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“The girl with a pearl earring”“A fountain pen”“A peacock” “A punk rocker”

Fig. 1. NeuralSVG generates vector graphics from text prompts with ordered and editable shapes. Our method supports dynamic background color conditioning,
facilitating the generation of multiple color palettes for a single learned representation (right).

Vector graphics are essential in design, providing artists with a versatile
medium for creating resolution-independent and highly editable visual con-
tent. Recent advancements in vision-language and diffusion models have
fueled interest in text-to-vector graphics generation. However, existing ap-
proaches often suffer from over-parameterized outputs or treat the layered
structure — a core feature of vector graphics — as a secondary goal, di-
minishing their practical use. Recognizing the importance of layered SVG
representations, we propose NeuralSVG, an implicit neural representation
for generating vector graphics from text prompts. Inspired by Neural Radi-
ance Fields (NeRFs), NeuralSVG encodes the entire scene into the weights
of a small MLP network, optimized using Score Distillation Sampling (SDS).
To encourage a layered structure in the generated SVG, we introduce a
dropout-based regularization technique that strengthens the standalone
meaning of each shape. We additionally demonstrate that utilizing a neural
representation provides an added benefit of inference-time control, enabling
users to dynamically adapt the generated SVG based on user-provided in-
puts, all with a single learned representation. Through extensive qualitative
and quantitative evaluations, we demonstrate that NeuralSVG outperforms
existing methods in generating structured and flexible SVG. Project page:
https://sagipolaczek.github.io/NeuralSVG/.

1 INTRODUCTION
Vector graphics represent images using parametric shapes, such
as circles, polygons, lines, and curves, in contrast to rasterized im-
ages, which rely on pixel-level representations. Unlike raster images,
vector graphics are resolution-independent, easily editable, and par-
ticularly effective for creating simplified visuals. These advantages
make vector graphics a preferred choice in fields such as design, web
development, and data visualization. Recent research has sought
to automate the generation of vector graphics, aiming to create
high-quality, scalable visual content accessible to both experts and
non-experts alike.

With recent advancements in large-scale vision-language mod-
els [Yin et al. 2024] and image diffusion models [Po et al. 2023],
there has been a growing interest in introducing these strong pri-
ors to directly generate vector graphics from text prompts [Jain
et al. 2023; Thamizharasan et al. 2024; Xing et al. 2024; Zhang et al.
2024]. However, existing methods, while technically producing vec-
tor graphics, often result in over-parameterized outputs composed
of almost pixel-like shapes, thus losing the original motivation and
core advantages of editable vector graphics (see Figure 2).

Notably, the editable nature of SVGs is inherently linked to their
layered representation. These layers separate elements like back-
grounds, text, and shapes for easier navigation, enable independent
editing without affecting other components, and provide a hierarchi-
cal structure for stacking and visual clarity. Motivated by this, sev-
eral works have proposed methods for generating layer-based SVG
representations [Thamizharasan et al. 2024; Zhang et al. 2024]. How-
ever, these approaches often depend on multiple post-processing
stages to construct a meaningful layered structure. Ideally, the SVG
generation process itself should account for the hierarchical nature
of SVGs, promoting the creation of shapes that possess standalone
semantic meaning while contributing to the overall composition.
In this work, we introduce NeuralSVG, an implicit neural repre-

sentation for text-to-vector generation that takes into account the
layered structure of vector graphics and offers greater flexibility in
the generation process. Inspired by Neural Radiance Fields (NeRFs),
which output individual points in space that are then aggregated
into a scene, we propose a network that outputs individual shapes
which are then aggregated to form the complete SVG. Following
prior work, the network weights are optimized using the standard
Score Distillation Sampling (SDS) loss [Poole et al. 2022]. In this
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Fig. 2. The Importance of Layers and Compact Shapes in SVGs for
Editability. Left: SVGs are typically composed of ordered layers (e.g., the
gray background and trees are placed behind the house) and individual
shapes that represent complete components in an editable manner (e.g.,
snow can be removed or adjusted bymodifying a few shapes). Right: An SVG
that may appear visually appealing when rendered but lacks practical use
for editing or control, as its individual components are difficult to modify.

formulation, the entire network encodes the complete SVG as an
implicit neural representation, defined by its learned weights. To
promote a semantic and ordered representation, we further intro-
duce a dedicated dropout-based regularization method during the
optimization process. This method encourages each learned shape
to have a meaningful and ordered role in the overall composition.

Importantly, using a neural representation introduces greater flex-
ibility in utilizing and extending SVGs. Specifically, we demonstrate
that our implicit representation enables inference-time control over
the generated asset. For instance, by conditioning the generation
on a target background color, our network can learn to produce a
color palette for the SVG that best complements this background.
As illustrated in Figure 1, this enables the creation of dynamic SVGs
that adapt to user-specific preferences.

We evaluate NeuralSVG through comprehensive qualitative and
quantitative experiments, demonstrating improved performance
across a diverse range of inputs compared to existing methods. No-
tably, we show that our single-stage framework generates meaning-
ful individual shapes, providing users with a well-structured and lay-
ered representation. Additionally, we demonstrate that NeuralSVG
can be adapted to produce vectorized sketches without any modifi-
cations. Finally, as a key distinguishing feature, we highlight how
NeuralSVG supports additional user inputs, creating an adaptive
SVG representation that can be dynamically adjusted at inference
time beyond the capabilities of standard SVG representations.

2 RELATED WORK

2.1 Vector Representation
Scalable Vector Graphics (SVGs) [Jackson and Northway 2005] of-
fer a flexible and powerful medium for representing visual con-
cepts, leveraging primitives such as Bézier curves [Bezier 1986].
Extensive research has focused on learning neural-based represen-
tations of SVGs. SketchRNN [Ha and Eck 2017] uses a recurrent
neural network (RNN) to generate vector paths for sketches, while
DeepSVG [Carlier et al. 2020] adopts a hierarchical Transformer
model to create vector icons with multiple paths. More recently,
IconShop [Wu et al. 2023] represents SVGs as token sequences.

