes its work when an end of file marker is received from all

other workers.

5. Block Sorter : it takes fingerprints from Queues 2 and 3 until a buffer of size µ/2

bytes is completely full (recall that µ is the amount of internal memory available),

80 CHAPTER 5. A HIGHLY SCALABLE AND PARALLEL PERFECT HASHING ALGORITHM

Disk
Bucket

Reader

MPHF

Gen 0

MPHF

Gen 1

MPHF

Gen t-1
 . . .

Queue 1

Figure 5.3: The searching step in the worker.

organizes them into buckets, and puts them in Queue 4. The process is repeated

until an end of file marker is obtained from both Queues 2 and 3. In this case, it also

places an end of file marker in Queue 4.

6. Block Dumper : it takes the buckets from Queue 4 and writes them to disk, for further

processing by the searching step. It finishes when an end of file marker is taken from

Queue 4.

After each worker finishes the partitioning step, it sends the size of each bucket to the

manager, which then calculates the offset array. This does not depend on the searching

step, so the manager may compute the offset array whereas the workers are performing the

searching step.

Figure 5.3 illustrates the searching step in each worker. It consists of generating the

functions fi for each bucket i (remember that fi is either a PHF or an MPHF.) The searching

step of the sequential algorithm of Figure 4.4 is divided into three tasks: bucket reading

(line 5), PHF or MPHF construction (lines 6 and 7), and PHF or MPHF dumping (line

8). Notice that, in this step, there is no need for communication between workers, since

the generation of function fi for each bucket does not depend on keys that are in other

buckets.

Again, the worker is divided into threads of execution, each thread being responsible

for a task. Following Figure 5.3, the worker is divided into the following two threads:

1. Bucket Reader : it reads the buckets from disk, and puts them in Queue 1. When

there are no more buckets to be read, then an end of file marker is put in Queue 1.

5.2. PARALLEL ALGORITHM 81

2. MPHF Gen: it gets buckets from Queue 1 and generates the functions for them until

no more bucket remains. It can be instantiated t times, where t can be thought of

as the number of processors of the machine.

5.2.2 Centralized Evaluation of the Resulting Functions

In this section we present the PEM-CE algorithm, where both the description and the

evaluation of the resulting PHF or MPHF is centralized in a single machine (the one

running the manager process).

After each worker finishes the partitioning step, it sends the size of each bucket to the

manager, which then calculates the offset array. This does not depend on the searching

step, so the manager may compute the offset array whereas the workers are performing the

searching step. After each worker finishes the construction of the PHFs or MPHFs of their

buckets, it sends them to the manager, that will then write sequentially the final PHF or

MPHF to disk, and the algorithm resumes.

The task of writing the final PHF or MPHF to disk corresponds to the sequential part

of the algorithm and represents approximately 0.5% of the execution time. Thus, there is

a fraction of 99.5% of the execution time from which we can exploit parallelism. That is

why the PEM-CE algorithm can be considered an embarrassingly parallel algorithm.

The evaluation of the resulting functions is done in the same way as it is done in the

sequential algorithm presented in Section 4.1 (see Definition 21).

5.2.3 Parallel Evaluation of the Resulting Functions

In this section we present the PEM-DE algorithm, where both the description and the

evaluation of the resulting function are distributed and stored locally in each worker. The

PEM-DE algorithm calculates a localoffset array in each worker, in the same way as it is

done in the searching step of the sequential algorithm shown in Figure 4.4 (see line 7). At

the end of the partitioning step, each worker sends the number of keys assigned to it to the

manager, which calculates a globaloffset, whereas the workers are performing the searching

step.

To evaluate a key k using the resulting PHF or MPHF function f , the manager first

discovers the worker w that generated the PHF or MPHF for the bucket in which k is

(recall that this is done by calculating w = h0(k)/Bpw). Then, the key k (actually, its

82 CHAPTER 5. A HIGHLY SCALABLE AND PARALLEL PERFECT HASHING ALGORITHM

fingerprint) is sent to the worker w, which calculates locally a partial result

fpartial (k) = fi(k) + localoffset[i],

where i = h0(k) mod Bpw is the local bucket address where k belongs and localoffset [i]

gives the total number of keys before bucket i. Once this partial result is calculated, it is

sent back to the manager, which calculates the final result

f (k) = fpartial (k) + globaloffset[w],

where globaloffset[w] has p entries and gives the total number of keys handled by the

workers before worker w.

The downside of this is that the evaluation of a single key is harmed, due to the

communication overhead between the manager and the workers. However, if the system

is being fed by a key stream, the average performance will improve because p keys can be

evaluated in parallel by p workers. This will indeed happen because the keys are uniformly

placed in the buckets by using a hash function, which will balance the key stream among

the p workers. The experimental results in Section 5.3 confirm this fact.

Other advantage of the PEM-DE algorithm is that the workers do not need to send the

PHFs or MPHFs generated locally for the buckets they are responsible for to the manager.

Instead, they are written in parallel by the workers. Therefore, in this case, the fraction of

parallelism we can potentially exploit corresponds to 100% of the execution time.

Therefore, as shown in Section 5.3, the PEM-DE algorithm provides a slightly better

construction time than the PEM-CE algorithm. But the main advantage of the PEM-

DE algorithm is that it distributes the resulting PHF or MPHF among several machines.

When the number n of keys in the key set S grows, the size of the resulting PHF or

MPHF also grows linearly with n. For very large n, it may not be possible to represent

the resulting function in just one machine, whereas the PEM-DE algorithm addresses this

by distributing uniformly the resulting function.

5.2.4 Implementation Decisions

In this section we present and discuss some implementation decisions that aim to reduce

the overhead of the parallel algorithms we just described.

A very first decision is to exploit multiprogramming in the worker, motivated not only

by the characteristics of the execution platform, but also by the complementary profiles of

5.2. PARALLEL ALGORITHM 83

the steps, which are either CPU or I/O-intensive. As a result, we are able to maximize the

overlap between computation and communication, represented by disk and network traffic.

Further, in order to reduce the overhead due to context changes we grouped steps

(described in Section 5.2.1) into fewer threads, as detailed next. This strategy speeds up

the execution time, even on a single core machine, which is our case.

Disk
Net

Disk

Reader
Receiver

Hashing/

Block

Sorter

Block

DumperDiskNet

Queue 1 Queue 3

Queue 4Queue 5

Sender

Figure 5.4: The actual partitioning step used in the experiments.

In the partitioning step, the Hashing and Block Sorter threads were grouped together

into a single thread, as shown in Figure 5.4. Notice that these two steps are the most CPU-

intensive and the merge would prevent them to contend for the CPU. As a result, one thread

is almost always keeping the CPU busy, while the remaining threads are usually waiting for

system calls to resume (Disk Reader reading data from disk, Net Reader receiving messages

from the net, and Block Dumper writing buckets back to disk whenever necessary).

In the searching step, the structure replicates the step-based division presented, but

instantiating just one MPHF Gen thread (i.e., t = 1), as shown in Figure 5.5.

Disk
Bucket

Reader

MPHF

Gen

Queue 1

Figure 5.5: The actual searching step used in the experiments.

We also coalesced messages for both reducing the number of system calls associated

with exchange messages and better exploiting the available bandwidth. That is, we group

the fingerprints that were going to be sent from one to another worker in buffers of a fixed

size.

84 CHAPTER 5. A HIGHLY SCALABLE AND PARALLEL PERFECT HASHING ALGORITHM

5.3 Experimental Results

The purpose of this section is to evaluate the performance of both the PEM-CE and PEM-

DE algorithms in terms of speedup and scale-up (see Definitions 22 and 24), considering

the impact of the key size in both metrics. We also verify whether the load is balanced

among the workers. To compute the metrics we use the time to construct a PHF or an

MPHF in the parallel algorithms. We remark that we simplified a lot our experimental

evaluation. For instance, we did not analyze the influence of some factors (e.g., message

coalescing) in the speedup and scale-up. Our aim in this section is to illustrate that

the two versions of the PEM algorithm are embarrassingly parallel but a more thorough

experimental evaluation is left to be done as a future work.

The experiments were run in a cluster with 14 equal single core machines, each one

with 2.13 gigahertz, 64-bit architecture, running the Linux operating system version 2.6,

and 2 gigabytes of main memory.

For the experiments we used three collections: (i) a set of URLs collected from the web,

(ii) a set of randomly generated 16-byte integers, and (iii) a set of randomly generated 8-

byte integers. The collections are presented in Table 5.1. The main reason to choose these

three different collections is to evaluate the impact of the key size on the results.

Collection Average key size n (billions)

URLs 64 1.024

Random 16 1.024

Integers 8 1.024

Table 5.1: Collections used for the experiments.

In Section 5.3.1 we discuss the impact of key size on speedup and scale-up. In Sec-

tion 5.3.2 we study the communication overhead. In Section 5.3.3 we discuss the load

balance among workers. In Section 5.3.4 we discuss the parallel evaluation of an MPHF

when the function is being fed by a key stream. The same results were obtained for a PHF

and therefore were not presented.

5.3.1 Key Size Impact

In this section we evaluate the impact of the key size and how it changes as we increase

the number of processors. We use both speedup and scale-up as metrics for performing

such evaluation.

5.3. EXPERIMENTAL RESULTS 85

In order to compute the speedup we need the execution time of the sequential EM

algorithm. Table 5.2 shows how much time the EM algorithm requires to build an MPHF

for 1.024 billion keys taken from each collection shown in Table 5.1.

n (billion) Collection time (min.)

64-byte URLs 50.02

1.024 16-byte integers 39.35

8-byte integers 34.58

Table 5.2: Time in minutes of the sequential algorithm (EM) to construct an MPHF for

1.024 billion keys.

We start by evaluating the speedup of the parallel algorithm and perform three sets of

experiments, using the three collections presented in Table 5.1 and varying the number of

machines from 1 to 14.

Table 5.3 presents the maximum speedup (Smax), the speedup Sp and the efficiency Ep

for both the PEM-CE and PEM-DE algorithms for each collection. In almost all cases, the

speedup was very good, achieving an efficiency of up to 93% using 14 machines, confirming

the expectations of that not only there is a parallelism opportunity to be exploited, but also

it is significative enough that allows good efficiencies even for relatively large configurations.

The comparison between PEM-CE and PEM-DE also shows that the strategy employed

in PEM-DE was effective.

It is remarkable that the key size impacts the observed speedups, since the efficiency

for the 64-byte URLs is greater than 90% for all configurations evaluated, but for 16-byte

and 8-byte random integers it is greater than or equal to 90% only for p ≥ 12 and p ≥ 6,

respectively. This happens because when we decrease the key size, the amount of compu-

tation decreases proportionally in the partitioning step, but the amount of communication

remains constant since the γ-bit fingerprints will continue with the same size γ = 96 bits

(or 12 bytes.) The size γ of a fingerprint depends on the number of keys n, but does not

depend on the key size [15]. Therefore, the smaller is the key size, the smaller is the value of

p to fully exploit the available parallelism, resulting in eventual performance degradation.

A graphical view of the speedups can also be seen in Figure 5.6.

We performed similar sets of experiments for evaluating the scale-up and the results

are presented in Table 5.5 and Figure 5.7, where we may confirm the good scalability

of the algorithm, which allows just 17% of degradation when using 14 machines to solve

a problem 14 times larger. These results show that not only the algorithm proposed is

86 CHAPTER 5. A HIGHLY SCALABLE AND PARALLEL PERFECT HASHING ALGORITHM

Smax
64-byte URLs 16-byte random integers 8-byte random integers

p PEM-CE PEM-DE PEM-CE PEM-DE PEM-CE PEM-DE

PEM-CE PEM-DE Sp Ep Sp Ep Sp Ep Sp Ep Sp Ep Sp Ep

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.99 2.00 1.96 0.98 1.99 1.00 1.89 0.95 1.90 0.95 1.91 0.96 1.91 0.96

4 3.94 4.00 3.85 0.98 3.90 0.98 3.76 0.95 3.81 0.95 3.54 0.90 3.63 0.91

6 5.85 6.00 5.62 0.96 5.78 0.96 5.68 0.97 5.70 0.95 5.27 0.90 5.42 0.90

8 7.73 8.00 7.73 1.00 8.00 1.00 7.41 0.96 7.78 0.97 6.74 0.87 6.98 0.87

10 9.57 10.00 9.21 0.96 9.61 0.96 9.01 0.94 9.57 0.96 8.03 0.84 8.33 0.83

12 11.37 12.00 10.85 0.95 11.37 0.95 10.61 0.93 11.05 0.92 9.07 0.80 9.30 0.78

14 13.15 14.00 12.18 0.93 13.06 0.93 11.59 0.88 12.44 0.89 9.97 0.76 10.48 0.75

Table 5.3: Speedup obtained with a confidence level of 95% for both the PEM-CE and

PEM-DE algorithms considering 1.024 billion keys (73,142,857 keys in each machine).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14

Sp
ee

du
p

Number of machines

Linear
PECA−CE
PECA−DE

(a) 64-byte URLs

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14

Sp
ee

du
p

Number of machines

Linear
PECA−CE
PECA−DE

(b) 16-byte random integers

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14
Sp

ee
du

p

Number of machines

Linear
PECA−CE
PECA−DE

(c) 8-byte random integers

Figure 5.6: Speedup obtained with a confidence level of 95% for both the PEM-CE and

PEM-DE algorithms considering 1.024 billion keys (73,142,857 keys in each machine).

efficient, but also is very effective dealing with larger datasets. For instance, in Table 5.4

it is shown that the performance degradation is up to 20% even for 14.336 billion keys

evenly distributed among 14 machines. Again, the key size has a definite impact on the

performance.

5.3.2 Communication Overhead

We now analyze the communication overhead. There is a significant overhead associated

with message traffic among workers in the net. Since the hash function h0 is a linear hash

function [15] that behaves closely to a fully random hash function, the chance of a given

key in the key set S belonging to a given bucket is close to 1
Nb

. Since each worker has Nb

p

buckets, the chance that a key it reads belongs to another worker is close to p−1
p

. Since

5.3. EXPERIMENTAL RESULTS 87

n Random integer Construction time (min)

(billions) collections EM PEM-DE Up

14.336
16-byte 41.17 49.5 1.20

8-byte 34.58 58.00 1.68

Table 5.4: Scale-up obtained with a confidence level of 95% for the PEM-DE algorithm

considering 14.336 billion keys (1.024 billion keys in each machine).

64-byte URLs 16-byte random integers 8-byte random integers
p PEM-CE PEM-DE PEM-CE PEM-DE PEM-CE PEM-DE

t (min) Up t (min) Up t (min) Up t (min) Up t (min) Up t (min) Up

1 3.71 1.00 3.68 1.00 2.68 1.00 2.70 1.00 2.00 1.00 2.00 1.00

2 3.76 1.01 3.71 1.01 2.74 1.02 2.69 1.00 2.16 1.08 2.11 1.06

4 3.84 1.03 3.77 1.03 2.77 1.03 2.71 1.00 2.44 1.22 2.35 1.17

6 3.91 1.05 3.81 1.04 2.82 1.05 2.73 1.01 2.68 1.34 2.58 1.29

8 3.96 1.07 3.82 1.04 2.94 1.10 2.76 1.02 3.04 1.52 2.82 1.41

10 4.02 1.08 3.83 1.04 3.10 1.15 2.86 1.06 3.25 1.62 3.10 1.55

12 4.02 1.08 3.84 1.05 3.23 1.20 3.02 1.12 3.48 1.74 3.29 1.64

14 4.11 1.11 3.85 1.05 3.40 1.27 3.16 1.17 3.47 1.73 3.30 1.65

Table 5.5: Scale-up obtained with a confidence level of 95% for both the PEM-CE and

PEM-DE algorithms considering 1.024 billion keys (73,142,857 keys in each machine).

each worker has to read n
p

keys from disk, it will send through the net approximately

n(p − 1)

p2
·

Thus, the total traffic τ of fingerprints through the net is approximately

τ ≈ n(p − 1)

p
· (5.5)

Table 5.6 shows the minimum and maximum amount of keys sent to the net by a

worker. It also shows the expected amount computed by using Eq. (5.5). As it shows, the

empirical measurements are really close to the expected value.

That results in a relevant overhead due to communication among the workers, and as

the number of workers increases, the speedup can be penalized if the network bandwidth

is not enough for the traffic. In our 1 gigabit ethernet network this was not a problem for

at most 14 workers.

