
Challenge: 100Gbit/s around the corner1/37

Network stack challenges

at increasing speeds
The 100Gbit/s challenge

Jesper Dangaard Brouer
Red Hat inc.

Linux Conf Au, New Zealand, January 2015

Challenge: 100Gbit/s around the corner2/37

Overview

● Intro
● Understand 100Gbit/s challenge and time budget
● Measurements: understand the costs in the stack?

● Recent accepted changes
● TX bulking, xmit_more and qdisc dequeue bulk

● Future work needed
● RX, qdisc, MM-layer

● Memory allocator limitations
● Qmempool: Lock-Free bulk alloc and free scheme

Challenge: 100Gbit/s around the corner3/37

Coming soon: 100 Gbit/s

● Increasing network speeds: 10G -> 40G -> 100G
● challenge the network stack

● Rate increase, time between packets get smaller
● Frame size 1538 bytes (MTU incl. Ethernet overhead)

● at 10Gbit/s == 1230.4 ns between packets (815Kpps)
● at 40Gbit/s == 307.6 ns between packets (3.26Mpps)
● at 100Gbit/s == 123.0 ns between packets (8.15Mpps)

● Time used in network stack
● need to be smaller to keep up at these increasing rates

Challenge: 100Gbit/s around the corner4/37

Pour-mans solution to 100Gbit/s

● Don't have 100Gbit/s NICs yet?
● No problem: use 10Gbit/s NICs with smaller frames

● Smallest frame size 84 bytes (due to Ethernet overhead)

● at 10Gbit/s == 67.2 ns between packets (14.88Mpps)

● How much CPU budget is this?
● Approx 201 CPU cycles on a 3GHz CPU

Challenge: 100Gbit/s around the corner5/37

Is this possible with hardware?

● Out-of-tree network stack bypass solutions
● Grown over recent years

● Like netmap, PF_RING/DNA, DPDK, PacketShader,
OpenOnload, RDMA/IBverbs etc.

● Have shown kernel is not using HW optimally
● On same hardware platform

● (With artificial network benchmarks)
● Hardware can forward 10Gbit/s wirespeed smallest packet
● On a single CPU !!!

Challenge: 100Gbit/s around the corner6/37

Single core performance

● Linux kernel have been scaling with number of cores
● hides regressions for per core efficiency

● latency sensitive workloads have been affected

● We need to increase/improve efficiency per core
● IP-forward test, single CPU only 1-2Mpps (1000-500ns)
● Bypass alternatives handle 14.8Mpps per core (67ns)

● although this is like comparing apples and bananas

Challenge: 100Gbit/s around the corner7/37

Understand: nanosec time scale

● This time scale is crazy!
● 67.2ns => 201 cycles (@3GHz)

● Important to understand time scale
● Relate this to other time measurements

● Next measurements done on
● Intel CPU E5-2630
● Unless explicitly stated otherwise

Challenge: 100Gbit/s around the corner8/37

Time-scale: cache-misses

● A single cache-miss takes: 32 ns
● Two misses: 2x32=64ns
● almost total 67.2 ns budget is gone

● Linux skb (sk_buff) is 4 cache-lines (on 64-bit)
● writes zeros to these cache-lines, during alloc.
● usually cache hot, so not full miss

Challenge: 100Gbit/s around the corner9/37

Time-scale: cache-references

● Usually not a full cache-miss
● memory usually available in L2 or L3 cache
● SKB usually hot, but likely in L2 or L3 cache.

● CPU E5-xx can map packets directly into L3 cache
● Intel calls this: Data Direct I/O (DDIO) or DCA

● Measured on E5-2630 (lmbench command "lat_mem_rd 1024 128")

● L2 access costs 4.3ns
● L3 access costs 7.9ns
● This is a usable time scale

Challenge: 100Gbit/s around the corner10/37

Time-scale: "LOCK" operation

● Assembler instructions "LOCK" prefix
● for atomic operations like locks/cmpxchg/atomic_inc
● some instructions implicit LOCK prefixed, like xchg

● Measured cost
● atomic "LOCK" operation costs 8.25ns

● Optimal spinlock usage lock+unlock (same single CPU)

● Measured spinlock+unlock calls costs 16.1ns

https://github.com/netoptimizer/network-testing/blob/master/src/overhead_cmpxchg.c
https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/lib/time_bench_sample.c

Challenge: 100Gbit/s around the corner11/37

Time-scale: System call overhead

● Userspace syscall overhead is large
● (Note measured on E5-2695v2)