2.2 Text-to-Image Generation
Recent advancements in large-scale generative models [Po et al.
2023; Yin et al. 2024] have rapidly transformed content creation,
especially in visual content generation. Among these, large-scale

diffusion models [Balaji et al. 2023; Ding et al. 2022; Nichol et al.
2021; Ramesh et al. 2022; Rombach et al. 2022; Saharia et al. 2022;
Shakhmatov et al. 2022] have achieved unprecedented levels of
quality, diversity, and fidelity in their outputs. These models have
also spurred the development of various text-guided tasks. Central
to this progress is the Score Distillation Sampling (SDS) loss, in-
troduced by Poole et al. [2022], which has proven highly effective
for extracting meaningful signals from pretrained text-to-image
diffusion models. SDS has enabled a wide range of applications,
including text-to-3D generation [Lin et al. 2023; Metzer et al. 2023;
Poole et al. 2022; Richardson et al. 2023; Wang et al. 2023a, 2024b],
image editing [Hertz et al. 2023; Kim et al. 2025; Koo et al. 2024],
sketch generation [Gal et al. 2024; Iluz et al. 2023; Kim et al. 2023;
Mo et al. 2024; Xing et al. 2023], and text-to-SVG generation.

2.3 Vector Graphics Generation
Early vector graphics generation approaches relied on sequence-
based learning applied to vector representations [Carlier et al. 2020;
Ganin et al. 2018; Ha and Eck 2017; Lopes et al. 2019; Wang et al.
2023b; Wu et al. 2023], but their dependence on vector datasets
limited their generalization to more complex generations. Advances
in differentiable rendering [Li et al. 2020; Mihai and Hare 2021;
Reddy et al. 2020; Zheng et al. 2018] have enabled vector synthesis
using raster-based losses [Ma et al. 2022; Reddy et al. 2021; Shen and
Chen 2021; Xing et al. 2023]. Additionally, the emergence of large-
scale vision-language models, such as CLIP [Radford et al. 2021], had
led to innovative methods for sketch and vector generation [Frans
et al. 2022; Jain 2021; Mirowski et al. 2022; Rodriguez et al. 2023;
Song et al. 2023; Tian and Ha 2022; Vinker et al. 2023, 2022, 2024].

Recent research has focused on integrating diffusion models into
vector graphics generation. A key approach optimizes geometric
and color parameters of primitives using diffusion model priors
with SDS-based losses [Jain et al. 2023; Thamizharasan et al. 2024;
Xing et al. 2024; Zhang et al. 2024]. However, these methods of-
ten suffer from redundant and degraded geometry due to the ab-
sence of ordering constraints. For instance, SVGDreamer [Xing
et al. 2024] requires numerous shapes (e.g., {∼}512) and supports
only basic scene decomposition into background and foreground.
Text-to-Vector [Zhang et al. 2024] trains a Variational Autoencoder
(VAE) to encode valid geometric properties into a path latent space.
Their method employs a two-stage path optimization process for
text-to-vector generation, utilizing the learned latent space with an
SDS-based loss. As a post-processing step, they simplify the obtained
paths to produce a layer-wise representation. NIVeL [Thamizha-
rasan et al. 2024] trains an MLP to learn decomposable SVG layers,
generating layered outputs in pixel space that are vectorized into
Bézier curves via marching squares in post-processing.
Several methods combine text-to-image generation with image

vectorization techniques [Hirschorn et al. 2024; Ma et al. 2022; Wang
et al. 2024a] to produce vector graphics [Chen et al. 2023; Du et al.
2023; Kopf and Lischinski 2011]. For instance, LIVE [Ma et al. 2022]
employs a differentiable rasterizer to iteratively optimize closed
Bézier paths. Wang et al. [2024a] combined Score Distillation Sam-
pling and semantic segmentation to iteratively simplify the input
image into vectorized layers.
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In this work, we propose a novel implicit neural representation
for SVGs, encoding the SVG as the weights of a small MLP neural
network. This neural representation provides a more interpretable
generation process with enhanced user control, allowing customiza-
tion of parameters such as the number of shapes, background color,
and aspect ratio, all within a single network.

2.4 Ordered Representations
Ordered representations, such as those obtained through Principal
Component Analysis (PCA), where dimensions are ranked by their
relative importance, are extensively used in machine learning and
statistics. Rippel et al. [2014] demonstrated that neural networks
could be encouraged to learn ordered representations by applying a
specialized form of dropout on hidden units.
In the context of generative models, the exploration of ordered

representations is still a developing area. Alaluf et al. [2023] utilize
ordered representations to personalize text-to-image models, en-
abling inference-time control over the reconstruction and editability
of learned concepts. Zhang et al. [2024] introduce a post-processing
method for SVGs, where layer-wise structures are extracted from
complete SVGs through a path simplification process. In this work,
we adopt an ordered-centric approach to SVG generation, integrat-
ing the layered structure directly into the generation process.