88 CHAPTER 5. A HIGHLY SCALABLE AND PARALLEL PERFECT HASHING ALGORITHM

 0

 0.5

 1

 1.5

 2

 2 4 6 8 10 12 14

S
ca

le
−

up

Number of machines

Ideal scale−up
PECA−CE
PECA−DE

(a) 64-byte URLs

 0

 0.5

 1

 1.5

 2

 2 4 6 8 10 12 14

S
ca

le
−

up

Number of machines

Ideal scale−up
PECA−CE
PECA−DE

(b) 16-byte random integers

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12 14

S
ca

le
−

up

Number of machines

Ideal scale−up
PECA−CE
PECA−DE

(c) 8-byte random integers

Figure 5.7: Scale-up obtained with a confidence level of 95% for both the PEM-CE and

PEM-DE algorithms considering 1.024 billion keys (73,142,857 keys in each machine).

p Keys sent by a worker to the net

Max (%) Min (%) τ (%)

2 50.005 49.996 50.000

4 75.008 74.994 75.000

6 83.339 83.327 83.333

8 87.506 87.492 87.500

10 90.009 89.991 90.000

12 91.673 91.657 91.667

14 92.864 92.849 92.857

Table 5.6: Worst, best and expected percentage of keys sent by a worker to the net.

5.3.3 Load Balancing

In this section we quantify the load imbalance and correlate it with the results. An im-

portant issue is how much the load is balanced among the workers. The load depends

on the following parameters: (i) the number of keys each worker reads from disk in the

partitioning step; (ii) the number of buckets each worker is responsible for; (iii) the number

of keys in each bucket.

The first two parameters are fixed by construction and are evenly distributed among

the workers. The only parameter that could present some variation in each execution is

the last one. However, as we use the hash function h0 to split the key set into buckets, it

was shown in [15] that each key goes to a given bucket with probability close to 1/Nb and

therefore the distribution of the bucket sizes follows a binomial distribution with average

np/Bpw, where np =
∑Bpw−1

i=0 |Bi| is the number of keys each worker has stored in the

buckets it is responsible for and Bpw is the number of buckets per worker.

5.3. EXPERIMENTAL RESULTS 89

It is also shown in [15] that the largest bucket is within a factor O(log log np) of the

average bucket size. Therefore, np has a very small variation from worker to worker, which

makes the load balanced among the p machines. Table 5.7 presents experimental results

confirming this, as the difference between the execution time of the fastest worker (tfw)

and the slowest worker (tsw) was less than or equal to 0.1 minutes.

p PEM-CE PEM-DE

tfw tsw tsw−tfw tfw tsw tsw−twb

2 25.27 25.37 0.10 25.01 25.06 0.05

4 12.94 13.04 0.10 12.78 12.86 0.09

6 8.58 8.69 0.11 8.53 8.65 0.11

8 6.19 6.26 0.07 6.18 6.25 0.07

10 5.14 5.22 0.08 5.11 5.20 0.09

12 4.31 4.39 0.08 4.32 4.40 0.07

14 3.81 3.88 0.07 3.76 3.84 0.08

Table 5.7: Fastest worker time (tfw), slowest worker time (tsw), and difference between

tsw and tfw to show the load balancing among the workers for 1.024 billion 64-byte URLs

distributed in p machines. The times are in minutes.

5.3.4 Parallel Evaluation

In this section we show that the parallel evaluation of an MPHF is worth when compared to

the ones generated by both the sequential and PEM-CE algorithms. These results assume

that the parallel function is being fed by a key stream, instead of one key at a time.

Table 5.8 shows the times that both the EM algorithm and PEM-DE algorithm needs to

evaluate one billion keys taken at random. As expected, the parallel evaluation was faster

because p keys of the key stream can be evaluated in parallel by p participating machines.

Here we also used the message coalescing technique. We remark that a more thorough

evaluation must be done to identify the impact of the message coalescing technique in the

parallel evaluation time.

90 CHAPTER 5. A HIGHLY SCALABLE AND PARALLEL PERFECT HASHING ALGORITHM

Collection
Evaluation time (min)

EM PEM-DE

64-byte URLs 33.11 21.68

16-byte random integers 24.54 11.47

8-byte random integers 18.2 10.1

Table 5.8: Evaluation time in minutes for both the sequential algorithm EM and the

parallel algorithm PEM-DE algorithm, considering 1 billion keys.

5.4 Conclusions

In this chapter we have presented a parallel implementation of the External Memory (EM)

perfect hashing algorithm presented in Chapter 4. We have designed two versions. The

PEM-CE algorithm distributes the construction of the resulting PHFs or MPHFs among

p machines and centralize the evaluation and description of the resulting functions in a

single machine, as in the sequential case. Then the goal in this version is to speedup the

construction of the PHFs or MPHFs by exploiting the high degree of parallelism of the EM

algorithm. The PEM-DE algorithm distributes both the construction and the evaluation of

the resulting functions. In this version the goal is to allow the descriptions of the resulting

functions be uniformly distributed among the participating machines.

We have evaluated both the PEM-CE and PEM-DE algorithms using speedup and scale-

up as metrics. Both versions presented an almost linear speedup, achieving an efficiency

larger than 90% by using 14-computer cluster and keys of average size larger than or

equal to 16 bytes. For smaller keys, e.g. 8-byte integers, we have shown that the existent

parallelism between computation and communication is captured with 90% of efficiency by

using a smaller number of machines (e.g, p = 6). This was as expected, because the smaller

is the key the smaller is the amount of computation, but the amount of communication

remains constant for a given number n of keys, penalizing the speedup.

We have also shown that both the PEM-CE and PEM-DE algorithms scale really well

for larger keys. Smaller keys also impose restrictions on the scalability due to the smaller

degree of overlap between computation and communication aforementioned. To illustrate

the scalability, the time to generate an MPHF for 14.336 billion 16-byte random integers

using a 14-computer cluster with 1.024 billion 16-byte random integers in each machine is

just a factor of 1.2 more than the time spent by the sequential algorithm when applied to

1.024 billion keys.

Chapter 6

MPHFs and Random Graphs With

Cycles

In this chapter we describe two algorithms for constructing minimal perfect hash functions

based on random graphs with cycles. A previous version of the first algorithm was presented

by Botelho, Kohayakawa and Ziviani in [12]. For this reason it will be referred to as BKZ

algorithm, which is an acronym for its author names. The second algorithm uses the same

techniques used in the BKZ algorithm to speedup the execution time of the RAM algorithm

that works on random acyclic bipartite graphs, which is presented in Chapter 2.

The reason to use random graphs with cycles comes from the fact that the functions are

generated faster and are more compact than the ones generated based on acyclic random

graphs. This is because both the generation time and the space usage of the resulting

functions depend on the number of vertices in the random graphs and the acyclic ones are

more sparse. That is, the ratio between the number of vertices and number of edges must

be larger than two.

This chapter is organized as follows. In Section 6.1 we present the BKZ algorithm and

compare the BKZ algorithm with an algorithm that was used as departure point in its

design. In Section 6.2 we show how to speedup the RAM algorithm with the techniques

used in the design of the BKZ algorithm and compare the optimized version of the RAM

algorithm with the version of the RAM algorithm presented in Chapter 2. Finally, in

Section 6.3 we conclude this chapter.

91

92 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES

6.1 The BKZ Algorithm

The BKZ algorithm shares several features with the one due to Czech, Havas and Majew-

ski [25], from now on referred to as CHM algorithm. In particular, the BKZ algorithm is

also based on the generation of random graphs G = (V, E), where E is in one-to-one cor-

respondence with the key set S for which we want to generate the hash function. The two

main differences between the BKZ algorithm and the CHM algorithm are as follows: (i) the

BKZ algorithm generates random graphs G = (V, E) with |V | = cn and |E| = |S| = n,

where c = 1.15 (|V | = 1.15n), and hence G contains cycles with high probability, whereas

the CHM algorithm generates acyclic random graphs G = (V, E) with |V | = cn and

|E| = |S| = n, with a greater number of vertices: c = 2.09 (|V | = 2.09n); (ii) The CHM

algorithm generates order preserving minimal perfect hash functions whereas the BKZ al-

gorithm does not preserve order. Thus, the BKZ algorithm improves the space requirement

at the expense of generating functions that are not order preserving.

As the CHM algorithm, the BKZ algorithm produces an MPHF in O(n) expected time

for a set of n keys. The MPHF description requires 1.15n computer words, and evaluat-

ing it requires two accesses to an array of 1.15n integers. We further derive a heuristic

that improves the space requirement from 1.15n words down to 0.93n words. The BKZ

algorithm is very practical. To generate a minimal perfect hash function for a collection

of 100 million universe resource locations (URLs), each 63 bytes long on average, the BKZ

algorithm running on a commodity PC takes 811 seconds on average. In Section 6.1.1 we

present the CHM algorithm. In Section 6.1.2 we present the design of the BKZ algorithm.

In Section 6.1.3 we compare the BKZ algorithm with the CHM algorithm experimentally.

6.1.1 The CHM algorithm

In this section we briefly present the CHM algorithm. Consider a problem known as the

perfect assignment problem: For a given undirected graph G = (V, E), where |V | = cn and

|E| = n, find a function g:V → {0, 1, . . . , |V | − 1} such that the function mphf : E →
{0, 1, . . . , n − 1}, defined as

mphf (e) = (g(a) + g(b)) mod n (6.1)

is a bijection, where e = {a, b}. This means that we are looking for an assignment of values

to vertices so that for each edge the sum of values associated with endpoints taken modulo

the number of edges is a unique integer in the range [0, n − 1].

6.1. THE BKZ ALGORITHM 93

Many methods for generating MPHFs use a mapping, ordering and searching (MOS)

approach, a description coined by Fox, Chen and Heath [38]. In the MOS approach, the

construction of a minimal perfect hash function is accomplished in three steps. First, the

mapping step transforms the key set from the original universe to a new universe. Second,

the ordering step places the keys in a sequential order that determines the order in which

hash values are assigned to keys. Third, the searching step attempts to assign hash values

to the keys. The CHM algorithm uses the MOS approach as well as our algorithm presented

in Section 6.1.

The ordering and searching steps of the MOS approach are a very simple way of solving

the perfect assignment problem. Czech, Havas and Majewski [25] showed that the perfect

assignment problem can be solved in optimal time if G is acyclic. To generate an acyclic

random graph, the method assumes that two uniform hash functions h1 and h2 are available

for free. The functions h1 and h2 are constructed as follows. We impose some upper

bound L on the lengths of the keys in S. To define hj (j = 1,2), we generate an L × |Σ|
table of random integers tablej. For a key x ∈ S of length |x| ≤ L and j ∈ {1, 2}, we let

hj(x) =
(

∑|x|−1
i=0 tablej[i, x[i]]

)

mod m. (6.2)

Thus, set S has a corresponding graph G = G(h1, h2), with V = {0, 1, . . . , m − 1}, where

|V | = m, and E = {{h1(x), h2(x)} : x ∈ S}. In order to guarantee acyclicity the algorithm

repeatedly selects h1 and h2 until the corresponding graph is acyclic. For the solution to

be useful we must have |S| = n and m = cn, for some constant c, such that acyclic graphs

dominate the space of all random graphs. Havas et al. [44] proved that if m = cn holds

with c > 2 the probability that G is acyclic is

Pra = e1/c

√

c − 2

c
· (6.3)

For c = 2.09 the probability of a random graph being acyclic is Pra > 1
3
. Consequently,

for such c, the expected number of iterations to obtain an acyclic graph is lower than 3

and the g function needs 2.09n integer numbers to be stored, since its domain is the set V

of size m = cn.

Given an acyclic graph G, for the ordering step we associate with each edge an unique

number mphf (e) ∈ [0, n − 1] in the order of the keys of S to obtain an order preserving

function. Figure 6.1 illustrates the perfect assignment problem for an acyclic graph with

six vertices and with the five function values assigned to the edges.

94 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES

The searching step starts from the weighted graph G obtained in the ordering step. For

each connected component of G choose a vertex v and set g(v) to 0. For example, suppose

that vertex 0 in Figure 6.1 is chosen and the assignment g(0) = 0 is made. Traverse the

graph using a depth-first or a breadth-first search algorithm, beginning with vertex v. If

vertex b is reached from vertex a and the value associated with the edge e = {a, b} is

mphf (e), set g(b) to (mphf (e) − g(a)) mod n. In Figure 6.1, following the adjacent list of

vertex 0, g(2) is set to 3. Next, following the adjacent list of vertex 2, g(1) is set to 2 and

g(3) is set to 1, and so on.

0

2

1

3

4

5

41

2 3
0

v g(v)

0 0

1 2

2 3

3 1

4 0

5 1

Figure 6.1: Perfect assignment problem for a graph with six vertices and five edges.

Now we show why G must be acyclic. If the graph G was not acyclic, the assignment

process might trace around a cycle and insist on reassigning some already-processed vertex

with a different g value than the one that has already been assigned to it. For example,

let us suppose that in Figure 6.1 the edge {3, 4} has been replaced by the edge {0, 1}. In

this case, two different values are set to g(0). Following the adjacent list of vertex 1, g(0)

is set to 4. But g(0) was set to 0 before.

6.1.2 Design of The BKZ Algorithm

We now present how our MPHF, which has the same form of the one generated by the

CHM algorithm, will be constructed. We make use of two uniform hash functions h1

and h2 : U → V , where V = [0, m − 1] for some suitably chosen integer m = cn, where

n = |S| (see Eq. (6.2)). We build a random graph G = G(h1, h2) on S, whose edge set

is
{

{h1(x), h2(x)} : x ∈ S
}

. There is an edge in G for each key in the key set S. Note that

in our case the random graph G may have cycles.

In what follows, we shall be interested in the 2-core of the random graph G, that is,

the maximal subgraph of G with minimal degree at least 2 (see, e.g., [8, 49]). Because of

its importance in our context, we call the 2-core the critical subgraph of G and denote it

6.1. THE BKZ ALGORITHM 95

by Gcrit. The vertices and edges in Gcrit are said to be critical. We let Vcrit = V (Gcrit)

and Ecrit = E(Gcrit). Moreover, we let Vncrit = V − Vcrit be the set of non-critical vertices

in G. We also let Vscrit ⊆ Vcrit be the set of all critical vertices that have at least one

non-critical vertex as a neighbor. Let Encrit = E(G) − Ecrit be the set of non-critical

edges in G. Finally, we let Gncrit = (Vncrit ∪ Vscrit, Encrit) be the non-critical subgraph

of G. The non-critical subgraph Gncrit corresponds to the “acyclic part” of G. We have

G = Gcrit ∪ Gncrit.

We then construct a suitable labelling g : V → Z of the vertices of G: we choose g(v)

for each v ∈ V (G) in such a way that mphf (x) = g(h1(x)) + g(h2(x)) (x ∈ S) is an MPHF

for S. We will see later on that this labelling g can be found in linear time if the number

of edges in Gcrit is at most 1
2
|E(G)|.

Figure 6.2 presents a pseudo code for the algorithm. The procedure GenerateMPHF

(S, g) receives as input the key set S and produces the labelling g. The method uses a

mapping, ordering and searching approach. We now describe each step.

procedure GenerateMPHF (S , g)

Mapping (S , G) ;
Ordering (G , Gcrit , Gncrit) ;
Searching (G , Gcrit , Gncrit , g) ;

Figure 6.2: Main steps of the algorithm for constructing a minimal perfect hash function.

Mapping Step

The procedure Mapping (S, G) receives as input the key set S and generates the random

graph G = G(h1, h2), by generating two auxiliary functions h1, h2 : U → [0, m − 1] (see

Eq. (6.2)). This is done by filling each tablej for j ∈ {1, 2} with random integer numbers.

The random graph G = G(h1, h2) has vertex set V = [0, m − 1] and edge set
{

{h1(x), h2(x)} : x ∈ S
}

. We need G to be simple, i.e., G should have neither loops

nor multiple edges. A loop occurs when h1(x) = h2(x) for some x ∈ S. We solve this in

an ad hoc manner: we simply let h2(x) = (2h1(x) + 1) mod m in this case. If we still find

a loop after this, we generate another pair (h1, h2). When a multiple edge occurs we abort

and generate a new pair (h1, h2).

96 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES

Analysis of the Mapping Step

We start by discussing some facts on random graphs. Let G = (V, E) with |V | = m

and |E| = n be a random graph in the uniform model G(m, n), the model in which all

the
((m

2
)

n

)

graphs on V with n edges are equiprobable. The study of G(m, n) goes back to

the classical work of Erdős and Rényi [33, 34, 35] (for a modern treatment, see [8, 49]).

Let d = 2n/m be the average degree of G. It is well known that, if d > 1, or, equivalently,

if c < 2 (recall that we have m = cn), then, almost every G contains1 a “giant” component

of order (1 + o(1))bm, where b = 1 − T/d, and 0 < T < 1 is the unique solution to the

equation Te−T = de−d. Moreover, all the other components of G have O(log m) vertices.