● Default with SELINUX/audit-syscall: 75.34 ns
● Disabled audit-syscall: 41.85 ns

● Large chunk of 67.2ns budget
● Some syscalls already exists to amortize cost

● By sending several packet in a single syscall
● See: sendmmsg(2) and recvmmsg(2) notice the extra "m"
● See: sendfile(2) and writev(2)
● See: mmap(2) tricks and splice(2)

http://man7.org/linux/man-pages/man2/sendmmsg.2.html
http://man7.org/linux/man-pages/man2/recvmmsg.2.html
http://man7.org/linux/man-pages/man2/sendfile.2.html
http://man7.org/linux/man-pages/man2/writev.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/splice.2.html

Challenge: 100Gbit/s around the corner12/37

Time-scale: Sync mechanisms

● Knowing the cost of basic sync mechanisms
● Micro benchmark in tight loop

● Measurements on CPU E5-2695
● spin_{lock,unlock}: 41 cycles(tsc) 16.091 ns
● local_BH_{disable,enable}: 18 cycles(tsc) 7.020 ns
● local_IRQ_{disable,enable}: 7 cycles(tsc) 2.502 ns
● local_IRQ_{save,restore}: 37 cycles(tsc) 14.481 ns

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/lib/time_bench_sample.c

Challenge: 100Gbit/s around the corner13/37

Main tools of the trade

● Out-of-tree network stack bypass solutions
● Like netmap, PF_RING/DNA, DPDK, PacketShader,

OpenOnload, RDMA/Ibverbs, etc.

● How did others manage this in 67.2ns?
● General tools of the trade is:

● batching, preallocation, prefetching,
● staying cpu/numa local, avoid locking,
● shrink meta data to a minimum, reduce syscalls,
● faster cache-optimal data structures

Challenge: 100Gbit/s around the corner14/37

Batching is a fundamental tool

● Challenge: Per packet processing cost overhead
● Use batching/bulking opportunities

● Where is makes sense
● Possible at many different levels

● Simple example:
● E.g. working on batch of packets amortize cost

● Locking per packet, cost 2*8ns=16ns
● Batch processing while holding lock, amortize cost
● Batch 16 packets amortized lock cost 1ns

Challenge: 100Gbit/s around the corner15/37

Recent changes

What have been done recently

Challenge: 100Gbit/s around the corner16/37

Unlocked Driver TX potential

● Pktgen 14.8Mpps single core (10G wirespeed)
● Spinning same SKB (no mem allocs)

● Primary trick: Bulking packet (descriptors) to HW

● What is going on:
● Defer tailptr write, which notifies HW

● Very expensive write to non-cacheable mem

● Hard to perf profile
● Write to device

● does not showup at MMIO point
● Next LOCK op is likely “blamed”

Challenge: 100Gbit/s around the corner17/37

API skb->xmit_more

● SKB extended with xmit_more indicator
● Stack use this to indicate (to driver)
● another packet will be given immediately

● After/when ->ndo_start_xmit() returns

● Driver usage
● Unless TX queue filled
● Simply add the packet to HW TX ring-queue
● And defer the expensive indication to the HW

Challenge: 100Gbit/s around the corner18/37

Challenge: Bulking without added latency

● Hard part:
● Use bulk API without adding latency

● Principal: Only bulk when really needed
● Based on solid indication from stack

● Do NOT speculative delay TX
● Don't bet on packets arriving shortly
● Hard to resist...

● as benchmarking would look good

Challenge: 100Gbit/s around the corner19/37

Use SKB lists for bulking

● Changed: Stack xmit layer
● Adjusted to work with SKB lists
● Simply use existing skb->next ptr

● E.g. See dev_hard_start_xmit()
● skb->next ptr simply used as xmit_more indication

● Lock amortization
● TXQ lock no-longer per packet cost
● dev_hard_start_xmit() send entire SKB list
● while holding TXQ lock (HARD_TX_LOCK)

Challenge: 100Gbit/s around the corner20/37

Existing aggregation in stack GRO/GSO

● Stack already have packet aggregation facilities
● GRO (Generic Receive Offload)
● GSO (Generic Segmentation Offload)
● TSO (TCP Segmentation Offload)

● Allowing bulking of these
● Introduce no added latency

● Xmit layer adjustments allowed this
● validate_xmit_skb() handles segmentation if needed

