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This paper presents new methods to estimate the cardinalities of data
sets recorded by HyperLogLog sketches. A theoretically motivated exten-
sion to the original estimator is presented that eliminates the bias for small
and large cardinalities. Based on the maximum likelihood principle a second
unbiased method is derived together with a robust and efficient numerical
algorithm to calculate the estimate. The maximum likelihood approach can
also be applied to more than a single HyperLogLog sketch. In particular,
it is shown that it gives more precise cardinality estimates for union, in-
tersection, or relative complements of two sets that are both represented
by HyperLogLog sketches compared to the conventional technique using the
inclusion-exclusion principle. All the new methods are demonstrated and
verified by extensive simulations.

1. Introduction

Counting the number of distinct elements in a data stream or large datasets is a common
problem in big data processing. In principle, finding the number of distinct elements
n with a maximum relative error ε in a data stream requires O(n) space [1]. However,
probabilistic algorithms that achieve the requested accuracy only with high probability
are able to drastically reduce space requirements. Many different probabilistic algo-
rithms have been developed over the past two decades [2, 3] until a theoretically optimal
algorithm was finally found [4]. Although this algorithm achieves the optimal space
complexity of O(ε−2 + log n) [1, 5], it is not very efficient in practice [3].

More practicable and already widely used in many applications is the HyperLogLog
algorithm [6] with a near-optimal space complexity O(ε−2 log log n + log n). It has the

This paper together with source code for all presented algorithms and simulations is available at
https://github.com/oertl/hyperloglog-sketch-estimation-paper. A first version of this paper
was published there on April 17, 2016.
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nice property that partial results can be easily merged, which is a necessity for dis-
tributed environments. Unfortunately, the originally proposed estimation method has
some problems to guarantee the same accuracy over the full cardinality range. Therefore,
a couple of variants have been developed to correct the original estimate by empirical
means [7, 8, 9].

A more theoretically profound estimator for HyperLogLog sketches that does not
depend on empirical data and significantly improves the estimation error is the historic
inverse probability estimator [3, 10]. It trades memory efficiency for mergeability. The
estimator needs to be continuously updated while inserting elements and the estimate
depends on the element insertion order. Moreover, the estimator cannot be further used
after merging two sketches, which limits its application to single data streams. If this
restriction is acceptable, the self-learning bitmap [11] could also be used, which provides
a similar trade-off and also needs less space than the original HyperLogLog method to
achieve the same precision.

Sometimes not only the number of distinct elements but also a sample of them is
needed in order to allow later filtering according to some predicate and estimating the
cardinalities of corresponding subsets. In this case the k-minimum values algorithm
[12] is the method of choice which also allows set manipulations like the construction
of intersections, relative complements, or unions [13]. The latter operation is the only
one that is natively supported by HyperLogLog sketches. A sketch that represents the
set operation result is not always needed. One approach to estimate the corresponding
result cardinality directly is based on the inclusion-exclusion principle, which however
can become quite inaccurate, especially for small Jaccard indices of the input sets [13].
Alternatively, the HyperLogLog sketches can be combined with some additional data
structure that allows estimating the Jaccard index. Together with the HyperLogLog
cardinality estimates the error of the intersection size estimate can be reduced [14, 15],
however, at the expense of a significantly larger memory footprint due to the additional
data structure.

1.1. Outline

This paper presents new algorithms to extract cardinality information from Hyper-
LogLog sketches. In Section 2 we start with an introduction to HyperLogLog sketches
and the corresponding update algorithm. We also discuss how the resulting state can be
statistically described and approximated by a Poisson model. In Section 3 we describe
the original cardinality estimation algorithm, its shortcomings at low and large cardi-
nalities, and previous approaches to overcome them. We present a simple derivation of
the original raw estimator and analyze the root cause for its limited operating range.
We derive an improved version of the raw estimator, which leads to a new fast cardi-
nality estimation algorithm that works over the full cardinality range as demonstrated
by extensive simulations. In Section 4 we derive a second even more precise cardinality
estimation algorithm based on the maximum likelihood principle which is again verified
by simulations. As presented in Section 5 the same approach can be generalized to two
HyperLogLog sketches, which allows result cardinality estimation of set operations like

2



intersections or complements. The simulation results show that the estimates are sig-
nificantly better than those of the conventional approach using the inclusion-exclusion
principle. Finally, in Section 6 we discuss open problems and ideas for future work
including HyperLogLog’s potential application as locality-sensitive hashing algorithm
before we conclude in Section 7.

2. HyperLogLog data structure

The HyperLogLog algorithm collects information of incoming elements into a very com-
pact sketching data structure, that finally allows the estimation of the number of distinct
elements. The data structure consists of m = 2p registers whose number is chosen to
be a power of two for performance reasons. p is the precision parameter that directly
controls the relative estimation error which scales like 1/

√
m [6]. All registers start with

zero initial value. Each element insertion potentially increases the value of one of these
registers. The maximum value a register can reach is a natural bound given either by the
output size of the used hash algorithm or the space that is reserved for a single register.
Common implementations allocate up to 8 bits per register.

2.1. Data element insertion

The insertion of a data element into a HyperLogLog data structure requires the calcu-
lation of a (p+ q)-bit hash value. The leading p bits of the hash value are used to select
one of the 2p registers. Among the next following q bits, the position of the first 1-bit is
determined which is a value in the range [1, q+1]. The value q+1 is used, if all q bits are
zeros. If the position of the first 1-bit exceeds the current value of the selected register,
the register value is replaced. Algorithm 1 shows the update procedure for inserting a
data element into the HyperLogLog sketch.

Algorithm 1 Insertion of a data element D into a HyperLogLog data structure that
consists of m = 2p registers. All registers K = (K1, . . . ,Km) start from zero. 〈. . .〉2
denotes the binary representation of an integer.

procedure InsertElement(D)
〈a1, . . . , ap, b1, . . . , bq〉2 ← (p+ q)-bit hash value of D . ai, bi ∈ {0, 1}
k ← min({s | bs = 1} ∪ {q + 1}) . k ∈ {1, 2, . . . , q + 1}
i← 1 + 〈a1, . . . , ap〉2 . i ∈ {1, 2, . . . ,m}
if k > Ki then

Ki ← k
end if

end procedure

The described element insertion algorithm makes use of what is known as stochastic
averaging [16]. Instead of updating each of all m registers using m independent hash
values, which would be an O(m) operation, only one register is selected and updated,
which requires only a single hash function and reduces the complexity to O(1).
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A HyperLogLog sketch can be characterized by a parameter pair (p, q). The precision
parameter p controls the relative error while the second parameter defines the possible
value range of a register. A register can take all values starting from 0 to q+1, inclusively.
The sum p+ q corresponds to the number of consumed hash value bits and defines the
maximum cardinality that can be tracked. Obviously, if the cardinality reaches values
in the order of 2p+q, hash collisions will become more apparent and the estimation error
will increase drastically.

Algorithm 1 has some properties which are especially useful for distributed data
streams. First, the insertion order of elements has no influence on the final HyperLogLog
sketch. Furthermore, any two HyperLogLog sketches with same parameters (p, q) repre-
senting two different sets can be easily merged. The HyperLogLog sketch that represents
the union of both sets can be easily constructed by taking the register-wise maximum
values as demonstrated by Algorithm 2.

Algorithm 2 Merge operation for two HyperLogLog sketches with register values K1 =
(K11, . . . ,K1m) and K2 = (K21, . . . ,K2m) representing sets S1 and S2, respectively, to
obtain the register values K ′ = (K ′1, . . . ,K

′
m) of a HyperLogLog sketch representing

S1 ∪ S2.
function Merge(K1,K2) . K1,K2 ∈ {0, 1, . . . , q + 1}m

allocate K′ = (K ′1, . . . ,K
′
m) . K ′ ∈ {0, 1, . . . , q + 1}m

for i← 1,m do
K ′i ← max(K1i,K2i)

end for
return K′

end function

At any time a (p, q)-HyperLogLog sketch can be reduced to a (p′, q′)-HyperLogLog
data structure, if p′ ≤ p and p′ + q′ ≤ p + q is satisfied (see Algorithm 3). This
transformation is lossless in a sense that the resulting HyperLogLog sketch is the same
as if all elements would have been recorded by a (p′, q′)-HyperLogLog sketch right from
the beginning.

A (p, 0)-HyperLogLog sketch corresponds to a bit array as used by linear counting [17].
Each register value can be stored by a single bit in this case. Hence, linear counting can
be regarded as a special case of the HyperLogLog algorithm for which q = 0.

2.2. Joint probability distribution of register values

Under the assumption of a uniform hash function, the probability that the register
values K = (K1, . . . ,Km) of a HyperLogLog sketch with parameters p and q are equal
to k = (k1, . . . , km) is given by the corresponding probability mass function

ρ(k|n) =
∑

n1+...+nm=n

(
n

n1, . . . , nm

)
1

mn

m∏
i=1

γ(ki|ni) (1)
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Algorithm 3 Compression of a (p, q)-HyperLogLog sketch with register values K =
(K1, . . . ,Km) into a (p′, q′)-HyperLogLog sketch with p′ ≤ p and p′ + q′ ≤ p+ q.

function Compress(K) . K ∈ {0, 1, . . . , q + 1}m, m = 2p

allocate K ′ = (K ′1, . . . ,K
′
2p′

) . K ′ ∈ {0, 1, . . . , q′ + 1}m′ , m′ = 2p
′

for i← 1, 2p
′
do

b← (i− 1) · 2p−p′

j ← 1
while j ≤ 2p−p

′ ∧Kb+j = 0 do
j ← j + 1

end while
if j = 1 then

K ′i ← min(Kb+j + p− p′, q′ + 1)
else if j ≤ 2p−p

′
then

〈a1, . . . , ap−p′〉2 ← j − 1
K ′i ← min({s | as = 1} ∪ {q′ + 1})

else
K ′i ← 0

end if
end for
return K ′

end function

where n is the cardinality. The n distinct elements are distributed over all m registers
according to a multinomial distribution with equal probabilities. γ(k|n) is the probability
that the value of a register is equal to k, after it was selected n times by the insertion
algorithm

γ(k|n) :=



1 n = 0 ∧ k = 0

0 n = 0 ∧ 1 ≤ k ≤ q + 1

0 n ≥ 1 ∧ k = 0(
1− 1

2k

)n − (1− 1
2k−1

)n
n ≥ 1 ∧ 1 ≤ k ≤ q

1−
(
1− 1

2q

)n
n ≥ 1 ∧ k = q + 1.

(2)

The order of register values K1, . . . ,Km is not important for the estimation of the
cardinality. More formally, the multiset {K1, . . . ,Km} is a sufficient statistic for n.
Since the values of the multiset are all in the range [0, q + 1] the multiset can also be
represented as {K1, . . . ,Km} = 0C01C1 · · · qCq(q + 1)Cq+1 where Ck is the multiplicity of
value k. As a consequence, the multiplicity vector C := (C0, . . . , Cq+1) is also a sufficient
statistic for the cardinality. In addition, this vector contains all the information about the
HyperLogLog sketch that is required for cardinality estimation. The two HyperLogLog
parameters can be obtained by p = log2(

∑q+1
k=0Ck) and q = dimC − 2, respectively.

Algorithm 4 shows the calculation of the multiplicity vector C for a given HyperLogLog
sketch with register values K.
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Algorithm 4 Multiplicity vector extraction from a (p, q)-HyperLogLog sketch with
m = 2p registers having values K = (K1, . . . ,Km).

function ExtractCounts(K) . K ∈ {0, 1, . . . , q + 1}m
allocate C = (C0, . . . , Cq+1)
C ← (0, 0, . . . , 0)
for i← 1,m do

CKi ← CKi + 1
end for
return C

end function

2.3. Poisson approximation

Due to the statistical dependence of the register values, the probability mass function
(1) makes further analysis difficult. Therefore, a Poisson model can be used [6], which
assumes that the cardinality itself is distributed according to a Poisson distribution

n ∼ Poisson(λ). (3)

Under the Poisson model the distribution of the register values is

ρ(k|λ) =
∞∑
n=0

ρ(k|n)e−λ
λn

n!
(4)

=
∞∑

n1=0

· · ·
∞∑

nm=0

m∏
i=1

γ(ki|ni)e−
λ
m

λni

ni!mni

=

m∏
i=1

∞∑
n=0

γ(ki|n)e−
λ
m

λn

n!mn

=

q+1∏
k=0

( ∞∑
n=0

γ(k|n)e−
λ
m

λn

n!mn

)ck

= e−c0
λ
m

(
q∏

k=1

(
e
− λ

m2k

(
1− e−

λ

m2k

))ck)(
1− e−

λ
m2q

)cq+1

. (5)

Here ck denotes the multiplicity of value k in the multiset {k1, . . . , km}. The final
factorization shows that the register values K1, . . . ,Km are independent and identically
distributed under the Poisson model. The probability that a register has a value less
than or equal to k for a given rate λ is given by

P (K ≤ k|λ) =


0 k < 0

e
− λ

m2k 0 ≤ k ≤ q
1 k > q.

(6)
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2.4. Depoissonization

Due to the simpler probability mass function (5), it is easier to find an estimator λ̂ =
λ̂(K) for the Poisson rate λ than for the cardinality n under the fixed-size model (1).
Depoissonization [18] finally allows to translate the estimates back to the fixed-size
model. Assume we have found an unbiased estimator for the Poisson rate

E(λ̂|λ) = λ for all λ ≥ 0. (7)

We know from (4)

E(λ̂|λ) =

∞∑
n=0

E(λ̂|n)e−λ
λn

n!
(8)

and therefore
∞∑
n=0

E(λ̂|n)e−λ
λn

n!
= λ (9)

holds for all λ ≥ 0. The unique solution of this equation is given by

E(λ̂|n) = n. (10)

Hence, the unbiased estimator λ̂ conditioned on n is also an unbiased estimator for
n, which motivates us to use λ̂ directly as estimator for the cardinality n̂ := λ̂. As
simulation results will show later, the Poisson approximation works well over the entire
cardinality range, even for estimators that are not exactly unbiased.

3. Original cardinality estimation method

The original cardinality estimator [6] is based on the idea that the number of distinct el-
ement insertions a register needs to reach the value k is proportional to m2k. Given that,
a rough cardinality estimate can be obtained by averaging the values {m2K1 , . . . ,m2Km}.
In the history of the HyperLogLog algorithm different averaging techniques have been
proposed. First, there was the LogLog algorithm using the geometric mean and the
SuperLogLog algorithm that enhanced the estimate by truncating the largest register
values before applying the geometric mean [19]. Finally, the harmonic mean was found
to give even better estimates as it is inherently less sensitive to outliers. The result is
the so-called raw estimator which is given by

n̂raw = αm
m

1
m2K1

+ . . .+ 1
m2Km

=
αmm

2∑m
i=1 2−Ki

=
αmm

2∑q+1
k=0Ck2

−k
. (11)

Here αm is a bias correction factor which was derived for a given number of registers m
as [6]

αm :=

(
m

∫ ∞
0

(
log2

(
2 + x

1 + x

))m
dx

)−1
. (12)
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Numerical approximations of αm for various values of m have been listed in [6]. These
approximations are used in many HyperLogLog implementations. However, since the
published constants have been rounded to 4 significant digits, these approximations
even introduce some bias for very high precisions p. For HyperLogLog sketches that are
used in practice with 256 or more registers (p ≥ 8), it is completely sufficient to use

α∞ := lim
m→∞

αm =
1

2 log 2
= 0.72134752 . . . (13)

as approximation for αm in (11), because the additional bias is negligible compared to
the overall estimation error.