Also, the number of vertices in the 2-core of G (the maximal subgraph of G with minimal

degree at least 2) that do not belong to the giant component is o(m) almost surely.

Pittel and Wormald [65] present detailed results for the 2-core of the giant component

of the random graph G. Since tablej (j ∈ {1, 2}) are random, G = G(h1, h2) is a ran-

dom graph. In what follows, we work under the hypothesis that G = G(h1, h2) is drawn

from G(m, n). Thus, following [65], the number of vertices of Gcrit is

|V (Gcrit)| = (1 + o(1))(1 − T)bm (6.4)

almost surely. Moreover, the number of edges in this 2-core is

|E(Gcrit)| = (1 + o(1))
(

(1 − T)b + b(d + T − 2)/2
)

m (6.5)

almost surely. Let dcrit = 2|E(Gcrit)|/|V (Gcrit)| be the average degree of Gcrit. We are

interested in the case in which dcrit is a constant.

As mentioned before, for us to find the labelling g : V → Z of the vertices of G =

G(h1, h2) in linear time, we require that |E(Gcrit)| ≤ 1
2
|E(G)| = 1

2
|S| = n/2. The crucial

step now is to determine the value of c (in m = cn) to obtain a random graph G =

Gcrit ∪ Gncrit with |E(Gcrit)| ≤ 1
2
|E(G)|.

Table 6.1 gives some values for |V (Gcrit)| and |E(Gcrit)| using Eqs (6.4) and (6.5). The

theoretical value for c is around 1.152, which is remarkably close to the empirical results

presented in Table 6.2. In this table, generated from real data, the probability P|E(Gcrit)|

that |E(Gcrit)| ≤ 1
2
|E(G)| tends to 0 when c < 1.15 and it tends to 1 when c ≥ 1.15

and n increases. We found this match between the empirical and the theoretical results

1As is usual in the theory of random graphs, we use the terms ‘almost every’ and ‘almost surely’ to

mean ‘with probability tending to 1 as m → ∞’.

6.1. THE BKZ ALGORITHM 97

most pleasant, and this is why we consider that this a random graph, conditioned on being

simple, strongly resembles the random graph from the uniform model G(m, n).

d T b |V (Gcrit)| |E(Gcrit)| c

1.734 0.510 0.706 0.399n 0.498n 1.153

1.736 0.509 0.707 0.400n 0.500n 1.152

1.738 0.508 0.708 0.401n 0.501n 1.151

1.739 0.508 0.708 0.401n 0.501n 1.150

1.740 0.507 0.709 0.401n 0.502n 1.149

Table 6.1: Determining the c value theoretically.

We now briefly argue that the expected number of iterations to obtain a simple

graph G = G(h1, h2) is constant for m = cn and c = 1.15. Let p be the probability of

generating a random graph G without loops and without multiple edges. If p is bounded

from below by some positive constant, then we are done, because the expected number of

iterations to obtain such a graph is then 1/p = O(1).

Let X be a random variable counting the number of iterations to generate G. Variable

X follows a geometric distribution with P (X = i) = p(1− p)i−1. So, the expected number

of iterations to generate G is Ni(X) =
∑∞

j=1 jP (X = j) = 1/p and its variance is V (X) =

(1 − p)/p2.

Let ξ be the space of edges in G that may be generated by h1 and h2. The graphs

generated in this step are undirected and the number of possible edges in ξ is given by

|ξ| =
(

m
2

)

. The number of possible edges that might become a multiple edge when the jth

c URLs (n)

103 104 105 106 2 × 106 3 × 106 4 × 106

1.13 0.22 0.02 0.00 0.00 0.00 0.00 0.00

1.14 0.35 0.15 0.00 0.00 0.00 0.00 0.00

1.15 0.46 0.55 0.65 0.87 0.95 0.97 1.00

1.16 0.67 0.90 1.00 1.00 1.00 1.00 1.00

1.17 0.82 0.99 1.00 1.00 1.00 1.00 1.00

Table 6.2: Probability P|Ecrit| that |E(Gcrit)| ≤ n/2 for different c values and different

number of keys for a collections of URLs.

98 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES

edge is added to G is j − 1, and the incremental construction of G implies that p(m) is:

p(m) =

n
∏

j=1

(

m
2

)

− (j − 1)
(

m
2

) =

n−1
∏

j=0

(

m
2

)

− j
(

m
2

) ·

As m = cn we can rewrite the probability p(n) as:

p(n) =
n−1
∏

j=0

1 −
(

2j

c2n2 − cn

)

·

Using an asymptotic estimate from Palmer [64] that states that the inequality f1(x) ≤ f2(x)

is true ∀ x ∈ ℜ for two functions f1 : ℜ → ℜ and f2 : ℜ → ℜ defined as f1(x) = 1 − x and

f2(x) = e−x, we have

p(n) ≤
n−1
∏

j=0

e
−

“

2j

c2n2
−cn

”

= e
−

“

n−1

c2n−c

”

.

for x = 2j
c2n2−cn

. Thus,

lim
n→∞

p(n) ≃ e−
1

c2 . (6.6)

As Ni(X) = 1/p then Ni(X) ≃ e
1

c2 = 2.13 (recall c = 1.15). Therefore, as the expected

number of iterations is O(1), the mapping step takes O(n) time.

Ordering Step

The procedure Ordering (G, Gcrit, Gncrit) receives as input the graph G and partitions G

into the two subgraphs Gcrit and Gncrit, so that G = Gcrit ∪Gncrit. For that, the procedure

iteratively remove all vertices of degree 1 until it is done.

Figure 6.3(a) presents a sample graph with 9 vertices and 8 edges, where the degree

of a vertex is shown besides each vertex. Applying the ordering step in this graph, the

5-vertex graph showed in Figure 6.3(b) is obtained. All vertices with degree 0 are non-

critical vertices and the others are critical vertices. In order to determine the vertices in

Vscrit we collect all vertices v ∈ V (Gcrit) with at least one vertex u that is in Adj(v) and in

V (Gncrit), as the vertex 8 in Figure 6.3(b).

Analysis of the Ordering Step

The time complexity of the ordering step is O(|V (G)|) (see [26]). As |V (G)| = m = cn,

the ordering step takes O(n) time.

6.1. THE BKZ ALGORITHM 99

d:2

d:5

d:2

d:2

d:1

d:2d:2

d:0

d:0

a) d:2

d:4

d:2

d:0

d:0

d:2d:2

d:0

d:0

b)

6

7 0

1

2

34

5

8

6

7 0

34

5

8

2

1

Figure 6.3: Ordering step for a graph with 9 vertices and 8 edges.

Searching Step

In the searching step, the key part is the perfect assignment problem: find g : V (G) → Z

such that the function mphf : E(G) → Z defined by

mphf (e) = g(a) + g(b) (e = {a, b}) (6.7)

is a bijection from E(G) to [0, n − 1] (recall n = |S| = |E(G)|). We are interested in a

labelling g : V → Z of the vertices of the graph G = G(h1, h2) with the property that

if x and y are keys in S, then g(h1(x)) + g(h2(x)) 6= g(h1(y)) + g(h2(y)); that is, if we

associate to each edge the sum of the labels on its endpoints, then these values should

be all distinct. Moreover, we require that all the sums g(h1(x)) + g(h2(x)) (x ∈ S) fall

between 0 and |E(G)| − 1 = n − 1, so that we have a bijection between S and [0, n − 1].

The procedure Searching (G, Gcrit, Gncrit, g) receives as input G, Gcrit, Gncrit and finds a

suitable ⌊log |V (G)|⌋+1 bit value for each vertex v ∈ V (G), stored in the array g. This step

is first performed for the vertices in the critical subgraph Gcrit of G (the 2-core of G) and

then it is performed for the vertices in Gncrit (the non-critical subgraph of G that contains

the “acyclic part” of G). The reason the assignment of the g values is first performed on

the vertices in Gcrit is to resolve reassignments as early as possible (such reassignments are

consequences of the cycles in Gcrit and are depicted hereinafter).

Assignment of Values to Critical Vertices

The labels g(v) (v ∈ V (Gcrit)) are assigned in increasing order following a greedy strategy

where the critical vertices v are considered one at a time, according to a breadth-first

search on Gcrit. If a candidate value x for g(v) is forbidden because setting g(v) = x would

create two edges with the same sum, we try x + 1 for g(v). This fact is referred to as a

reassignment.

Let AE be the set of addresses assigned to edges in E(Gcrit). Initially AE = ∅. Let x be a

candidate value for g(v). Initially x = 0. Considering the subgraph Gcrit in Figure 6.3(b),

100 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES

a step by step example of the assignment of values to vertices in Gcrit is presented in

Figure 6.4. Initially, a vertex v is chosen, the assignment g(v) = x is made and x is set

to x + 1. For example, suppose that vertex 8 in Figure 6.4(a) is chosen, the assignment

g(8) = 0 is made and x is set to 1.

b) c) d)a) 7 0

34

8

7 0

34

8

7 0

34

8

7 0

34

8 g:0

g:1g:4 5

4

3 2

1

5 g:2g:3

g:0

g:1g:5 6

5

3 2

1

5 g:2g:3

g:0

g:1g:6 7

6

3 2

1

5 g:2g:3

g:0

Figure 6.4: Example of the assignment of values to critical vertices.

In Figure 6.4(b), following the adjacency list of vertex 8, the unassigned vertex 0 is

reached. At this point, we collect in the temporary variable Y all adjacencies of vertex

0 that have been assigned an x value, and Y = {8}. Next, for all u ∈ Y , we check if

g(u) + x 6∈ AE. Since g(8) + 1 = 1 6∈ AE , then g(0) is set to 1, x is incremented by

1 (now x = 2) and AE = AE ∪ {1} = {1}. Next, vertex 3 is reached, g(3) is set to 2,

x is set to 3 and AE = AE ∪ {2} = {1, 2}. Next, vertex 4 is reached and Y = {3, 8}.

Since g(3) + 3 = 5 6∈ AE and g(8) + 3 = 3 6∈ AE , then g(4) is set to 3, x is set to 4

and AE = AE ∪ {3, 5} = {1, 2, 3, 5}. Finally, vertex 7 is reached and Y = {0, 8}. Since

g(0) + 4 = 5 ∈ AE , x is incremented by 1 and set to 5, as depicted in Figure 6.4(c). Since

g(8) + 5 = 5 ∈ AE, x is again incremented by 1 and set to 6, as depicted in Figure 6.4(d).

These two reassignments are indicated by the arrows in Figure 6.4. Since g(0)+6 = 7 6∈ AE

and g(8) + 6 = 6 6∈ AE , then g(7) is set to 6 and AE = AE ∪ {6, 7} = {1, 2, 3, 5, 6, 7}. This

finishes the algorithm.

Assignment of Values to Non-Critical Vertices

As Gncrit is acyclic, we can impose the order in which addresses are associated with edges

in Gncrit, making this step simple to solve by a standard depth first search algorithm.

Therefore, in the assignment of values to vertices in Gncrit we benefit from the unused

addresses in the gaps left by the assignment of values to vertices in Gcrit. For that, we

start the depth-first search from the vertices in Vscrit because the g values for these critical

vertices have already been assigned and cannot be changed.

6.1. THE BKZ ALGORITHM 101

Considering the subgraph Gncrit in Figure 6.3(b), a step by step example of the assign-

ment of values to vertices in Gncrit is presented in Figure 6.5. Figure 6.5(a) presents the

initial state of the algorithm. The critical vertex 8 is the only one that has non-critical

neighbors. In the example presented in Figure 6.4, the addresses {0, 4} were not used. So,

taking the first unused address 0 and the vertex 1, which is reached from the vertex 8, g(1)

is set to 0 − g(8) = 0, as shown in Figure 6.5(b). The only vertex that is reached from

vertex 1 is vertex 2, so taking the unused address 4 we set g(2) to 4−g(1) = 4, as shown in

Figure 6.5(c). This process is repeated until the UnAssignedAddresses list becomes empty.

0 4 4

g:0

UnAssignedAddresses

g:0

0

UnAssignedAddresses

g:0

0

UnAssignedAddresses

g:0 g:4

g:0g:0c)g:0b)a)

4

6

5

8

2

1 6

5

8

2

1 6

5

8

2

1

Figure 6.5: Example of the assignment of values to non-critical vertices.

Analysis of the Searching Step

We shall demonstrate that (i) the maximum value assigned to an edge is at most n − 1

(that is, we generate a minimal perfect hash function), and (ii) the perfect assignment

problem (determination of g) can be solved in expected time O(n) if the number of edges

in Gcrit is at most 1
2
|E(G)|.

We focus on the analysis of the assignment of values to critical vertices because the

assignment of values to non-critical vertices can be solved in linear time by a depth first

search algorithm.

We now define certain complexity measures. Let I(v) be the number of times a can-

didate value x for g(v) is incremented. Let Nt be the total number of times that can-

didate values x are incremented. Thus, we have Nt =
∑

I(v), where the sum is over

all v ∈ V (Gcrit).

For simplicity, we shall suppose that Gcrit, the 2-core of G, is connected.2 The fact that

every edge is either a tree edge or a back edge (see, e.g., [24]) then implies the following.

2The number of vertices in Gcrit outside the giant component is provably very small for c = 1.15;

see [8, 49, 65].

102 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES

Theorem 8 The number of back edges Nbedges of G = Gcrit ∪ Gncrit is given by Nbedges =

|E(Gcrit)| − |V (Gcrit)| + 1.

Our next result concerns the maximal value Amax assigned to an edge e ∈ E(Gcrit) after

the assignment of g values to critical vertices.

Theorem 9 We have Amax ≤ 2|V (Gcrit)| − 3 + 2Nt.

Proof: The assignment of g values to critical vertices starts from 0, and each edge e

receives the label mphf (e) as given by Eq. (6.7). The g value for each vertex v in V (Gcrit)

is assigned only once. Consider now two possibilities: (i) If Nt = 0, (that is, no increment

for a candidate value was necessary) then the g values will be assigned to the vertices

sequentially. Therefore, the greatest and the second greatest values assigned to two vertices

v and u are g(v) = |V (Gcrit)| − 1 and g(u) = |V (Gcrit)| − 2, respectively. Thus, Amax ≤
(|V (Gcrit)| − 1) + (|V (Gcrit)| − 2) in the worst case. (ii) If Nt > 0 then a candidate

value x is incremented by one each time the value is forbidden. Thus, in the worst case,

Amax ≤ |V (Gcrit)| − 1 + Nt + |V (Gcrit)| − 2 + Nt ≤ 2|V (Gcrit)| − 3 + 2Nt. 2

Maximal Value Assigned to an Edge

In this section we present the following conjecture.

Conjecture 1 For a random graph G with |E(Gcrit)| ≤ n/2 and |V (G)| = 1.15n, it is

always possible to generate a minimal perfect hash function because the maximal value

Amax assigned to an edge e ∈ E(Gcrit) is at most n − 1.

Let us assume for the moment that Nt ≤ Nbedges. Then, from Theorems 8 and 9,

we have Amax ≤ 2|V (Gcrit)| − 3 + 2Nt ≤ 2|V (Gcrit)| − 3 + 2Nbedges ≤ 2|V (Gcrit)| − 3 +

2(|E(Gcrit)| − |V (Gcrit)|+ 1) ≤ 2|E(Gcrit)| − 1. As by hypothesis |E(Gcrit)| ≤ n/2, we have

Amax ≤ n − 1, as required.

In the mathematical analysis of our algorithm, what is left open is a single problem:

prove that Nt ≤ Nbedges.
3

We now show experimental evidence that Nt ≤ Nbedges. Considering Eqs (6.4) and (6.5),

the expected values for |V (Gcrit)| and |E(Gcrit)| for c = 1.15 are 0.401n and 0.501n, re-

spectively. From Theorem 8, Nbedges = 0.501n− 0.401n + 1 = 0.1n + 1. Table 6.3 presents

3Bollobás and Pikhurko [9] have investigated a very close vertex labelling problem for random graphs.

However, their interest was on denser random graphs, and it seems that different methods will have to be

used to attack the sparser case that we are interested in here.

6.1. THE BKZ ALGORITHM 103

the maximal value of Nt obtained during 10,000 executions of the algorithm for different

sizes of S. The maximal value of Nt was always smaller than Nbedges = 0.1n + 1 and tends

to 0.059n for n ≥ 1,000,000.

n Maximal value of Nt

10,000 0.067n

100,000 0.061n

1,000,000 0.059n

2,000,000 0.059n

Table 6.3: The maximal value of Nt for different number of URLs.

