
Next Generation Collaborative Reversing
with Ida Pro and CollabREate

Christopher Eagle and Timothy Vidas

Department of Computer Science,
Naval Postgraduate School, Monterey, CA
{cseagle,tmvidas}@nps.edu

Abstract

A major drawback with the use of most reverse
engineering tools is that they were not designed with
collaboration in mind. Numerous kludgy solutions exist
from asynchronous use of the same data files to working
on multiple copies of data files all of which quickly
diverge, leaving the differences to somehow be
reconciled. These methods and existing tools[1]
provided a first step towards automated collaboration
amongst IDA Pro[2] users, however they suffer from
several shortcomings including the fact that tools have
failed to keep pace with the evolution of IDA's internal
architecture. In this paper the authors present a new
collaborative tool, titled collabREate[3], designed to
bring nearly effortless collaboration to IDA users.

1 Introduction
Reverse engineering of binary programs is a very

time consuming task, often performed in a very
serialized manner. Analysts are forced to operate in this
serial fashion in large part because of the nature of the
tools they choose to use. When several analysts do
attempt to coordinate their efforts, it is usually
accomplished by sharing copies of files or through strict
turn taking access to a single shared work file. In some
cases (predominantly with text files), work files may
lend themselves to storage within a versioning system
such as CVS [4] or subversion [5]. Due to the binary
nature of most reverse engineering situations, it is no
easy task to provide any automated merging of changes
to such files.

1.1 IDA Pro
One of the premier analysis tools for analyzing

binary executable files is the Interactive Disassembler
Pro (IDA Pro, or simply IDA) from Hex-Rays [2]. IDA
Pro facilitates disassembly of program binaries by a

single user and stores its work in data files which utilize
a proprietary, binary format that does not easily lend
itself to incorporation into a revision control system. In
this regard, the format of IDA data files (IDB files) is
analogous to compressed archive formats such as ZIP
and TGZ.

When two or more analysts wish to coordinate their
efforts in analyzing a single binary file, they must either
collaborate at a single workstation, take turns working
on a single, shared IDB file, or painstakingly merge
updates from several disparate IDB files into a single
unified file that contains information from all related
working copies. Needless to say, such processes may be
both slow and error prone.

Complicating matters is the fact that Hex-Rays tends
to abandon backward compatibility when releasing new
versions of IDA. For example, not only can IDB files
created with the current version of IDA (version 5.2) not
be opened with older versions of IDA, but the current
version does not provide the capability to save an IDB
in a way that older versions of IDA can open the file.
This makes it extremely difficult for analysts using
different versions of IDA to coordinate their efforts
using anything other than face to face interaction and
manual change incorporation. Clearly this is not an
ideal situation for analysts who reside in different
geographic locations.

1.2 IDA Sync
In March 2005, in an effort to address the need for a

collaborative reverse engineering tool, Pedram Amini
released Ida Sync [1]. The goal of Ida Sync was to
provide a means for IDA users to share their work by
posting certain IDB updates to a central project server
which would store and forward each update to
additional IDA users subscribed to the same project.
Because updates are stored in a format independent of
the IDA version used to generate the updates, Ida Sync
made it possible for users with different versions of IDA

1

to coordinate their activities to the extent allowed by Ida
Sync.

Ida Sync operates as a plugin module to IDA Pro
itself. The Ida Sync architecture introduced new Ida
Sync specific command sequences (hotkeys) that mirror
several common IDA operations including insertion of
comments into IDB files and changing the names
assigned to program virtual addresses and local
variables. This approach has several drawbacks
including the fact that it requires Ida Sync specific
changes to a specific IDA Pro configuration file and that
it requires IDA users to learn, and remember to use,
additional command sequences in order to share
changes to their IDB files. Another drawback is that
users are limited to sharing only the operation types for
which Ida Sync has chosen to implement command
sequences. Additional changes such as reformatting
code to data, data to code, or changing the format of an
instruction's operands must be shared manually or not at
all. A final drawback is that Ida Sync fails to account
for any changes made to an IDB file through the use of
IDA's scripting or plugin interfaces, thus a user who
makes use of a script to modify an IDB file, must share
that script with every other user working on the same
project and expect those users to execute the script at the
appropriate time in order to remain in sync with the
project.