Challenge: 100Gbit/s around the corner21/37

Qdisc layer bulk dequeue

● A queue in a qdisc
● Very solid opportunity for bulking

● Already delayed, easy to construct skb-list

● Rare case of reducing latency
● Decreasing cost of dequeue (locks) and HW TX

● Before: a per packet cost
● Now: cost amortized over packets

● Qdisc locking have extra locking cost
● Due to __QDISC___STATE_RUNNING state
● Only single CPU run in dequeue (per qdisc)

Challenge: 100Gbit/s around the corner22/37

Qdisc path overhead

● Qdisc code path takes 6 LOCK ops
● LOCK cost on this arch: approx 8 ns

● 8 ns * 6 LOCK-ops = 48 ns pure lock overhead
● Measured qdisc overhead: between 58ns to 68ns

● 58ns: via trafgen –qdisc-path bypass feature
● 68ns: via ifconfig txlength 0 qdisc NULL hack

● Thus, using between 70-82% on LOCK ops
● Dequeue side lock cost, now amortized

● But only in-case of a queue
● Empty queue, direct_xmit still see this cost
● Enqueue still per packet locking

Challenge: 100Gbit/s around the corner23/37

Qdisc locking is nasty

● Always 6 LOCK operations (6 * 8ns = 48ns)

● Lock qdisc(root_lock) (also for direct xmit case)

● Enqueue + possible Dequeue
● Enqueue can exit if other CPU is running deq
● Dequeue takes __QDISC___STATE_RUNNING

● Unlock qdisc(root_lock)

● Lock TXQ

● Xmit to HW
● Unlock TXQ

● Lock qdisc(root_lock) (can release STATE_RUNNING)

● Check for more/newly enqueued pkts
● Softirq reschedule (if quota or need_sched)

● Unlock qdisc(root_lock)

Challenge: 100Gbit/s around the corner24/37

Qdisc TX bulking require BQL

● Only support qdisc bulking for BQL drivers
● Implement BQL in your driver now!

● Needed to avoid overshooting NIC capacity
● Overshooting cause requeue of packets

● Current qdisc layer requeue cause
● Head-of-Line blocking
● Future: better requeue in individual qdiscs?

● Extensive experiments show
● BQL is very good at limiting requeues

Challenge: 100Gbit/s around the corner25/37

Future work

● What need to be worked on?

● Taking advantage of TX capabilities
● Limited by

● RX performance/limitations
● Userspace syscall overhead
● FIB route lookup
● Memory allocator

Challenge: 100Gbit/s around the corner26/37

Future: Lockless qdisc

● Motivation for lockless qdisc (cmpxchg based)

1) Direct xmit case (qdisc len==0) “fast-path”
● Still requires taking all 6 locks!

2) Enqueue cost reduced (qdisc len > 0)
● from 16ns to 10ns

● Measurement show huge potential for saving
● (lockless ring queue cmpxchg base implementation)

● If TCQ_F_CAN_BYPASS saving 58ns
● Difficult to implement 100% correct

● Not allowing direct xmit case: saving 48ns

Challenge: 100Gbit/s around the corner27/37

What about RX?

● TX looks good now
● How do we fix RX?

● Experiments show
● Forward test, single CPU only 1-2Mpps
● Highly tuned setup RX max 6.5Mpps (Early drop)

● Alexie started optimizing the RX path
● from 6.5 Mpps to 9.4 Mpps

● via build_skb() and skb->data prefetch tuning
● Early drop, don't show real mem alloc interaction

http://thread.gmane.org/gmane.linux.network/333150

Challenge: 100Gbit/s around the corner28/37

Memory Allocator limitations

● Artificial RX benchmarking
● Drop packets early

● Don't see limitations of mem alloc

● Real network stack usage, hurts allocator

1) RX-poll alloc up-to 64 packets (SKBs)

2) TX put packets into TX ring

3) Wait for TX completion, free up-to 256 SKBs

● IP-forward seems to hit slower-path for SLUB

Challenge: 100Gbit/s around the corner29/37

Micro benchmark: kmem_cache

● Micro benchmarking code execution time
● kmem_cache with SLUB allocator

● Fast reuse of same element with SLUB allocator
● Hitting reuse, per CPU lockless fastpath
● kmem_cache_alloc+kmem_cache_free = 19ns

● Pattern of 256 alloc + 256 free (Based on ixgbe cleanup pattern)