Time Complexity

We now show that the time complexity of determining g(v) for all critical vertices x ∈
V (Gcrit) is O(|V (Gcrit)|) = O(n). For each unassigned vertex v, the adjacency list of v,

which we call Adj(v), must be traversed to collect the set Y of adjacent vertices that have

already been assigned a value. Then, for each vertex in Y , we check if the current candidate

value x is forbidden because setting g(v) = x would create two edges with the same

endpoint sum. Finally, the edge linking v and u, for all u ∈ Y , is associated with the address

that corresponds to the sum of its endpoints. Let dcrit = 2|E(Gcrit)|/|V (Gcrit)| be the

average degree of Gcrit, note that |Y | ≤ |Adj(v)|, and suppose for simplicity that |Adj(v)| =

O(dcrit). Then, putting all these together, we see that the time complexity of this procedure

is

C(|V (Gcrit)|) =
∑

v∈V (Gcrit)

[

|Adj(v)| + (I(v) × |Y |) + |Y |
]

≤∑v∈V (Gcrit)
(2 + I(v))|Adj(v)| = 4|E(Gcrit)| + O(Ntdcrit).

As dcrit = 2 × 0.501n/0.401n ≃ 2.499 (a constant) we have O(|E(Gcrit)|) = O(|V (Gcrit)|).
Supposing that Nt ≤ Nbedges, we have, from Theorem 8, that Nt ≤ |E(Gcrit)|− |V (Gcrit)|+
1 = O(|E(Gcrit)|). We conclude that C(|V (Gcrit)|) = O(|E(Gcrit)|) = O(|V (Gcrit)|). As

|V (Gcrit)| ≤ |V (G)| and |V (G)| = cn, the time required to determine g on the critical

vertices is O(n).

6.1.3 Comparing the BKZ and CHM Algorithms

In this section we compare the BKZ algorithm with the CHM algorithm experimentally.

For this reason the two algorithms were implemented in the C language and are avail-

104 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES

able as part of the C Minimal Perfect Hashing Library, which can be downloaded at

http://cmph.sf.net. Our data consists of a collection of 100 million universe resource

locations (URLs) collected from the Web. The average length of a URL in the collection

is 63 bytes. All experiments were carried out on a computer running the Linux operating

system, version 2.6.7, with a 2.4 gigahertz processor and 4 gigabytes of main memory.

Table 6.4 presents the main characteristics of the two algorithms. The number of edges

in the graph G = (V, E) is |S| = n, i.e., the number of keys in the input set S. The

number of vertices of G is equal to 1.15n and 2.09n for the BKZ algorithm and the CHM

algorithm, respectively. This measure is related to the amount of space to store the array

g. This improves the space required to store a function in the BKZ algorithm to 55% of the

space required by the CHM algorithm. The number of critical edges is 1
2
|E(G)| and 0 for

the BKZ algorithm and the CHM algorithm, respectively. The BKZ algorithm generates

random graphs that contain cycles with high probability and the CHM algorithm generates

acyclic random graphs. Finally, the CHM algorithm generates order preserving functions

whereas the BKZ algorithm does not preserve order.

c |E(G)| |V (G)| = |g| |E(Gcrit)| G Order preserving

BKZ algorithm 1.15 n cn 0.5|E(G)| cyclic no

CHM algorithm 2.09 n cn 0 acyclic yes

Table 6.4: Main characteristics of the algorithms.

Table 6.5 presents time measurements to generate the MPHFs. All times are in seconds.

The table entries are averages over 50 trials. The column labelled Ni gives the number of

iterations to generate the random graph G in the mapping step of the algorithms. The

next columns give the running times for the mapping plus ordering steps together and the

searching step for each algorithm. The last column gives the percentage gain of the BKZ

algorithm over the CHM algorithm.

The mapping step of the BKZ algorithm is faster because the expected number of

iterations in the mapping step to generate G are 2.13 and 2.92 for the BKZ algorithm and

the CHM algorithm, respectively. The graph G generated by the BKZ algorithm has 1.15n

vertices, against 2.09n for the CHM algorithm. These two facts make the BKZ algorithm

faster in the mapping step. The ordering step of the BKZ algorithm is approximately equal

to the time to check if G is acyclic for the CHM algorithm. The searching step of the CHM

algorithm is faster, but the total time of the BKZ algorithm is, on average, approximately

59% faster than the CHM algorithm.

6.1. THE BKZ ALGORITHM 105

n BKZ algorithm CHM algorithm Gain

Ni Map+Ord Search Total Ni Map+Ord Search Total (%)

1,562,500 2.28 8.54 2.37 10.91 2.70 14.56 1.57 16.13 48

3,125,000 2.16 15.92 4.88 20.80 2.85 30.36 3.20 33.56 61

6,250,000 2.20 33.09 10.48 43.57 2.90 62.26 6.76 69.02 58

12,500,000 2.00 63.26 23.04 86.30 2.60 117.99 14.94 132.92 54

25,000,000 2.00 130.79 51.55 182.34 2.80 262.05 33.68 295.73 62

50,000,000 2.07 273.75 114.12 387.87 2.90 577.59 73.97 651.56 68

100,000,000 2.07 567.47 243.13 810.60 2.80 1,131.06 157.23 1,288.29 59

Table 6.5: Time measurements for the BKZ algorithm and the CHM algorithm to generate

MPHFs.

n BKZ algorithm c = 1.00 BKZ algorithm c = 0.93

Ni Map+Ord Search Total Ni Map+Ord Search Total

12,500,000 2.78 76.68 25.06 101.74 3.04 76.39 25.80 102.19

Table 6.6: Time measurements for the BKZ algorithm to generate MPHFs, tuned with

c = 1.00 and c = 0.93.

The experimental results fully backs the theoretical results. It is important to notice

the times for the searching step: for both algorithms they are not the dominant times, and

the experimental results clearly show a linear behavior for the searching step.

We now present a heuristic that reduces the space requirement to any given value

between 1.15n words and 0.93n words. The heuristic reuses, when possible, the set of x

values that caused reassignments, just before trying x + 1 (see Section 6.1.2). The lower

limit c = 0.93 was obtained experimentally. We generate 10,000 random graphs for each

size n (n = 105, 5 × 105, 106, 2 × 106). With c = 0.93 we were always able to generate

an MPHF, but with c = 0.92 we never succeeded. Decreasing the value of c leads to an

increase in the number of iterations to generate G. For example, for c = 1 and c = 0.93, the

analytical expected number of iterations are 2.72 and 3.17, respectively (for n = 12,500,000,

the number of iterations are 2.78 for c = 1 and 3.04 for c = 0.93). Table 6.6 presents the

total times to construct a function for n = 12,500,000, with an increase from 86.31 seconds

for c = 1.15 (see Table 6.5) to 101.74 seconds for c = 1 and to 102.19 seconds for c = 0.93.

We compared the BKZ algorithm with the ones proposed by Pagh [61] and Dietzfel-

binger and Hagerup [29], respectively. The authors sent to us their source code. In their

implementation the key set is a set of random integers. We modified our implementation to

106 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES

generate an MPHF from a set of random integers in order to make a fair comparison. For a

set of 106 random integers, the times to generate a minimal perfect hash function were 2.7s,

4s and 4.5s for the BKZ algorithm, Pagh’s algorithm and Dietzfelbinger and Hagerup’s

algorithm, respectively. Thus, the BKZ algorithm was 48% faster than Pagh’s algorithm

and 67% faster than Dietzfelbinger and Hagerup’s algorithm, on average. This gain was

maintained for sets with different sizes. The BKZ algorithm needs kn (k ∈ [0.93, 1.15])

words to store the resulting function, while Pagh’s algorithm needs kn (k > 2) words and

Dietzfelbinger and Hagerup’s algorithm needs kn (k ∈ [1.13, 1.15]) words. The time to

generate the functions is inversely proportional to the value of k.

6.2 The RAM Algorithm: Dealing with Connected

Components with a Single Cycle for r = 2

Although the BKZ algorithm still generates MPHFs that require O(n log n) bits to be

stored, the techniques used in its design can also be used to speedup the execution time of

the RAM algorithm, which generates MPHFs that require (3 + ǫ)n bits of storage space,

where ǫ > 0. Remember that the RAM algorithm originally works on random bipartite

graphs with no cycles. But, if each connected component of the random graph has just

one cycle with the same number of edges and vertices, then it is possible to build MPHFs

40% faster on average. In Section 6.2.1 we present the design of the optimized version of

the RAM algorithm. In Section 6.2.2 we experimentally compare the optimized version of

the RAM algorithm with the version of the RAM algorithm presented in Chapter 2.

6.2.1 Design of the Optimized Version of The RAM Algorithm

The first two steps of the RAM algorithm builds an one-to-one mapping between a key set

S (or, equivalently, the edge set E) and the vertex set V of an acyclic bipartite random

graph G = (V, E), |E| = n, |V | = m = cn and c > 2. But if each connected component

of G has just one cycle with the same number of edges and vertices, then it is possible to

create an one-to-one mapping between edges and vertices in this case. This is interesting

because the RAM algorithm will run much faster for values of c close to 2. We now show

how to adapt the first two steps of the RAM algorithm to deal with connected components

of G containing a single cycle.

Definition 25 Let C = {G′ = (V ′, E ′) | V ′ ⊆ V, E ′ ⊆ E} be the set of connected

components of G.

6.2. THE RAM ALGORITHM: DEALING WITH CONNECTED COMPONENTS WITH A SINGLE
CYCLE FOR R = 2 107

We now use the same idea presented in Section 6.1. For each connected component

G′ ∈ C, we split G′ into two subgraphs G′ = G′
crit ∪ G′

ncrit, where G′
crit = (Vcrit, Ecrit)

is the subcomponent of G′ that contains cycles and G′
ncrit = (Vncrit ∪ Vscrit, Encrit) is the

subcomponent with no cycles. The algorithm presented in Section 2.1.1 to test whether a

graph contains cycles can be easily adapted to obtain G′
crit and G′

ncrit. The resulting graph

of the test corresponds to G′
crit and G′

ncrit = G′−G′
crit. Now we do not restart the mapping

step because G′
crit is not empty. Instead, we first use a depth-first search algorithm to

build an one-to-one mapping for Ecrit and Vcrit and, then, use the assigning step of the

RAM algorithm for Encrit and Vncrit. We just restart from the mapping step if G′
crit is not

assignable (i.e., G′
crit contains more than one cycle).

Figure 6.6 illustrates the assignment of G′
crit. Figure 6.6(b) shows the order in which a

depth-first search algorithm will visit each vertex. The algorithm starts from a given vertex

v ∈ Vcrit, lets say v = 0, and set g[v] to 0. Then, the depth-first search goes on one of the

vertices adjacent to vertex v = 0. Let u = 2 be that vertex. Then, g[u] = (x−g[v]) mod 2,

where:

x =







0, if u < |V |/2

1, otherwise.

This will associate vertex u = 2 with the current edge {0, 2}. Note that when we are

visiting edge e = {0, 3}, which closes the cycle, its two vertices were already assigned.

Therefore, we cannot change the value assigned to vertex 0 and vertex 0 is supposed to be

associated with e. In this case, there is no problem because g[0] received the same value

previously assigned and the algorithm ends because all edges were visited.

0
1
2
3

g
0 1 1 0

(b)(a)

G’crit

10

2

0

3
1
1

0

0 2 1 3

Figure 6.6: (a) Assignment for a connected component with a single cycle with 4 vertices

and 4 edges. (b) Order in which a depth-first search algorithm will visit each vertex starting

from vertex 0.

The assignment of G′
crit is not possible when the length of the cycle is not a multiple

of four. Figure 6.7 illustrates a case where it is not possible to finish the assignment

108 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES

successfully. In Figure 6.7(b), if we traverse the cycle in the opposite way the depth-

first search algorithm did, the values of g for the current visited vertex are: 0, 1, 0, 0, 1, 1.

Note that vertex 5 was associated with two edges: {0, 5} and {2, 5}. It happens because

(g[0] + g[5]) mod 2 = 1 and (g[2] + g[5]) mod 2 = 1. To avoid this we must have a sequence

of g values alternating double zeros and double ones with the same number of zeros and

ones, i.e., 0, 0, 1, 1, . . . , 0, 0, 1, 1. In Figure 6.6(b), if we traverse the cycle in the opposite

way the depth-first search algorithm did, the values of g are: 0, 0, 1, 1. Therefore, the

length of the cycles must be a multiple of four.

1 0

G’crit

0
1
2
3
4
5

(a)

0 1 0 1

(b)

0 0

3 4

21

5

0 3 1 4 2 50
1

1
0
1

Figure 6.7: (a) A non-assignable cycle with 6 vertices and 6 edges. (b) Order in which a

depth-first search algorithm will visit each vertex starting from vertex 0.

Definition 26 A connected component G′ ∈ C is assignable if and only if it contains a

single cycle with the same number of vertices and edges, and its length is a multiple of

four.

The ranking step of the RAM algorithm does not need to be changed. To finish we

just need to show that it is possible to obtain a bipartite random graph G with no non-

assignable connected component with high probability. This is equivalent to show that,

with high probability, G has no cycle of length 2(2l−1) for l = 1, 2, 3, . . . , and each vertex

v ∈ V will be present in just one cycle. In [27] it is shown that, for c ≥ 2 and with

probability tending to one, a vertex v ∈ V cannot participate in two different cycles of size

two or higher. Then, it remains to prove the following theorem.

Theorem 10 Let G = (V, E) be a bipartite random graph with n edges and m vertices.

Then, if m = cn holds for c > 2, the probability that G has no cycle of length 2(2l− 1) for

l = 1, 2, 3, . . . , for n → ∞, is:

Prb =

√

1 −
(

2
c

)2

(

1 −
(

2
c

)4
)

1

4

(6.8)

6.2. THE RAM ALGORITHM: DEALING WITH CONNECTED COMPONENTS WITH A SINGLE
CYCLE FOR R = 2 109

Proof. As shown in Theorem 4, the random variable Ce(G) that measures the number

of cycles of any even length in G converges to a Poisson distribution with parameter:

λe =
∞
∑

l=1

1

2l

(

2

c

)2l

= −1

2
ln

(

1 −
(

2

c

)2
)

· (6.9)

Corresponding results hold for cycles with lengths in a given subset of {2, 4, 6, . . .}, as

can be derived from the results of [48]. Let Cb(G) be a random variable that measures

the number of bad cycles in G (cycles with lengths that are not multiple of four), which

converges to a Poisson distribution with parameter:

λb =
∑

l=1,3,5,7,...

1

2l

(

2

c

)2l

· (6.10)

From Eq. (6.9) we know that:

λe =
∑

l=1,3,5,7,...

1

2l

(

2

c

)2l

+
∑

l=2,4,6,8,...

1

2l

(

2

c

)2l

= −1

2
ln

(

1 −
(

2

c

)2
)

λb = −1

2
ln

(

1 −
(

2

c

)2
)

−
∑

l=2,4,6,8,...

1

2l

(

2

c

)2l

= −1

2
ln

(

1 −
(

2

c

)2
)

− 1

2

∞
∑

l=1

1

2l

(

(

2

c

)2
)2l

= −1

2
ln

(

1 −
(

2

c

)2
)

+
1

4
ln

(

1 −
(

2

c

)4
)

Therefore, the probability that G has no bad cycle is given by:

Prb(Cb(G) = 0) = e−λb =

√

1 −
(

2
c

)2

(

1 −
(

2
c

)4
)

1

4

·

For c = 2.09 we have Prb = 0.458, whereas the probability to obtain an acyclic bipartite

random graph Pra = 0.29. This implies that 1/Prb = 2.18 iterations are required on

average to succeed in the version that deals with one single cycle of length multiple of

four per connected component, whereas 1/Pra = 3.45 iterations are required on average in

the version that requires an acyclic bipartite random graph. Experimentally, we obtained

Prb = 0.463 by generating 1, 000 random bipartite 2-graphs with n = 107 keys (edges),

which is very close to the theoretical value.

110 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES

6.2.2 Comparing the two Versions of the RAM Algorithm

In this section we evaluate the performance of the RAM algorithm when used to generate

MPHFs 4. We will consider two versions of the RAM algorithm: (i) the version that that

works on random bipartite graphs with a single cycle per connected component; and (ii)

the version that works on random bipartite graphs with no cycles, which is presented in

Chapter 2.