2 The IDA SDK
As an IDA plugin, Ida Sync relies upon the Hex-

Rays software development kit (SDK) for IDA in order
to capture user actions and forward them, behind the
scenes to a central Ida Sync update server. In the case
of Ida Sync, the SDK facilitates this process by
providing an API for interacting with IDA which in turn
activates the Ida Sync plugin each time a user activates
an Ida Sync specific hotkey sequence. Ida Sync, in turn,
determines which hotkey sequence the user has
activated, then performs actions that mimic, in some
sense, a standard IDA action.

For example, when a user activates the Ida Sync
comment insertion command, Ida Sync displays a dialog
very similar to the standard IDA comment insertion
dialog. This familiarity helps the user draw on their
experience with IDA to complete the requested
operation. When the user signifies that the operation is
complete, Ida Sync creates a comment in the user's IDB
file, just as IDA would, and takes the additional step of
forwarding the comment's location and content to the
Ida Sync server.

Ida Sync updates received by the Ida Sync server are
forwarded to other connected Ida Sync clients, where
the Ida Sync plugin running on each client interacts with
the IDA API to apply the update to the local IDB file
with no user interaction required.

The IDA API (as published via the SDK) offers a
more natural means for intercepting user actions than
the introduction of additional hotkey sequences as
implemented in Ida Sync. The API provides an event
registration and notification mechanism that allows
plugin components to register interest in specific types
of IDA events and receive notification when those
events take place. In the context of collaborative
reverse engineering, such notifications allow a plugin
programmer to seamlessly hook into a user's actions and
forward information concerning each action to other
interested users.

Since the introduction of Ida Sync on 2005, the
API's capability in regards to event notifications has
grown significantly. Specifically, with the introduction
of IDA version 5.1, the number of available
notifications was expanded significantly to include
notifications for a large percentage of user initiated
actions. Through the use of the expanded notifications
API, it has become possible to silently observe the
majority of user modifications to an IDB file and
forward detailed information concerning each change to
any interested user.

Through the use of such an approach, it becomes
possible for users to synchronize their changes without
requiring users to edit IDA configuration files or
requiring them to learn (and remember to use) any new
commands. As an added advantage, notifications are
also triggered for actions initiated via the execution of
IDA scripts or other plugin modules, eliminating the
need to share and synchronize the use of these
resources.

3 CollabREate
The collabREate plugin represents the next

generation in IDA collaboration. The goals of the
collabREate project are to provide a deeper and more
natural integration of the plugin component within the
IDA API and to provide a more robust server component
backed by a SQL database and capable of supporting
features beyond simple database synchronization.

From a high level perspective, collabREate owes
much to the Ida Sync project. The collabREate plugin
processes databases updates and communicates with a
remote server component to synchronize database

2

updates with additional project members. The
asynchronous communications component functions in
a manner similar to that used by IDARub[6] and Ida
Sync, however it has been improved considerably in
order to perform properly under heavy load. This is
where the similarities to Ida Sync end.

3.1 CollabREate Architecture
The collabREate plugin takes a fundamentally

different approach to capturing user actions by
leveraging IDA's event notification mechanisms. Rather
than introducing replacement commands that must be
configured and remembered by users, collabREate
hooks various database change notifications and
seamlessly propagates database updates to the
collabREate server. The types of database updates that
can be captured and published by IDA are dependent on
the IDA version which happens to be running the
plugin. A summary of actions supported by recent IDA
versions can be found in Table 1.

The collabREate architecture offers publish and
subscribe capabilities to participating users. A user may
selectively choose to publish their changes to the
collabREate server, or subscribe to changes that others
post to the server or both publish and subscribe. For
example an experienced user may wish to share
(publish) their changes with a group while blocking (not
subscribing to) all changes made by other users. These
capabilities can be specified at the user level, the project
level, and ultimately individual session level allowing
for very granular and flexible control. For example, a
novice user may wish only to publish comments, while
another user may wish to subscribe only to name
changes and patched byte notifications.

Another major feature of collabREate is the ability
to circumvent IDA database incompatibility issues.
Databases produced using IDA version 5.2 can not be
opened using older versions of IDA. This
incompatibility eliminates one of the primary forms of
IDA collaboration, database sharing, in cases where
some users do not own the newest version of IDA.
However, by synchronizing changes through a
collabREate server, users of older versions of IDA are
able to receive updates generated by users with newer
versions of IDA. Unfortunately, users of older versions
of IDA are also least able to publish their changes, so
the flow of information is somewhat one way.