Fig. 1 shows the distribution of the relative error for the raw estimator as function of
the cardinality. The chart is based on 10 000 randomly generated HyperLogLog sketches.
More details of the experimental setup will be explained later in Section 3.5. Obviously,
the raw estimator is biased for small and large cardinalities where it fails to return
accurate estimates. In order to cover the entire cardinality range, corrections for small
and large cardinalities have been proposed.

As mentioned in Section 2.1, a HyperLogLog sketch with parameters (p, q) can be
mapped to a (p, 0)-HyperLogLog sketch. Since q = 0 corresponds to linear counting
and the reduced HyperLogLog sketch corresponds to a bitset with C0 zeros, the linear
counting cardinality estimator [17] can be used

n̂small = m log(m/C0). (14)

The corresponding relative estimation error as depicted in Fig. 2 shows that this estima-
tor is convenient for small cardinalities. It was proposed to use this estimator for small
cardinalities as long as n̂raw ≤ 5

2m where the factor 5
2 was empirically determined [6].

For large cardinalities in the order of 2p+q, for which a lot of registers are already in a
saturated state, meaning that they have reached the maximum possible value q+ 1, the
raw estimator underestimates the cardinalities. For the 32-bit hash value case (p+ q =
32), which was considered in [6], following correction formula was proposed to take these
saturated registers into account

n̂large = −232 log
(
1− n̂raw/232

)
. (15)

The original estimation algorithm as presented in [6] including corrections for small
and large cardinalities is summarized by Algorithm 5. The relative estimation error for
the original method is shown in Fig. 3. Unfortunately, as can be clearly seen, the ranges
where the estimation error is small for n̂raw and n̂small do not overlap. Therefore, the
estimation error is much larger near the transition region. To reduce the estimation error
for cardinalities close to this region, it was proposed to correct n̂raw for bias. Empirically
collected bias correction data is either stored as set of interpolation points [7], as lookup
table [8], or as best-fitting polynomial [9]. However, all these empirical approaches treat
the symptom and not the cause.

The large range correction formula (15) is not satisfying either as it does not reduce
the estimation error. Quite the contrary, it even makes the bias worse. However, instead
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Algorithm 5 Original cardinality estimation algorithm for HyperLogLog sketches that
use 32-bit hash values (p+ q = 32) for insertion of data items [6].

function EstimateCardinality(K) . K ∈ {0, 1, . . . , q + 1}m, m = 2p

n̂raw ← αmm
2
(∑m

i=1 2−Ki
)−1

. raw estimate (11)
if n̂raw ≤ 5

2m then
C0 ← |{i|Ki = 0}|
if C0 6= 0 then

return m log(m/C0) . small range correction (14)
else

return n̂raw
end if

else if n̂raw ≤ 1
30232 then

return n̂raw
else

return −232 log(1− n̂raw/232) . large range correction (15)
end if

end function

Figure 1: The distribution of the relative estimation error over the cardinality for the
raw estimator after evaluation of 10 000 randomly generated HyperLogLog
data structures with parameters p = 12 and q = 20.
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Figure 2: The distribution of the relative estimation error for the linear counting esti-
mator after evaluation of 10 000 randomly generated bitmaps of size 212 which
correspond to HyperLogLog sketches with parameters p = 12 and q = 0.

Figure 3: The distribution of the relative estimation error over the cardinality for the
original estimation algorithm after evaluation of 10 000 randomly generated
HyperLogLog data structures with parameters p = 12 and q = 20.
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of underestimating the cardinalities, they are now overestimated. Another indication for
the incorrectness of the proposed large range correction is the fact that it is not even
defined for all possible states. For instance, consider a (p, q)-HyperLogLog sketch with
p+q = 32 for which all registers are equal to the maximum possible value q+1. The raw
estimate would be n̂raw = αm233, which is greater than 232 and outside of the domain
of the large range correction formula.

A simple approach to avoid the need of any large range correction is to extend the
operating range of the raw estimator to larger cardinalities. This can be easily accom-
plished by increasing p + q, which corresponds to using hash values with more bits.
Each additional bit doubles the operating range which scales like 2p+q. However, in case
q ≥ 31 the number of possible register values, which are {0, 1, . . . , q+ 1}, is greater than
32 which is no longer representable by 5-bit registers. Therefore, it was proposed to use
6 bits per register in combination with 64-bit hash values [7]. Even larger hash values
are needless in practice, because it is unrealistic to encounter cardinalities of order 264.

3.1. Derivation of the raw estimator

In order to better understand why the raw estimator fails for small and large cardinalities,
we start with a brief and simple derivation without the restriction to large cardinalities
(n→∞) and without using complex analysis as in [6].

Let us assume that the register values have following cumulative distribution function

P (K ≤ k|λ) = e
− λ

m2k . (16)

For now we ignore that this distribution has infinite support and differs from the register
value distribution under the Poisson model (6), whose support is limited to the range
[0, q + 1]. For a random variable K obeying (16) the expectation of 2−K is given by

E(2−K) =
∞∑

k=−∞
2−k

(
e
− λ

m2k − e−
λ

m2k−1

)
=

1

2

∞∑
k=−∞

2ke−
λ
m
2k =

α∞mξ(log2(λ/m))

λ
, (17)

where the function

ξ(x) := log(2)
∞∑

k=−∞
2k+xe−2

k+x
(18)

is a smooth periodic function with period 1. Numerical evaluations indicate that this
function can be bounded by 1− εξ ≤ ξ(x) ≤ 1 + εξ with εξ := 9.885× 10−6 (see Fig. 4).
This value can also be found using Fourier analysis as shown in Appendix A.

Let K1, . . . ,Km be a sample distributed according to (16). For large sample sizes
m→∞ we have asymptotically

E
(

1

2−K1 + . . .+ 2−Km

)
=

m→∞

1

E(2−K1 + . . .+ 2−Km)
=

1

mE(2−K)
. (19)
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Figure 4: The deviation of ξ(x) from 1.

Together with (17) we obtain

λ = E
(
α∞m

2 ξ(log2(λ/m))

2−K1 + . . .+ 2−Km

)
for m→∞. (20)

Therefore, the asymptotic relative bias of

λ̂ =
α∞m

2

2−K1 + . . .+ 2−Km
(21)

is bounded by εξ, which makes this statistic a good estimator for the Poisson parameter.
It also corresponds to the raw estimator (11), if the Poisson parameter estimate is used
as cardinality estimate (see Section 2.4).

3.2. Limitations of the raw estimator

The raw estimator is based on two prerequisites. First, the number of registers needs
to be sufficiently large (m → ∞). And second, the distribution of register values can
be described by (16). However, the latter is not true for small and large cardinalities,
which is finally the reason for the bias of the raw estimator.

A random variable K ′ with cumulative distribution function (16) can be transformed
into a random variable K with cumulative distribution function (6) using

K = min
(
max

(
K ′, 0

)
, q + 1

)
. (22)

Therefore, register values K1, . . . ,Km can be seen as the result after applying this trans-
formation to a sample K ′1, . . . ,K

′
m of the distribution described by (16). If all registers

values fall into the range [1, q], they must be identical to the values K ′1, . . . ,K
′
m. In

other words, the observed register values are also a plausible sample of the assumed
distribution described by (16) in this case. Hence, as long as all or at least most register
values are in the range [1, q], which is the case if 2p � λ � 2p+q, the approximation of
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(6) by (16) is valid. This explains why the raw estimator works best for intermediate
cardinalities. However, for small and large cardinalities many register values are equal
to 0 or q + 1, respectively, which cannot be described by (16) and finally leads to the
observed bias.

3.3. Corrections to the raw estimator

If we knew the values K ′1, . . . ,K
′
m for which transformation (22) led to the observed

register values K1, . . . ,Km, we would be able to estimate λ using

λ̂ =
α∞m

2

2−K
′
1 + . . .+ 2−K′m

. (23)

As we have already shown, this estimator is approximately unbiased, because all K ′i
follow the assumed distribution. It would be even sufficient, if we knew the multiplicity
C ′k of each k ∈ Z in {K ′1, . . . ,K ′m}, C ′k := |{i|k = K ′i}|, because the raw estimator can
be also written as

λ̂ =
α∞m

2∑∞
k=−∞C

′
k2
−k . (24)

Due to (22), the multiplicities C ′k and the multiplicities Ck for the observed register
values have following relationships

C0 =
∑0

k=−∞C
′
k,

Ck = C ′k, 1 ≤ k ≤ q,
Cq+1 =

∑∞
k=q+1C

′
k.

(25)

The idea is now to find estimates ĉ′k for all k ∈ Z and use them as replacements for C ′k
in (24). For k ∈ [1, q] where Ck = C ′k we can use the trivial estimators

ĉ′k := Ck, 1 ≤ k ≤ q. (26)

To get estimators for k ≤ 0 and k ≥ q + 1, we consider the expectation of C ′k

E(C ′k) = m
(
P (K ′ ≤ k|λ)− P (K ′ ≤ k − 1|λ)

)
= me

− λ

m2k

(
1− e−

λ

m2k

)
. (27)

From (6) we know that E(C0/m) = e−
λ
m and E(1− Cq+1/m) = e−

λ
m2q , and therefore,

we can also write

E(C ′k) = m (E(C0/m))2
−k
(

1− (E(C0/m))2
−k
)

(28)

and
E(C ′k) = m (E(1− Cq+1/m))2

q−k
(

1− (E(1− Cq+1/m))2
q−k
)
, (29)

which motivates us to use

ĉ′k = m (C0/m)2
−k
(

1− (C0/m)2
−k
)

(30)
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as estimator for k ≤ 0 and

ĉ′k = m (1− Cq+1/m)2
q−k
(

1− (1− Cq+1/m)2
q−k
)

(31)

as estimator for k ≥ q + 1, respectively. This choice of estimators also conserves the
mass of zero-valued and saturated registers, because (25) is satisfied, if C ′k is replaced
by ĉ′k. Plugging all these estimators into (24) as replacements for C ′k finally gives

λ̂ =
α∞m

2∑∞
k=−∞ ĉ

′
k2
−k =

α∞m
2

mσ(C0/m) +
∑q

k=1Ck2
−k +mτ(1− Cq+1/m)2−q

(32)

which we call the improved raw estimator. Here mσ(C0/m) and 2mτ(1−Cq+1/m) are
replacements for C0 and Cq+1 in the raw estimator (11), respectively. The functions σ
and τ are defined as

σ(x) := x+

∞∑
k=1

x2
k
2k−1 (33)

and

τ(x) :=
1

2

(
−x+

∞∑
k=1

x2
−k

2−k

)
. (34)

We can cross-check the new estimator for the linear counting case with q = 0. Using
the identity

σ(x) + τ(x) = α∞ξ(log2(log(1/x)))/ log(1/x), (35)

we get

λ̂ =
α∞m

σ(C0/m) + τ(C0/m)
=

m log(m/C0)

ξ(log2(log(m/C0)))
(36)

which is as expected almost identical to the linear counting estimator (14), because
ξ(x) ≈ 1 (see Section 3.1).

3.4. Improved raw estimation algorithm

The improved raw estimator (32) can be directly translated into a new cardinality esti-
mation algorithm for HyperLogLog sketches as shown in Algorithm 6. Since the series
(33) converges quadratically for all x ∈ [0, 1) and its terms can be recursively calcu-
lated using elementary operations, the function σ can be quickly calculated to machine
precision. The case x = 1 must be handled separately, because the series diverges and
causes an infinite denominator in (32) and therefore a vanishing cardinality estimate.
As this case only occurs if all register values are zero (C0 = m), this is exactly what is
expected. Among the remaining possible arguments {0, 1

m ,
2
m , . . . ,

m−1
m } we have slowest

convergence for x = m−1
m . However, even in this case we have a manageable amount of

iteration cycles. For example, if double-precision floating-point arithmetic is used, the
routine for calculating σ converges after 18 and 26 iteration cycles for p = 12 and p = 20,
respectively.
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The calculation of τ is more expensive, because it involves square root evaluations. τ
can also be written in a numerically more favorable way as

τ(x) :=
1

3

(
1− x−

∞∑
k=1

(
1− x2−k

)2
2−k

)
. (37)

This representation shows faster convergence for x > 0, because 1−x2−k ≤ − log(x)2−k.
Therefore, the convergence speed is comparable to a geometric series with ratio 1/8.
Disregarding the trivial case τ(0) = 0, x = 1

m shows slowest convergence speed among all
other possible parameters. For this case and if double-precision floating-point numbers
are used, the function τ presented in Algorithm 6 converges after 21 and 22 iteration
cycles for considered precisions p = 12 and p = 20, respectively.

If performance matters σ and τ can also be precalculated for all possible values of
C0 and Cq+1. As their value range is {0, 1, . . . ,m}, the function values can be kept
in lookup tables of size m + 1. In this way a complete branch-free cardinality esti-
mation can be realized. It is also thinkable to calculate τ using the approximation
τ(x) ≈ α∞/ log(1/x)−σ(x) which can be obtained from (35). The advantage is that the
calculation of σ and the additional logarithm is slightly faster than the calculation of
τ . However, for arguments close to 1, where α∞/ log(1/x) and σ(x) are both very large
while their difference is very small, special care is needed to avoid numerical cancellation.

The new estimation algorithm is very elegant, because it does neither contain magic
numbers nor special cases as the original algorithm. Moreover, the algorithm guarantees
monotonicity of the cardinality estimate. The estimate will never become smaller when
adding new elements. Although this sounds self-evident, previous approaches that com-
bine estimators for different cardinality ranges or make use of empirical collected data
have problems to satisfy this property throughout all cardinalities.

3.5. Experimental setup

To verify the new estimation algorithm, we generated 10 000 different HyperLogLog
sketches and filled each of them with 50 billion unique elements. During element inser-
tion, we took snapshots of the sketch state by storing the multiplicity vector at predefined
cardinality values, which were roughly chosen according to a geometric series with ra-
tio 1.01. In order to achieve that in reasonable time for all the different HyperLogLog
parameter combinations (p, q) we have been interested in, we applied a couple of opti-
mizations.

First, we assumed a uniform hash function. This allows us to simply generate random
numbers instead of creating unique elements and calculating their hash values. We used
the Mersenne Twister random number generator with a state size of 19 937 bits from the
C++ standard library. Second, we used Algorithm 7 for insertions, which does basically
the same as Algorithm 1, but additionally keeps track of the multiplicity vector and
the minimum register value. In this way the expensive register scan needed to obtain
the multiplicity vector as described by Algorithm 4 can be avoided. Furthermore, the
knowledge of the minimum register value can be used to abort the insertion procedure
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Algorithm 6 Cardinality estimation based on the improved raw estimator. The input
is the multiplicity vector C = (C0, . . . , Cq+1) as obtained by Algorithm 4.

function EstimateCardinality(C) .
∑q+1

k=0Ck = m
z ← m · τ(1− Cq+1/m) . alternatively, take m · τ(1 − Cq+1/m)

from precalculated lookup table
for k ← q, 1 do

z ← 0.5 · (z + Ck)
end for
z ← z +m · σ(C0/m) . alternatively, take m · σ(C0/m) from

precalculated lookup table
return α∞m

2/z . α∞ := 1/(2 log(2))
end function

function σ(x) . x ∈ [0, 1]
if x = 1 then

return ∞
end if
y ← 1
z ← x
repeat

x← x · x
z′ ← z
z ← z + x · y
y ← 2 · y

until z = z′

return z
end function

function τ(x) . x ∈ [0, 1]
if x = 0 ∨ x = 1 then

return 0
end if
y ← 1
z ← 1− x
repeat

x←
√
x

z′ ← z
y ← 0.5 · y
z ← z − (1− x)2 · y

until z = z′

return z/3
end function
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early, if the hash value is not able to increment any register value. Especially at large
cardinalities this saves a great number of register accesses and also reduces the number
of cache misses. For example, if Kmin = 1 only half of all insertions will access a register.
If Kmin = 2 it is already just a quarter, and so forth. Finally, instead of repeating the
simulation for different HyperLogLog parameters, we did that only once using the quite
accurate setting p = 22 and q = 42. Whenever taking a snapshot, we reduced the sketch
state exploiting Algorithm 3 for desired parameters before calculating the multiplicity
vector using Algorithm 4.