3 PRELIMINARIES
Score-Distillation Sampling. Score-Distillation Sampling (SDS),

introduced by Poole et al. [2022], has emerged as a prominent tech-
nique for extracting meaningful signals from pretrained text-to-
image diffusion models. The authors demonstrated how the stan-
dard diffusion loss can be leveraged to optimize the parameters of a
NeRF [Mildenhall et al. 2021] model for text-to-3D generation.
Given an image 𝑥 (e.g., a radiance field rendered from a specific

viewpoint) synthesized by a model with parameters 𝜙 , the image is
noised to an intermediate diffusion timestep 𝑡 as follows:

𝑥𝑡 = 𝛼𝑡𝑥 + 𝜎𝑡𝜖 (1)

where 𝜖 ∼ N(0, 1) represents a noise sample, and 𝛼𝑡 and 𝜎𝑡 are
parameters defined by the denoising scheduler.
The noised image is then passed through a pretrained, frozen

denoising model conditioned on a prompt 𝑝 , which aims to predict
the added noise 𝜖 . The deviation between the predicted noise and
the true added noise serves as a measure of the difference between
the input image 𝑥 and one that better matches the given prompt. The
corresponding gradients can then be used to update the parameters
𝜙 of the original synthesis model, guiding it to generate outputs
more aligned with the prompt. The loss function is given by:

∇𝜃LSDS = E𝑡,𝜖

[
𝑤 (𝑡)

(
𝜖𝜙 (S𝑡 ;𝑝, 𝑡) − 𝜖

) 𝜕S
𝜕𝜃

]
, (2)

where 𝜖𝜙 is the noise predicted by the denoising model, and𝑤 (𝑡)
is a weighting function that depends on the diffusion timestep 𝑡 .
Intuitively, this iterative process progressively aligns the synthesis
model with the conditioning prompt 𝑝 . Here, we adopt this approach
to update the weights of our network representing the SVG scene.
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Fig. 3. NeuralSVGOverview. Input indices {1, . . . , 𝑛}, each corresponding
to a single shape, are processed through two parallel branches: 𝑀𝐿𝑃pos,
which predicts the control points of the shape, and𝑀𝐿𝑃c, which predicts
its RGB color. The predicted shapes and colors are then aggregated and
rendered using a differentiable rasterizer R. To encourage a meaningful
ordering of the shape primitives, a truncation index is randomly sampled
during training, and all shapes above this index are dropped. The final
rendered vector graphic is optimized to align with the user-provided text
prompt using an SDS loss [Poole et al. 2022], guided by a trained diffusion
model. Additionally, random background colors are sampled during training,
with their RGB values passed to𝑀𝐿𝑃c and R.

4 METHOD
Given a user-provided text prompt, NeuralSVG learns an implicit
neural representation of the corresponding vector graphics scene.
We begin by describing our network architecture and training
scheme. We then introduce a dropout-based regularization tech-
nique applied during optimization, which is designed to establish
a meaningful ordering of the learned shape primitives. Finally, we
demonstrate how our neural representation enables greater user
flexibility, allowing users to better customize the generated SVGs
using a single learned representation. A high-level overview of
NeuralSVG is illustrated in Figure 3.

4.1 Neural SVG Representation
Our neural SVG representation is inspired by the implicit represen-
tation of Neural Radiance Fields (NeRFs) [Mildenhall et al. 2021],
where 3D pixel coordinates are mapped to spatial points through a
compact mapping network. Similarly, we represent an SVG implic-
itly as a set of indices, {1, 2, . . . , 𝑛}, where each index 𝑖 corresponds
to a single shape 𝑧𝑖 in the SVG. Each shape is defined by four con-
catenated cubic Bézier curves, with their first and last control points
being identical to form a closed shape. This results in 12 control
points 𝑝𝑖 = {𝑥 𝑗 , 𝑦 𝑗 }12𝑗=1 per shape. Each shape is defined by its
control points and fill color: 𝑧𝑖 = (𝑝𝑖 , 𝑐𝑖 ). Specifically, we learn a
function using a small MLP network, 𝑓𝜃 with learnable weights 𝜃 :

𝑓𝜃 : 𝑖 → (𝑝𝑖 , 𝑐𝑖 ), (3)

In essence, the MLP takes a shape index 𝑖 ∈ {1, 2, . . . , 𝑛} as input and
outputs the parameters defining the corresponding shape. These
individual shapes are aggregated to form the full set of shapes and
are then rendered using a differentiable rasterizer [Li et al. 2020] to
produce the output in pixel space.
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In this formulation, the entire vector scene is encoded within the
weights of the network. During inference, the network can then be
queried to generate the SVG by feeding it with each of the 𝑛 indices.
Additionally, this neural representation can be extended to accept
additional input parameters, such as background color.

4.2 Architecture.
Our model consists of three primary components: a positional en-
coding layer and two Multi-Layer Perceptron (MLP) networks.

Positional Encoding. Given the index of the 𝑖th shape, we first
map the scalar value 𝑖 to a higher-dimensional space, following prior
works on implicit representations [Alaluf et al. 2023; Gal et al. 2024;
Mildenhall et al. 2021; Thamizharasan et al. 2024]. Specifically, each
input scalar is encoded using Random Fourier Features [Rahimi
and Recht 2007; Tancik et al. 2020] into a 128-dimensional vector,
𝛾 (𝑖) ∈ R128, modulated by 64 random frequencies. The encoding
function is defined as:

𝛾 (𝑖) = [cos(2𝜋B𝑖) sin(2𝜋B𝑖)] (4)

where B is a matrix of random frequencies.

Network Architecture. Given the high-dimensional encoding of
the shape index, we predict the shape’s control parameters and color
using an MLP network. To better disentangle the color and shape in-
formation, each is predicted using parallel branches. In each branch,
the input vector vi = 𝛾 (𝑖) is passed through two fully connected
layers, each followed by a LayerNorm [Ba et al. 2016] normaliza-
tion layer and a LeakyReLU activation. The resulting vector is then
passed through a final fully connected layer to produce the outputs
𝑝𝑖 or 𝑐𝑖 𝑖 , where 𝑝𝑖 is a (12×2)-dimensional output representing the
(𝑥,𝑦) coordinates of the 12 control points, and 𝑐𝑖 is a 3-dimensional
output representing the RGB color values:

𝑝𝑖 = MLPpos (v𝑖 ) ∈ R12×2 𝑐𝑖 = MLP𝑐 (v𝑖 ) ∈ [0, 1]3 . (5)

Finally, the output color values are additionally passed through a
Sigmoid function to ensure the values are between 0 and 1.