For this reason the two versions of the RAM algorithm were implemented in the C lan-

guage and are available under the GNU Lesser General Public License (LGPL) at http://-

cmph.sf.net. The experiments were carried out on a computer running the Linux oper-

ating system, version 2.6, with a 1.86 gigahertz Intel Core 2 processor with a 4 megabyte

L2 cache and 1 gigabyte of main memory. For the experiments we used two collections: (i)

a set of 150 million randomly generated 4 byte long IP addresses, and (ii) a set of 1, 024

million 64 byte long (on average) URLs collected from the Web.

The runtime of the version of the RAM algorithm that deals with a single cycle per

connected component has the same form of the one presented in Chapter 2, which is αnZ

for an input of n keys, where α is some machine dependent constant that further depends

on the length of the keys and Z is a random variable with geometric distribution. But now

the mean of the geometric distribution is 1/Prb instead of 1/Pra, where Prb and Pra are

given in Eq. (6.8) and Eq. (2.7), respectively. All results in the experiments to compare the

two versions of the RAM algorithm were obtained taking c = 2.09; the larger is c the faster

are both versions of the RAM algorithm because both Prb and Pra increase continuously

with c.

The values chosen for n were 1, 2, 4, 8, 12, 16, 20 and 24 millions. Although we have

150 millions of random IPs and 1, 024 millions of URLs, on a PC with 1 gigabyte of main

memory, both versions of the RAM algorithm are able to handle an input with at most 24

millions of keys. This is mainly because the sparse random hypergraph required to generate

the functions is memory demanding. By using the same technique used in Chapter 2 to

estimate the number of trials for each value of n we also obtained 300 trials in order to

have a confidence level of 95%.

Figure 6.8 presents the runtime for each trial. In addition, the solid line corresponds to

a linear regression model obtained from the experimental measurements. As we can see,

the runtime for a given n has a considerable fluctuation, which gives a coefficient of deter-

mination R2 = 71%. However, the fluctuation also grows linearly with n. The observed

4The same conclusions are achieved when PHFs are generated.

6.2. THE RAM ALGORITHM: DEALING WITH CONNECTED COMPONENTS WITH A SINGLE
CYCLE FOR R = 2 111

fluctuation in the runtimes is as expected; recall that this runtime has the form αnZ with Z

a geometric random variable with mean 1/Prb = 1/0.458 for c = 2.09. Thus, the runtime

has mean αn/Prb = 2.18αn and standard deviation αn
√

(1 − Prb)/(Prb)2 = 1.61αn.

Therefore, the standard deviation also grows linearly with n, as experimentally verified in

Figure 6.8. It is important to remark that this version of the RAM algorithm has a smaller

fluctuation than the version presented in Chapter 2 because Prb > Pra.

0
10

0
20

0
30

0
40

0
T

im
e

(s
)

0 5 10 15 20 25
Number of keys (millions)

IPs (r=2, cycle) Linear regression

(a) IPs collection

0
10

0
20

0
30

0
T

im
e

(s
)

0 5 10 15 20 25
Number of keys (millions)

URLs (r=2, cycle) Linear regression

(b) URLs collection

Figure 6.8: Number of keys in S versus generation time for the RAM algorithm that works

on random hypergraphs with a single cycle per connected component for r = 2. The solid

line corresponds to a linear regression model for the generation time (R2 = 71%).

The version of the RAM algorithm that works on random bipartite graphs with a single

cycle per connected component has the same behavior of the version that works on random

acyclic bipartite graphs (see Figures 2.13 and 6.8), but runs considerably faster. This is

because the geometric distribution now has mean 1/Prb, where Prb = 0.458, whereas for

the version of the RAM algorithm presented in Chapter 2 the geometric distribution has

mean 1/Pra, where Pra = 0.29.

To end this section we now compare the two versions of the RAM algorithm by taking

n = 1, 12 and 24 millions of keys in the two collections and by considering generation

time and storage space as metrics. Table 6.7 presents the respective confidence intervals

for the generation time, which is given by the average time ± the distance from average

time considering a confidence level of 95%, and the respective values for the storage space.

It is possible to see that when cycles are allowed the RAM algorithm is approximately

40% faster to generate the functions. Also, the generation time, as expected, is influenced

by the key length (IPs are 4 bytes long and URL are 64 bytes long on average), and the

storage space is not. Finally, the most compact functions are generated when r = 2 and

cycles are allowed.

112 CHAPTER 6. MPHFS AND RANDOM GRAPHS WITH CYCLES

n RAM algorithm Generation Time (sec) Storage Space

IPs URLs Bits/Key Size (MB)

1 × 106 r = 2 cycle 3.26 ± 0.16 3.69 ± 0.18 3.35 0.40

no cycle 4.45 ± 0.42 4.75 ± 0.41 3.60 0.43

12 × 106 r = 2 cycle 41.33± 2.02 47.96± 2.45 3.35 4.79

no cycle 58.70± 5.20 64.22± 6.37 3.60 5.15

24 × 106 r = 2
cycle 91.32 ± 5.2 104.77± 5.58 3.35 9.58

no cycle 135.92± 13.2 146.93± 14.09 3.60 10.30

Table 6.7: Comparison of the two versions of the RAM algorithm considering generation

time and storage space, and using n = 1, 12, and 24 millions of keys for the two collections.

6.3 Conclusions

In this chapter we presented techniques that allow the generation of MPHFs based on

random graphs with cycles. This implies that the functions are generated faster and are

more compact than the ones generated based on acyclic random graphs. The techniques

were applied to the design of two algorithms: the BKZ algorithm and the RAM algorithm.

First we showed how the BKZ algorithm improves the space requirement of the MPHFs

generated by the algorithm proposed by Czech, Havas and Majewski [25] from cn log n bits,

for c > 2 to c′n log n, where c′ ∈ [0.93, 1.15]. That is, our resulting functions are stored in

approximately 55% of the space required to store the ones generated by the CHM algorithm.

However, the resulting MPHFs still requires O(n log n) bits to be stored, that is a factor

log n from the optimal. We also showed that the BKZ algorithm runs approximately 59%

faster than the CHM algorithm on average.

Second, we used techniques similar to the ones used in the design of the BKZ algorithm

to speedup the execution time of the RAM algorithm presented in Chapter 2, which gen-

erates MPHFs that require (3 + ǫ)n bits of storage space, where ǫ > 0. We showed that if

each connected component of the random graph has just one cycle with the same number

of edges and vertices, then it is possible to tune the RAM algorithm to build MPHFs 40%

faster on average.

Chapter 7

Indexing Internal Memory With

MPHFs

The objective of this chapter is to show that MPHFs provide the best tradeoff between

space usage and lookup time when compared to other hashing schemes. It was not the

case in the past because the space overhead to store MPHFs was O(log n) bits per key for

practical algorithms [25, 55]. Therefore, a better performace in terms of time and space was

obtained by using a single hash function and resolving collisions with linear probing [45, 51].

However, the new results on MPHFs presented in Chapter 2 have motivated this work, since

the resulting MPHFs require approximately 2.6 bits per key of space overhead and can be

evaluated in O(1) time.

We obtained interesting results in two scenarios: (i) when the MPHF description fits

in the CPU cache and (ii) when it cannot be entirely placed in the CPU cache. In the

first scenario we show that the other hashing schemes cannot outperform minimal perfect

hashing when the hash table occupancy is greater than 55%. An MPHF requiring just

2.6 bits per key of storage space permits to store sets on the order of 10 million keys in a

4 megabyte CPU cache, which is enough for a large range of applications. In the second

scenario, other hashing schemes require a hash table occupancy lower than 75% to obtain

the same performance attained by minimal perfect hashing. For both scenarios, the space

overhead of minimal perfect hashing is within a factor of O(log n) bits lower than other

hashing schemes. A preliminary version of these results was presented in [13].

This chapter is organized as follows. In Section 7.1 we describe the hashing schemes

used in the study. In Section 7.2 we present the experimental results to compare the

considered hashing schemes. Finally, in Section 7.3 we conclude this chapter.

113

114 CHAPTER 7. INDEXING INTERNAL MEMORY WITH MPHFS

7.1 The Algorithms

In this section we describe the hashing methods we used to compare minimal perfect

hashing with, namely, linear hashing, quadratic hashing, double hashing, dense hashing,

cuckoo hashing and sparse hashing. The hash table entries store items, and each item is

composed by a key and possibly some data, i.e., a pair < k, d >. All the methods analyzed

use collision resolution by open addressing, that is, they look at various positions of the

hash table one by one until it either finds the key k being searched for or it finds an empty

position [51]. In contrast, collision resolution could also be made by chaining, in which a

linked list is used to store items that collided in the same table position. Open addressing

is preferred over chaining if we are interested in lookup time, since it has a better locality

of reference and reduces the number of cache misses.

The hash table structure used by linear hashing, quadratic hashing, double hashing,

dense hashing and cuckoo hashing is shown in Figure 7.1. Every table position has a

pointer, initially pointing to an empty value. When an item is inserted in the table, the

pointer of the corresponding position starts to refer to it. The hash table structures for

sparse hashing and minimal perfect hashing are presented in Sections 7.1.5 and 7.1.6,

respectively.

K 1 D 1 D 2 D 3 K n D nK 2 K 3

m−1

1
0

10

Hash Table

NULL11

Item Set

Figure 7.1: Hash table used for linear hashing, quadratic hashing, double hashing, dense

hashing and cuckoo hashing.

Note that we should not insert the item itself in the table, since the allocated empty

positions would cause an expressive waste of memory space, especially if the item occupies

several bytes. Hence, the wasted space is reduced by using only one pointer per empty

position. If we define p as the pointer size in bits, the space overhead for methods that

use the structure in Figure 7.1 is p × m bits for a hash table of size m. For a 64 bits

architecture, p = 64 bits.

7.1. THE ALGORITHMS 115

Throughout this section we shall use ⊕m as a notation for an addition modulus m. For

instance, we may describe the operation (a + b) mod m as a ⊕m b.

7.1.1 Linear Hashing

Linear hashing is considered one of the simplest open addressing schemes available [51, 76].

It uses a hash function h : S → [0, m− 1] and tests positions h(k), h(k)⊕m 1, h(k)⊕m 2, ...

sequentially until it finds the term k being searched. Otherwise, if it finds an empty

position, or if the sequential search reaches position h(k) after running over all other

positions, the item being searched does not exist in the hash table.

The pseudocode shown below represents how this method works:

1. Calculate i = h(k).

2. If the i-th position is empty or h(k) is reached again after running over all table

positions, then the search is concluded and the item relative to k is not in the hash

table.

3. If the i-th position contains the item with key k, then the search is concluded and

the item relative to k is in position i.

4. Else, i = i ⊕m 1. Go to step 2.

The efficiency of a search for a given key k ∈ S in the linear hashing method depends

on the number of probes performed during the search. This is highly sensitive to the hash

table load factor α = n/m (i.e., the ratio between the number of items and the number of

entries in the hash table.) The higher is α, the larger is the number of probes. According

to Knuth [51], the expected number of probes performed for successful and unsuccessful

searches are 1
2

(

1 + 1
1−α

)

and 1
2

(

1 +
(

1
1−α

)2
)

, respectively. The main problem with this

method is that it degenerates in a sequential search when the number of terms n gets

closer to the table size m, which causes a waste of time. Another issue is the waste of

space caused by empty positions in the hash table.

7.1.2 Quadratic Hashing

Quadratic hashing is very similar to linear hashing, however, it uses two additional pa-

rameters, r and q, besides the hash function h(k) : S → [0, m − 1]. Parameter r indicates

116 CHAPTER 7. INDEXING INTERNAL MEMORY WITH MPHFS

how many positions ahead the current position the next search for the term k will be per-

formed, and parameter q indicates the value which parameter r will be added to after each

iteration. Quadratic hashing is expected to have a better performance when compared to

linear hashing for higher load factors, since it prevents the production of clusters which

delay the search for items. However, this method shares some problems found in linear

hashing, e.g., the waste of space due to empty positions and the waste of time due to

successive collisions when n gets closer to m [46, 51]. The quadratic hashing method may

also have a smaller locality of reference when compared to linear hashing, as the pace r

may become much larger than one.

The period of search is defined as the number of entries that appear in a sequence from a

particular initial position before an entry is encountered twice. The period of search should

preferably be the same as the table size m or, at least, as large as possible. Otherwise,

the table may appear to be full when there is still space available. If m is a prime number

then the period of search for the quadratic hash method is m/2.

The pseudocode shown below represents how this method works:

1. Calculate i = h(k).

2. If the i-th position is empty or h(k) is reached again after running over all reachable

positions, then the search is concluded and the item relative to k is not in the hash

table.

3. If the i-th position contains the item with key k, then the search is concluded and

the item relative to k is in position i.

4. Else, i = i ⊕m r, r = r ⊕m q. Go to step 2.

Given a hash table load factor α = n/m, the expected number of probes in quadratic

hashing is 1− ln(1−α)− α
2

for successful searches and 1
1−α

− ln(1−α)−α for unsuccessful

searches, according to [51]. Furthermore, in [51] it was proposed a variation of quadratic

hashing, which was also compared with perfect hashing in our experiments. We used an

implementation available in [72], which is called dense hashing.

7.1.3 Double Hashing

Double hashing also works in a way very similar to linear hashing, but with the difference

that, instead of one function, it uses two: h1(k) and h2(k). The first one produces values

7.1. THE ALGORITHMS 117

in the range [0, m− 1], mapping the term into its position in the hash table, the same way

as the hash function in linear hashing does. The additional function h2(k) produces values

in the range [1, m − 1], which are used as steps in the process of finding empty positions.

Values produced by h2(k) are relatively primes to the table size m. This is necessary to

ensure that the period of search will be of the same as m, which guarantees that any given

item can be inserted in any table position (see, e.g., [51]). Furthermore, we can check if

the table is full by counting the number of collisions, since m successive collisions indicates

a full structure.

This method tests positions using a distance h2(k), i.e., it tests positions h1(k), h1(k)⊕m

h2(k), h1(k)⊕m 2h2(k), ..., until it finds an empty position or until it finds the term k being

searched for.

The method is described bellow:

1. Calculate i = h1(k), d = h2(k).

2. If the i-th position is empty or h1(k) is reached again after running over all table

positions, then the search is concluded and the item relative to k is not in the table.

3. If the i-th position contains the item with key k, then the search is concluded and

the item relative to k is in position i.

4. Else, i = i ⊕m d. Go to step 2.

Double hashing reduces the problem of clustering in a better way than quadratic hashing

does. This is because function h2(k) provides a different step d for each key k, and the

multiple step sizes produce a more uniform distribution of used positions. This method

still shares some problems with previously cited methods, such as the waste of space due

to unused positions and the possibility of successive collisions when the structure is almost

full. Knuth [51] estimated the expected number of successful probes in searches for double

hashing as −
(

1
α

ln(1 − α)
)

, and the number of unsuccessful probes in searches as 1
1−α

.

7.1.4 Cuckoo Hashing

Cuckoo hashing uses two hash functions, h1(k) and h2(k), to get two possible table positions

for a given term. When a term x has to be inserted in the structure, one of the two possible

positions (h1(x) or h2(x)) is chosen. If the chosen position is already occupied, the term y

contained there will be removed from the structure, yielding an empty position to the term

118 CHAPTER 7. INDEXING INTERNAL MEMORY WITH MPHFS

x being inserted. Term y, in turn, has two possible positions, given by h1(y) and h2(y).

Consequently, y can be inserted in a position different from its former one. However, that

position can be occupied too. Thus, this process must continue until all terms are inserted

in one of their possible positions, or until some item can not be inserted [77, 63].

In case we need to search for a term k, the two possible positions for k (namely h1(k)

and h2(k)) are checked. If neither one contains the term, then it is not in the structure.

Insertion in cuckoo hashing is better described bellow:

1. Calculate i = h1(k)

2. If the i-th position is empty, insert the term k in that position

3. Else,

Swap the term k with the term x contained in the i-th position

If h1(x) == i, then i = h2(x)

Else, i = h1(x)

Go to step 2

A problem with this method is that it is possible that it gets into an infinite loop during

the insertion of a term, since it can cause a sequence of items to be expelled indefinitely in

a cyclical manner. It was shown that in practical situations with a load factor lower than

or equal to 50% this is highly unlikely [63]. However, we may prevent this by allowing only

a maximum amount of iterations during term insertion. Notwithstanding, cuckoo hashing

still will not be able to insert the term with the same hash function values, and the table

needs to be rebuilt with different functions if the term is to be inserted.