After all, we got the multiplicity vectors at predefined cardinalities of 10 000 different
simulation runs for various HyperLogLog parameter settings. All this data constitutes
the basis of the presented results that follow. The generated data allows a quick and
simple evaluation of cardinality estimation algorithms by just loading the persisted mul-
tiplicity vectors from hard disk and passing them as input to the algorithm.

Algorithm 7 Extension of Algorithm 1 that keeps track of the multiplicity vector
C = (C0, . . . , Cq+1) and the minimum register value Kmin during insertion. Initially,
Kmin = 0 and C = (m, 0, 0, . . . , 0).

procedure InsertElement(D)
〈a1, . . . , ap, b1, . . . , bq〉2 ← (p+ q)-bit hash value of D . ai, bi ∈ {0, 1}
k ← min({s | bs = 1} ∪ {q + 1}) . k ∈ {1, 2, . . . , q + 1}
if k > Kmin then

i← 1 + 〈a1, . . . , ap〉2 . i ∈ {1, 2, . . . ,m}
if k > Ki then

CKi ← CKi − 1
Ck ← Ck + 1
if Ki = Kmin then

while CKmin = 0 do
Kmin ← Kmin + 1

end while
end if
Ki ← k

end if
end if

end procedure

3.6. Estimation error

Fig. 5 shows the distribution of the relative error of the estimated cardinality using
Algorithm 6 compared to the true cardinality for p = 12 and q = 20. As the mean
shows, the error is unbiased over the entire cardinality range. The new approach is able
to accurately estimate cardinalities up to 4 billions (≈ 2p+q) which is about an order of
magnitude larger than the operating range upper bound of the raw estimator (Fig. 1).

17



Figure 5: Relative error of the improved raw estimator as a function of the true cardi-
nality for a HyperLogLog sketch with parameters p = 12 and q = 20.

The improved raw estimator beats the precision of methods that apply bias correc-
tion on the raw estimator [7, 8, 9]. Based on the simulated data we have empirically
determined the bias correction function wcorr for the raw estimator (11) that satisfies
n = E(wcorr(n̂raw)|n) for all cardinalities. By definition, the estimator n̂′raw := wcorr(n̂raw)
is unbiased and a function of the raw estimator. Its standard deviation can be compared
with that of the improved raw estimator in Fig. 6. For cardinalities smaller than 10 000
the empirical bias correction approach is not very precise. This is the reason why all pre-
vious approaches had to switch over to the linear counting estimator at some point. The
standard deviation of the linear counting estimator is also shown in Fig. 6. Obviously,
the previous approaches cannot do better than given by the minimum of both curves for
linear counting and raw estimator. In practice, the standard deviation is even larger,
because the choice between both estimators must be made based on an estimate and
not on the true cardinality, for which the intersection point of both curves represents
the ideal transition point. In contrast, the improved raw estimator performs well over
the entire cardinality range.

The new estimation algorithm also works well for other HyperLogLog configurations.
First we considered configurations using a 32-bit hash function (p + q = 32). The
relative estimation error for precisions p = 8, p = 16, and p = 22 are shown in Figs. 7
to 9, respectively. As expected, since p + q = 32 is kept constant, the operating range
remains more or less the same, while the relative error decreases with increasing precision
parameter p. Again, the new algorithm gives essentially unbiased estimates. Only for
very high precisions, an oscillating bias becomes apparent (compare Fig. 9), that is
caused by approximating the periodic function ξ by a constant (see Section 3.1).

As proposed in [7], the operating range can be extended by replacing the 32-bit hash
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Figure 6: Standard deviations of the relative error of different cardinality estimators
over the true cardinality for a HyperLogLog sketch with parameters p = 12
and q = 20 .

Figure 7: Relative error of the improved raw estimator as a function of the true cardi-
nality for a HyperLogLog sketch with parameters p = 8 and q = 24.
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Figure 8: Relative error of the improved raw estimator as a function of the true cardi-
nality for a HyperLogLog sketch with parameters p = 16 and q = 16.

Figure 9: Relative error of the improved raw estimator as a function of the true cardi-
nality for a HyperLogLog sketch with parameters p = 22 and q = 10.
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Figure 10: Relative error of the improved raw estimator as a function of the true cardi-
nality for a HyperLogLog sketch with parameters p = 12 and q = 52.

function by a 64-bit hash function. Fig. 10 shows the relative error for such a Hyper-
LogLog configuration with parameters p = 12 and q = 52. The doubled hash value size
shifts the maximum trackable cardinality value towards 264. As Fig. 10 shows, when
compared to the 32-bit hash value case given in Fig. 5, the estimation error remains
constant over the entire simulated cardinality range up to 50 billions.

We also evaluated the case p = 12 and q = 14, which is interesting, because the
register values are limited to the range [0, 15]. As a consequence, 4 bits are sufficient
for representing a single register value. This allows two registers to share a single byte,
which is beneficial from a performance perspective. Nevertheless, this configuration still
allows the estimation of cardinalities up to 100 millions as shown in Fig. 11, which could
be enough for many applications.

3.7. Performance

To evaluate the performance of the improved raw estimation algorithm, we investigated
the average computation time to obtain the cardinality from a given multiplicity vector.
For different cardinality values we loaded the precalculated multiplicity vectors (see
Section 3.5) of 1000 randomly generated HyperLogLog sketches into main memory. The
average computation time was determined by cycling over these multiplicity vectors and
passing them as input to the algorithm. For each evaluated cardinality value the average
execution time was calculated after 100 cycles which corresponds to 100 000 algorithm
executions for each cardinality value. The results for HyperLogLog configurations p =
12, q = 20 and p = 12, q = 52 are shown in Fig. 12. Two variants of Algorithm 6 have
been evaluated for which the functions σ and τ have been either calculated on demand
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Figure 11: Relative error of the improved raw estimator as a function of the true cardi-
nality for a HyperLogLog sketch with parameters p = 12 and q = 14.

or taken from a lookup table. All these benchmarks where carried out on an Intel Core
i5-2500K clocking at 3.3 GHz.

The results show that the execution times are nearly constant for q = 52. Using a
lookup table makes not much difference, because the on-demand calculation for σ is very
fast and the calculation of τ is rarely needed due to the small probability of saturated
registers, C53 = 0 usually holds for realistic cardinalities. If lookup tables are used, the
computation time is as expected independent of the cardinality also for the case q = 20.
The faster computation times for q = 20 compared to the q = 52 case can be explained
by the much smaller dimension of the multiplicity vector which is equal to q + 2. In
contrast, if functions σ and τ are calculated on demand, executions take significantly
more time for larger cardinalities. The reason is that beginning at cardinality values
in the order of 100 000 the probability of saturated registers increases. This makes the
calculation of τ necessary, which is much more expensive than that of σ, because it
requires more iterations and involves square root evaluations. However, the calculation
of τ could be avoided at all, if the HyperLogLog parameters are appropriately chosen.
If 2p+q is much larger than the maximum expected cardinality value, the number of
saturated registers will be negligible, Cq+1 � m. The calculation of τ could be omitted
in this case, because τ(1− Cq+1/m) ≈ 0.

The numbers presented in Fig. 12 do not include the processing time to extract the
multiplicity vector out of the HyperLogLog sketch, which requires a complete scan over
all registers and counting the different register values into an array as demonstrated by
Algorithm 4. A theoretical lower bound for this processing time can be derived using the
maximum memory bandwidth of the CPU, which is 21 GB/s for an Intel Core i5-2500K.
If we consider a HyperLogLog sketch with precision p = 12 which uses 5 bits per register,
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Figure 12: Average computation time as a function of the true cardinality with an In-
tel Core i5-2500K clocking at 3.3 GHz when estimating the cardinality from
HyperLogLog sketches with parameters p = 12, q = 20 and p = 12, q = 52,
respectively. Both cases, σ and τ precalculated and calculated on demand
have been considered.

the total data size of the HyperLogLog sketch is 2.5 kB minimum. Consequently, the
transfer time from main memory to CPU will be at least 120 ns. Having this value in
mind, the presented numbers for estimating the cardinality from the multiplicity vector
are quite satisfying.

4. Maximum likelihood estimation

We know from Section 2.4 that any unbiased estimator for the Poisson parameter is
also an unbiased estimator for the cardinality. Moreover, we know that under suitable
regularity conditions of the probability mass function the maximum likelihood estimator
is asymptotically efficient [20]. This means, if the number of registers m is large enough,
the maximum likelihood method should give us an unbiased estimator for the cardinality.

For HyperLogLog sketches that have been obtained without stochastic averaging (see
Section 2.1) the maximum likelihood method was already previously considered [21].
The register values are statistically independent by nature in this case, which allows fac-
torization of the joint probability mass function and a straightforward calculation of the
maximum likelihood estimate. The practically more relevant case which uses stochas-
tic averaging and which is considered in this paper, would lead to a more complicated
likelihood function (compare (1)). However, the Poisson approximation makes the max-
imum likelihood method feasible again and we are finally able to derive another new
robust and efficient cardinality estimation algorithm. Furthermore, in the course of the
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derivation we will demonstrate that consequent application of the maximum likelihood
method reveals that the cardinality estimate needs to be roughly proportional to the
harmonic mean for intermediate cardinality values. The history of the HyperLogLog
algorithm shows that the raw estimator (11) was first found after several attempts using
the geometric mean [6, 19].

4.1. Log-likelihood function

Using the probability mass function of the Poisson model (5) the log-likelihood and its
derivative are given by

logL(λ|K) = − λ
m

q∑
k=0

Ck
2k

+

q∑
k=1

Ck log
(

1− e−
λ

m2k

)
+ Cq+1 log

(
1− e−

λ
m2q

)
(38)

and

d

dλ
logL(λ|K) = − 1

λ

(
λ

m

q∑
k=0

Ck
2k

+

q∑
k=1

Ck

λ
m2k

1− e
λ

m2k

+ Cq+1

λ
m2q

1− e
λ

m2q

)
. (39)

As a consequence, the maximum likelihood estimate for the Poisson parameter is given
by

λ̂ = mx̂, (40)

if x̂ denotes the root of the function

f(x) := x

q∑
k=0

Ck
2k

+

q∑
k=1

Ck

x
2k

1− e
x

2k
+ Cq+1

x
2q

1− e
x
2q
. (41)

This function can also be written as

f(x) := x

q∑
k=0

Ck
2k

+

q∑
k=1

Ckh
( x

2k

)
+ Cq+1h

( x
2q

)
− (m− C0) , (42)

where the function h(x) is defined as

h(x) := 1− x

ex − 1
. (43)

h(x) is strictly increasing and concave as can be seen in Fig. 13. For nonnegative values
this function ranges from h(0) = 0 to h(x → ∞) = 1. Since the function f(x) is also
strictly increasing, it is obvious that there exists a unique root x̂ for which f(x̂) = 0.
The function is nonpositive at 0 since f(0) = C0 −m ≤ 0 and, in case Cq+1 < m which
implies

∑q
k=0

Ck
2k
> 0, the function is at least linearly increasing. Cq+1 = m corresponds

to the case with all registers equal to the maximum value q+ 1, for which the maximum
likelihood estimate would be positive infinite.

It is easy to see that the estimate λ̂ remains equal or becomes larger, when inserting
an element into the HyperLogLog sketch following Algorithm 1. An update potentially
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Figure 13: The function h(x).

changes the multiplicity vector (C0, . . . , Cq+1) to (C0, . . . , Ci − 1, . . . , Cj + 1, . . . , Cq+1)
where i < j. Writing (42) as

f(x) := C0x+ C1

(
h
( x

21

)
+
x

21
− 1
)

+ C2

(
h
( x

22

)
+
x

22
− 1
)

+ . . .

· · ·+ Cq

(
h
( x

2q

)
+
x

2q
− 1
)

+ Cq+1

(
h
( x

2q

)
− 1
)
. (44)

shows that the coefficient of Ci is larger than the coefficient of Cj in case i < j. Keeping
x fixed during an update decreases f(x). As a consequence, since f(x) is increasing, the
new root and hence the estimate must be larger than prior the update.

For the special case q = 0, which corresponds to the already mentioned linear counting
algorithm, (41) can be solved analytically. In this case, the maximum likelihood method
under the Poisson model leads directly to the linear counting estimator (14). Due to
this fact we could expect that maximum likelihood estimation under the Poisson model
also works well for the more general HyperLogLog case.

4.2. Inequalities for the maximum likelihood estimate

In the following we derive lower and upper bounds for x̂. Applying Jensen’s inequality
on h in (42) gives an upper bound for f(x):

f(x) ≤ x
q∑

k=0

Ck
2k

+ (m− C0) · h

(
x ·
∑q

k=1
Ck
2k

+
Cq+1

2q

m− C0

)
− (m− C0) . (45)

The left-hand side is zero, if x̂ is inserted. Resolution for x̂ finally gives the lower bound

x̂ ≥ m− C0∑q
k=1

Ck
2k

+
Cq+1

2q

log

(
1 +

∑q
k=1

Ck
2k

+
Cq+1

2q∑q
k=0

Ck
2k

)
. (46)
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This bound can be weakened using log(1 + x) ≥ 2x
x+2 for x ≥ 0 which results in

x̂ ≥ m− C0

C0 + 3
2

∑q
k=1

Ck
2k

+
Cq+1

2q+1

. (47)

Using the monotonicity of h, the lower bound

f(x) ≥ x
q∑

k=0

Ck
2k

+

q∑
k=1

Ckh
( x

2K′max

)
+ Cq+1h

( x

2K′max

)
− (m− C0) (48)

can be found, where K ′max := min(Kmax, q) and Kmax := max({k|Ck > 0}). Again,
inserting x̂ and transformation gives

x̂ ≤ 2K
′
max log

(
1 +

m− C0

2K′max
∑q

k=0
Ck
2k

)
(49)

as upper bound which can be weakened using log(1 + x) ≤ x for x ≥ 0

x̂ ≤ m− C0∑q
k=0

Ck
2k

. (50)

If the HyperLogLog sketch is in the intermediate range, where C0 = Cq+1 = 0 the
bounds (47) and (50) differ only by a constant factor and both are proportional to
the harmonic mean of 2K1 , . . . , 2Km . Hence, consequent application of the maximum
likelihood method would have directly suggested to use a cardinality estimator that is
proportional to the harmonic mean without knowing the raw estimator (11) in advance.