4.3 Training Scheme
Initialization. To calibrate the outputs of the mapping networks

for generating points within the rendered canvas, we perform an
initialization stage, as is common in text-to-vector approaches [Jain
et al. 2023; Thamizharasan et al. 2024; Xing et al. 2024]. Specifically,
given the user-provided text prompt 𝑝 , we first generate an image
using an off-the-shelf text-to-image diffusion model [Rombach et al.
2022]. We then adopt the saliency-based initialization technique
proposed by Vinker et al. [2023], identifying salient regions in the
image via an attention-based relevancy map. From this map, we
sample 𝑛 points and convert them into a set of convex shapes with
simple geometry. To initialize the corresponding RGB color values,
we extract the colors from the relevant pixels in the generated image.
This process provides an initial set of 𝑛 shape control points 𝑝 init

𝑖
,

and their corresponding color values, 𝑐 init
𝑖

.

Next, we train our network to predict these extracted positions
and colors. The network is trained using a simple L2 loss to encour-
age accurate reconstruction of the initialization values:

Lpos (𝑖) = ∥𝑀𝐿𝑃pos (𝑖) − 𝑝 init𝑖 ∥22,

Lc (𝑖) = ∥𝑀𝐿𝑃c (𝑖) − 𝑐 init𝑖 ∥22 .
(6)

Having initialized the outputs of the network, we now turn to de-
scribe how the network can be trained to represent the desired
vector graphics scene based on the user-provided prompt.

Training. To guide the training process, we leverage a pretrained
text-to-image diffusion model, specifically Stable Diffusion [Rom-
bach et al. 2022]. To better capture the visual look of SVGs, we
fine-tune a LoRA adapter using a small dataset of high-quality vec-
tor art images. We provide additional details on this fine-tuning in
the supplementary.

Following prior works on text-to-vector generation, the training
process is driven by an SDS loss [Poole et al. 2022]. At each training
iteration, the full set of 𝑛 indices is passed through the network
to predict all the control points and colors. These primitives are
rendered using the differentiable renderer R to produce the current
representation of the scene. Finally, we use the SDS loss defined
in Equation (2) to update the parameters of our network. Intuitively,
the SDS loss guides the network to learn a vector graphics scene that
faithfully reflects the desired content specified by the text prompt.

Encouraging an Ordered Representation. The above optimiza-
tion process results in a generated SVG that aligns with the provided
prompt. However, it does not inherently promote a layered represen-
tation of the scene. Specifically, there is no objective that explicitly
encourages a meaningful ordering of shapes, where later shapes
build upon earlier ones to enhance the overall composition. Prior
works either (1) fail to explicitly address this [Jain et al. 2023; Xing
et al. 2024], resulting in unordered shapes being learned, or (2) de-
compose the SVG in a separate post-processing [Zhang et al. 2024].

To address this, we explicitly encourage an ordered representation
to be learned directly during the optimization process. Specifically,
as illustrated on the right side of Figure 3, we adopt a variant of the
Nested Dropout technique [Rippel et al. 2014]. At each iteration,
before rendering the current scene, we sample a truncation value 𝑡𝑟
and drop all shapes above this value, yielding a simplified scene 𝑆𝑡𝑟 :

𝑃𝑡𝑟 = {𝑝𝑖 }𝑖<𝑡𝑟 𝐶𝑡𝑟 = {𝑐𝑖 }𝑖<𝑡𝑟
𝑆𝑡𝑟 = R (𝑃𝑡𝑟 ,𝐶𝑡𝑟 ) ,

(7)

where 𝑃𝑡𝑟 and 𝐶𝑡𝑟 are the truncated sets of positions and colors.
By randomly dropping shapes during training, the model is en-

couraged to encode more semantic information into the earlier
shapes, which are less likely to be dropped. This technique also
provides an additional benefit: enhanced user flexibility at inference.
By adjusting the truncation, users can control the number of shapes
rendered, tailoring the scene’s complexity to their preferences.

4.4 Introducing Additional Controls
Finally, leveraging a neural network to represent SVGs offers the
additional benefit of introducing user inputs that can directly control
the generated scene, all within a single learned representation.
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1

𝑖

𝑛

2

ℛ

. . .
. . .

...

NeuralSVG

Fig. 4. Dynamic color palette control enabled by theNeuralSVG repre-
sentation.Given a learned representation of an SVG, users can dynamically
adjust the color palette of the SVG by specifying new background colors.

As a motivating example, users can adjust the color palette of
the generated SVG by specifying a desired background color, as
illustrated in Figure 4. During training, we extend the previously
described scheme as follows. At each training step, we sample a
background color represented as RGB values. This sampled back-
ground color is passed through a positional encoding function and
provided as an additional input to the MLP networks, alongside the
encoding of the shape index. When rendering, the sampled back-
ground color is additionally passed to the renderer to generate the
SVG with that background. The sampled colors are chosen either
from a set of predefined colors or taken as random RGB values.
At inference time, users can specify any background color to

dynamically adjust the color palette of the SVG scene and better
match their needs. We illustrate additional controls in Section 5.4.

5 EXPERIMENTS
In the following section, we demonstrate the effectiveness of Neu-
ralSVG and the appealing properties of our implicit representation.

Evaluation Setup. We evaluate NeuralSVG with respect to state-
of-the-art text-to-vector methods including VectorFusion [Jain et al.
2023] initialized using LIVE [Ma et al. 2022], SVGDreamer [Xing et al.
2024], NiVEL [Thamizharasan et al. 2024], and Text-to-Vector [Zhang
et al. 2024]. For our evaluations, we use the set of 128 prompts from
VectorFusion, as this is the only publicly available text-to-vector
prompt evaluation set. For each prompt, we generate five SVGs us-
ing five different random seeds. For VectorFusion and SVGDreamer,
we evaluate two variants: one using 16 shapes (matching the num-
ber of shapes in our method) and another with additional shapes
(64 shapes for VectorFusion and 256 for SVGDreamer). We note
that SVGDreamer with 512 shapes was not evaluated due to the
substantial computational overhead required (over 40GB of VRAM
and several hours of runtime on a single A100 GPU).