7.1.5 Sparse Hashing

Sparse hashing is based on a sparse array structure which uses little memory space. It is

implemented as an array of groups A, where the number of groups in a sparse array of m

entries is calculated as G = ⌈m/M⌉. Each group stored in A[g], 0 ≤ g < G, is responsible

for M indexes of the hash table, i.e., A[0] is responsible for the items in the range [0, M−1],

A[1] for the items in the range [M, 2M − 1], and so on. Each group g contains an array

Ig that stores the actual items and a bitmap Bg of size M . The bitmap Bg indicates the

assigned indexes in the range [0, M − 1]. If Bg[f] = 1, 0 ≤ f < M , then index f has a

corresponding value stored in Ig. Note that an item in group g with an offset f is not

7.1. THE ALGORITHMS 119

necessarily placed in position f of Ig, but in the position Ig[j], where j is the number of

bits set from Bg[0] to Bg[f − 1]. Therefore, the array Ig is dynamically reallocated when

new items are inserted in it. Thus, the size of Ig can differ among groups. Figure 7.2

illustrates these data structures.

0100

0000

0110 K G−1, 1 D G−1, 1 K G−1, 2 D G−1, 2

K 10, 0 D 10, 0 K 10, 1 D 10, 1 K 10, 2 D 10, 2

D 1, 2

1101 K 0, 0 D 0, 0 K 0, 2 D 0, 2 K 0, 3 D 0, 3

K 1, 2

0111

Hash Table

Bitmaps

(0, 1, 2, 3)

1

0

11

10

G−1

NULL

Items

Figure 7.2: Hash table used in the sparse hashing method.

A lookup for an item with key k is performed by first calculating its position i = h(k),

in which h(k) : S → [0, m − 1]. The group g to which the item belongs is defined as

g = ⌊i/M⌋, and its offset inside g is f = i mod M . In this way, we need to check the value

of Bg[f]. If it is set to 0, then the item is not present in the hash table. Otherwise, it is

possibly present in group g and we need to check if there is a collision. This can be done

by checking if the item with key k is present in Ig. The position j of the item in this array

is calculated by counting the number of bits set between Bg[0] and Bg[f − 1]. If the item

in position j is not the one with key k, then there is a collision, which will be resolved by

quadratic probing on i (see Section 7.1.2).

Insertion is performed in a similar fashion. First, we must check if the item is present

with a lookup. If not, we shall insert the item in Ig in the position calculated by counting

the number of bits set between Bg[0] and Bg[f − 1], in the same way it is done in the

lookup. An insertion may require the displacement of all items with internal offset j such

that j ≥ f . Let us take Figure 7.2 as an example. Suppose we want to insert a certain

item with key k for which g = 0 and f = 1. Then the item must be inserted in position 1

of group 0, but that position is already occupied. To solve this, we need to move the items

with key K0,2 and K0,3 one position ahead of their current position. The item with K0,3

will be moved to the position allocated for the new term, i.e., the forth position. The item

with key K0,2 will be moved to the position just left of the item with key K0,3, i.e., the

120 CHAPTER 7. INDEXING INTERNAL MEMORY WITH MPHFS

third position. Finally, the position calculated for the item with key k will be free and we

can place the new item there. Figure 7.3 shows the situation of group 0 after the insertion

of the item with key K0,1.

1111 K 0, 0 D 0, 0 K 0, 1 D 0, 1 K 0, 2 D 0, 2 K 0, 3 D 0, 3

Hash Table

Bitmaps

(0, 1, 2, 3)

0

Items

Figure 7.3: Group 0 after an insertion.

This method differs from the others in the sense that it prioritizes efficient memory

usage. It allocates as little space as possible to represent unassigned positions, and the

arrays containing the actual items grow only when it is needed. If each pointer has a size

of p bits, the space overhead of sparse hashing for a hash table of size m and G groups is

m + G × p. That is, m bits to represent the bitmaps, and G pointers, one for each group.

Although being very efficient in memory usage, sparse hashing is not designed to be

efficient in time: each lookup needs to perform a sequential search through Bg to find the

position of an item Ig.

7.1.6 Minimal Perfect Hashing

The hash table structure used by minimal perfect hashing is shown in Figure 7.4. In

this structure there is no need for pointers, i.e., all the items are inserted directly in the

table. This is only possible because there are no empty entries in the hash table, and

therefore we will not lose any space if we increase the capacity of the table entries to fit

the items themselves. This is not the case for the other methods, in which any increase in

the capacity of the table entries would cause even more space to be wasted. Moreover, the

minimal perfect hashing avoids the use of memory space to keep the pointers, which is an

additional advantage. However, there is still the need to store the MPHF representation

in main memory, and the space overhead for this method is approximately 2.62n bits for

a set of n keys, as can be seen in Chapter 2.

The minimal perfect hash function h : S → [0, n − 1] used to index the hash table

presented in Figure 7.4 is taken from the family of MPHFs proposed in Chapter 2. The

MPHFs are generated based on random r-partite hypergraphs where each edge connects

r ≥ 2 vertices (see Definition 13). In our experiments we used a version that employs

hypergraphs with r = 3, since it generates the fastest and most compact MPHFs. However,

for simplicity of exposition, we will now illustrate the MPHF construction when r = 2.

7.1. THE ALGORITHMS 121

7K 7D

nK nD

1K 1D

2K 2D

Hash Table

1

0

10

m−1

Figure 7.4: Hash table used in the perfect hashing method.

Figure 7.5 gives an overview of the MPHF construction for r = 2, taking as input a

key set S ⊆ U containing the first four month names abbreviated to the first three letters,

i.e., S = {jan, feb, mar, apr}. The mapping step in Figure 7.5(a) assumes that it is possible

to find r = 2 hash functions, h0 and h1, with independent values uniformly distributed in

the intervals [0,3] and [4,7], respectively. These functions are used to assign each key in

S to an edge of an acyclic random bipartite graph G = (V, E)1, such that |V | = m = 8

and |E| = n = 4. In our example, January is mapped to edge {h0(jan), h1(jan)} = {2, 5},

February is mapped to {h0(jan), h1(jan)} = {2, 6}, and so on.

The assigning step in Figure 7.5(b) builds an array g representing a function g : [0, m−
1] → {0, 1, 2}, which is used to uniquely assign an edge with key k to one of its r = 2

incident vertices. The value r is used to represent unassigned vertices. Note that a vertex

for a key k is either given by h0(k) or h1(k). The decision of which function hi(k) to be

used for k is made by calculating i = (g[h0(k)] + g[h1(k)]) mod 2. In our example, January

is mapped to 2 because (g[2] + g[5]) mod 2 = 0 and h0(jan) = 2. Similarly, February is

mapped to 6 because (g[2] + g[6]) mod 2 = 1 and h1(feb) = 6, and so on.

The ranking step builds a data structure used to compute a function rank(v), which

counts in O(1) time the number of assigned positions in g before a given position v ∈
[0, m − 1]. To illustrate, rank(7) = 3 means that there are three positions assigned before

position 7 in g, namely 0, 2 and 6.

In our experiments, the MPHF is constructed based on hypergraphs with r = 3, and

we use three hash functions hi : S → [im
3
, (i + 1)m

3
− 1], in which 0 ≤ i < 3 and m =

1.23n. The value 1.23n is required to generate an acyclic random 3-partite hypergraph

with high probability, as shown in Chapter 2. Here again, the functions are assumed

to have independent values uniformly distributed. The MPHF has the following form:

h(k) = rank(phf (k)), where phf : S → [0, 1.23n − 1] is a perfect hash function defined

1See Chapter 2 for details on how to obtain such a graph with high probability.

122 CHAPTER 7. INDEXING INTERNAL MEMORY WITH MPHFS

h (x)1

0
1
2
3
4
5
6
7

3
2
1
0

g

Hash Table

(c)(a)

0h (x)

(b)

Assigning

1

Mapping

1 3

54

S

jan

feb

mar

apr 6

20

0

mar
jan
feb
apr

1

0
r

r
r
r

Rankingm
ar ja

n feb

apr

7

Figure 7.5: (a) The mapping step generates an acyclic bipartite random 2-graph. (b) The

assigning step builds an array g so that each edge is uniquely assigned to a vertex. (c) The

ranking step builds the data structure used to compute function rank : V → [0, n − 1] in

O(1) time.

as phf (k) = hi(k) and i = (g[h0(k)] + g[h1(k)] + g[h2(k)]) mod 3. The array g is now

representing a function g : V → {0, 1, 2, 3}, and rank : V → [0, n−1] is now the cardinality

of {u ∈ V | u < v ∧ g[u] 6= 3}. Notice that a vertex u is assigned if g[u] 6= 3.

7.2 Experimental Results

In this section we present the key sets used in the experiments and the results of the

comparative study. All experiments were carried out on a computer running Linux version

2.6, with a 1.86 gigahertz Intel Core 2 64 bits processor, 4 gigabytes of main memory and 4

megabytes of L2 cache. All results presented are averages on 50 trials and were statistically

validated with a confidence level of 95%. Table 7.1 summarizes the symbols and acronyms

used throughout this section.

The linear hashing, quadratic hashing, double hashing, cuckoo hashing and minimal

perfect hashing structures were all implemented using the C language. We used the CMPH

library available at http://cmph.sf.net to generate the MPHFs used in the minimal

perfect hashing structure. For sparse hashing and dense hashing we used the original

implementation available in [72].

It is important to notice that we are interested in the performance of lookups and

therefore we do not present results concerning the time to build the data structures. Nev-

ertheless, it is important to stress that the MPHF construction is very fast, as can be seen

in Chapter 2. We consider two situations: (i) when only successful lookups are performed

(i.e., the key is always found in the hash table) and (ii) when only unsuccessful lookups

are involved (i.e., a key is never found in the hash table). The results are evaluated for

7.2. EXPERIMENTAL RESULTS 123

Symbol Meaning

α Load factor

n Number of keys in a key set

N Number of keys used in the lookup step

Probes/N Average number of probes per key during the lookup

T(s) Average time (in seconds) spent during the lookup of N keys

So(bits/key) Space Overhead in bits per key

LH Linear Hashing

QH Quadratic Hashing

DH Double Hashing

CH Cuckoo Hashing

SH Sparse Hashing

DeH Dense Hashing

MPH Minimal Perfect Hashing

Table 7.1: Symbols and acronyms used throughout this section.

each data structure in terms of the average number of lookups, the average lookup time

and the space overhead.

The experimental results are presented in three distinct subsections. First, in Sec-

tion 7.2.2, we compare the minimal perfect hashing structure with linear hashing, quadratic

hashing and double hashing structures. Second, in Section 7.2.3, we compare it with sparse

hashing and dense hashing structures. Finally, in Section 7.2.4, we compare it with cuckoo

hashing structure. The three sets of experiments use the key sets described in Section

7.2.1.

7.2.1 Key Sets

In our experiments we used three key sets: (i) a key set of 5, 424, 923 unique query terms

extracted from the AllTheWeb2 query log, referred to as AllTheWeb key set; (ii) a key

set of 37, 294, 116 unique URLs collected from the Brazilian Web by the TodoBr3 search

engine, referred to as URLs-37 key set; and (iii) a smaller key set of 10 million URLs

randomly selected from the URLs-37 key set, which is referred to as URLs-10 key set.

Table 7.2 shows the main characteristics of each key set, namely the smallest key size, the

largest key size and the average key size in bytes.

2AllTheWeb (www.alltheweb.com) is a trademark of Fast Search & Transfer company, which was

acquired by Overture Inc. in February 2003. In March 2004 Overture itself was taken over by Yahoo!.
3TodoBr (www.todobr.com.br) is a trademark of Akwan Information Technologies, which was acquired

by Google Inc. in July 2005.

124 CHAPTER 7. INDEXING INTERNAL MEMORY WITH MPHFS

Key Set n Shortest Key Largest Key Average Size of the Keys

AllTheWeb 5,424,923 2 31 17.46

URLs-10 10,000,000 8 494 58.36

URLs-37 37,294,116 8 496 58.77

Table 7.2: Characteristics of the key sets used for the experiments.

In order to test the lookup performance of the considered hash structures in a real world

environment, we need to look up keys in a way similar to the real access patterns of actual

applications. In the case of the AllTheWeb key set, the probability distribution of query

term lookups was extracted from the AllTheWeb query log. Similarly, the distribution of

URL lookups must be equivalent to the access pattern performed by a web crawler that

needs to check whether a URL extracted from a web page is new, i.e., whether it has not

been collected before. Therefore, we decided to use an automatic generator to simulate

these lookup patterns found in search engines.

The probability distribution of query term lookups for the AllTheWeb key set is shown

in Figure 7.6 (a). It is plotted in a log-log scale, constituting a power law distribution

with inclination −0.91. This same distribution was used to simulate the lookup stream

submitted to the hashing data structures in order to evaluate their performance, as can

be seen in Figure 7.6 (b). We generated 10 million keys to be looked up in a hashing data

structure storing the AllTheWeb key set.

(a) Extracted from AllTheWeb query log. (b) Generated automatically.

Figure 7.6: Probability distribution of query term lookups.

Pages arriving in a crawling system are known to have a few very popular URLs and

many not so popular URLs, which also constitutes a power law behavior [17]. Consequently,

we employed the same distribution found for query terms to describe the probability of

7.2. EXPERIMENTAL RESULTS 125

arrival of a URL in a crawler. We generated 250 million and 20 million URLs to be looked

up in the hashing data structures that store the URLs-37 key set and the URLs-10 key set,

respectively.

So far we have described how to generate key sets to perform successful searches in

hashing data structures. In order to test the performance of the data structures when

unsuccessful searches are involved, we have randomly generated three additional key sets:

(i) 10 million keys of average size equal to 17.46 bytes to be looked up when the structures

are storing the AlltheWeb key set, (ii) 20 million keys of average size equal to 58.36 bytes

to be looked up when the structures are storing the URLs-10 key set, and (iii) 250 million

keys of average size equal to 58.77 bytes to be looked up when the structures are storing the

URLs-37 key set. They were created based on the average key sizes presented in Table 7.2.

In our experiments we used an 8-byte fingerprint of the key instead of the key itself.

The use of fingerprints was motivated by two reasons: (i) to guarantee that all keys have

the same size, since in this way we can allocate a fixed size for each key without waste of

space; and (ii) to reduce the amount of memory used to store each key, as the average key

size in all key sets used is greater than 8 bytes. A point worth noting is that each key set

was stored entirely in main memory, but the set of automatically generated keys is too big

to be stored in the same way, and had to be kept in disk.

7.2.2 Minimal Perfect Hashing Versus Linear Hashing, Quadrat-

ic Hashing and Double Hashing

In this section we compare the minimal perfect hashing structure with linear hashing,

quadratic hashing and double hashing. Linear hashing, quadratic hashing and double

hashing methods were tested with different load factors, ranging from 50 to 90%. We

considered both successful and unsuccessful searches to measure the average number of

probes and the amount of time spent (on average) to look up 10, 20 and 250 million keys

in the AllTheWeb, URLs-10 and URLs-37 key sets, respectively.

The results for successful and unsuccessful searches are presented in Tables 7.3 and

7.4, respectively. As expected, quadratic hashing and double hashing perform better than

linear hashing for high load factors, since they avoid the creation of clusters in this case.

Nevertheless, linear hashing is a better option when we use lower load factors. Further-

more, we can see that double hashing always has a smaller number of collisions per key

when compared to quadratic hashing and linear hashing, but it is slower since it needs to

compute two hash functions instead of one. The average number of probes measured for

126 CHAPTER 7. INDEXING INTERNAL MEMORY WITH MPHFS

both successful and unsuccessful searches are very close to the expected according to the

equations presented in Sections 7.1.1, 7.1.2 and 7.1.3 (this is not shown in the tables).

LH QH DH

Key Set α Probes/N T(s) Probes/N T(s) Probes/N T(s)

85% 3.78 5.67 2.40 5.27 2.17 5.42

80% 2.91 5.26 2.09 5.09 2.02 5.28

75% 2.47 5.04 1.93 4.97 1.90 5.11

AllTheWeb 70% 2.13 4.84 1.78 4.81 1.71 4.98

65% 1.89 4.70 1.69 4.69 1.61 4.83

60% 1.73 4.58 1.58 4.60 1.52 4.72

55% 1.62 4.46 1.51 4.52 1.45 4.64

50% 1.48 4.34 1.42 4.40 1.40 4.56

85% 3.63 18.98 2.27 17.87 2.16 18.36

80% 2.83 18.32 2.09 17.67 1.96 18.02

75% 2.37 17.69 1.87 17.29 1.83 17.69

URLs-10 70% 2.05 17.31 1.76 17.01 1.69 17.34

65% 1.80 17.00 1.61 16.81 1.62 17.14

60% 1.70 16.84 1.53 16.61 1.50 16.92

55% 1.57 16.34 1.47 16.33 1.42 16.58

50% 1.51 16.33 1.39 16.19 1.35 16.39

85% 3.94 269.19 2.37 253.18 2.29 263.80

80% 3.00 255.53 2.12 247.48 2.01 257.31

75% 2.46 247.95 1.89 242.51 1.83 250.60

URLs-37 70% 2.11 243.02 1.82 240.55 1.71 246.58

65% 1.94 238.15 1.65 235.54 1.66 244.10

60% 1.74 235.21 1.57 234.20 1.50 239.84

55% 1.62 232.83 1.50 231.63 1.45 236.31

50% 1.55 229.62 1.43 228.92 1.37 233.79

Table 7.3: Load factor influence on the time to successfully look up 10, 20 and 250 million

keys in the AllTheWeb, URLs-10 and URLs-37 key sets, respectively.

