
Challenge: 100Gbit/s around the corner1/37

Network stack challenges

at increasing speeds
The 100Gbit/s challenge

Jesper Dangaard Brouer
Red Hat inc.

Linux Conf Au, New Zealand, January 2015



Challenge: 100Gbit/s around the corner2/37

Overview

● Intro
● Understand 100Gbit/s challenge and time budget
● Measurements: understand the costs in the stack?

● Recent accepted changes
● TX bulking, xmit_more and qdisc dequeue bulk

● Future work needed
● RX, qdisc, MM-layer

● Memory allocator limitations
● Qmempool: Lock-Free bulk alloc and free scheme
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Coming soon: 100 Gbit/s

● Increasing network speeds: 10G -> 40G -> 100G
● challenge the network stack

● Rate increase, time between packets get smaller
● Frame size 1538 bytes (MTU incl. Ethernet overhead)

● at  10Gbit/s == 1230.4 ns between packets (815Kpps)
● at  40Gbit/s ==  307.6 ns between packets (3.26Mpps)
● at 100Gbit/s ==  123.0 ns between packets (8.15Mpps)

● Time used in network stack
● need to be smaller to keep up at these increasing rates
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Pour-mans solution to 100Gbit/s

● Don't have 100Gbit/s NICs yet?
● No problem: use 10Gbit/s NICs with smaller frames

● Smallest frame size 84 bytes (due to Ethernet overhead)

● at 10Gbit/s == 67.2 ns between packets (14.88Mpps)

● How much CPU budget is this?
● Approx 201 CPU cycles on a 3GHz CPU
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Is this possible with hardware?

● Out-of-tree network stack bypass solutions
● Grown over recent years

● Like netmap, PF_RING/DNA, DPDK, PacketShader, 
OpenOnload, RDMA/IBverbs etc.

● Have shown kernel is not using HW optimally
● On same hardware platform

● (With artificial network benchmarks)
● Hardware can forward 10Gbit/s wirespeed smallest packet
● On a single CPU !!!
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Single core performance

● Linux kernel have been scaling with number of cores
● hides regressions for per core efficiency

● latency sensitive workloads have been affected

● We need to increase/improve efficiency per core
● IP-forward test, single CPU only 1-2Mpps (1000-500ns)
● Bypass alternatives handle 14.8Mpps per core (67ns)

● although this is like comparing apples and bananas
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Understand: nanosec time scale

● This time scale is crazy!
● 67.2ns => 201 cycles (@3GHz)

● Important to understand time scale
● Relate this to other time measurements

● Next measurements done on
● Intel CPU E5-2630
● Unless explicitly stated otherwise
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Time-scale: cache-misses

● A single cache-miss takes: 32 ns
● Two misses: 2x32=64ns
● almost total 67.2 ns budget is gone

● Linux skb (sk_buff) is 4 cache-lines (on 64-bit)
● writes zeros to these cache-lines, during alloc.
● usually cache hot, so not full miss
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Time-scale: cache-references

● Usually not a full cache-miss
● memory usually available in L2 or L3 cache
● SKB usually hot, but likely in L2 or L3 cache.

● CPU E5-xx can map packets directly into L3 cache
● Intel calls this: Data Direct I/O (DDIO) or DCA

● Measured on E5-2630 (lmbench command "lat_mem_rd 1024 128")

● L2 access costs 4.3ns
● L3 access costs 7.9ns
● This is a usable time scale
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Time-scale: "LOCK" operation

● Assembler instructions "LOCK" prefix
● for atomic operations like locks/cmpxchg/atomic_inc
● some instructions implicit LOCK prefixed, like xchg

● Measured cost
● atomic "LOCK" operation costs 8.25ns

● Optimal spinlock usage lock+unlock (same single CPU)

● Measured spinlock+unlock calls costs 16.1ns

https://github.com/netoptimizer/network-testing/blob/master/src/overhead_cmpxchg.c
https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/lib/time_bench_sample.c
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Time-scale: System call overhead