4.3. Computation of the maximum likelihood estimate

Since f is concave and increasing, both, Newton-Raphson iteration and the secant
method, will converge to the root, provided that the function is negative for the chosen
starting points. We will use the secant method to derive the new cardinality estimation
algorithm. Even though the secant method has the disadvantage of slower convergence,
a single iteration is simpler to calculate as it does not require the evaluation of the first
derivative. An iteration step of the secant method can be written as

xi = xi−1 − (xi−1 − xi−2)
f(xi−1)

f(xi−1)− f(xi−2)
. (51)

If we set x0 equal to 0, for which f(x0) = − (m− C0), and x1 equal to one of the derived
lower bounds (46) or (47), the sequence (x0, x1, x2, . . .) is monotone increasing. Using
the definitions

∆xi := xi − xi−1 (52)

and

g(x) := f(x) + (m− C0) = x

q∑
k=0

Ck
2k

+

q∑
k=1

Ckh
( x

2k

)
+ Cq+1h

( x
2q

)
(53)
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the iteration scheme can also be written as

∆xi = ∆xi−1
(m− C0)− g(xi−1)

g(xi−1)− g(xi−2)
, (54)

xi = xi−1 + ∆xi. (55)

The iteration can be stopped, if ∆xi ≤ δ · xi. Since the expected statistical error for
the HyperLogLog data structure scales according to 1√

m
[6], it makes sense to choose

δ = ε√
m

with some constant ε. For all results presented later in Section 4.5 we used

ε = 10−2.

4.4. Maximum likelihood estimation algorithm

To get a fast cardinality estimation algorithm, it is crucial to minimize evaluation costs
for (53). A couple of optimizations allow significant reduction of computational effort:

• Only a fraction of all count values Ck is nonzero. If we denoteKmin := min({k|Ck >
0}) and Kmax := max({k|Ck > 0}), it is sufficient to loop over all indices in the
range [Kmin,Kmax].

• The sum
∑q

k=0
Ck
2k

in (53) can be precalculated and reused for all function evalu-
ations.

• Many programming languages allow the efficient multiplication and division by any
integral power of two using special functions, such as ldexp in C/C++ or scalb in
Java.

• The function h(x) only needs to be evaluated at points
{

x

2K
′
max

, x

2K
′
max−1

, . . . , x
2Kmin

}
where K ′max := min(Kmax, q). This series corresponds to a geometric series with
ratio two. A straightforward calculation using (43) is very expensive because of the

exponential function. However, if we know h
(

x

2K
′
max

)
all other required function

values can be easily obtained using the identity

h(4x) =
x+ h(2x) (1− h(2x))

x+ (1− h(2x))
. (56)

This recursive formula is stable in a sense that the relative error of h(4x) is smaller
than that of h(2x) as shown in Appendix B.

• If x is smaller than 0.5, the function h(x) can be well approximated by a Taylor
series around x = 0

h(x) =
x

2
− x2

12
+

x4

720
− x6

30240
+O(x8), (57)

which can be optimized for numerical evaluation using Estrin’s scheme and x′ := x
2

and x′′ := x′x′

h(x) = x′ − x′′/3 +
(
x′′x′′

) (
1/45− x′′/472.5

)
+O(x8). (58)
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The smallest argument for which h needs to be evaluated is x

2K
′
max

. If Cq+1 = 0,

we can find an upper bound for the smallest argument using (49)

x

2K′max
≤ x̂

2K′max
≤ log

(
1 +

∑K′max
k=0 Ck

2K′max
∑K′max

k=0
Ck
2k

)
≤ log 2 ≈ 0.693. (59)

In practice, x

2K
′
max
≤ 0.5 is satisfied most of the time as long as only a few registers

are saturated, that is Cq+1 � m. In case x

2K
′
max

> 0.5, h
(
x
2κ

)
is calculated instead

with κ = 2+blog2(x)c. By definition, x
2κ ≤ 0.5 which allows using the Taylor series

approximation. h
(

x

2K
′
max

)
is finally obtained after κ−K ′max iterations using (56).

As shown in Appendix C, a small approximation error of h does not have much
impact on the error of the maximum likelihood estimate as long as most registers
are not saturated.

Putting all these optimizations together finally gives the new cardinality estimation
algorithm presented as Algorithm 8. The algorithm requires mainly only elementary
operations. For very large cardinalities it makes sense to use the strong (46) instead
of the weak lower bound (47) as second starting point for the secant method. The
stronger bound is a much better approximation especially for large cardinalities, where
the extra logarithm evaluation is amortized by savings in the number of iteration cycles.
Therefore, the presented algorithm switches over to the stronger bound, if∑q

k=1
Ck
2k

+
Cq+1

2q∑q
k=0

Ck
2k

> 1.5 (60)

is satisfied. The threshold value of 1.5 was found to be a reasonable choice in order to
reduce the computation time for large cardinalities significantly.

4.5. Estimation error

We have investigated the estimation error of the maximum likelihood estimation al-
gorithm for the same HyperLogLog configurations as for the improved raw estimation
algorithm in Section 3.6. Figs. 14 to 19 show very similar results for same HyperLogLog
parameters. What is different for the maximum likelihood estimation approach is a
somewhat smaller median bias with less oscillations around zero for small cardinalities.
The standard deviation of the relative error is also slightly better for the maximum like-
lihood estimator than for the improved raw estimator as shown in Fig. 6. Furthermore,
contrary to the improved raw estimator which reveals a small oscillating bias for the
mean (see Fig. 9), the maximum likelihood estimator seems to be completely unbiased
(see Fig. 17).

4.6. Performance

We also measured the performance of Algorithm 8 using the same test setup as described
in Section 3.7. The results for HyperLogLog configurations p = 12, q = 20 and p =
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Algorithm 8 Cardinality estimation based on the maximum likelihood principle. The
input is the multiplicity vector C = (C0, . . . , Cq+1) as obtained by Algorithm 4.

function EstimateCardinality(C) .
∑q+1

k=0Ck = m
if Cq+1 = m then

return ∞
end if
Kmin ← min({k|Ck > 0})
K ′min ← max(Kmin, 1)
Kmax ← max({k|Ck > 0})
K ′max ← min(Kmax, q)
z ← 0
for k ← K ′max,K

′
min do

z ← 0.5 · z + Ck
end for
z ← z · 2−K′min . here z =

∑q
k=1

Ck
2k

c← Cq+1

if q ≥ 1 then
c← c+ CK′max

end if
gprev ← 0
a← z + C0 . a =

∑q
k=0

Ck
2k

b← z + Cq+1 · 2−q . b =
∑q

k=1
Ck
2k

+
Cq+1

2q

m′ ← m− C0

if b ≤ 1.5 · a then
x← m′/(0.5 · b+ a) . weak lower bound (47)

else
x← m′/b · log(1 + b/a) . strong lower bound (46)

end if
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Algorithm 8 (continued)

∆x← x
while ∆x > x · δ do . secant method iteration

δ = ε/
√
m, ε = 10−2

κ← 2 + blog2(x)c
x′ ← x · 2−max(K′max,κ)−1 . x′ ∈ [0, 0.25]
x′′ ← x′ · x′
h← x′ − x′′/3 + (x′′ · x′′) · (1/45− x′′/472.5) . Taylor approximation (58)
for k ← (κ− 1),K ′max do

h← x′+h·(1−h)
x′+(1−h) . calculate h

(
x
2k

)
, see (56),

at this point x′ = x
2k+2

x′ ← 2x′

end for
g ← c · h . compare (53)
for k ← (K ′max − 1),K ′min do

h← x′+h·(1−h)
x′+(1−h) . calculate h

(
x
2k

)
, see (56),

at this point x′ = x
2k+2

g ← g + Ck · h
x′ ← 2x′

end for
g ← g + x · a
if g > gprev ∧m′ ≥ g then

∆x← ∆x · m′−g
g−gprev . see (54)

else
∆x← 0

end if
x← x+ ∆x
gprev ← g

end while
return m · x

end function
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Figure 14: Relative error of the maximum likelihood estimates as a function of the true
cardinality for a HyperLogLog sketch with parameters p = 12 and q = 20.

Figure 15: Relative error of the maximum likelihood estimates as a function of the true
cardinality for a HyperLogLog sketch with parameters p = 8 and q = 24.
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Figure 16: Relative error of the maximum likelihood estimates as a function of the true
cardinality for a HyperLogLog sketch with parameters p = 16 and q = 16.

Figure 17: Relative error of the maximum likelihood estimates as a function of the true
cardinality for a HyperLogLog sketch with parameters p = 22 and q = 10.
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Figure 18: Relative error of the maximum likelihood estimates as a function of the true
cardinality for a HyperLogLog sketch with parameters p = 12 and q = 52.

Figure 19: Relative error of the maximum likelihood estimates as a function of the true
cardinality for a HyperLogLog sketch with parameters p = 12 and q = 14.

33



Figure 20: Average execution time of the maximum likelihood estimation algorithm as
a function of the true cardinality with an Intel Core i5-2500K clocking at
3.3 GHz for HyperLogLog sketches with parameters p = 12, q = 20 and
p = 12, q = 52, respectively.

12, q = 52 are shown in Fig. 20. The average computation time for the maximum
likelihood algorithm shows a different behavior than for the improved raw estimation
algorithm (compare Fig. 12). The average execution time is larger for most cardinalities,
but nevertheless, it never exceeds 700 ns which is still fast enough for many applications.
The steps in the chart can be explained by different numbers of iteration cycles until the
secant method is stopped. For example, at a cardinality value around 5000 the average
number of required cycles until the stop criterion is satisfied increases abruptly from two
to three. More than three iteration cycles have never been observed for any cardinality
estimate in this performance test.

5. Cardinality estimation of set intersections and complements

While the union of two sets that are represented by HyperLogLog sketches can be
straightforwardly computed using Algorithm 2, the computation of cardinalities of other
set operations like intersections and complements is more challenging. The conventional
approach uses the inclusion-exclusion principle

|S1 \ S2| = |S1 ∪ S2| − |S2| ,
|S2 \ S1| = |S1 ∪ S2| − |S1| ,
|S1 ∩ S2| = |S1|+ |S2| − |S1 ∪ S2| ,

(61)

and the fact that HyperLogLog sketches can be easily merged using Algorithm 2. Unfor-
tunately, the estimation error does not scale well for this approach. Especially for small
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Jaccard indices, the relative estimation error can become very large [13]. In the worst
case, the estimate could be negative without artificial restriction to nonnegative values.
Therefore, it was proposed to combine HyperLogLog sketches with minwise hashing
[14, 15], which improves the estimation error, even though at the expense of significant
more space consumption.

It was recently pointed out without special focus on HyperLogLog sketches, that the
application of the maximum likelihood method to the joint likelihood function of two
probabilistic data structures, which represent the intersection operands, gives better in-
tersection size estimates [22]. For HyperLogLog sketches recorded without stochastic
averaging (compare Section 2.1) this was shown in [15], where also an algorithm based
on the maximum likelihood principle was outlined. However, in practice, HyperLogLog
sketches are recorded using stochastic averaging because of the much cheaper element
insertions. Motivated by the good results we have obtained for a single HyperLogLog
sketch using the maximum likelihood method in combination with the Poisson approxi-
mation, we are tempted to apply this approach also for the estimation of set operation
result sizes.

Assume two given HyperLogLog sketches with register values K1 and K2 represent-
ing the sets S1 and S2, respectively. The goal is to find estimates for the cardinalities
of the pairwise disjoint sets X = S1 ∩ S2, A = S1 \ S2, and B = S2 \ S1. The Poisson
approximation allows us to assume that pairwise distinct elements are inserted into the
HyperLogLog sketches representing S1 and S2 at rates λa and λb, respectively. Fur-
thermore, we assume that further unique elements are inserted into both HyperLogLog
sketches simultaneously at rate λx. We expect that good estimates λ̂a, λ̂b, and λ̂x for
the rates are also good estimates for the cardinalities of A, B, and X.

5.1. Joint log-likelihood function

In order to get maximum likelihood estimators for λ̂a, λ̂b, and λ̂x we need to derive
the joint probability distribution of two HyperLogLog sketches. Under the Poisson
model the register values are independent and identically distributed. Therefore, we
first derive the joint probability distribution for a single register that has value K1 in
the first HyperLogLog sketch representing S1 and value K2 in the second HyperLogLog
sketch representing S2.

The HyperLogLog sketch that represents S1 can be thought to be constructed from
two HyperLogLog sketches representing A and X and merging both using Algorithm 2.
Analogously, the HyperLogLog sketch for S2 could have been obtained from sketches for
B and X. Let Ka, Kb, and Kx be the value of the considered register in the HyperLogLog
sketch representing A, B, and X, respectively. The corresponding values in sketches for
S1 and S2 are given by

K1 = max(Ka,Kx) , K2 = max(Kb,Kx) . (62)
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Their joint cumulative probability function is given as

P (K1 ≤ k1 ∧K2 ≤ k2) = P (max(Ka,Kx) ≤ k1 ∧max(Kb,Kx) ≤ k2)
= P (Ka ≤ k1 ∧Kb ≤ k2 ∧Kx ≤ min(k1, k2))

= P (Ka ≤ k1)P (Kb ≤ k2)P (Kx ≤ min(k1, k2)) . (63)

Here the last transformation used the independence of Ka, Kb, and Kx, because by
definition, the sets A, B, and X are pairwise disjoint. Furthermore, under the Poisson
model Ka, Kb, and Kx can be described by (6). If we take into account that pairwise
distinct elements are added to A, B, and X at rates λa, λb, and λx, respectively, the
probability that a certain register has a value less than or equal to k1 in the first Hy-
perLogLog sketch and simultaneously a value less than or equal to k2 in the second one
can be written as

P (K1 ≤ k1 ∧K2 ≤ k2) =



0 k1 < 0 ∨ k2 < 0

e
− λa

m2k1
− λb

m2k2
− λx

m2min(k1,k2) 0 ≤ k1 ≤ q ∧ 0 ≤ k2 ≤ q

e
−λb+λx

m2k2 0 ≤ k2 ≤ q < k1

e
−λa+λx

m2k1 0 ≤ k1 ≤ q < k2

1 q < k1 ∧ q < k2.

(64)

The joint probability mass function for both register values can be calculated using

ρ(k1, k2) = P (K1 ≤ k1 ∧K2 ≤ k2)− P (K1 ≤ k1 − 1 ∧K2 ≤ k2)
− P (K1 ≤ k1 ∧K2 ≤ k2 − 1) + P (K1 ≤ k1 − 1 ∧K2 ≤ k2 − 1), (65)
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which finally gives

ρ(k1, k2) =

e
−λa+λx

m
− λb

m2k2

(
1− e−

λb

m2k2

)
0 = k1 < k2 ≤ q

e−
λa+λx
m

(
1− e−

λb
m2q

)
0 = k1 < k2 = q + 1

e
−λa+λx

m2k1
− λb

m2k2

(
1− e−

λa+λx

m2k1

)(
1− e−

λb

m2k2

)
1 ≤ k1 < k2 ≤ q

e
−λa+λx

m2k1

(
1− e−

λa+λx

m2k1

)(
1− e−

λb
m2q

)
1 ≤ k1 < k2 = q + 1

e
−λb+λx

m
− λa

m2k1

(
1− e−

λa

m2k1

)
0 = k2 < k1 ≤ q

e−
λb+λx
m

(
1− e−

λa
m2q

)
0 = k2 < k1 = q + 1

e
−λb+λx

m2k2
− λa

m2k1

(
1− e−

λb+λx

m2k2

)(
1− e−

λa

m2k1

)
1 ≤ k2 < k1 ≤ q

e
−λb+λx

m2k2

(
1− e−

λb+λx

m2k2

)(
1− e−

λa
m2q

)
1 ≤ k2 < k1 = q + 1

e−
λa+λb+λx

m 0 = k1 = k2

e
−λa+λb+λx

m2k

(
1− e−

λa+λx
m2k − e−

λb+λx

m2k + e
−λa+λb+λx

m2k

)
1 ≤ k1 = k2 = k ≤ q

1− e−
λa+λx
m2q − e−

λb+λx
m2q + e−

λa+λb+λx
m2q k1 = k2 = q + 1.