We now compare the minimal perfect hashing structure with linear hashing, quadratic

hashing and double hashing. Tables 7.5 and 7.6 show the results for successful and un-

successful searches, respectively. Two interesting results are remarkable. First, when the

MPHF description fits in the L2 cache, which is the case for the AllTheWeb key set and

URLs-10 key set, the minimal perfect hashing structure outperforms the others in terms of

lookup time for load factors greater than 55% for both successful and unsuccessful searches.

Second, in the converse situation in which the MPHF description does not fit in the L2

7.2. EXPERIMENTAL RESULTS 127

LH QH DH

Key Set α Probes/N T(s) Probes/N T(s) Probes/N T(s)

85% 22.80 14.82 7.54 8.60 6.67 8.89

80% 13.02 10.43 5.59 7.36 5.00 7.65

75% 8.44 8.17 4.43 6.67 4.00 6.95

AllTheWeb 70% 6.05 7.03 3.66 6.20 3.33 6.42

65% 4.59 6.32 3.11 5.87 2.86 6.06

60% 3.63 5.84 2.71 5.60 2.50 5.74

55% 2.97 5.48 2.39 5.36 2.22 5.48

50% 2.50 5.19 2.13 5.14 2.00 5.25

85% 22.61 34.81 7.54 22.68 7.25 23.71

80% 12.93 25.78 5.59 20.16 5.00 20.87

75% 8.49 21.93 4.43 18.77 4.00 19.27

URLs-10 70% 6.05 19.42 3.66 17.77 3.33 18.18

65% 4.58 17.94 3.11 17.07 2.86 17.40

60% 3.62 16.91 2.70 16.57 2.50 16.70

55% 2.97 16.14 2.39 15.98 2.22 16.14

50% 2.50 15.59 2.13 15.57 2.00 15.63

85% 22.53 526.05 7.55 333.49 6.67 379.17

80% 13.01 387.93 5.59 294.89 5.19 330.74

75% 8.51 318.94 4.43 270.53 4.00 296.62

URLs-37 70% 6.06 281.93 3.66 253.64 3.33 274.55

65% 4.58 258.15 3.12 242.66 2.86 257.75

60% 3.62 242.04 2.71 232.46 2.50 245.06

55% 2.97 230.90 2.39 225.05 2.22 233.96

50% 2.50 220.64 2.13 217.66 2.00 222.92

Table 7.4: Load factor influence on the time to unsuccessfully look up 10, 20 and 250

million keys in the AllTheWeb, URLs-10 and URLs-37 key sets, respectively.

cache, which is the case for the URLs-37 key set, the same thing happens for load factors

greater than 75% and 65% for successful searches and unsuccessful searches, respectively.

Therefore, as can be seen, the use of MPHFs saves a significant amount of space with

almost no loss in the lookup time.

128 CHAPTER 7. INDEXING INTERNAL MEMORY WITH MPHFS

Data AllTheWeb URLs-10 URLs-37

Structure α(%) T(s) So(bits/key) α(%) T(s) So(bits/key) α(%) T(s) So(bits/key)

MPH 100 4.48 2.62 100 16.34 2.62 100 250.36 2.62

LH 55 4.46 116.36 55 16.34 116.36 75 247.95 85.33

QH 55 4.52 116.36 55 16.33 116.36 80 247.48 80

DH 50 4.56 128 50 16.39 128 75 250.60 85.33

Table 7.5: Comparison of MPH with LH, QH and DH, considering the space overhead and

the time to successfully look up 10, 20 and 250 million keys in the AllTheWeb, URLs-10

and URLs-37 key sets, respectively.

Data AllTheWeb URLs-10 URLs-37

Structure α(%) T(s) So(bits/key) α(%) T(s) So(bits/key) α(%) T(s) So(bits/key)

MPH 100 5.33 2.62 100 16.38 2.62 100 252.65 2.62

LH 55 5.48 116.36 60 16.91 106.67 65 258.15 98.46

QH 55 5.36 116.36 60 16.57 106.67 70 253.64 91.43

DH 55 5.48 116.36 60 16.70 106.67 65 257.75 98.46

Table 7.6: Comparison of MPH with LH, QH and DH, considering the space overhead and

the time to unsuccessfully look up 10, 20 and 250 million keys in the AllTheWeb, URLs-10

and URLs-37 key sets, respectively.

7.2.3 Minimal Perfect Hashing Versus Dense and Sparse Hash-

ing

Sparse hashing and dense hashing were tested with their default load factor only, which

is 80%. Table 7.7 shows the time spent to execute the lookup step for each method for

successful searches only. As expected, sparse hashing had the worst performance in lookup

time when compared to the other methods, as it is designed to be efficient in space but not

in execution time. The same is true for unsuccessful searches, as displayed in Table 7.8. It

is important to note that perfect hashing has clearly outperformed the other methods in

all aspects. Experiments were performed using only the AllTheWeb and URLs-10 key sets.

We decided not to use the URLs-37 key set since we did not expect any improvements on

the results.

7.2. EXPERIMENTAL RESULTS 129

Data AllTheWeb URLs-10

Structure α(%) T(s) So(bits/key) α(%) T(s) So(bits/key)

MPH 100 4.48 2.62 100 16.34 2.62

SH 80 11.47 2,92 80 35.76 2,92

DeH 80 6.51 80 80 27.48 80

Table 7.7: Comparison of MPH with DeH and SH, considering the space overhead and the

time to successfully look up 10 and 20 million keys in the AllTheWeb and URLs-10 key

sets, respectively.

Data AllTheWeb URLs-10

Structure α(%) T(s) So(bits/key) α(%) T(s) So(bits/key)

MPH 100 5.33 2.62 100 16.38 2.62

SH 80 15.48 2,92 80 48.27 2,92

DeH 80 7.59 80 80 30.26 80

Table 7.8: Comparison of MPH with DeH and SH, considering the space overhead and the

time to unsuccessfully look up 10 and 20 million keys in the AllTheWeb and URLs-10 key

sets, respectively.

7.2.4 Minimal Perfect Hashing Versus Cuckoo Hashing

Cuckoo hashing has a different behavior when compared to any of the methods analyzed,

as it cannot work if the load factor is high, i.e., at most 50% [63]. Therefore, we decided to

show the comparison between this method and perfect hashing in this separated subsection.

Cuckoo hashing was tested with load factors ranging from 20% to the maximum load factor

with which it works.

Table 7.9 shows the average number of probes and the average lookup time to success-

fully search for 10, 20 and 250 million keys in the AllTheWeb, URLs-10 and URLs-37 key

sets, respectively. We can see that cuckoo hashing performs slightly faster for all key sets

used, but the space overhead for the MPH structure is much lower than for cuckoo hashing

in all experiments. The same happens for unsuccessful searches, as we can see in Table

7.10.

130 CHAPTER 7. INDEXING INTERNAL MEMORY WITH MPHFS

Data AllTheWeb URLs-10 URLs-37

Structure α(%) T(s) So(bits/key) α(%) T(s) So(bits/key) α(%) T(s) So(bits/key)

MPH 100 4.48 2.62 100 16.34 2.62 100 250.36 2.62

CH 20 4.08 320 20 15.99 320 20 222.40 320

CH 30 4.13 213 30 16.05 213 30 224.98 213

CH 40 4.28 160 40 16.22 160 40 228.76 160

CH 50 4.38 128 50 16.34 128 50 233.89 128

Table 7.9: Comparison of MPH with CH, considering the space overhead and the time to

successfully look up 10, 20 and 250 million keys in the AllTheWeb, URLs-10 and URLs-37

key sets, respectively.

Data AllTheWeb URLs-10 URLs-37

Structure α(%) T(s) So(bits/key) α(%) T(s) So(bits/key) α(%) T(s) So(bits/key)

MPH 100 5.33 2.62 100 16.38 2.62 100 252.65 2.62

CH 20 5.06 320 20 15.79 320 20 222.46 320

CH 30 5.10 213 30 15.92 213 30 227.21 213

CH 40 5.30 160 40 16.07 160 40 229.58 160

CH 50 5.34 128 50 16.17 128 50 231.26 128

Table 7.10: Comparison of MPH with CH, considering the space overhead and the time

to unsuccessfully look up 10, 20 and 250 million keys in the AllTheWeb, URLs-10 and

URLs-37 key sets, respectively.

7.3 Conclusions

In this chapter we have presented a thorough study of data structures that are suitable for

indexing internal memory in an efficient way in terms of both space and lookup time when

we have a key set that is fixed for a long period of time (i.e., a static key set) and each

key is associated with satellite data. This is widely used in data warehousing and search

engine applications (see [71] for other examples).

It is well known that an efficient way to represent a key set in terms of lookup time

is by using a table indexed by a hash function. For static key sets it is possible to pay

the price of pre-computing an MPHF to find any key in a table in one single probe. We

have shown that minimal perfect hashing has a clear advantage in memory usage when

compared to other hashing methods, since there are no empty entries in its hash table and

thus space overhead is greatly reduced by avoiding the use of pointers. This implies in a

gain of O(log n) bits.

7.3. CONCLUSIONS 131

In our study, we compared MPHFs with linear hashing, quadratic hashing, double hash-

ing, dense hashing, cuckoo hashing and sparse hashing. We have shown that MPHFs pro-

vide the best tradeoff between space usage and lookup time among these hashing schemes.

As an example, minimal perfect hashing have a better performance in all measured as-

pects when compared to sparse hashing, which has been designed specifically for efficient

memory usage. Furthermore, if the MPHF can be stored in cache, minimal perfect hash-

ing outperforms linear hashing, quadratic hashing and double hashing in all aspects when

these methods have a hash table occupancy of 55% or higher. The same happens for hash

table occupancies greater than or equal to 75% if the MPHF does not fit in cache. This

implies in a significant memory overhead due to a great number of unused positions in the

hash table.

132 CHAPTER 7. INDEXING INTERNAL MEMORY WITH MPHFS

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this work we have presented two classes of algorithms for constructing PHFs and MPHFs.

The first class contains internal memory based algorithms that assume uniform hashing

to construct the functions. The algorithms read a key set stored in external memory and

maps it to data structures that are handled in the internal memory. Then, the generation

of the functions are done based on these internal data structures. The second class contains

a cache-aware external memory algorithm that generates the functions without assuming

uniform hashing. The algorithm uses data structures stored in both internal and external

memory, but the key set is still kept in the external memory.

In Chapter 2 we presented an internal random access memory algorithm (RAM al-

gorithm) that generates a family F of near space-optimal PHFs or MPHFs. The RAM

algorithm uses acyclic random hypergraphs given by function values of r uniform random

hash functions on S for generating PHFs and MPHFs that require O(n) bits to be stored.

We have improved in a factor of O(log n) the well known result by Majewski et al [55].

They generate MPHFs based on acyclic hypergraphs that are stored in O(n log n) bits

whereas the ones generated by the RAM algorithm requires O(n) bits. All the resulting

functions are evaluated in constant time. For r = 2 the resulting MPHFs are stored in ap-

proximately 3.6n bits. For r = 3 we have got still more compact MPHFs, which are stored

in approximately 2.6n bits. This is within a factor of 2 from the information theoretical

lower bound of approximately 1.44n bits for MPHFs.

For applications where a PHF of range [0, m − 1], where m = 1.23n, is sufficient,

more compact and even simpler representations can be achieved. For example, for m =

133

134 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

1.23n we can get a space usage of 1.95n bits. This is also within a small constant factor

from the information theoretical lower bound of approximately 0.89n bits. The bounds

for r = 3 assume a conjecture about the emergence of a 2-core in a random 3-partite

hypergraph, whereas the bounds for r = 2 are fully proved. Choosing r > 3 does not give

any improvement of these results.

There is a gap between theory and practice among all previous methods on perfect

hashing. On one hand, there are good theoretical results without experimentally proven

practicality for large key sets. On the other hand, there are the algorithms that assume

unrealistic assumptions, as the assumption that uniform hash functions are available to be

used with no extra cost of storage space (see Section 1.4), to theoretically analyze their run

time and space usage. The methods also require O(n) computer words for the construction

process.

To design a cache-aware external memory algorithm (EM algorithm) that gives an

important step on the way of bridging the gap between theory and practice on perfect

hashing, works with high probability for every key set and scales for key sets on the order

of billions of keys we used a two-step approach: the partitioning step and the searching

step. In the partitioning step, we use a universal hash function to split the incoming key

set S into small buckets with a bounded maximum bucket size that fits in the CPU cache.

Then, we use the techniques presented in Chapter 3 to simulate uniform hash functions

on the small buckets. Therefore, as we are able to use uniform hash functions on the

small buckets, in the searching step we use the RAM algorithm to build an MPHF for

each bucket with high probability, and using an offset array we obtain an MPHF for the

whole key set S. In order to scale for sets on the order of billions of keys we generate runs

of an external multi-way merge sort during the partitioning step and merge them in the

searching step when the buckets are read from disk.

The EM algorithm requires O(nǫ) computer words, where 0 < ǫ < 1, for constructing

the functions in linear time. Typically ǫ = 0.5 and that is the main reason that makes the

EM algorithm to scale. The resulting PHFs and MPHFs require approximately 2.7 and 3.3

bits per key to be stored and are evaluated in constant time. All together makes the EM

algorithm the first one that demonstrates the capability of generating MPHFs for sets on

the order of billions of keys on a commodity PC. For instance, considering a set of 1.024

billion URLs the EM algorithm constructs an MPHF on a commodity PC in approximately

50 minutes. The complete description of the EM algorithm is presented in Chapter 4.

The EM algorithm presents a high degree of parallelism to be exploited. Then, in

8.2. FUTURE WORK 135

Chapter 5, we presented a parallel implementation of the EM algorithm (PEM algorithm).

The PEM algorithm distributes both the construction and the description of the resulting

functions. For instance, by using a 14-computer cluster the PEM algorithm generates

a PHF or an MPHF for 1.024 billion URLs in approximately 4 minutes, achieving an

almost linear speedup. Also, for 14.336 billion 16-byte random integers evenly distributed

among the 14 participating machines the PEM algorithm outputs a PHF or an MPHF in

approximately 50 minutes, resulting in a performance degradation of 20%.

In Chapter 6, we designed techniques to generate MPHFs based on random graphs with

cycles. The BKZ algorithm was the first algorithm we came up with to generate MPHFs

based on random graphs with cycles. It improves the space requirement of the algorithm

by Czech, Havas and Majewski [25], referred to as CHM, at the expense of generating

functions in the same form that are not order preserving, but are computed in O(1) time.

We have improved the space required to store a function in the BKZ algorithm to 55% of

the space required by the CHM algorithm. The BKZ algorithm is also linear on n and runs

59% faster than the CHM algorithm. However, the resulting MPHFs still need O(n log n)

bits to be stored and the algorithm needs O(n) computer words to construct the functions.

In the same trend, also in Chapter 6, we used techniques similar to the ones used in the

design of the BKZ algorithm to speedup the execution time of RAM algorithm that works

on random acyclic bipartite graphs. In this case, by allowing a single cycle with the same

number of vertices and edges per connected component in the random bipartite graph we

were able to generate PHFs and MPHFs 40% faster than when cycles are not allowed.

Minimal perfect hash functions were not considered a good option to index internal

memory in the past [45]. However, in Chapter 7, we showed that the new MPHFs proposed

in this work, specially the ones generated by the RAM algorithm, have a clear advantage

in memory usage when compared to other hashing methods with almost no loss in terms

of lookup time, since there are no empty entries in its hash table and thus space overhead

is greatly reduced by avoiding the use of pointers. This implies in a gain of O(log n) bits.