● Userspace syscall overhead is large
● (Note measured on E5-2695v2)

● Default with SELINUX/audit-syscall: 75.34 ns
● Disabled audit-syscall: 41.85 ns

● Large chunk of 67.2ns budget
● Some syscalls already exists to amortize cost

● By sending several packet in a single syscall
● See: sendmmsg(2) and recvmmsg(2) notice the extra "m"
● See: sendfile(2) and writev(2)
● See: mmap(2) tricks and splice(2)

http://man7.org/linux/man-pages/man2/sendmmsg.2.html
http://man7.org/linux/man-pages/man2/recvmmsg.2.html
http://man7.org/linux/man-pages/man2/sendfile.2.html
http://man7.org/linux/man-pages/man2/writev.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/splice.2.html
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Time-scale: Sync mechanisms

● Knowing the cost of basic sync mechanisms
● Micro benchmark in tight loop

● Measurements on CPU E5-2695
● spin_{lock,unlock}: 41 cycles(tsc) 16.091 ns
● local_BH_{disable,enable}: 18 cycles(tsc) 7.020 ns
● local_IRQ_{disable,enable}:  7 cycles(tsc) 2.502 ns
● local_IRQ_{save,restore}: 37 cycles(tsc) 14.481 ns

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/lib/time_bench_sample.c


Challenge: 100Gbit/s around the corner13/37

Main tools of the trade

● Out-of-tree network stack bypass solutions
● Like netmap, PF_RING/DNA, DPDK, PacketShader, 

OpenOnload, RDMA/Ibverbs, etc.

● How did others manage this in 67.2ns?
● General tools of the trade is:

● batching, preallocation, prefetching,
● staying cpu/numa local, avoid locking,
● shrink meta data to a minimum, reduce syscalls,
● faster cache-optimal data structures
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Batching is a fundamental tool

● Challenge: Per packet processing cost overhead
● Use batching/bulking opportunities

● Where is makes sense
● Possible at many different levels

● Simple example:
● E.g. working on batch of packets amortize cost

● Locking per packet, cost 2*8ns=16ns
● Batch processing while holding lock, amortize cost
● Batch 16 packets amortized lock cost 1ns
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Recent changes

What have been done recently
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Unlocked Driver TX potential

● Pktgen 14.8Mpps single core (10G wirespeed)
● Spinning same SKB (no mem allocs)

● Primary trick: Bulking packet (descriptors) to HW

● What is going on:
● Defer tailptr write, which notifies HW

● Very expensive write to non-cacheable mem

● Hard to perf profile
● Write to device

● does not showup at MMIO point
● Next LOCK op is likely “blamed”
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API skb->xmit_more

● SKB extended with xmit_more indicator
● Stack use this to indicate (to driver)
● another packet will be given immediately

● After/when ->ndo_start_xmit() returns

● Driver usage
● Unless TX queue filled
● Simply add the packet to HW TX ring-queue
● And defer the expensive indication to the HW
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Challenge: Bulking without added latency

● Hard part:
● Use bulk API without adding latency

● Principal: Only bulk when really needed
● Based on solid indication from stack

● Do NOT speculative delay TX
● Don't bet on packets arriving shortly
● Hard to resist...

● as benchmarking would look good
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Use SKB lists for bulking

● Changed: Stack xmit layer
● Adjusted to work with SKB lists
● Simply use existing skb->next ptr

● E.g. See dev_hard_start_xmit()
● skb->next ptr simply used as xmit_more indication

● Lock amortization
● TXQ lock no-longer per packet cost
● dev_hard_start_xmit() send entire SKB list
● while holding TXQ lock (HARD_TX_LOCK) 
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Existing aggregation in stack GRO/GSO

● Stack already have packet aggregation facilities
● GRO (Generic Receive Offload)
● GSO (Generic Segmentation Offload)
● TSO (TCP Segmentation Offload)

● Allowing bulking of these
● Introduce no added latency

● Xmit layer adjustments allowed this
● validate_xmit_skb() handles segmentation if needed
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Qdisc layer bulk dequeue