Furthermore, we note that official implementations for NIVeL and
Text-to-Vector are unavailable. Our comparison with these methods
is based solely on the visual results reported in their respective
papers. Finally, unless otherwise specified, we do not apply dropout
during inference and output all 16 shapes learned by NeuralSVG.

5.1 Qualitative Evaluations and Comparisons
Qualitative Evaluation. In Figure 5, we demonstrate text-to-

vector results obtained using NeuralSVG. We present outputs gen-
erated while retaining a different number of learned shapes in the
final rendering: 1, 4, 8, 12, and all 16 shapes. The results show that

“an astronaut walking across a desert...”

“a family vacation to Walt Disney World”

“a colorful rooster”

“an erupting volcano”

“a peacock”

1 4 8 12 16
Fig. 5. Qualitative Results Obtained with NeuralSVG. We show results
generated by our method when keeping a varying number of learned shapes
in the final rendering. Even with a small number of shapes (< 4), our
approach effectively captures the coarse structure of the scene. Moreover,
additional shapes progressively introduce finer details in an ordered manner.

NeuralSVG effectively matches the given prompt even when using
only a subset of shapes. Specifically, with just four shapes, the model
captures the coarse structure of the scene, such as the outline of the
volcano in the fourth row or the body of the peacock in the fifth row.
As more shapes are gradually added, the model incorporates finer
details in a hierarchical fashion, building upon previously learned
shapes. This is most noticeable in the second row where additional
people and balloons are gradually added to the complex scene.

Qualitative Comparisons. In Figure 6, we compare NeuralSVG
to state-of-the-art open-source methods, VectorFusion and SVG-
Dreamer. When constrained to the same number of shapes (16),
both VectorFusion and SVGDreamer struggle to faithfully represent
the desired scene, often missing critical details from the prompt.
With increased shape counts — 64 for VectorFusion and 256 for SVG-
Dreamer — the methods generate more detailed SVGs that better
align with the prompt but exhibit noticeable artifacts. More im-
portantly, both baselines produce uninterpretable and uneditable
shapes, limiting their practical usability. We further highlight this
redundancy in Figure 7, where we show the outlines of the learned
shapes for the results shown here. In contrast, using only 16 shapes,
NeuralSVG achieves high-quality results that adhere closely to the
prompt, maintain smooth contours, and minimize artifacts, provid-
ing users with a more practical result.
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“a fox playing the cello”

“a child unraveling a roll of toilet paper”

“a wolf howling on top of the hill, with a full moon in the sky”

“a rabbit cutting grass with a lawnmower”

“a yeti taking a selfie”

VectorFusion
(16 Shapes)

VectorFusion
(64 Shapes)

SVGDreamer
(16 Shapes)

SVGDreamer
(256 Shapes)

Ours
(16 Shapes)

Fig. 6. Qualitative Comparisons. Visual comparisons to VectorFu-
sion [Jain et al. 2023] and SVGDreamer [Xing et al. 2024] using a varying
number of shapes.

“a fox playing the cello”

“a child unraveling a roll of toilet paper”

“a wolf howling on top of the hill, with a full moon in the sky”

VectorFusion
(16 Shapes)

VectorFusion
(64 Shapes)

SVGDreamer
(16 Shapes)

SVGDreamer
(256 Shapes)

NeuralSVG
(16 Shapes)

Fig. 7. Shape Outlines of the Generated SVGs. We present the outlines
of SVGs generated by NeuralSVG, VectorFusion, and SVGDreamer. The
alternative methods often produce nearly pixel-like shapes that are difficult
to modify manually. In contrast, NeuralSVG generates cleaner SVGs, making
them more editable and practical.

“a walrus smoking a pipe” “a crown”

“a spaceship” “a Japanese sakura tree on a hill”

“a green dragon breathing fire” “a dragon-cat hybrid”

“a 3D rendering of a temple” “The Statue of Liberty with
the face of an owl”

NiVEL NeuralSVG Text-to-Vector NeuralSVG

Fig. 8. Qualitative Comparisons. As no code implementations are avail-
able, we provide visual comparisons to NIVeL [Thamizharasan et al. 2024]
and Text-to-Vector [Zhang et al. 2024] using results shown in their paper.

Next, we compare NeuralSVG with more recent but closed-source
techniques, as shown in Figure 8. First, when examining the results
of NIVeL [Thamizharasan et al. 2024] artifacts are present, partic-
ularly along the black contours. This issue arises because NIVeL
learns its implicit representation in pixel space and subsequently
converts it to an SVG through a post-processing step, which results
in pixel-like artifacts. Additionally, a single layer in their implicit
representation may encode multiple shapes, leading to potential er-
rors when vectorizing the pixel layers. We observe that the results of
Text-to-Vector [Zhang et al. 2024] are comparable to those achieved
with NeuralSVG. However, NeuralSVG learns ordered SVGs directly
in a single training stage, whereas Text-to-Vector relies on a sec-
ondary post-processing step to decompose the SVG into a more
editable format. Furthermore, the results presented here are taken
directly from their published paper, which restricts our ability to
thoroughly analyze the structure of their resulting SVG representa-
tions or even know how many shapes were used when rendering.

5.2 Quantitative Comparisons
CLIP-Space Metrics. To quantitatively evaluate the methods,

we follow prior work and employ two CLIP-space metrics. The
first metric computes the CLIP-space cosine similarity between the
embeddings of the generated SVGs and their corresponding input
text prompts. We additionally report the R-Precision (R-Prec), which
measures the percentage of generated SVGs that achieve maximal
CLIP similarity with their correct prompt among all 128 prompts.
We average results across all prompts and five seeds.
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Table 1. CLIP-Based Quantitative Comparisons. We compute CLIP-
space cosine similarities and R-Precision using the CLIP L/14 model on
rasterized SVG results, optimized with varying numbers of shapes.