(66)

The logarithm of the joint probability mass function can be written using Iverson
bracket notation ([true] := 1, [false] := 0) as

log(ρ(k1, k2)) =

log

(
1− e−

λa+λx

m2k1

)
[1 ≤ k1 < k2] + log

(
1− e−

λa

m2min(k1,q)

)
[k2 < k1]

+ log

(
1− e−

λb+λx

m2k2

)
[1 ≤ k2 < k1] + log

(
1− e−

λb

m2min(k2,q)

)
[k1 < k2]

+ log

(
1− e−

λa+λx

m2min(k1,q) − e−
λb+λx

m2min(k1,q) + e
− λa+λb+λx

m2min(k1,q)

)
[1 ≤ k1 = k2]

− λa
m2k1

[k1 ≤ q]−
λb
m2k2

[k2 ≤ q]−
λx

m2min(k1,k2)
[k1 ≤ q ∨ k2 ≤ q] .

(67)

Since the values for different registers are independent under the Poisson model, we
are now able to write the joint probability mass function for all registers in both Hyper-
LogLog sketches

ρ(k1,k2) =
m∏
i=1

ρ(k1i, k2i). (68)

The maximum likelihood estimates λ̂a, λ̂b, and λ̂x are obtained by maximization of
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the log-likelihood function given by

logL(λa, λb, λx|K1,K2) =
m∑
i=1

log(ρ(K1i,K2i)). (69)

Insertion of (67) results in

logL(λa, λb, λx|K1,K2) =
q∑

k=1

log
(

1− e−
λa+λx
m2k

)
C<1k + log

(
1− e−

λb+λx

m2k

)
C<2k

+

q+1∑
k=1

log

(
1− e−

λa

m2min(k,q)

)
C>1k + log

(
1− e−

λb

m2min(k,q)

)
C>2k

+

q+1∑
k=1

log

(
1− e−

λa+λx

m2min(k,q) − e−
λb+λx

m2min(k,q) + e
− λa+λb+λx

m2min(k,q)

)
C=
k

−λa
m

q∑
k=0

C<1k + C=
k + C>1k

2k
− λb
m

q∑
k=0

C<2k + C=
k + C>2k

2k
− λx
m

q∑
k=0

C<1k + C=
k + C<2k

2k
,

(70)

where C<1k, C
>
1k, C

<
2k, C

>
2k, and C=

k are defined as

C<1k := |{i|k = K1i < K2i}| ,
C>1k := |{i|k = K1i > K2i}| ,
C<2k := |{i|k = K2i < K1i}| ,
C>2k := |{i|k = K2i > K1i}| ,
C=
k := |{i|k = K1i = K2i}| .

(71)

These 5(q + 2) values represent a sufficient statistic for estimating λa, λb, and λx.
Actually, the number of values could be further reduced, because of the invariants
C>10 = C>20 = C<1,q+1 = C<2,q+1 = 0,

∑q+1
k=0C

<
1k =

∑q+1
k=0C

>
2k,

∑q+1
k=0C

<
2k =

∑q+1
k=0C

>
1k,

and
∑q+1

k=0C
<
1k + C=

k + C<2k = m.
Since (70) is a generalization of (38) for two HyperLogLog sketches, the log-likelihood

function for a single HyperLogLog sketch can be obtained by considering special cases.
For example, assume λx = 0, which means that both sketches represent disjoint sets,
(70) can be split into the sum of two unary functions with parameters λa and λb each of
which correspond to (38) as expected. Or, consider two sketches representing identical
sets. In this case all registers are equal, which means that C>1k = C>2k = C<1k = C<2k = 0

for all k, and therefore the maximum likelihood method yields λ̂a = λ̂b = 0 and the
value for λ̂x will be equal to the single HyperLogLog maximum likelihood estimate (38).

The log-likelihood function (70) does not always have a strict global maximum point.
For example, if all register values of the first HyperLogLog sketch are larger than the
corresponding values in the second HyperLogLog sketch, that is C<1k = C=

k = C>2k = 0
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for all k, the function can be rewritten as sum of two functions, one dependent on
λa and the other dependent on λb + λx. The maximum is obtained, if λa = λ̂1 and
λb + λx = λ̂2. Here λ̂1 and λ̂2 are the maximum likelihood cardinality estimates for
the first and second HyperLogLog sketch, respectively. This means that the maximum
likelihood method makes no clear statement about the intersection size in this case.
The estimate for λx could be anything between 0 and λ̂2. For comparison, the inclusion-
exclusion approach would give λ̂2 as estimate for λx. This result is questionable, because
there is no evidence that sets S1 and S2 really have common elements in this case.

The inclusion-exclusion method does not use all the available information given by
the sufficient statistic (71), because the estimator is a function of the three vectors
(C<

1 +C= +C>
1 ), (C<

2 +C= +C>
2 ), and (C>

1 +C= +C>
2 ). In contrast, the maximum

likelihood method uses more information as it incorporates all the individual values of
the sufficient statistic.

5.2. Computation of the maximum likelihood estimates

The maximum likelihood estimates can be obtained by maximizing (70). Since the three
parameters are all nonnegative, this is a constrained optimization problem. In order to
get rid of these constraints, we use the transformation λ = eϕ. This mapping has also
the nice property that relative accuracy limits are translated into absolute ones, because
∆ϕ = ∆λ/λ. Many optimization algorithm implementations allow the definition of
absolute limits rather than relative ones.

The transformed log-likelihood function can be written as

f(ϕa, ϕb, ϕx) := logL(eϕa , eϕb , eϕx |K1,K2) =

+

q∑
k=1

C<1k log(zxk + yxkzak) + C<2k log(zxk + yxkzbk)

+

q∑
k=1

C>1k log(zak) + C>2k log(zbk) + C=
k log(zxk + yxkzakzbk)

+ C>1,q+1 log(zaq) + C>2,q+1 log(zbq) + C=
q+1 log(zxq + yxqzaqzbq)

−
q∑

k=0

(
C<1k + C=

k + C>1k
)
xak +

(
C<2k + C=

k + C>2k
)
xbk +

(
C<1k + C=

k + C<2k
)
xxk.

(72)

Here we introduced the following expressions for simplification:

x∗k :=
eϕ∗

m2k
, y∗k := e−x∗k , z∗k := 1− y∗k. (73)

Quasi-Newton methods are commonly used to find the maximum of multi-dimensional

functions. They require the calculation of the gradient ∇f =
(
∂f
∂ϕa

, ∂f∂ϕb ,
∂f
∂ϕx

)
which is,

using
∂x∗k
∂ϕ∗

= x∗k,
∂y∗k
∂ϕ∗

= −x∗ky∗k,
∂z∗k
∂ϕ∗

= x∗ky∗k, (74)
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given by

∂f

∂ϕa
=

q∑
k=1

C<1k
yxkxakyak
zxk + yxkzak

+ C=
k

yxkxakyakzbk
zxk + yxkzakzbk

+ C>1k
xakyak
zak

+ C=
q+1

yxqxaqyaqzbq
zxq + yxqzaqzbq

+ C>1,q+1

xaqyaq
zaq

−
q∑

k=0

(
C<1k + C=

k + C>1k
)
xak,

∂f

∂ϕb
=

q∑
k=1

C<2k
yxkxbkybk
zxk + yxkzbk

+ C=
k

yxkzakxbkybk
zxk + yxkzakzbk

+ C>2k
xbkybk
zbk

+ C=
q+1

yxqzaqxbqybq
zxq + yxqzaqzbq

+ C>2,q+1

xbqybq
zbq

−
q∑

k=0

(
C<2k + C=

k + C>2k
)
xbk,

∂f

∂ϕx
=

q∑
k=1

C<1k
xxkyxkyak
zxk + yxkzak

+ C=
k

xxkyxk (yak + zakybk)

zxk + yxkzbkzak
+ C<2k

xxkyxkybk
zxk + yxkzbk

+ C=
q+1

xxqyxq (yaq + zaqybq)

zxq + yxqzaqzbq
−

q∑
k=0

(
C<1k + C=

k + C<2k
)
xxk.

(75)

The calculation of (72) and its derivatives requires some care when calculating y∗k and
z∗k. Since x∗k is nonnegative, we have y∗k, z∗k ∈ [0, 1]. In order to reduce the numerical
error of z∗k for small x∗k, it is essential to use the function expm1(x) := ex − 1 that is
available in most programming languages. If x∗k is smaller than log(2), we calculate y∗k
and z∗k using z∗k = − expm1(−x∗k) and y∗k = 1− z∗k, respectively, and not as defined
in (73). In this way the numerical error of both, y∗k and z∗k, is minimized and still only
a single exponential function needs to be evaluated. Apart from that, the numerical
evaluation of (72) is straightforward. Apparently, the arguments of all logarithms are
in range [0, 1]. The case that some argument vanishes, which would cause the logarithm
to be negative infinite, does not occur in practice. Consider for example the logarithm
evaluation associated with C<1k which is only relevant if C<1k > 0. In this case however,
we can be certain that the cardinality of A ∪X is at least 1. Therefore, it is expected
that at least one of the two maximum likelihood estimates λ̂a and λ̂x is at least in the
order of 1. If the optimization algorithm starts with appropriate initial values, function
evaluations for which max(λa, λx)� 1 are not expected. Furthermore, the argument of

the logarithm can be bounded by zxk+yxkzak ≥ max(zxk, zak) = 1−exp
(
−max(λa,λx)

m2k

)
≥

min
(
1
2 ,

max(λa,λx)
m2k+1

)
. For the last inequality we used 1− e−x ≥ 1

2 min(1, x). The derived

lower bound shows that the argument of the logarithm is large enough to be accurately
represented by double-precision floating-point numbers, provided that λa and λx are not
both substantially smaller than 1. Similar argumentation holds for all other logarithmic
terms and also all divisions that appear in (75).

Algorithm 9 demonstrates the calculation of the estimates given the register values
K1 and K2 of both HyperLogLog sketches. First, the sufficient statistic consisting
of C>

1 , C<
1 , C>

2 , C<
2 , and C= is extracted. Next, a case is distinguished, where all

registers have a value equal to zero in at least one of both HyperLogLog sketches, that is
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C<10 +C=
0 +C<20 = m. In this case it is certain that the HyperLogLog sketches represent

disjoint sets and their corresponding cardinality estimates can be used for λ̂a and λ̂b,
respectively.

For the general case, the three-dimensional function f(ϕa, ϕb, ϕx) needs to be opti-
mized numerically. A very popular algorithm for such nonlinear optimization problems
is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [23]. In particular, we used
the implementation provided by the Dlib C++ library [24]. Good initial guess values are
important to ensure fast convergence for the optimization algorithm. An obvious choice
are the cardinality estimates obtained by application of the inclusion-exclusion principle
(61). However, in order to ensure that their logarithms are all defined, we require that
the initial values are not smaller than 1. Within the optimization loop the function f
and its gradient ∇f need to evaluated using (72) and (75) as needed by the optimiza-
tion algorithm. The optimization loop is continued as long as the absolute change of at
least one parameter is larger than a predefined threshold δ. The threshold is again set
proportional to 1/

√
m (compare Section 4.3). For the results presented below we have

used δ = ε/
√
m with ε = 10−2.

5.3. Results

To evaluate the estimation error of the new joint cardinality estimation approach we
applied Algorithm 9 to HyperLogLog sketch pairs with parameters p = 20 and q = 44
and with known cardinalities |A|, |B|, and |X|. HyperLogLog sketches with predefined
cardinalities can be quickly generated by taking a precalculated multiplicity vector with
known cardinality, setting the register values accordingly, and shuffling them. Using this
approach we generated three different HyperLogLog sketches with known cardinalities
|A|, |B|, and |X|. Then we merged the HyperLogLog sketches representing the disjoint
sets A and X using Algorithm 2 in order to get a sketch for S1 = A∪X. A second sketch
for S2 = A ∪X was built analogously. Since three independent multiplicity vectors are
needed to construct a single example and we had simulated 10 000 different HyperLogLog
sketches previously as described in Section 3.5, we were able to construct 3333 different
independent HyperLogLog pairs for a given set of known true cardinalities |A|, |B|, and
|X|.

Table 1 lists all the different cardinality configurations for which we have evaluated
the joint cardinality estimation algorithm. Among the considered cases there are also
cardinalities that are small compared to the number of registers in order to prove that
the new approach also covers the small cardinality range where many register values are
equal to zero. The last column of Table 1 shows the average number of iterations of the
BFGS algorithm until the stop criterion was satisfied. Each iteration step involved a
function (72) and a gradient (75) evaluation.

Tables 2 to 4 compare the relative estimation error for cardinalities |A|, |B|, and |X|
to that of the conventional approach using single sketch cardinality estimation together
with (61). The mean, the standard deviation, and the root-mean-square error have been
calculated from the cardinality estimates of 3333 examples. Furthermore, we calculated
an improvement factor which represents the root-mean-square error ratio between both
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Algorithm 9 Joint cardinality estimation.

function EstimateCardinalities( K1, K2 ) . K1,K2 ∈ {0, 1, . . . , q+1}m
C>

1 ← (0, . . . , 0) . C>
1 = (C>10, . . . , C

>
1,q+1)

C<
1 ← (0, . . . , 0) . C<

1 = (C<10, . . . , C
<
1,q+1)

C>
2 ← (0, . . . , 0) . C>

2 = (C>20, . . . , C
>
2,q+1)

C<
2 ← (0, . . . , 0) . C<

2 = (C<20, . . . , C
<
2,q+1)

C= ← (0, . . . , 0) . C= = (C=
0 , . . . , C

=
q+1)

for i← 1,m do
if K1i < K2i then

C<1K1i
← C<1K1i

+ 1
C>2K2i

← C>2K2i
+ 1

else if K1i > K2i then
C>1K1i

← C>1K1i
+ 1

C<2K2i
← C<2K2i

+ 1
else

C=
K1i
← C=

K1i
+ 1

end if
end for
λ̂ax ← EstimateCardinality(C<

1 + C= + C>
1 ) . use Algorithm 8

λ̂bx ← EstimateCardinality(C<
2 + C= + C>

2 )
if C<10 + C=

0 + C<20 = m then . ⇔ min(K1i,K2i) = 0 ∀i
λ̂a ← λ̂ax, λ̂b ← λ̂bx, λ̂x ← 0
return (λ̂a, λ̂b, λ̂x)

end if
λ̂abx ← EstimateCardinality(C>

1 + C= + C>
2 )

ϕa ← log(max(1, λ̂abx − λ̂bx))
ϕb ← log(max(1, λ̂abx − λ̂ax))
ϕx ← log(max(1, λ̂ax + λ̂bx − λ̂abx))
repeat . start optimization

ϕ′a ← ϕa, ϕ
′
b ← ϕb, ϕ

′
x ← ϕx

ϕa, ϕb, ϕx ← OptimizationStep(ϕa, ϕb, ϕx) . calculate f and ∇f using
(72) and (75) as needed by
optimizer

until max(|ϕa − ϕ′a| , |ϕb − ϕ′b| , |ϕx − ϕ′x|) ≤ δ . stop criterion
δ = ε/

√
m, ε = 10−2

λ̂a ← eϕa , λ̂b ← eϕb , λ̂x ← eϕx

return (λ̂a, λ̂b, λ̂x)
end function
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approaches. Since we only observed values greater than one, the new maximum likelihood
estimation approach gives better estimates for all investigated cases. For some cases the
improvement factor is even clearly greater than two. Due to the square root scaling of the
error, this means that we would need four times more registers to get the same error when
using the conventional approach. As the results suggest the joint estimation algorithm
works well over the entire cardinality range without the need of special handling of small
cardinalities.