● A queue in a qdisc
● Very solid opportunity for bulking

● Already delayed, easy to construct skb-list

● Rare case of reducing latency
● Decreasing cost of dequeue (locks) and HW TX

● Before: a per packet cost
● Now: cost amortized over packets

● Qdisc locking have extra locking cost
● Due to __QDISC___STATE_RUNNING state
● Only single CPU run in dequeue (per qdisc)
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Qdisc path overhead

● Qdisc code path takes 6 LOCK ops
● LOCK cost on this arch: approx 8 ns

● 8 ns * 6 LOCK-ops = 48 ns pure lock overhead
● Measured qdisc overhead: between 58ns to 68ns

● 58ns: via trafgen –qdisc-path bypass feature
● 68ns: via ifconfig txlength 0 qdisc NULL hack

● Thus, using between 70-82% on LOCK ops
● Dequeue side lock cost, now amortized

● But only in-case of a queue
● Empty queue, direct_xmit still see this cost
● Enqueue still per packet locking
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Qdisc locking is nasty

● Always 6 LOCK operations (6 * 8ns = 48ns)

● Lock qdisc(root_lock) (also for direct xmit case)

● Enqueue + possible Dequeue
● Enqueue can exit if other CPU is running deq
● Dequeue takes __QDISC___STATE_RUNNING

● Unlock qdisc(root_lock)

● Lock TXQ

● Xmit to HW
● Unlock TXQ

● Lock qdisc(root_lock) (can release STATE_RUNNING)

● Check for more/newly enqueued pkts
● Softirq reschedule (if quota or need_sched)

● Unlock qdisc(root_lock)
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Qdisc TX bulking require BQL

● Only support qdisc bulking for BQL drivers
● Implement BQL in your driver now!

● Needed to avoid overshooting NIC capacity
● Overshooting cause requeue of packets

● Current qdisc layer requeue cause
● Head-of-Line blocking
● Future: better requeue in individual qdiscs?

● Extensive experiments show
● BQL is very good at limiting requeues
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Future work

● What need to be worked on?

● Taking advantage of TX capabilities
● Limited by

● RX performance/limitations
● Userspace syscall overhead
● FIB route lookup
● Memory allocator



Challenge: 100Gbit/s around the corner26/37

Future: Lockless qdisc

● Motivation for lockless qdisc (cmpxchg based)

1) Direct xmit case (qdisc len==0) “fast-path”
● Still requires taking all 6 locks!

2) Enqueue cost reduced (qdisc len > 0)
● from 16ns to 10ns

● Measurement show huge potential for saving
● (lockless ring queue cmpxchg base implementation)

● If TCQ_F_CAN_BYPASS saving 58ns
● Difficult to implement 100% correct

● Not allowing direct xmit case: saving 48ns
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What about RX?

● TX looks good now
● How do we fix RX?

● Experiments show
● Forward test, single CPU only 1-2Mpps
● Highly tuned setup RX max 6.5Mpps (Early drop)

● Alexie started optimizing the RX path
● from 6.5 Mpps to 9.4 Mpps

● via build_skb() and skb->data prefetch tuning
● Early drop, don't show real mem alloc interaction

http://thread.gmane.org/gmane.linux.network/333150
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Memory Allocator limitations

● Artificial RX benchmarking
● Drop packets early

● Don't see limitations of mem alloc

● Real network stack usage, hurts allocator

1) RX-poll alloc up-to 64 packets (SKBs)

2) TX put packets into TX ring

3) Wait for TX completion, free up-to 256 SKBs

● IP-forward seems to hit slower-path for SLUB
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Micro benchmark: kmem_cache

● Micro benchmarking code execution time
●  kmem_cache with SLUB allocator

● Fast reuse of same element with SLUB allocator
● Hitting reuse, per CPU lockless fastpath
● kmem_cache_alloc+kmem_cache_free = 19ns

● Pattern of 256 alloc + 256 free (Based on ixgbe cleanup pattern)