VectorFusion SVGDreamer NeuralSVG
Metric 64 16 256 16 16

R-Precision ↑ 83.46 48.03 85.03 43.30 67.18
Text-Image Similarity ↑ 26.33 23.47 26.58 20.89 26.94
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Fig. 9. Cumulative CLIP Similarities.We show CLIP similarities obtained
when using a subset of the learned shapes from each method, selected in
rendering order. As shown, SVGs produced by NeuralSVG are much more
recognizable when using a small percentage of the learned shapes.

Full results are presented in Table 1. When constrained to the
same number of shapes, NeuralSVG outperforms both VectorFu-
sion and SVGDreamer across both metrics. This aligns with our
visual comparisons, which show that competing methods strug-
gle to generate organized shapes and interpretable scenes under
the same constraints. When VectorFusion and SVGDreamer use
64 and 256 shapes, all methods achieve comparable CLIP scores
while VectorFusion and SVGDreamer attain higher R-Prec scores
than NeuralSVG. However, our visual comparisons reveal that while
these higher shape counts improve the image-based metrics, they
result in highly disorganized outputs that are impractical for editing.
As such, NeuralSVG offers an appealing alternative by generating
more organized shapes that create more editable scenes while using
a small number of shapes.

Cumulative CLIP-Space Similarities. Next, considering the
order-centric approach of NeuralSVG, it is important to examine
whether the shapes learned by our method align better with CLIP
than alternative approaches. To evaluate this, we compute CLIP-
space similarities between input text prompts and generated SVGs
using a subset of the learned shapes, selected in rendering order. The
results in Figure 9 compare NeuralSVG to VectorFusion (64 shapes)
and SVGDreamer (256 shapes). As illustrated, SVGs generated by
NeuralSVG are significantly more recognizable when using a small
fraction of the total shapes. This indicates the early shapes pro-
duced by NeuralSVG are semantically meaningful and have a more
standalone meaning compared to those generated by alternative
methods. Moreover, note that as the total shapes in VectorFusion and
SVGDreamer are significantly higher, at 25% and 6%, they already
match the shape count used by our full method.

“a drawing of a cat”

“a man in an astronaut suit walking across a desert...”

“Pikachu, in pastel colors, childish and fun”

Direct Opt. Joint MLP w/o Drop NeuralSVG
w/o Drop
(4 Shapes)

NeuralSVG
(4 Shapes)

Fig. 10. Ablation Study.We validate our key design choices: directly op-
timizing the shape primitives, using a single MLP network to learn both
control point positions and colors, and omitting our ordered dropout tech-
nique. The two rightmost columns illustrate results from NeuralSVG trained
with and without dropout when rendering the first four learned shapes.

5.3 Ablation Studies
Finally, we validate our key design choices, specifically the use of
our dropout technique and the two MLP branches. Visual compar-
isons are presented in Figure 10. First, when attempting to directly
optimize the shape primitives, the resulting SVGs often converge to
non-smooth shapes and may fail to accurately adhere to the input
prompt. This aligns with prior works that observe optimizing pa-
rameters via a neural network may assist in attaining smoother and
more coherent results [Gal et al. 2024; Vinker et al. 2023]. Next, using
a single MLP to predict both the control point positions and colors
leads to suboptimal results. For instance, in the second row, the
astronaut is incorrectly colored the same as the background while
in the first row, the cat appears almost entirely orange, lacking de-
tails such as its facial features. Finally, when dropout is omitted,
the visual results are comparable to those of our full method, as
is expected. However, as illustrated in the two rightmost columns,
the learned shapes lack semantic meaning. As a result, when using
a small number of shapes, the resulting SVGs are also not easily
recognizable by CLIP (see Figure 11). In contrast, NeuralSVG effec-
tively captures the coarse structure of the scene even with a limited
number of shapes thanks to our learned ordering.

5.4 Additional Controls
Color PaletteControl. In Figure 21, we demonstrate ourmethod’s

ability to dynamically adapt the color palette of the SVG using a
single learned representation. Specifically, we show results obtained
with colors unobserved during training, illustrating our ability to
generalize to new palettes. This flexibility allows users to customize
results based on personal preferences at inference, without requiring
a dedicated optimization process for each modification.
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Fig. 11. Cumulative CLIP Similarities With andWithout Dropout.We
show cumulative CLIP similarities achieved by NeuralSVG trained with
and without dropout across 50 prompts, using 16 learnable shapes. Consis-
tent Figure 9, our dropout technique improves the recognizability of SVGs.

“a teapot”

“a knight holding a long sword”

“a peacock”

“a cat as 3D rendered in Unreal Engine”

Fig. 12. Controlling the Color Palette. Given a learned representation,
we render the result using different background colors specified by the user,
resulting in varying color palettes in the resulting SVGs.

Aspect Ratio Control. Another desired property for controlling
SVGs at inference time is easily modifying their target aspect ratio.
While one can technically modify the aspect ratio of the SVG manu-
ally, successfully generating a pleasing result for a target ratio can
still be challenging. We show that by passing an encoding of the
desired aspect ratio (e.g., 1:1 or 1:4) to our network and rendering
accordingly, our method successfully learns to adapt the same SVG
shapes to multiple aspect ratios in the same learned representation.
We illustrate this in Figure 13, showing results obtained using aspect
ratios of 1:1 and 4:1 when compared to the result one would achieve
by automatically “squeezing” the 1:1 result.
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Fig. 13. Controlling the Aspect Ratio.We present results from optimizing
NeuralSVG with aspect ratios of 1:1 and 4:1. In each pair, the top row shows
the naive approach of squeezing the 1:1 output into a 4:1 ratio. The bottom
row shows results where the trained network directly outputs the 4:1 ratio.