8.2 Future Work

In this work we designed, analyzed and implemented algorithms to build compact and

practical PHFs and MPHFs. On the way we left some points open to be exploited as

future work. In the following we present the future steps to be taken:

1. In Chapter 2 the threshold for the moment that the random acyclic r-partite hyper-

136 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

graphs dominate the space of random r-partite hypergraphs have not been completely

proved for r ≥ 3. The problems for r < 3 and for r ≥ 3 have different natures and

involve a phase transition, as reported to us by Kohayakawa [52]. We are on the way

of obtaining a fully proof of the threshold for r ≥ 3. This is being done in a joint

work with Professor Nicholas C. Wormald from the Department of Combinatorics

and Optimization at University of Waterloo.

2. The main technical ingredient of the family of algorithms presented in Chapter 2 is

the use of acyclic r-partite random hypergraphs. We have shown how to deal with

cycles when r = 2. However, we aim to extend the techniques presented in Chapter 6

to deal with cycles when r = 3. We believe that we can get still more compact

functions in this case.

3. In Chapter 6 we were not able to prove the Conjecture 1 and Professor Jayme Szwar-

cfiter pointed out in the thesis presentation that the literature related to graceful

labeling can be a good source to find insights on the way of the proof. Therefore, we

want to study this literature and try to find a proof for the the Conjecture 1.

4. A problem with all algorithms we have designed is that we need to know the key set a

priori. That is, they are designed to work with static sets. Then, we aim to study how

to extend the algorithms to work with dynamic key sets to build compact dynamic

minimal perfect hash functions. In this case, keys can be inserted or removed from

the key set and this operations would be carried out in our methods with a linear cost.

Then, our objective is to look for algorithms that generate functions as compact as

possible, which should allow lookups, insertions and deletions in amortized constant

time.

5. We believe that MPHFs can potentially be applied to applications where we need

to index similar objects previously clustered with respect to some similarity metric

(e.g., Euclidean distance). In these cases, we can compute a key for each cluster

based on the similarity metric and, then, to compute an MPHF for the resulting key

set. We aim to exploit this problem because we believe that the resulting key sets

can be built in such way that put them in between static and dynamic key sets. For

example, this situation would occur if we were able to build the key set so that a

key is added to it whenever a new cluster is created and deleted only when a cluster

disappear, but no change is made in the key of a given cluster when objects are added

to or removed from the cluster.

8.2. FUTURE WORK 137

6. An MPHF can be used to implement a data structure with the same functionality as

a Bloom filter1[60, 37]. In many applications where a set S of elements is to be stored,

it is acceptable to include in the set some false positives with a small probability by

storing a signature for each perfect hash value. Theoretically speaking, as shown

in [60], this data structure requires around 30% less space usage when compared

to Bloom filters, plus the space for the MPHF. Then we aim to study if this data

structure outperforms the Bloom filters in practice when lookup time and space usage

are considered as metrics. Preliminary results indicates that the data structure that

uses MPHFs just outperforms the Bloom filters for false positive rates smaller than

26 in terms of space usage. We still do not have conclusive preliminary results for

lookup time.

1The Bloom filter, conceived by Burton H. Bloom in 1970 [6], is a space-efficient probabilistic data

structure that is used to test whether an element is a member of a set. False positives are possible, but

false negatives are not. False positives are elements that appear to be in S but are not and false negatives

are elements that are not in S but a data structure storing S says that they are. Elements can be added

to the set, but not removed (though this can be addressed with a counting filter [10]). The more elements

that are added to the set, the larger the probability of false positives. Bloom filters have applications in

distributed databases and data mining (association rule mining [21, 22]).

138 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related

problems. Communications of the ACM, 31(9):1116–1127, 1988.

[2] N. Alon, M. Dietzfelbinger, P. B. Miltersen, E. Petrank, and G. Tardos. Linear hash

functions. Journal of the ACM, 46(5):667–683, 1999.

[3] N. Alon and M. Naor. Derandomization, witnesses for Boolean matrix multiplication

and construction of perfect hash functions. Algorithmica, 16(4-5):434–449, 1996.

[4] M. Atici, D. R. Stinson, and R. Wei. A new practical algorithm for the construction of

a perfect hash function. Journal Combin. Math. Combin. Comput., 35:127–145, 2000.

[5] Djamal Belazzougui. Private communication, September 30, 2006.

[6] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communi-

cations of the ACM, 13(7):422–426, 1970.

[7] P. Boldi and S. Vigna. The webgraph framework i: Compression techniques. In

Proceedings of the 13th International World Wide Web Conference (WWW’04), pages

595–602, 2004.

[8] B. Bollobás. Random graphs, volume 73 of Cambridge Studies in Advanced Mathe-

matics. Cambridge University Press, Cambridge, second edition, 2001.

[9] B. Bollobás and O. Pikhurko. Integer sets with prescribed pairwise differences being

distinct. European Journal of Combinatorics. To Appear.

[10] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese. An improved

construction for counting bloom filters. In Proceedings of the 14th conference on

Annual European Symposium (ESA’06), pages 684–695, London, UK, 2006. Springer-

Verlag.

139

140 BIBLIOGRAPHY

[11] F. C. Botelho, D. Galinkin, W. Meira Jr., and N. Ziviani. Distributed perfect hashing

for very large key sets. In Proceedings of the 3rd International ICST Conference on

Scalable Information Systems (InfoScale’08). ACM Press, 2008.

[12] F. C. Botelho, Y. Kohayakawa, and N. Ziviani. A practical minimal perfect hashing

method. In Proceedings of the 4th International Workshop on Efficient and Experi-

mental Algorithms (WEA’05), pages 488–500. Springer LNCS vol. 3503, 2005.

[13] F. C. Botelho, H. R. Langbehn, G. V. Menezes, and N. Ziviani. Indexing internal

memory with minimal perfect hash functions. In Proceedings of the 23rd Brazilian

Symposium on Database (SBBD’08), October 2008.

[14] F. C. Botelho, R. Pagh, and N. Ziviani. Simple and space-efficient minimal perfect hash

functions. In Proceedings of the 10th Workshop on Algorithms and Data Structures

(WADS’07), pages 139–150. Springer LNCS vol. 4619, 2007.

[15] F. C. Botelho and N. Ziviani. External perfect hashing for very large key sets. In

Proceedings of the 16th ACM Conference on Information and Knowledge Management

(CIKM’07), pages 653–662. ACM Press, 2007.

[16] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In

Proceedings of the 7th International World Wide Web Conference (WWW’98), pages

107–117, April 1998.

[17] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,

A. Tomkins, and J. Wiener. Graph structure in the web. In Proceedings of the 9th

international World Wide Web conference on Computer networks : the international

journal of computer and telecommunications netowrking (WWW’00), pages 309–320,

Amsterdam, The Netherlands, The Netherlands, 2000. North-Holland Publishing Co.

[18] A. Z. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher. Min-wise independent

permutations. In Proceedings of the Thirtieth Annual ACM Symposium on the Theory

of Computing (STOC’98), pages 327–336, 1998.

[19] J. Cain and N. C. Wormald. Encores on cores. Electronic Journal of Combinatorics,

13(1), 2006.

[20] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of

Computer and System Sciences, 18(2):143–154, 1979.

BIBLIOGRAPHY 141

[21] C. C. Chang and C. Y. Lin. A perfect hashing schemes for mining association rules.

The Computer Journal, 48(2):168–179, 2005.

[22] C. C. Chang, C. Y. Lin, and H. Chou. Perfect hashing schemes for mining traversal

patterns. Journal of Fundamenta Informaticae, 70(3):185–202, 2006.

[23] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The bloomier filter: An efficient data

structure for static support lookup tables. In Proceedings of the 15th annual ACM-

SIAM symposium on Discrete algorithms (SODA’04), pages 30–39, Philadelphia, PA,

USA, 2004. Society for Industrial and Applied Mathematics.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.

MIT Press, second edition, 2001.

[25] Z. J. Czech, G. Havas, and B. S. Majewski. An optimal algorithm for generating

minimal perfect hash functions. Information Processing Letters, 43(5):257–264, 1992.

[26] Z. J. Czech, G. Havas, and B. S. Majewski. Fundamental study perfect hashing.

Theoretical Computer Science, 182:1–143, 1997.

[27] A. M. Daoud. Perfect hash functions for large web repositories. In G. Kotsis, D. Taniar,

S. Bressan, I. K. Ibrahim, and S. Mokhtar, editors, Proceedings of the 7th Interna-

tional Conference on Information Integration and Web Based Applications Services

(iiWAS’05), volume 196, pages 1053–1063. Austrian Computer Society, 2005.

[28] E. Demaine, F. Meyer auf der Heide, R. Pagh, and M. Pǎtraşcu. De dictionariis

dynamicis pauco spatio utentibus. In Proceedings of the Latin American Symposium

on Theoretical Informatics (LATIN’06), pages 349–361, 2006.

[29] M. Dietzfelbinger and T. Hagerup. Simple minimal perfect hashing in less space. In

Proceedings of the 9th European Symposium on Algorithms (ESA’01), pages 109–120.

Springer LNCS vol. 2161, 2001.

[30] M. Dietzfelbinger and C. Weidling. Balanced allocation and dictionaries with tightly

packed constant size bins. In Proceedings of 32nd International Colloquium on Au-

tomata, Languages and Programming (ICALP’05), pages 166–178, 2005.

[31] M. Dietzfelbinger and P. Woelfel. Almost random graphs with simple hash functions.

In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing

(STOC’03), pages 629–638, New York, NY, USA, 2003. ACM.

142 BIBLIOGRAPHY

[32] J. Ebert. A versatile data structure for edges oriented graph algorithms. Communi-

cation of The ACM, (30):513–519, 1987.

[33] P. Erdős and A. Rényi. On random graphs I. Pub. Math. Debrecen, 6:290–297, 1959.

[34] P. Erdős and A. Rényi. On the evolution of random graphs. Magyar Tud. Akad. Mat.

Kutató Int. Közl., 5:17–61, 1960.

[35] P. Erdős and A. Rényi. On the strength of connectedness of a random graph. Acta

Mathematica Scientia Hungary, 12:261–267, 1961.

[36] W. Feller. An Introduction to Probability Theory and Its Applications, volume 1.

Wiley, January 1968.

[37] D. Ficara, S. Giordano, G. Procissi, and F. Vitucci. Multilayer compressed counting

bloom filters. In Proceedings of the 27th IEEE Conference on Computer Communica-

tions (INFOCOM’08), pages 311–315. IEEE Press, 2008.

[38] E. A. Fox, Q. F. Chen, and L. S. Heath. A faster algorithm for constructing minimal

perfect hash functions. In Proceedings of the 15th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval (SIGIR’92), pages

266–273, 1992.

[39] E. A. Fox, L. S. Heath, Q. Chen, and A. M. Daoud. Practical minimal perfect hash

functions for large databases. Communications of the ACM, 35(1):105–121, 1992.

[40] M. L. Fredman and J. Komlós. On the size of separating systems and families of

perfect hashing functions. SIAM Journal on Algebraic and Discrete Methods, 5:61–68,

1984.

[41] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1) worst

case access time. Journal of the ACM, 31(3):538–544, July 1984.

[42] N. Galli, B. Seybold, and K. Simon. Tetris-hashing or optimal table compression.

Discrete Applied Mathematics, 110(1):41–58, june 2001.

[43] T. Hagerup and T. Tholey. Efficient minimal perfect hashing in nearly minimal space.

In Proceedings of the 18th Symposium on Theoretical Aspects of Computer Science

(STACS’01), pages 317–326. Springer LNCS vol. 2010, 2001.

BIBLIOGRAPHY 143

[44] G. Havas, B. S. Majewski, N. C. Wormald, and Z. J. Czech. Graphs, hypergraphs

and hashing. In Proceedings of the 19th International Workshop on Graph-Theoretic

Concepts in Computer Science, pages 153–165. Springer LNCS vol. 790, 1993.

[45] Y. Ho. Application of minimal perfect hashing in main memory indexing. Technical

report, Cambridge, MA, USA, 1994.

[46] F. R. A. Hopgood and J. Davenport. The quadratic hash method when the table size

is a power of 2. The Computer Journal, 15(4):314–315, November 1972.

[47] R. Jain. The art of computer systems performance analysis: techniques for exper-

imental design, measurement, simulation, and modeling. John Wiley, first edition,

1991.

[48] S. Janson. Poisson convergence and poisson processes with applications to random

graphs. Stochastic Processes and their Applications, 26:1–30, 1987.

[49] S. Janson, T. Luczak, and A. Ruciński. Random graphs. Wiley-Inter., 2000.

[50] B. Jenkins. Algorithm alley: Hash functions. Dr. Dobb’s Journal of Software Tools,

22(9), september 1997.

[51] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3.

Addison-Wesley, second edition, 1973.

[52] Yoshiharu Kohayakawa. Private communication, 2007.

[53] P. Larson and G. Graefe. Memory management during run generation in external

sorting. In Proceedings of the 1998 ACM SIGMOD international conference on Man-

agement of data, pages 472–483. ACM Press, 1998.

[54] S. Lefebvre and H. Hoppe. Perfect spatial hashing. ACM Transactions on Graphics,

25(3):579–588, 2006.

[55] B. S. Majewski, N. C. Wormald, G. Havas, and Z. J. Czech. A family of perfect

hashing methods. The Computer Journal, 39(6):547–554, 1996.

[56] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing database architecture for

the new bottleneck: Memory access. The VLDB journal, 9:231–246, 2000.

144 BIBLIOGRAPHY

[57] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. Springer-

Verlag, 1984.

[58] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University Press,

New York, NY, USA, 1995.

[59] D. Okanohara and K. Sadakane. Practical entropy-compressed rank/select dictio-

nary. In Proceedings of the Workshop on Algorithm Engineering and Experiments

(ALENEX’07), 2007.

[60] A. Pagh, R. Pagh, and S. S. Rao. An optimal bloom filter replacement. In Proceedings

of the 16th annual ACM-SIAM symposium on Discrete algorithms (SODA’05), pages

823–829, Philadelphia, PA, USA, 2005.

[61] R. Pagh. Hash and displace: Efficient evaluation of minimal perfect hash functions.

In Workshop on Algorithms and Data Structures (WADS’99), pages 49–54, 1999.

[62] R. Pagh. Low redundancy in static dictionaries with constant query time. SIAM

Journal on Computing, 31(2):353–363, 2001.

[63] R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144, 2004.

[64] E. M. Palmer. Graphical Evolution: An Introduction to the Theory of Random Graphs.

John Wiley & Sons, New York, 1985.

[65] B. Pittel and N. C. Wormald. Counting connected graphs inside-out. Journal of

Combinatorial Theory Series B, 93(2):127–172, 2005.

[66] B. Prabhakar and F. Bonomi. Perfect hashing for network applications. In Proceedings

of the IEEE International Symposium on Information Theory. IEEE Press, 2006.

[67] Michael J. Quinn. Parallel computing: theory and practice. McGraw-Hill, Inc., New

York, NY, USA, second edition, 1994.

[68] J. Radhakrishnan. Improved bounds for covering complete uniform hypergraphs. In-

formation Processing Letters, 41:203–207, 1992.

[69] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications

to encoding k-ary trees and multisets. In Proceedings of the thirteenth annual ACM-

SIAM symposium on Discrete algorithms (SODA’02), pages 233–242, Philadelphia,

PA, USA, 2002. Society for Industrial and Applied Mathematics.

BIBLIOGRAPHY 145

[70] J. P. Schmidt and A. Siegel. The spatial complexity of oblivious k-probe hash func-

tions. SIAM Journal on Computing, 19(5):775–786, October 1990.

[71] M. Seltzer. Beyond relational databases. ACM Queue, 3(3), April 2005.

[72] C. Silverstein. An extremely memory-efficient hash map implementation (google-

sparsehash). http://code.google.com/p/google-sparsehash, November 2007.

[73] D. R. Stinson, R. Wei, and L. Zhu. New constructions for perfect hash families and

related structures using combinatorial designs and codes. Journal Combin. Designs.,

8:189–200, 2000.

[74] J. S. Vitter. External memory algorithms and data structures. In J. Abello and J. S.

Vitter, editors, External Memory Algorithms and Visualization, pages 1–38. American

Mathematical Society Press, Providence, RI, 1999.

[75] P. Woelfel. Maintaining external memory efficient hash tables. In Proceedings of the

10th International Workshop on Randomization and Computation (RANDOM’06),

pages 508–519. Springer LNCS vol. 4110, 2006.

[76] N. Ziviani. Projeto de Algoritmos com implementações em Java e C++. Thompson

Learning, São Paulo, first edition, 2006. Consultoria em Java e C++ de F. C. Botelho.

[77] M. Zukowski, S. Héman, and P. Boncz. Architecture-conscious hashing. In Second

DAMON workshop (SIGMOD 2006), Chicago, USA, june 2006.