● Cost increase to: 40ns
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MM: Derived MM-cost via pktgen

● Hack: Implemented SKB recycling in pktgen
● But touch all usual data+skb areas, incl. zeroing

● Recycling only works for dummy0 device:
● No recycling: 3,301,677 pkts/sec = 303 ns
● With recycle: 4,424,828 pkts/sec = 226 ns

● Thus, the derived Memory Manager cost
● alloc+free overhead is (303 - 226): 77ns
● Slower than expected, should have hit slub fast-path

● SKB->data page is likely costing more than SLAB
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MM: Memory Manager overhead

● SKB Memory Manager overhead
● kmem_cache: between 19ns to 40ns
● pktgen derived: 77ns
● Larger than our time budget: 67.2ns

● Thus, for our performance needs
● Either, MM area needs improvements
● Or need some alternative faster mempool
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Qmempool: Faster caching of SKBs

● Implemented qmempool
● Lock-Free bulk alloc and free scheme

● Backed by alf_queue

● Practical network measurements show
● saves 12 ns on "fast-path" drop in iptables "raw" table
● saves 40 ns with IP-forwarding

● Forwarding hits slower SLUB use-case

http://thread.gmane.org/gmane.linux.network/342347/focus=126138
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Qmempool: Micro benchmarking

● Micro benchmarked against SLUB
● Cost of alloc+free (CPU E5-2695)

● Fast-path: reuse-same element in loop
● kmem_cache(slub): 46 cycles(tsc) 18.599 ns
● qmempool in softirq: 33 cycles(tsc) 13.287 ns
● qmempool BH-disable: 47 cycles(tsc) 19.180 ns

● Slower-path: alloc 256-pattern before free:
● kmem_cache(slub): 100 cycles(tsc) 40.077 ns
● qmempool BH-disable: 62 cycles(tsc) 24.955 ns
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Qmempool what is the secret?

● Why is qmempool so fast?
● Primarily the bulk support of the Lock-Free queue
● Sharedq MPMC bulk elems out with a single cmpxchg

● thus, amortize the per elem cost

● Currently uses per CPU SPSC queue
● requires no lock/atomic operations

● could be made faster with a simpler per CPU stack
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Alf_queue building block for qmempool

● The ALF (Array based Lock-Free) queue
● (Basic building for qmempool)

● Killer feature is bulking
● Lock-Free ring buffer, but uses cmpxchg ("LOCK" prefixed)
● Supports Multi/Single-Producer/Consumer combos.
● Cache-line effect also amortize access cost

● 8 pointers/elems per cache-line (on 64bit)

● Pipeline optimized bulk enqueue/dequeue
● (pipelining currently removed in upstream proposal, due to code size)

● Basically "just" an array of pointer used as a queue

● with bulk optimized lockless access
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Qmempool purpose

● Practical implementation, to find out:
● if it was possible to be faster than kmem_cache/slub

● Provoke MM-people
● To come up with something just-as-fast
● Integrate ideas into MM-layer
● Perhaps extend MM-layer with bulking

● Next talk by Christoph Lameter on this subject
● SLUB fastpath improvements
● and potential booster shots through bulk alloc and free



Challenge: 100Gbit/s around the corner37/37

The End

● Want to discuss MM improvements
● During Christoph Lameter's talk

● Any input on
● network related challenges I missed?
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Extra

● Extra slides
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Extra: Comparing Apples and Bananas?

● Comparing Apples and Bananas?
● Out-of-tree bypass solution focus/report

● Layer2 “switch” performance numbers
● Switching basically only involves:

● Move page pointer from NIC RX ring to TX ring
● Linux bridge

● Involves:
● Full SKB alloc/free
● Several look ups
● Almost as much as L3 forwarding
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Using TSQ

● TCP Small Queue (TSQ)
● Use queue build up in TSQ

● To send a bulk xmit
● To take advantage of HW TXQ tail ptr update

● Should we allow/use
● Qdisc bulk enqueue

● Detecting qdisc is empty allowing direct_xmit_bulk?
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