We also investigated, if the new approach could give better estimates for the union
operation. The conventional approach merges both HyperLogLog sketches using Algo-
rithm 2 and estimates the union size using single sketch cardinality estimation. The
joint cardinality estimation algorithm provides another opportunity. The union can also
be estimated by simply summing up the three estimates for sets |A|, |B|, and |X|. The
corresponding results are shown in Table 5. As can be clearly seen, the joint estimation
algorithm is also able to improve the cardinality estimation of unions by a significant
amount.

6. Future work

As described in Section 2.4 an unbiased estimator for the rate in the Poisson model, is
also unbiased estimator for the cardinality. We have shown that this approach works
well for the improved raw estimator as well as for the maximum likelihood estimator
even though both are only approximately unbiased. Therefore, it would be interesting
what conditions on an approximately unbiased Poisson rate estimator are sufficient to
guarantee approximate unbiasedness, if used as cardinality estimator.

Using the maximum likelihood method we have been able to improve the cardinality
estimates for the results of set operations between two HyperLogLog sketches. Unfor-
tunately, joint cardinality estimation is much more expensive than for a single Hyper-
LogLog sketch, because it requires maximization of a multi-dimensional function. Since
we have found the improved raw estimator which is almost as precise as the maximum
likelihood estimator for the single HyperLogLog case, we could imagine that there also
exists a faster algorithm for the two HyperLogLog case. It is expected that such a new
algorithm makes use of all the information given by the sufficient statistic (71).

The presented maximum likelihood method could also be used to estimate the cardi-
nality of set operations between more than two HyperLogLog sketches. However, further
research is necessary to determine, if this is feasible from a practical point of view. As
for the inclusion-exclusion principle, the effort would scale at least exponentially with
the number of involved HyperLogLog sketches.

The maximum likelihood method can also be used to estimate distance measures such
as the Jaccard distance of two sets that are represented as HyperLogLog sketches. This
directly leads to the question whether the HyperLogLog algorithm could be used for
locality-sensitive hashing [25, 26]. Various locality-sensitive hashing algorithms have
been proposed in the past. Among the most popular ones are the SimHash [27] and the
minwise hashing [28] algorithms whose hash collision probabilities are a function of the
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Table 1: List of true cardinalities of the pairwise disjoint sets A, B, and X, for which
maximum likelihood estimation from two HyperLogLog sketches with param-
eters p = 20 and q = 44 representing sets S1 = A ∪ X and S2 = B ∪ X was
investigated. The last column shows the average number of iteration cycles
until the stop criterion of the BFGS algorithm was satisfied.

true cardinalities Jaccard index cardinality ratio avg number
# |A| |B| |X| |S1 ∩ S2|/|S1 ∪ S2| |S1|/|S2| iterations
1 1 598 728 349 251 188 153 2 742 179 1.480E−3 6.365 36.207
2 13 049 219 720 5 945 604 476 103 608 860 5.425E−3 2.195 38.736
3 144 199 1608 3457 2.316E−2 89.676 25.777
4 36 085 381 8 525 744 3 516 662 7.307E−2 4.233 42.431
5 652 906 563 42 736 075 23 996 891 3.335E−2 15.278 42.134
6 74 772 2617 235 3.027E−3 28.572 22.507
7 148 568 12 597 7147 4.246E−2 11.794 30.143
8 3 837 563 445 277 467 992 104 644 949 2.480E−2 13.831 42.335
9 84 256 1624 402 4.659E−3 51.882 22.287

10 122 704 431 36 085 381 32 994 301 1.720E−1 3.400 42.099
11 22 160 727 6 987 227 586 521 1.973E−2 3.172 41.717
12 48 156 078 4 333 904 1 313 150 2.441E−2 11.112 42.234
13 184 928 117 006 27 370 8.311E−2 1.581 34.904
14 17 149 2540 1530 7.211E−2 6.752 21.734
15 19 279 012 2 939 988 873 249 3.782E−2 6.558 42.000
16 1 602 292 23 812 2277 1.398E−3 67.289 30.128
17 99 786 1923 2805 2.684E−2 51.891 25.060
18 61 756 895 744 726 974 256 1.535E−2 82.926 41.038
19 10 277 123 441 352 310 724 1 783 650 614 1.437E−1 29.171 40.825
20 134 200 029 11 958 008 15 335 333 9.496E−2 11.223 41.642
21 110 226 1205 691 6.163E−3 91.474 22.834
22 773 240 139 13 474 584 20 465 059 2.535E−2 57.385 41.597
23 307 179 5046 8549 2.665E−2 60.876 29.473
24 74 032 16 317 6343 6.560E−2 4.537 29.328
25 50 221 4898 958 1.708E−2 10.253 23.960
26 680 932 24 290 109 135 1.340E−1 28.033 35.867
27 1 097 816 452 822 48 262 3.018E−2 2.424 39.268
28 84 256 2919 2210 2.472E−2 28.865 25.247
29 13 049 219 720 721 215 037 145 319 400 1.044E−2 18.093 41.151
30 59 347 163 1 287 276 286 512 4.703E−3 46.103 39.462
31 119 095 712 5 235 826 586 521 4.695E−3 22.746 39.894
32 1 521 135 167 30 469 684 325 353 043 1.733E−1 49.923 39.975
33 1 783 650 614 21 296 023 389 170 221 1.774E−1 83.755 39.633
34 32 092 4054 272 7.469E−3 7.916 22.065
35 47 102 261 762 2 264 762 985 1 174 389 309 2.324E−2 20.798 42.336
36 15 837 13 915 1441 4.620E−2 1.138 24.242
37 3 083 083 913 1 174 389 309 162 128 255 3.668E−2 2.625 42.291
38 464 305 14 1.788E−2 1.521 13.086
39 43 163 436 1 054 980 8 441 331 1.603E−1 40.914 39.841
40 3857 3224 87 1.214E−2 1.196 17.622
41 5 329 186 306 4 114 387 435 429 886 036 4.354E−2 1.295 41.013
42 2 138 265 34 751 6343 2.910E−3 61.531 32.249
43 9 703 090 3 733 007 18 023 1.340E−3 2.599 35.445
44 721 215 037 220 709 637 6 325 446 6.671E−3 3.268 39.260
45 26 507 497 8 275 003 1 479 690 4.081E−2 3.203 42.088
46 35 805 1707 146 3.877E−3 20.975 20.765
47 750 499 260 447 341 132 3 089 958 2.573E−3 1.678 37.744
48 8 441 331 1 634 498 53 310 5.263E−3 5.164 37.918
49 5 235 826 485 486 64 405 1.113E−2 10.785 38.540
50 93 072 52 782 358 2.449E−3 1.763 26.491
51 5 172 455 725 3 208 269 483 72 414 817 8.567E−3 1.612 39.867
52 1 697 082 357 131 555 758 4 509 877 2.460E−3 12.900 37.680
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Table 2: The mean, the standard deviation, and the root-mean-square error of the rel-
ative estimation error for all cases given in Table 1 when estimating |A| using
the conventional approach and the maximum likelihood method, respectively.

conventional approach maximum likelihood method improvement
# mean stdev rmse mean stdev rmse rmse ratio
1 1.289E−5 1.164E−3 1.164E−3 9.746E−6 1.036E−3 1.036E−3 1.123
2 −2.285E−5 1.417E−3 1.417E−3 −2.523E−6 1.087E−3 1.087E−3 1.304
3 −7.719E−6 7.118E−4 7.118E−4 −8.021E−6 7.060E−4 7.061E−4 1.008
4 −6.395E−5 1.319E−3 1.320E−3 −5.023E−5 1.107E−3 1.108E−3 1.191
5 1.925E−5 1.101E−3 1.101E−3 2.878E−5 1.044E−3 1.044E−3 1.055
6 −1.374E−5 7.271E−4 7.272E−4 −1.275E−5 7.170E−4 7.171E−4 1.014
7 −1.073E−5 7.741E−4 7.742E−4 −8.752E−6 7.340E−4 7.340E−4 1.055
8 3.529E−5 1.106E−3 1.107E−3 3.141E−5 1.043E−3 1.043E−3 1.061
9 1.297E−5 7.218E−4 7.220E−4 1.095E−5 7.153E−4 7.154E−4 1.009

10 −3.688E−6 1.461E−3 1.461E−3 −4.449E−6 1.245E−3 1.245E−3 1.173
11 −5.030E−5 1.272E−3 1.273E−3 −4.314E−5 1.033E−3 1.034E−3 1.231
12 5.651E−6 1.127E−3 1.127E−3 6.821E−6 1.028E−3 1.028E−3 1.096
13 −1.255E−5 1.169E−3 1.169E−3 −2.606E−6 9.041E−4 9.041E−4 1.293
14 −8.608E−7 8.447E−4 8.447E−4 −1.319E−5 7.684E−4 7.685E−4 1.099
15 −3.134E−5 1.153E−3 1.153E−3 −2.042E−5 1.013E−3 1.013E−3 1.138
16 −1.300E−5 7.731E−4 7.732E−4 −1.091E−5 7.646E−4 7.646E−4 1.011
17 −1.344E−5 7.384E−4 7.385E−4 −1.337E−5 7.229E−4 7.230E−4 1.021
18 7.711E−6 1.022E−3 1.022E−3 1.155E−5 1.007E−3 1.007E−3 1.014
19 −2.510E−6 1.173E−3 1.173E−3 −7.793E−6 1.087E−3 1.087E−3 1.079
20 1.899E−5 1.241E−3 1.242E−3 2.087E−5 1.141E−3 1.141E−3 1.088
21 −4.536E−6 7.130E−4 7.130E−4 −3.447E−6 7.058E−4 7.058E−4 1.010
22 5.285E−6 1.058E−3 1.058E−3 1.037E−5 1.036E−3 1.036E−3 1.022
23 7.841E−6 7.298E−4 7.299E−4 8.400E−6 7.127E−4 7.128E−4 1.024
24 −1.129E−5 8.831E−4 8.832E−4 −4.758E−6 7.851E−4 7.851E−4 1.125
25 −1.347E−5 7.880E−4 7.881E−4 −8.379E−6 7.453E−4 7.453E−4 1.057
26 −1.130E−5 8.663E−4 8.664E−4 −1.471E−5 8.195E−4 8.197E−4 1.057
27 1.349E−5 1.079E−3 1.079E−3 1.924E−5 8.349E−4 8.351E−4 1.292
28 −1.781E−5 7.610E−4 7.613E−4 −1.347E−5 7.360E−4 7.362E−4 1.034
29 7.786E−6 1.085E−3 1.085E−3 2.323E−6 1.054E−3 1.054E−3 1.030
30 6.713E−6 1.017E−3 1.017E−3 1.244E−5 9.969E−4 9.970E−4 1.020
31 1.063E−5 1.090E−3 1.091E−3 1.496E−5 1.053E−3 1.053E−3 1.036
32 −2.000E−5 1.200E−3 1.200E−3 −1.625E−5 1.114E−3 1.114E−3 1.077
33 4.975E−6 1.219E−3 1.219E−3 2.154E−6 1.141E−3 1.141E−3 1.068
34 1.519E−5 7.680E−4 7.681E−4 1.355E−5 7.205E−4 7.206E−4 1.066
35 −1.724E−5 1.082E−3 1.082E−3 −2.074E−5 1.038E−3 1.038E−3 1.043
36 −2.077E−5 1.193E−3 1.193E−3 −1.578E−5 8.946E−4 8.947E−4 1.333
37 −9.366E−7 1.385E−3 1.385E−3 1.554E−5 1.112E−3 1.112E−3 1.246
38 −1.520E−5 1.078E−3 1.078E−3 −2.170E−5 8.660E−4 8.663E−4 1.244
39 6.763E−6 1.210E−3 1.210E−3 2.194E−5 1.128E−3 1.128E−3 1.072
40 1.625E−5 1.130E−3 1.131E−3 6.289E−6 8.675E−4 8.676E−4 1.303
41 −3.313E−6 1.665E−3 1.665E−3 1.743E−5 1.181E−3 1.181E−3 1.409
42 −1.286E−5 8.168E−4 8.170E−4 −1.212E−5 8.034E−4 8.035E−4 1.017
43 −1.348E−5 1.300E−3 1.300E−3 2.815E−5 9.965E−4 9.969E−4 1.304
44 5.351E−5 1.283E−3 1.284E−3 2.553E−5 1.048E−3 1.048E−3 1.225
45 −7.546E−5 1.332E−3 1.335E−3 −5.078E−5 1.074E−3 1.075E−3 1.241
46 −4.855E−6 7.332E−4 7.332E−4 −4.521E−6 7.145E−4 7.145E−4 1.026
47 7.932E−6 1.475E−3 1.475E−3 2.192E−5 1.062E−3 1.063E−3 1.389
48 −1.825E−5 1.144E−3 1.144E−3 1.667E−6 9.695E−4 9.695E−4 1.180
49 −2.281E−6 9.927E−4 9.927E−4 5.282E−6 9.255E−4 9.255E−4 1.073
50 1.395E−5 1.034E−3 1.034E−3 −1.046E−5 7.980E−4 7.981E−4 1.296
51 −9.423E−6 1.529E−3 1.529E−3 7.494E−6 1.098E−3 1.098E−3 1.392
52 1.672E−5 1.094E−3 1.094E−3 8.713E−6 1.016E−3 1.016E−3 1.077
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Table 3: The mean, the standard deviation, and the root-mean-square error of the rel-
ative estimation error for all cases given in Table 1 when estimating |B| using
the conventional approach and the maximum likelihood method, respectively.

conventional approach maximum likelihood method improvement
# mean stdev rmse mean stdev rmse rmse ratio
1 3.035E−5 3.698E−3 3.698E−3 1.082E−5 1.576E−3 1.576E−3 2.346
2 −4.702E−5 2.302E−3 2.302E−3 −2.960E−6 1.216E−3 1.216E−3 1.894
3 −4.868E−5 9.643E−3 9.643E−3 −9.106E−6 7.152E−3 7.152E−3 1.348
4 −9.060E−5 3.298E−3 3.299E−3 −4.553E−5 2.022E−3 2.023E−3 1.631
5 −1.553E−4 5.737E−3 5.739E−3 −2.657E−5 3.482E−3 3.482E−3 1.648
6 −5.567E−5 5.240E−3 5.240E−3 −2.250E−5 3.184E−3 3.184E−3 1.646
7 −3.752E−5 3.541E−3 3.541E−3 −1.491E−5 2.453E−3 2.453E−3 1.444
8 8.603E−5 5.481E−3 5.482E−3 4.731E−5 3.133E−3 3.133E−3 1.749
9 1.340E−4 7.143E−3 7.144E−3 4.159E−5 4.489E−3 4.489E−3 1.591