“a flamingo”

“a rose”

“a vase”

“a camel”

4 8 16 32

Fig. 14. Sketch Generation. NeuralSVG can generate sketches with vary-
ing numbers of strokes using a single network, without requiring modifica-
tions to our framework.

5.5 Sketch Generation
Our approach can also be applied to text-driven sketch generation,
generating sketches with ordered strokes. As demonstrated in Fig-
ure 14, the first strokes in the sketch depict the desired concept
well, while adding more strokes adds details to the sketch. Notably
other methods such as NIVeL [Thamizharasan et al. 2024] that use
the pixel space as an intermediate stage during training, cannot
enforce such stroke-based outputs. In contrast, our approach simply
requires modifying the rendering parameters from closed shapes to
open shapes when learning the representation.
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6 CONCLUSION
We introduce NeuralSVG, a novel approach for generating vector
graphics directly from text prompts while encouraging a layered
structure essential for practical usability. NeuralSVG employs an
implicit neural representation to encode the entire SVG within a
compact network, optimized using Score Distillation Sampling (SDS).
To address a key limitation of existing methods, our approach incor-
porates a dropout-based regularization technique, promoting the
creation of semantically meaningful and well-ordered shapes. In ad-
dition to producing structured outputs, NeuralSVG offers enhanced
inference-time control, enabling users to adapt the generated SVGs
to their preferences, such as adjusting the color palette. We hope
this work encourages further exploration into learning meaningful
neural representations for vector graphics that are both practical
for real-world design applications and provide users with greater
flexibility through a more general representation.
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Appendix

7 ADDITIONAL DETAILS
Training Scheme. In the pretraining stage, we train the network

for up to 300 steps using a constant learning rate of 0.01. For the full
training process, we train for 4000 steps, employing a learning rate
scheduler that features a linear warm-up from 0 to 0.018, followed
by a cosine decay to a final value of 0.012. To improve training
stability, we clip the gradients using a maximum norm of 0.1.
For computing the SDS loss, we utilize the Stable Diffusion 2.1

model from the diffusers library [von Platen et al. 2022].
In all experiments, prompts are structured using the following

format:
"A minimalist vector art of [object], isolated on a [color]

background."
Here, [object] specifies the desired scene to be generated, and [color]
represents the background color, which is either sampled during
training or provided by the user at inference.
When applying our dropout technique, the indices are sampled

as follows: with a probability of 0.7, all 16 shapes are rendered.
Otherwise, the truncation index, between 1 and 16, is sampled from
an exponential distribution with a temperature value of 3.

LoRA Fine-Tuning. As detailed in the main paper, our SDS loss
is applied with a LoRA adapter applied to Stable Diffusion 2.1. This
adapter was pretrained on a high-quality dataset of vector art images.
Specifically, the adapterwas trained using 1,600 images spanning 145
different prompts, withminor variations between prompts (e.g., with
different background colors). These images were generated using the
Simple Vector Flux LoRA (see renderartist/simplevectorflux
from diffusers.).
The LoRA adapter was trained for 15,000 steps with a rank of 4.

8 ADDITIONAL RESULTS AND COMPARISONS
Below, we provide additional qualitative results and comparisons,
as follows:

(1) In Figures 15 and 16, we present additional qualitative re-
sults produced by NeuralSVG when applying our dropout
technique during inference. Specifically, we vary the number
of learned shapes included in the final rendering, showing
results with 1, 4, 8, 12, and all 16 shapes.

(2) In Figures 17 and 18, we provide additional qualitative com-
parisons to open-source text-to-vector methods VectorFu-
sion [Jain et al. 2023] and SVGDreamer [Xing et al. 2024].

(3) Following Figure 17, we provide corresponding outlines for
the generated SVGs, showing that alternative methods have a
tendency to produce nearly pixel-like shapes that are difficult
to modify manually while NeuralSVG promotes individual
shapes with more semantic meaning and order.

(4) In Figure 20, we provide additional qualitative comparisons to
closed-source techniques NIVeL [Thamizharasan et al. 2024]
and Text-to-Vector [Zhang et al. 2024] using results presented
in their respective papers.

(5) Next, in Figures 21 and 22, we show results obtained when
rendering the learned SVG with different background colors
at inference time, with both seen and unseen colors.

(6) In Figure 23, we show additional results using our aspect
ratio control, allowing us to generate SVGs at different aspect
ratios using a single learned representation.

(7) Finally, in Figure 24, we show sketch generation results ob-
tained using our NeuralSVG framework. Sketches are ren-
dered using a varying number of strokes by modifying the
truncation index at inference time. This approach enables a
single learned representation to generate sketches at multiple
levels of abstraction without modifying our text-to-vector
framework.

, Vol. 1, No. 1, Article . Publication date: January 2025.



12 • Sagi Polaczek, Yuval Alaluf, Elad Richardson, Yael Vinker, and Daniel Cohen-Or

“an owl standing on a wire”

“a knight holding a long sword”

“avocados”

“a baby penguin”

“a blue poison-dart frog sitting on a water lily”

“a chihuahua wearing a tutu”

“a colorful rooster”

“a donut with pink frosting”

“earth”

“an erupting volcano”

“a fox and a hare tangoing together”

“a fox playing the cello”

“a girl with dress and a sun hat”

“a delicious hamburger”

“a magician pulling a rabbit out of a hat”

“the titanic, aerial view”

“a baby bunny sitting on top of a stack of pancakes”

“a shiba inu”

“a stork playing a violin”

“The Sydney Opera House”

Fig. 15. AdditionalQualitative Results Obtained with NeuralSVG. We show results generated by our method when keeping a varying number of learned
shapes in the final rendering.
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“a great gray owl with a mouse in its beak”

“a sailboat”

“a girl with a sun hat”

“an erupting volcano”

“an astronaut walking across a desert...”