● Cost increase to: 40ns

Challenge: 100Gbit/s around the corner30/37

MM: Derived MM-cost via pktgen

● Hack: Implemented SKB recycling in pktgen
● But touch all usual data+skb areas, incl. zeroing

● Recycling only works for dummy0 device:
● No recycling: 3,301,677 pkts/sec = 303 ns
● With recycle: 4,424,828 pkts/sec = 226 ns

● Thus, the derived Memory Manager cost
● alloc+free overhead is (303 - 226): 77ns
● Slower than expected, should have hit slub fast-path

● SKB->data page is likely costing more than SLAB

Challenge: 100Gbit/s around the corner31/37

MM: Memory Manager overhead

● SKB Memory Manager overhead
● kmem_cache: between 19ns to 40ns
● pktgen derived: 77ns
● Larger than our time budget: 67.2ns

● Thus, for our performance needs
● Either, MM area needs improvements
● Or need some alternative faster mempool

Challenge: 100Gbit/s around the corner32/37

Qmempool: Faster caching of SKBs

● Implemented qmempool
● Lock-Free bulk alloc and free scheme

● Backed by alf_queue

● Practical network measurements show
● saves 12 ns on "fast-path" drop in iptables "raw" table
● saves 40 ns with IP-forwarding

● Forwarding hits slower SLUB use-case

http://thread.gmane.org/gmane.linux.network/342347/focus=126138

Challenge: 100Gbit/s around the corner33/37

Qmempool: Micro benchmarking

● Micro benchmarked against SLUB
● Cost of alloc+free (CPU E5-2695)

● Fast-path: reuse-same element in loop
● kmem_cache(slub): 46 cycles(tsc) 18.599 ns
● qmempool in softirq: 33 cycles(tsc) 13.287 ns
● qmempool BH-disable: 47 cycles(tsc) 19.180 ns

● Slower-path: alloc 256-pattern before free:
● kmem_cache(slub): 100 cycles(tsc) 40.077 ns
● qmempool BH-disable: 62 cycles(tsc) 24.955 ns

Challenge: 100Gbit/s around the corner34/37

Qmempool what is the secret?

● Why is qmempool so fast?
● Primarily the bulk support of the Lock-Free queue
● Sharedq MPMC bulk elems out with a single cmpxchg

● thus, amortize the per elem cost

● Currently uses per CPU SPSC queue
● requires no lock/atomic operations

● could be made faster with a simpler per CPU stack

Challenge: 100Gbit/s around the corner35/37

Alf_queue building block for qmempool

● The ALF (Array based Lock-Free) queue
● (Basic building for qmempool)

● Killer feature is bulking
● Lock-Free ring buffer, but uses cmpxchg ("LOCK" prefixed)
● Supports Multi/Single-Producer/Consumer combos.
● Cache-line effect also amortize access cost

● 8 pointers/elems per cache-line (on 64bit)

● Pipeline optimized bulk enqueue/dequeue
● (pipelining currently removed in upstream proposal, due to code size)

● Basically "just" an array of pointer used as a queue

● with bulk optimized lockless access

Challenge: 100Gbit/s around the corner36/37

Qmempool purpose

● Practical implementation, to find out:
● if it was possible to be faster than kmem_cache/slub

● Provoke MM-people
● To come up with something just-as-fast
● Integrate ideas into MM-layer
● Perhaps extend MM-layer with bulking

● Next talk by Christoph Lameter on this subject
● SLUB fastpath improvements
● and potential booster shots through bulk alloc and free

Challenge: 100Gbit/s around the corner37/37

The End

● Want to discuss MM improvements
● During Christoph Lameter's talk

● Any input on
● network related challenges I missed?

Challenge: 100Gbit/s around the corner38/37

Extra

● Extra slides

Challenge: 100Gbit/s around the corner41/37

Extra: Comparing Apples and Bananas?

● Comparing Apples and Bananas?
● Out-of-tree bypass solution focus/report

● Layer2 “switch” performance numbers
● Switching basically only involves:

● Move page pointer from NIC RX ring to TX ring
● Linux bridge

● Involves:
● Full SKB alloc/free
● Several look ups
● Almost as much as L3 forwarding

Challenge: 100Gbit/s around the corner42/37

Using TSQ

● TCP Small Queue (TSQ)
● Use queue build up in TSQ

● To send a bulk xmit
● To take advantage of HW TXQ tail ptr update

● Should we allow/use
● Qdisc bulk enqueue

● Detecting qdisc is empty allowing direct_xmit_bulk?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 41
	Slide 42