3.2 CollabREate IDA Pro Plugin
One of the most significant features of the

collabREate plugin is its degree of integration with the

IDA SDK. IDA notifications are tied to specific
database actions, not specific user actions. The fact that
user actions happen to trigger IDA notifications is of
course critical to the collaborative process, however
notifications can be triggered by other means. IDC
scripts and API function calls can generate notification
messages as well. As a result, the actions of an IDC
script that patches database bytes, renames locations or
variables, or inserts new comments will be published to
the collabREate server and will ultimately be shared
with other IDA users working on the same project.

IDA Version 4.9(fw)
5.0 5.1 5.2

Action
(Publish/Subscribe)

P S P S P S

Undefine      

Make code      

Make data      

Move seg      

Name changed     

Func added or deleted     

Func bounds changed     

Byte patched     

Comment changed     

Operand type changed     

Enum created or changed     

Struct created, deleted, or
changed

 1  1 

Func tail added or deleted     

Seg added, deleted, or
changed

    

Flirt function identified    

Table 1: collabREate capabilities by IDA version

The collabREate plugin stores some information in
the IDB itself, particularly information that ties the IDB
to a particular collabREate project and information
about the most recent communication with the
collabREate server. This allows for a more intuitive
interface when reconnecting to an existing project. If a

1 In order for full structure updates to be properly
published IDA 5.2 and an updated IDA 5.2 kernel is
required (available upon request to Hex-Rays.)

3

user reconnects to a project they have previously
worked on using an IDB that already contains project
information, the server forwards all updates that have
not yet been applied to that IDB. Since the state of the
IDB is tracked in the IDB (instead of on the server) the
same user account can have multiple collabREate
sessions open, or start a new collabREate session
without the worry that some updates will be missed
because the server believes that the user account has
already received the updates. Additionally, should a
user wish to abandon the changes they have made to a
database by closing the database without saving their
work, there will be no confusion on the server side
regarding which updates the user may or may not have
received the next time the database is opened.

Table 1 highlights the fact that older versions of IDA
are not capable of publishing as much information as
more recent versions of IDA. This is a result of the
evolution of IDA's SDK over time. Specifically, a
significant number of new notification types were added
beginning with version 5.1 of the SDK. An important
feature of collabREate is the fact that the inability to
send all forms of updates does not prevent a version of
IDA from receiving all forms of updates.

A specific problem that needed to be addressed in the
plugin was the fact that the act of applying a received
collabREate update to a database would cause IDA to
generate a new notification message in the database to
which the update was applied. In order to prevent
duplicate update message from being sent to the server
and all associated users, the collabREate plugin
temporarily disables reception of IDA notifications
whenever a received update is being applied.

3.3 CollabREate Server
The collabREate server offers two modes of

operation. A basic mode and a database mode. When
the server is unable, either intentionally or
unintentionally, to connect to a backend database, the
server enters into its basic mode of operation. In basic
mode, the server functions as a simple non-
authenticating, update reflector. Each time an update
arrives for a given project, the update is forwarded to all
other users that happen to be connected to the same
project. In basic mode, no provisions exist for persistent
storage of individual updates. Users who are late to join
a basic mode project will not receive any updates that
have been made prior to their arrival.

In database mode, the server makes use of the
persistence features of a backend SQL database to
provide user management and authentication as well as

allowing for multiple projects to be associated with a
given input file, and persistent storage of all updates
made to each project.

The collabREate server component is currently
implemented in Java and utilizes JDBC [7] to
communicate with a back end SQL database. The server
is responsible for user and project management. User
accounts are managed via a separate management
interface to the server, while projects are created by
users as they connect to the server. The separate server
management component allows the server to be run as a
daemon.

The server contains as much of the decision logic
and state tracking as possible. This both reduces the
chances that a rogue plugin is able to perform actions
that it shouldn't and it leaves the plugin to focus on the
core abilities of generating messages when events occur
and applying updates as they are received from the
server.

The collabREate server has the capability of forking
existing projects to allow users to create alternate
branches of a project without impacting other users.
This is a useful feature if you wish to make (and track) a
significant number of changes to a database without
forcing those changes on other users. In the
collaborative spirit, users currently collabREating on a
project are given the opportunity to follow a user that
decides to fork, or they can choose to remain in the
parent project. As the server is capable of handling
multiple projects related to a single binary input file, the
plugin and the server take additional steps to ensure that
users are connecting to the proper project for their
particular database.

It is well known, that IDA provides no “undo”
capability [8]. Similar to a project fork, the collabREate
server allows for a feature called a checkpoint (aka
snapshot). A checkpoint allows a user to apply a label
to the particular state of the IDB present in their instance
of IDA. A user may choose to create a checkpoint prior
to performing some complicated or questionable edits to
the IDB. If these updates result in an unwanted IDB
state, users can choose to abandon that particular project
by closing that IDB, opening the original binary, and
forking a new project using the checkpoint as a starting
point at which point the server will send the user all
updates up to the checkpoint.