“a brightly colored mushroom growing on a log”

“a chair”

“a clown on a unicycle”

“a friendship”

“a wolf howling on top of the hill, with a full moon in the sky”

“a margarita”

“a peacock”

“a picture of a macaw”

“a punk rocker with a spiked mohawk”

“a superhero”

“an elephant”

“a 3D rendering of a temple”

“family vacation to Walt Disney World”

“a hedgehog”

“a Japanese sakura tree on a hill”

Fig. 16. AdditionalQualitative Results Obtained with NeuralSVG. We show results generated by our method when keeping a varying number of learned
shapes in the final rendering.
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“a picture of a macaw”

“a man in an astronaut suit walking across the desert, planet mars in the background”

“German shepherd”

“penguin dressed in a tiny bow tie”

“a politician giving a speech at a podium”

“Darth Vader”

“a family of bears passing by the glacier”

“a walrus smoking a pipe”

VectorFusion
(16 Shapes)

VectorFusion
(64 Shapes)

SVGDreamer
(16 Shapes)

SVGDreamer
(256 Shapes)

NeuralSVG
(16 Shapes)

Fig. 17. AdditionalQualitative Comparisons.We provide additional visual comparisons to VectorFusion [Jain et al. 2023] and SVGDreamer [Xing et al.
2024] using a varying number of shapes.
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“a sailboat”

“a Japanese sakura tree on a hill”

“a lake with trees and mountains in the background, teal sky”

“a majestic waterfall cascading into a crystal-clear lake”

“a robot”

“family vacation to Walt Disney World”

“a coffee cup and saucer”

“a dragon breathing fire”

VectorFusion
(16 Shapes)

VectorFusion
(64 Shapes)

SVGDreamer
(16 Shapes)

SVGDreamer
(256 Shapes)

NeuralSVG
(16 Shapes)

Fig. 18. AdditionalQualitative Comparisons.We provide additional visual comparisons to VectorFusion [Jain et al. 2023] and SVGDreamer [Xing et al.
2024] using a varying number of shapes.
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“a picture of a macaw”

“a man in an astronaut suit walking across the desert, planet mars in the background”

“German shepherd”

“penguin dressed in a tiny bow tie”

“a politician giving a speech at a podium”

“Darth Vader”

“a family of bears passing by the glacier”

“a walrus smoking a pipe”

VectorFusion
(16 Shapes)

VectorFusion
(64 Shapes)

SVGDreamer
(16 Shapes)

SVGDreamer
(256 Shapes)

NeuralSVG
(16 Shapes)

Fig. 19. Shape Outlines of the Generated SVGs. We present the corresponding outlines of SVGs generated by NeuralSVG, VectorFusion, and SVGDreamer
for the results shown in Figure 17. The alternative methods often produce nearly pixel-like shapes that are difficult to modify manually. In contrast, NeuralSVG
generates cleaner SVGs, making them more editable and practical.
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“a cake with chocolate
frosting and cherry” “a boat” “The Statue of Liberty

with the face of an owl”

“a 3D rendering of a temple” “a crown” “a torii gate”

“a green dragon breathing fire” “a giraffe in street” “Vincent Van Gogh”

“a walrus smoking a pipe” “a Ming Dynasty vase” “an erupting volcano”

“a vintage camera” “a picture of Tokyo” “a cruise ship”

“a baby bunny on a
stack of pancakes”

“a smiling sloth wearing
a jacket and cowboy hat” “a spaceship”

“a spaceship” “a dragon-cat hybrid” “an espresso machine”

“a stork playing a violin” “a painting of the Mona Lisa” “chocolate cake”

“A Japanese sakura tree on a hill” “a Starbucks coffee cup”

NiVEL NeuralSVG Text-to-Vector NeuralSVG Text-to-Vector NeuralSVG

Fig. 20. Qualitative Comparisons. As no code implementations are available, we provide visual comparisons to NIVeL [Thamizharasan et al. 2024] (left
colunms) and Text-to-Vector [Zhang et al. 2024] (right columns) using results shown in their paper.
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“a walrus smoking a pipe”

“The Sydney Opera House”

“the grand canyon”

“a teapot”

“a spaceship”

“a Ming Dynasty vase”

“a knight holding a long sword”

“a drawing of a cat”

“a colorful rooster”

Fig. 21. Dynamically Controlling the Color Palette. Given a learned representation, we render the result using different background colors specified by
the user, resulting in varying color palettes in the resulting SVGs. The 5 leftmost columns show colors observed during training while the 5 rightmost columns
show unobserved colors.
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“a boat”

“a 3D rendering of a temple”

“an elephant”

“a tree”

“a tiger karate master”

“a picture of a macaw”

“a peacock”

“a dragon breathing fire”

“a crown”

Fig. 22. Dynamically Controlling the Color Palette. Given a learned representation, we render the result using different background colors specified by
the user, resulting in varying color palettes in the resulting SVGs. The 5 leftmost columns show colors observed during training while the 5 rightmost columns
show unobserved colors.

, Vol. 1, No. 1, Article . Publication date: January 2025.



20 • Sagi Polaczek, Yuval Alaluf, Elad Richardson, Yael Vinker, and Daniel Cohen-Or

“a train”
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Fig. 23. Dynamically Controlling the Aspect Ratio. Additional results from optimizing NeuralSVG with aspect ratios of 1:1 and 4:1. In each pair of results,
the top row shows the naive approach of squeezing the 1:1 output into a 4:1 aspect ratio. The bottom row shows the results where our trained network directly
outputs the 4:1 aspect ratio.
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“a ballerina”

“a boat”

“a cat”

“a giraffe”

“a rocket ship”

“a rooster”

“a strawberry”

4 8 16 32

“a bull”

“a baby penguin”

“a sailboat”

“a lizard”

“a margarita”

“a glass of wine”

“a teapot”

4 8 16 32

Fig. 24. Additioanl Sketch Generation Results. NeuralSVG can generate sketches with varying numbers of strokes using a single network, without
requiring modifications to our framework.
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