10 3.432E−5 3.125E−3 3.125E−3 3.788E−5 2.216E−3 2.217E−3 1.410
11 −5.585E−5 2.734E−3 2.734E−3 −3.566E−5 1.453E−3 1.454E−3 1.881
12 2.653E−5 5.045E−3 5.045E−3 5.265E−6 2.734E−3 2.734E−3 1.845
13 2.204E−5 1.546E−3 1.546E−3 3.773E−5 1.110E−3 1.111E−3 1.392
14 −1.820E−5 2.754E−3 2.754E−3 −7.144E−5 1.920E−3 1.921E−3 1.434
15 −3.790E−5 3.875E−3 3.875E−3 2.103E−5 2.186E−3 2.186E−3 1.773
16 −2.034E−4 9.797E−3 9.799E−3 −6.704E−5 4.728E−3 4.728E−3 2.073
17 −1.441E−4 7.286E−3 7.287E−3 −1.370E−4 5.392E−3 5.394E−3 1.351
18 1.020E−4 1.335E−2 1.335E−2 9.586E−5 8.986E−3 8.987E−3 1.485
19 7.563E−5 8.080E−3 8.081E−3 −8.047E−5 6.350E−3 6.351E−3 1.272
20 −5.421E−5 5.135E−3 5.135E−3 −1.619E−5 3.587E−3 3.587E−3 1.432
21 2.219E−5 9.444E−3 9.444E−3 8.959E−5 6.521E−3 6.522E−3 1.448
22 9.566E−5 1.069E−2 1.069E−2 1.510E−4 7.528E−3 7.529E−3 1.420
23 −1.068E−4 8.116E−3 8.117E−3 −7.135E−5 5.904E−3 5.905E−3 1.375
24 −2.241E−5 2.316E−3 2.316E−3 1.616E−6 1.617E−3 1.617E−3 1.433
25 −3.027E−5 3.229E−3 3.229E−3 2.059E−5 2.058E−3 2.058E−3 1.569
26 2.436E−4 6.135E−3 6.140E−3 1.380E−4 4.705E−3 4.707E−3 1.304
27 4.772E−5 1.982E−3 1.982E−3 6.298E−5 1.200E−3 1.202E−3 1.649
28 −2.276E−4 5.571E−3 5.575E−3 −1.191E−4 3.904E−3 3.906E−3 1.427
29 3.200E−5 6.155E−3 6.155E−3 −4.422E−5 3.202E−3 3.203E−3 1.922
30 −2.787E−4 9.641E−3 9.645E−3 −6.863E−5 4.882E−3 4.882E−3 1.976
31 −1.264E−4 7.032E−3 7.033E−3 −3.750E−5 3.127E−3 3.127E−3 2.249
32 −9.557E−6 1.114E−2 1.114E−2 3.899E−5 8.776E−3 8.776E−3 1.270
33 3.484E−4 1.465E−2 1.465E−2 −5.508E−5 1.162E−2 1.162E−2 1.261
34 −3.365E−5 2.864E−3 2.864E−3 −4.537E−5 1.809E−3 1.810E−3 1.583
35 1.726E−5 6.839E−3 6.839E−3 −2.484E−5 3.976E−3 3.976E−3 1.720
36 −3.148E−6 1.305E−3 1.305E−3 4.279E−6 9.825E−4 9.825E−4 1.328
37 −4.329E−5 2.538E−3 2.538E−3 −3.505E−6 1.502E−3 1.502E−3 1.690
38 −5.696E−6 1.388E−3 1.388E−3 −1.530E−5 9.998E−4 9.999E−4 1.388
39 −2.851E−4 1.011E−2 1.012E−2 −2.377E−4 7.885E−3 7.889E−3 1.282
40 1.558E−5 1.273E−3 1.273E−3 3.272E−6 9.479E−4 9.479E−4 1.343
41 2.107E−5 1.959E−3 1.959E−3 4.807E−5 1.281E−3 1.281E−3 1.529
42 −4.961E−5 9.654E−3 9.654E−3 −1.783E−5 5.001E−3 5.001E−3 1.930
43 −3.169E−5 2.480E−3 2.480E−3 7.632E−5 1.215E−3 1.218E−3 2.037
44 1.128E−4 2.823E−3 2.825E−3 2.291E−5 1.365E−3 1.365E−3 2.069
45 −9.187E−5 2.873E−3 2.875E−3 −2.030E−5 1.628E−3 1.628E−3 1.766
46 2.855E−6 4.558E−3 4.558E−3 1.449E−5 2.769E−3 2.769E−3 1.646
47 −3.915E−5 2.128E−3 2.128E−3 −1.559E−5 1.168E−3 1.168E−3 1.822
48 −6.558E−5 3.329E−3 3.330E−3 3.537E−5 1.408E−3 1.408E−3 2.364
49 −6.749E−5 4.581E−3 4.581E−3 9.343E−6 2.176E−3 2.176E−3 2.105
50 1.981E−5 1.507E−3 1.507E−3 −2.312E−5 9.520E−4 9.522E−4 1.582
51 −1.831E−5 2.086E−3 2.086E−3 9.137E−6 1.204E−3 1.204E−3 1.733
52 9.727E−5 5.202E−3 5.203E−3 −3.350E−6 2.075E−3 2.075E−3 2.507
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Table 4: The mean, the standard deviation, and the root-mean-square error of the rel-
ative estimation error for all cases given in Table 1 when estimating |X| using
the conventional approach and the maximum likelihood method, respectively.

conventional approach maximum likelihood method improvement
# mean stdev rmse mean stdev rmse rmse ratio
1 −2.437E−3 3.264E−1 3.264E−1 −7.470E−4 1.116E−1 1.116E−1 2.926
2 3.662E−3 1.197E−1 1.198E−1 1.131E−3 4.016E−2 4.017E−2 2.982
3 4.081E−5 4.504E−3 4.504E−3 2.310E−5 3.369E−3 3.370E−3 1.337
4 1.653E−4 7.648E−3 7.649E−3 5.631E−5 4.399E−3 4.399E−3 1.739
5 2.478E−4 1.009E−2 1.009E−2 1.911E−5 6.060E−3 6.060E−3 1.666
6 3.974E−4 5.767E−2 5.767E−2 3.048E−5 3.455E−2 3.455E−2 1.669
7 7.918E−5 5.995E−3 5.996E−3 4.075E−5 4.110E−3 4.110E−3 1.459
8 −1.996E−4 1.427E−2 1.428E−2 −9.701E−5 7.874E−3 7.874E−3 1.813
9 −5.706E−4 2.869E−2 2.869E−2 −1.980E−4 1.788E−2 1.788E−2 1.604

10 −1.700E−6 3.211E−3 3.211E−3 −4.518E−6 2.292E−3 2.292E−3 1.401
11 3.700E−4 3.070E−2 3.070E−2 1.282E−4 1.357E−2 1.357E−2 2.262
12 −1.204E−4 1.631E−2 1.631E−2 −5.151E−5 8.539E−3 8.539E−3 1.910
13 −5.165E−5 5.661E−3 5.662E−3 −1.138E−4 3.608E−3 3.610E−3 1.568
14 4.061E−6 4.318E−3 4.318E−3 9.206E−5 2.998E−3 2.999E−3 1.440
15 1.723E−5 1.267E−2 1.267E−2 −1.810E−4 6.876E−3 6.878E−3 1.841
16 2.057E−3 1.020E−1 1.020E−1 6.307E−4 4.869E−2 4.869E−2 2.096
17 1.115E−4 4.986E−3 4.987E−3 1.067E−4 3.727E−3 3.728E−3 1.338
18 −9.800E−5 1.022E−2 1.022E−2 −9.339E−5 6.878E−3 6.878E−3 1.486
19 1.839E−5 1.854E−3 1.854E−3 4.840E−5 1.567E−3 1.568E−3 1.182
20 3.215E−5 4.010E−3 4.010E−3 3.232E−6 2.844E−3 2.844E−3 1.410
21 −7.916E−5 1.641E−2 1.641E−2 −1.967E−4 1.130E−2 1.130E−2 1.452
22 −1.385E−5 7.100E−3 7.100E−3 −5.038E−5 5.032E−3 5.032E−3 1.411
23 7.833E−5 4.726E−3 4.726E−3 5.787E−5 3.479E−3 3.480E−3 1.358
24 4.137E−5 5.476E−3 5.476E−3 −1.895E−5 3.676E−3 3.676E−3 1.490
25 1.634E−4 1.615E−2 1.615E−2 −9.279E−5 9.954E−3 9.954E−3 1.622
26 −7.280E−5 1.460E−3 1.462E−3 −5.170E−5 1.225E−3 1.226E−3 1.193
27 −5.498E−4 1.718E−2 1.719E−2 −6.873E−4 8.998E−3 9.024E−3 1.905
28 2.729E−4 7.261E−3 7.266E−3 1.323E−4 5.069E−3 5.071E−3 1.433
29 −1.751E−4 3.005E−2 3.005E−2 2.033E−4 1.501E−2 1.501E−2 2.002
30 1.183E−3 4.327E−2 4.329E−2 2.398E−4 2.168E−2 2.168E−2 1.996
31 1.164E−3 6.230E−2 6.231E−2 3.699E−4 2.689E−2 2.689E−2 2.317
32 −2.450E−5 1.430E−3 1.431E−3 −2.895E−5 1.295E−3 1.295E−3 1.104
33 −4.084E−5 1.275E−3 1.275E−3 −1.952E−5 1.185E−3 1.185E−3 1.076
34 1.550E−4 4.123E−2 4.123E−2 3.301E−4 2.466E−2 2.466E−2 1.672
35 −3.329E−5 1.308E−2 1.308E−2 4.784E−5 7.446E−3 7.446E−3 1.756
36 −3.854E−6 1.020E−2 1.020E−2 −6.474E−5 6.265E−3 6.266E−3 1.629
37 3.896E−4 1.700E−2 1.701E−2 1.020E−4 8.108E−3 8.109E−3 2.097
38 7.621E−5 2.619E−2 2.619E−2 2.817E−4 1.552E−2 1.553E−2 1.687
39 2.555E−5 1.557E−3 1.557E−3 1.941E−5 1.358E−3 1.358E−3 1.147
40 −7.173E−4 3.911E−2 3.912E−2 −2.736E−4 2.339E−2 2.339E−2 1.672
41 1.411E−4 1.590E−2 1.590E−2 −1.127E−4 7.549E−3 7.550E−3 2.106
42 3.007E−4 5.277E−2 5.277E−2 1.263E−4 2.709E−2 2.709E−2 1.948
43 1.080E−2 4.686E−1 4.688E−1 −1.491E−2 1.752E−1 1.758E−1 2.666
44 −4.057E−3 9.101E−2 9.110E−2 −9.202E−4 3.193E−2 3.194E−2 2.852
45 3.479E−4 1.503E−2 1.503E−2 −5.124E−5 7.429E−3 7.429E−3 2.024
46 −2.737E−5 5.257E−2 5.257E−2 −1.604E−4 3.123E−2 3.124E−2 1.683
47 5.752E−3 2.671E−1 2.672E−1 2.353E−3 8.080E−2 8.083E−2 3.306
48 2.003E−3 9.923E−2 9.925E−2 −1.091E−3 3.601E−2 3.603E−2 2.755
49 3.401E−4 3.392E−2 3.393E−2 −2.383E−4 1.544E−2 1.544E−2 2.197
50 −3.934E−3 1.954E−1 1.955E−1 2.387E−3 9.488E−2 9.491E−2 2.060
51 1.753E−3 8.153E−2 8.155E−2 5.423E−4 2.943E−2 2.944E−2 2.770
52 −2.605E−3 1.488E−1 1.489E−1 3.309E−4 5.340E−2 5.340E−2 2.788
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Table 5: The mean, the standard deviation, and the root-mean-square error of the rela-
tive estimation error for all cases given in Table 1 when estimating |A∪B ∪X|
using the conventional approach and the maximum likelihood method, respec-
tively.

conventional approach maximum likelihood method improvement
# mean stdev rmse mean stdev rmse rmse ratio
1 1.163E−5 1.012E−3 1.012E−3 8.772E−6 9.034E−4 9.035E−4 1.121
2 −1.038E−5 1.016E−3 1.016E−3 3.493E−6 8.070E−4 8.070E−4 1.259
3 −7.037E−6 6.876E−4 6.876E−4 −7.312E−6 6.821E−4 6.821E−4 1.008
4 −5.192E−5 1.019E−3 1.020E−3 −4.161E−5 8.631E−4 8.641E−4 1.180
5 1.650E−5 1.004E−3 1.004E−3 2.517E−5 9.518E−4 9.521E−4 1.055
6 −1.391E−5 7.010E−4 7.012E−4 −1.295E−5 6.912E−4 6.913E−4 1.014
7 −8.919E−6 6.862E−4 6.862E−4 −7.111E−6 6.494E−4 6.494E−4 1.057
8 3.280E−5 1.010E−3 1.011E−3 2.927E−5 9.527E−4 9.531E−4 1.061
9 1.253E−5 7.048E−4 7.049E−4 1.055E−5 6.984E−4 6.984E−4 1.009