A final feature of the collabREate server is the ability
to restrict users to specific types of updates. For
example, one user may be restricted to a subscribe only
profile, while another user may be allowed to publish
only comments, while a third is allowed to publish all

4

types of updates. For each session, subscribe and
publish capabilities are determined by combining
permissions stored with a users account with the stored
project permissions and the set of requested capabilities
the user chooses after selecting a project to join.

3.4 CollabREate Protocol
Communication between the plugins and the server

occurs asynchronously. The collabREate protocol is a
simple binary network protocol. The basic form of a
datagram is shown in Table 2. The UpdateData field
varies in structure, for example there are several
commands that don't effect IDA at all, but are used for
plugin to server communications such as user login and
project selection. These collabREate specific datagrams
do not contain the UpdateID field.

Field Name Size Description

Size 4 bytes Size of this datagram (inclusive)

Command 4 bytes Indicates type of communication

UpdateID 8 bytes Unique ID assigned per update

UpdateData Varies The actual update Data.
Table 2: Basic collabREate datagram structure.

When the server is operating in database mode, all
datagrams relating to IDA database modifications are
stored into the SQL database. This allows for their
eventual retransmission to users that connect to the
associated project and request any updates that they may
have missed.

3.5 Example CollabREate Session
Depending of a variety of factors, the process of

setting up a collabREate session varies. As an example,
a typical sequence of events is provided.

First, a collabREate server is is launched. For this
example, we assume the server is operating in database
mode. Next, the plugin is activated by an IDA user
which prompts the user to enter server host information.
The user authenticates with the server using standard
techniques [9][10]. Following authentication, the
collabREate plugin sends the MD5 hash of the input file
that the user is analyzing to the server. The MD5 value
is used to ensure that multiple users are in fact working
on identical input files. Several projects might share the
same MD5 (indicating that there are several projects
relating to the same original binary for whatever
reason). The server sends back a list of projects and
checkpoints to the plugin. At this point, the user can
choose to join an existing project, create a new project,

or fork a new project from a checkpoint. For any of
these methods, the user may indicate the types of
updates to which they would like the plugin to publish
and subscribe. At this point the IDB is tied to the
project using a unique identifier to facilitate
reconnecting to the project at a later time.

Once a collabREate session is established, users can
largely work within IDA as they normally would.
Updates are broadcast to all other users connected to
same project as they occur.

Attempting to activate the plugin a second time (via
Hotkey or menu item) results in a modal dialog box
presenting collabREate specific commands that allow
the user to fork, create a checkpoint, manage
permissions, disconnect, etc.

4 Future Work
A number of features remain on the collabREate

“todo” list including but not limited to the following:

1. Web interface for administration of a
collabREate server including the ability to
add/remove/edit users, and well as delete or
archive projects.

2. More granular client and server side
permissions.

3. Provide a means for disconnected users to
cache updates for later merging once a
connection to a server is re-established.

4. Project migration/replication across different
collabREate servers.

5. Add revert capability to the checkpoints.

6. Provide an XML export feature for update
content.

5 Conclusions
CollabREate is a step in the right direction for

reverse engineers requiring a means to share their work
among several users, across several locations, or across
multiple versions of IDA. Leveraging the capabilities of
the IDA SDK allows collabREate to provide a very low
learning curve for new users without compromising the
degree of supported IDA features.

In the future, it is anticipated that the evolving nature of
the IDA SDK will facilitate additional useful features
for both groups and individuals such as an undo-like
capability.

5

References
[1] Ida Sync. P. Amini.

http://pedram.redhive.com/code/ida
_plugins/ida_sync/

[2] IDA Pro.
http://hex-rays.com/

[3] CollabREate. C. Eagle, T. Vidas.
http://www.idabook.com/collabreate

[4] CVS – Open Source Version Control.
http://www.nongnu.org/cvs/

[5] Subversion version control system.
http://subversion.tigris.org

[6] IDARub. Spoonm.
http://www.metasploit.com/users/sp
oonm/idarub/

[7] The Java Database Connectivity API.
http://java.sun.com/javase/technol
ogies/database/

[8] Eagle, Chris. The IDA Pro Book. San Francisco: No
Starch Press, 2008.

[9] CHAP. RFC 1994

[10] HMAC. RFC 2104

6