10 3.805E−6 1.010E−3 1.010E−3 3.503E−6 8.690E−4 8.690E−4 1.162
11 −4.332E−5 9.735E−4 9.745E−4 −3.800E−5 8.005E−4 8.014E−4 1.216
12 4.256E−6 1.013E−3 1.013E−3 5.272E−6 9.235E−4 9.235E−4 1.097
13 −3.509E−6 7.194E−4 7.194E−4 2.487E−6 5.749E−4 5.750E−4 1.251
14 −2.582E−6 6.996E−4 6.997E−4 −1.257E−5 6.349E−4 6.350E−4 1.102
15 −3.034E−5 9.707E−4 9.712E−4 −2.122E−5 8.524E−4 8.527E−4 1.139
16 −1.289E−5 7.608E−4 7.609E−4 −1.083E−5 7.524E−4 7.525E−4 1.011
17 −1.249E−5 7.067E−4 7.068E−4 −1.242E−5 6.917E−4 6.918E−4 1.022
18 7.195E−6 9.943E−4 9.943E−4 1.093E−5 9.802E−4 9.803E−4 1.014
19 2.711E−6 9.912E−4 9.912E−4 −1.781E−6 9.221E−4 9.221E−4 1.075
20 1.482E−5 1.045E−3 1.045E−3 1.645E−5 9.611E−4 9.612E−4 1.088
21 −4.709E−6 7.008E−4 7.008E−4 −3.638E−6 6.937E−4 6.937E−4 1.010
22 6.309E−6 1.014E−3 1.014E−3 1.118E−5 9.930E−4 9.930E−4 1.022
23 7.916E−6 7.000E−4 7.000E−4 8.464E−6 6.833E−4 6.833E−4 1.024
24 −9.715E−6 6.942E−4 6.943E−4 −4.613E−6 6.154E−4 6.154E−4 1.128
25 −1.191E−5 7.084E−4 7.085E−4 −7.291E−6 6.704E−4 6.704E−4 1.057
26 −1.194E−5 7.321E−4 7.322E−4 −1.511E−5 6.912E−4 6.914E−4 1.059
27 6.183E−6 7.710E−4 7.710E−4 1.030E−5 6.082E−4 6.082E−4 1.268
28 −1.747E−5 7.198E−4 7.200E−4 −1.331E−5 6.960E−4 6.962E−4 1.034
29 7.131E−6 1.020E−3 1.020E−3 2.010E−6 9.907E−4 9.907E−4 1.030
30 6.217E−6 9.911E−4 9.911E−4 1.180E−5 9.716E−4 9.717E−4 1.020
31 1.030E−5 1.041E−3 1.041E−3 1.443E−5 1.005E−3 1.005E−3 1.035
32 −2.061E−5 9.899E−4 9.901E−4 −1.756E−5 9.216E−4 9.217E−4 1.074
33 1.806E−7 1.007E−3 1.007E−3 −2.245E−6 9.463E−4 9.463E−4 1.064
34 1.080E−5 6.820E−4 6.821E−4 9.360E−6 6.404E−4 6.405E−4 1.065
35 −1.607E−5 1.012E−3 1.012E−3 −1.933E−5 9.709E−4 9.711E−4 1.042
36 −1.213E−5 7.013E−4 7.014E−4 −9.095E−6 5.683E−4 5.684E−4 1.234
37 2.138E−6 1.008E−3 1.008E−3 1.365E−5 8.303E−4 8.304E−4 1.214
38 −9.866E−6 6.895E−4 6.896E−4 −1.378E−5 5.766E−4 5.767E−4 1.196
39 3.927E−6 1.007E−3 1.007E−3 1.633E−5 9.401E−4 9.402E−4 1.071
40 7.043E−6 6.909E−4 6.909E−4 1.536E−6 5.692E−4 5.693E−4 1.214
41 1.313E−5 1.005E−3 1.005E−3 2.453E−5 7.734E−4 7.737E−4 1.298
42 −1.253E−5 8.012E−4 8.013E−4 −1.181E−5 7.880E−4 7.881E−4 1.017
43 −4.050E−6 9.741E−4 9.741E−4 2.150E−5 7.501E−4 7.504E−4 1.298
44 3.990E−5 1.011E−3 1.012E−3 1.861E−5 8.356E−4 8.358E−4 1.211
45 −6.193E−5 1.006E−3 1.008E−3 −4.384E−5 8.200E−4 8.212E−4 1.228
46 −4.593E−6 6.975E−4 6.975E−4 −4.264E−6 6.797E−4 6.797E−4 1.026
47 5.173E−6 1.002E−3 1.002E−3 1.395E−5 7.649E−4 7.651E−4 1.310
48 −1.525E−5 9.629E−4 9.630E−4 1.355E−6 8.188E−4 8.188E−4 1.176
49 −3.941E−6 9.006E−4 9.006E−4 2.911E−6 8.391E−4 8.391E−4 1.073
50 6.400E−6 7.031E−4 7.032E−4 −9.157E−6 5.623E−4 5.624E−4 1.250
51 2.300E−6 1.005E−3 1.005E−3 1.270E−5 7.704E−4 7.705E−4 1.305
52 1.605E−5 1.015E−3 1.015E−3 8.640E−6 9.421E−4 9.422E−4 1.077
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angular and Jaccard distances, respectively. A generalization of the latter method is
b-bit minwise hashing that improves memory efficiency by only storing the lowest b bits
of the minimum hash value [29]. The probability that two different sets are mapped to
equal hash values K1 and K2 is roughly

P (K1 = K2) ≈ 1− (1− 1
2b

)D. (76)

The HyperLogLog algorithm itself can be regarded as hashing algorithm as it maps
sets to register values. For sufficiently large cardinalities we can use the Poisson ap-
proximation and assume that the number of zero-valued HyperLogLog registers can be
ignored. Furthermore, if the HyperLogLog parameter q is chosen large enough, the num-
ber of saturated registers can be ignored as well. As a consequence, we can assume that
the distribution of register values follows (16) and the probability that a register has the
same value for two different sets is (compare (66))

P (K1 = K2) =

∞∑
k=−∞

e
−λa+λb+λx

m2k

(
1− e−

λa+λx
m2k − e−

λb+λx

m2k + e
−λa+λb+λx

m2k

)
. (77)

Using the approximation
∑∞

k=−∞ e
− x

2k −e−
y

2k ≈ 2α∞ (log(y)− log(x)) (compare (90) in
Appendix A) we get

P (K1 = K2) ≈ 1 + 2α∞ log
(

1− 1
2D + 1

4D
2 λaλb
(λa+λb)

2

)
(78)

where D = λa+λb
λa+λb+λx

is the Jaccard distance. Since λaλb
(λa+λb)

2 is always in the range [0, 14 ],

the probability for equal register values can be bounded by

1 + 2α∞ log
(
1− 1

2D
)
. P (K1 = K2) . 1 + 2α∞ log

(
1− 1

2D + 1
16D

2
)
. (79)

As shown in Fig. 21 the bounds are very close, especially for small Jaccard distances,
where the probability can be well approximated by

P (K1 = K2) ≈ 1− α∞D. (80)

This dependency on the Jaccard distance is very similar to that of minwise hashing (76),
which makes the HyperLogLog algorithm an interesting candidate for locality-sensitive
hashing with respect to the Jaccard similarity. The memory efficiency of different hash-
ing approaches can be measured by a storage factor that is the variance of the distance
estimator multiplied by the number of bits used for storing the hash signature [29]. For
a hash algorithm that maps two different sets to the same b-bit hash value with proba-
bility 1 − aD with some constant a ∈ (0, 1], the storage factor is given by bD

(
1
a −D

)
.

Particularly, for the case D = 0.3, this gives 6.72 for conventional minwise hashing with
32-bit hash values (b = 32, a ≈ 1), 0.51 for 1-bit minwise hashing (b = 1, a = 1

2), and
1.96 for the HyperLogLog algorithm with 6-bit registers (b = 6, a = α∞). This means
that the HyperLogLog algorithm is not as memory-efficient as 1-bit minwise hashing,
but significantly better than 32-bit minwise hashing, when estimating the Jaccard dis-
tance by just counting equal registers. However, in contrast to 1-bit minwise hashing
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Figure 21: The approximate probability range of equal register values as a function of
the Jaccard distance.

the HyperLogLog sketch contains additional information which allows estimating the
cardinality or merging two HyperLogLog hash signatures. Furthermore, the method de-
scribed in Section 5 would allow a more accurate estimation of the Jaccard distance by
using the estimates for intersection and union sizes. This could be used for additional
more precise filtering when searching for similar items.

Since HyperLogLog sketches can be efficiently constructed, because only a single hash
function evaluation is needed for each item, the preprocessing step would be very fast. In
contrast, preprocessing is very costly for minwise hashing, because of the many required
permutations [29]. To overcome this problem, one permutation hashing was proposed
[30] which keeps for a predefined number of bins the minimum of all values that are
mapped to this bin. Actually, this is very similar to the HyperLogLog algorithm. The
bins correspond to HyperLogLog registers which keep the first one-bit position of the
minimum value instead of the minimum value itself. This close connection was also
pointed out in [10], where both methods have been considered as variants of k-partition
minwise hashing. The only difference is that the HyperLogLog algorithm uses base-2
ranks while one permutation hashing uses full ranks.

7. Conclusion

We have presented new algorithms for the estimation of cardinalities from HyperLogLog
sketches based on the Poisson approximation. For the estimation from a single sketch,
we have developed two different algorithms that are inherently unbiased over the full car-
dinality range without dependence on empirically determined bias correction data. The
first uses the original estimator extended by theoretically motivated correction terms.
Due to its simplicity we believe that it has the potential to become the standard text-
book cardinality estimation algorithm for HyperLogLog sketches. The second is based
on the maximum likelihood method and solves the corresponding optimization problem

50



using the secant method. The maximum likelihood method was also successfully applied
to the estimation of set operation result sizes where the operands are represented by
HyperLogLog sketches. The new approach improves the cardinality estimates of set in-
tersections, relative complements, as well as unions significantly when compared to the
conventional approach using the inclusion-exclusion principle.

A. Analysis of ξ(x)

The Fourier series of the periodic function

ξ(x) := log(2)
∞∑

k=−∞
2k+xe−2

k+x
, (81)

which has a period equal to 1, is

ξ(x) =
a0
2

+ Re

( ∞∑
l=1

ale
2πilx

)
(82)

with coefficients

al = 2

∫ 1

0
ξ(x)e−2πilxdx = 2 log(2)

∫ 1

0

∞∑
k=−∞

2k+xe−2
k+x

e−2πilxdx =

= 2 log(2)
∞∑

k=−∞

∫ k+1

k
2xe−2

x
e−2πilxdx = 2 log(2)

∫ ∞
−∞

2xe−2
x
e−2πilxdx. (83)

The variable transformation y = 2x yields

al = 2

∫ ∞
0

e−yy
− 2πil

log(2)dy = 2Γ

(
1− 2πil

log(2)

)
(84)

where Γ denotes the gamma function. Obviously, the constant term in the Fourier series
is equal to 1, because a0 = 2.

To investigate the maximum deviation of ξ(x) from this value we consider all further

coefficients al with l ≥ 1. Using the identity |Γ(1 + ix)| =
√

πx
sinh(πx) we are able to write

for the absolute values of the coefficients

|al| = 2

√
bl

sinh(bl)
with b :=

2π2

log 2
. (85)

In particular, the amplitude of the first harmonic is |a1| ≈ 9.884× 10−6. Clearly, the
maximum deviation of ξ(x)− 1 from the first harmonic must be smaller than

∑∞
l=2 |al|.

The ratio of subsequent coefficients is given by

|al+1|
|al|

=

√
l + 1

l

√
sinh(bl)

sinh(b(l + 1))
=

√
l + 1

l

√
1

cosh(b) + sinh(b)
tanh(bl)

. (86)
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For l ≥ 2 we have
√

l+1
l ≤

√
3
2 . Together with tanh(x) ≤ 1 we obtain

|al+1|
|al|

≤
√

3

2

√
1

cosh(b) + sinh(b)
=

√
3

2eb
(87)

which leads to |al| ≤ |a2|
(√

3
2eb

)l−2
for l ≥ 2 and further to

∞∑
l=2

|al| ≤ |a2|
∞∑
l=0

(√
3

2eb

)l
= 2

√
2b

sinh(2b)

1

1−
√

3
2eb

≈ 9.154× 10−12. (88)

As a consequence, the maximum deviation of ξ(x) from 1 is bounded by

9.884× 10−6 ≤ |a1| −
∞∑
l=2

|al| ≤ max
x

(|ξ(x)− 1|) ≤ |a1|+
∞∑
l=2

|al| ≤ 9.885× 10−6. (89)

An interesting approximation formula can be derived from ξ(x) ≈ 1 by integrating on
both sides:

∞∑
k=−∞

e−2
k+y − e−2k+x ≈ x− y. (90)

B. Numerical stability of recursion formula for h(x)

In order to investigate the error propagation of a single recursion step using (56) we
define h1 := h(2x) and h2 := h(4x). The recursion formula simplifies to

h2 =
x+ h1(1− h1)
x+ (1− h1)

. (91)

If h1 is approximated by h̃1 = h1 (1 + ε1) with relative error ε1, the recursion formula
will give an approximation for h2

h̃2 =
x+ h̃1(1− h̃1)
x+ (1− h̃1)

. (92)

The corresponding relative error ε2 is given by

ε2 =
h̃2
h2
− 1. (93)

Combination of (91), (92), and (93) yields for its absolute value

|ε2| = |ε1|

∣∣∣ h1(1−2h1)x+h1(1−h1) + h1
x+1−h1 − ε1

h21
x+h1(1−h1)

∣∣∣∣∣∣1− ε1 h1
x+1−h1

∣∣∣ (94)
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and the triangle inequality leads to

|ε2| ≤ |ε1|

∣∣∣ h1(1−2h1)x+h1(1−h1) + h1
x+1−h1

∣∣∣+ |ε1|
h21

x+h1(1−h1)∣∣∣1− ε1 h1
x+1−h1

∣∣∣ . (95)

By numerical means it is easy to show that the inequalities
∣∣∣ h1(1−2h1)x+h1(1−h1) + h1

x+1−h1

∣∣∣ ≤
0.517,

h21
x+h1(1−h1) ≤ 0.436, and h1

x+1−h1 ≤ 0.529 hold for all x ≥ 0. Therefore, if we

additionally assume, for example, |ε1| ≤ 0.1, we get

|ε2| ≤ |ε1|
0.517 + 0.1 · 0.436

1− 0.1 · 0.529
≤ |ε1| · 0.592, (96)

which means that the relative error is decreasing in each recursion step and the recursive
calculation of h is numerically stable.

C. Error caused by approximation of h(x)

According to (42) the exact estimate x̂ fulfills

x̂

q∑
k=0

Ck
2k

+

q∑
k=1

Ckh

(
x̂

2k

)
+ Cq+1h

(
x̂

2q

)
= m− C0. (97)

If h is not calculated exactly but approximated by h̃ with maximum relative error εh � 1∣∣∣h̃(x)− h(x)
∣∣∣ ≤ εhh(x) (98)

the solution of the equation will be off by some relative error εx:

x̂ (1 + εx)

q∑
k=0

Ck
2k

+

q∑
k=1

Ckh̃

(
x̂ (1 + εx)

2k

)
+ Cq+1h̃

(
x̂ (1 + εx)

2q

)
= m− C0. (99)

Due to (98) there exists some α ∈ [−εh, εh] for which

x̂ (1 + εx)

q∑
k=0

Ck
2k

+ (1 + α)

q∑
k=1

Ckh

(
x̂ (1 + εx)

2k

)
+

+ (1 + α)Cq+1h

(
x̂ (1 + εx)

2q

)
= m− C0. (100)

Since h′(x) ∈ [0, 0.5] for x ≥ 0, there exists a β ∈ [0, 0.5] for which

x̂ (1 + εx)

q∑
k=0

Ck
2k

+ (1 + α)

(
q∑

k=1

Ckh

(
x̂

2k

)
+
Ck
2k
x̂εxβ

)
+

+ (1 + α)

(
Cq+1h

(
x̂

2q

)
+
Cq+1

2q
x̂εxβ

)
= m− C0. (101)
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Subtracting (97) multiplied by (1 + α) from (101) and resolving εx gives

εx = α
x̂
∑q

k=0
Ck
2k
− (m− C0)

x̂
(∑q

k=0
Ck
2k

+ (1 + α)β
(∑q

k=1
Ck
2k

+
Cq+1

2q

)) . (102)

Using |α| ≤ εh, β ≥ 0, and (50) the absolute value of the relative error can be bounded
by

|εx| ≤ |εh|
(m− C0)− x̂

∑q
k=0

Ck
2k

x̂
∑q

k=0
Ck
2k

. (103)

Furthermore, using (47) we finally get

|εx| ≤
|εh|
2

∑q
k=1

Ck
2k

+
Cq+1

2q∑q
k=0

Ck
2k

≤ |εh|
2

(
1 +

Cq+1

2q∑q
k=0

Ck
2k

)
≤ |εh|

2

(
1 +

Cq+1

m− Cq+1

)
. (104)

Hence, as long as most registers are not saturated (Cq+1 � m), the relative error εx
of the calculated estimate using the approximation h̃(x) for h(x) has the same order of
magnitude as εh.
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