1510.07211v1 [cs.SE] 25 Oct 2015

arxXiv

On End-to-End Program Generation from User Intention
by Deep Neural Networks

Lili Mou, Rui Men, Ge Li, Lu Zhang, Zhi Jin
Software Institute, School of EECS, Peking University, Beijing 100871, P. R. China
{doublepower.mou,menruimr}@gmail.com, {lige,zhanglu,zhijin}@sei.pku.edu.cn

ABSTRACT

This paper envisions an end-to-end program generation sce-
nario using recurrent neural networks (RNNs): Users can
express their intention in natural language; an RNN then
automatically generates corresponding code in a character-
by-character fashion. We demonstrate its feasibility through
a case study and empirical analysis. To fully make such
technique useful in practice, we also point out several cross-
disciplinary challenges, including modeling user intention,
providing datasets, improving model architectures, etc. Al-
though much long-term research shall be addressed in this
new field, we believe end-to-end program generation would
become a reality in future decades, and we are looking for-
ward to its practice.

Categories and Subject Descriptors

1.2.2 [Artificial Intelligence]: Automatic Programming—
Program synthesis

General Terms
Algorithms

Keywords

Deep learning, Recurrent network, Program generation

1. INTRODUCTION

Imagine a following scenario in software engineering: There
exists abundant high-quality source code, well commented
and documented, in large software repositories. A very pow-
erful machine (e.g., deep neural network) learns the map-
ping from natural language of problem descriptions to source
code. During development, users express their intention by
natural language (similar to some in the repository); the
learning machine automatically output the desired code as
the solution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

A more compelling feature is that the above process works
in an “end-to-end” manner, which requires little, if any, hu-
man knowledge, and is completely language independent—
the only thing needed is to represent sentences and programs
as characters. The learning machine automatically reads a
natural language sentence character-by-character to capture
user intention, and then generates code in a similar fashion.
As learning machines differ from code retrieval systems, the
generated code is different from any existing code, being
more flexible but maybe also vulnerable. However, the code
should be (almost) correct: It satisfies the syntax, and im-
plements the desired functionality. The code is usable with
a little post-editing.

Such scenario of automatic program generation has long
been the dream of software engineering (SE), and is closely
related to a variety of SE tasks, e.g., algorithm discovery,
programming assistance [6]. However, traditional approaches
are typically weak in terms of automation and abstraction.
For example, Manna et al. propose deductive approaches [15],
Flener et al. inductive approaches [5]; these methods re-
quire human-designed specifications. Program generation
by genetic programming [20} [7] can automatically search
the space of candidate programs (inefficiently), but carefully
chosen mutation or crossover operations should also be pro-
vided. Natural language programming, emerged in the past
decade, is much like “pseudo-compiling,” where the natural
language is of low-level abstraction |12 |4].

Nowadays, software artifacts, including code and docu-
mentation, have become “big data’ (e.g., Github, Source-
Forge). Provided sufficient training data of code with corre-
sponding comments and documents, it is possible in princi-
ple to train a generative model of programs based on natural
language. At the meantime, the natural language processing
(NLP) community is witnessing significant breakthroughs
and amazing results in various tasks including question an-
swering [13], machine translation [19], or image-caption gen-
eration [21]. These cross-disciplinary advances bring new
opportunities for automatic program generation.

In this paper, we investigate, by a case study in Section [2}
the feasibility of generating executable, functionally coher-
ent code by recurrent neural networks (RNNs); empirical
analysis reveals the mechanism how RNNs could accomplish
the goal. We also envision several scenarios where such tech-
niques may help real-world SE tasks, and address long-term
research challenges (Section . Although we concede there
still remains a long way before end-to-end program genera-
tion can be used in SE practice, we believe it would become
a reality in future decades.

2. A CASE STUDY
2.1 The Model of Recurrent Networks

Among a variety of machine learning methods, the deep
neural network (also known as deep learning) is among re-
cent groundbreaking advances, featured by its ability of learn-
ing highly complicated features automatically [14].

For end-to-end program generation, we prefer the recur-
rent neural networks (RNNs), which are suitable for mod-
eling time-series data (e.g., a sequence of characters) by its
iterative nature. An RNN typically keeps one or a few hid-
den layers, changing over each (discrete) time step according
to input data. This process is delineated in Figure [T}

Theoretical analysis shows that recurrent neural networks
are equivalent to Turing machines [9]. However, training
RNNs in early years was difficult because of the gradient
blowup or vanishing problem [18|. Long short term memory
(LSTM) units [8], or gated units [2] are designed to balance
between retaining the previous state and memorizing new
information at the current time step, making RNNs much
easier to train.

On this basis, Sutskever et al. design an RNN model for
sequence to sequence generation [19]. The idea is to first
read an input sequence, ended with a special symbol, <eos>
(end of sequence), depicted by Figure [lh. For output, the
RNN applies a softmax layer at each time step, predicting
the probability that each symboﬂ may occur at the current
step; the symbol with the highest probability is chosen, and
fed to the network as input at the next time step. This
process is done iteratively until the special symbol, <eos>,
is generated by the network (Figure)

Such RNN architecture can be applied to sequences of dif-
ferent granularities, e.g., word-level, sub-word level, etc. In
particular, character-level RNN generative models have un-
expectedly achieved remarkable and somewhat amazing per-
formance. Successful applications include generating texts,
music, or even Linux-like C code [10]. Empirical studies
show that RNNs are particularly good at modeling syntax
aspects, e.g., parenthesis pairing, indentation, etc [11]. It
works much like a push-down automata, but seems less capa-
ble of capturing semantics—the Linux-like code generated,
for example, is plausible, but cannot be compiled and lacks
coherence in functionality.

We are therefore curious whether RNNs can generate exe-
cutable, functionally coherent source code, which is an essence
to benefit real-world software engineering tasks.

To accomplish this goal, we leverage a dataset from a ped-
agogical programming online judge (OJ) systemEI intended
for the undergraduate course, Introduction to Computing.
The OJ system comprises different programming problems.
Students submit their source code to a specific problem, and
the OJ system judges its validity automatically (via run-
ning). We notice that programs corresponding to a specific
problem have ezactly the same functionality, which makes
the dataset particularly suitable, as a first trial, for training
neural networks to generate functionally coherent programs.

We fed the network with 4 different programing problems,
each containing more than 500 different source code sam-
ples. After preprocessing, a program was preceded by a

! A symbol may refer to a word or a character according to
the granularity in a certain application.
Zhttp://programming.grids.cn

Output
(softmax)

.. <eo0s>

Hidden
layer(s)
w/ LSTM
units

Input

(one-hot) m' 'a’

X' <eos

S ¢ e
=]
o
=

(a) Input sequence , (b) Output sequence

Figure 1: A sequence to sequence recurrent neural
network, adapted from [19]. (a) Input sequence; (b)
Output sequence.

brief comment, e.g., “find the maximum and second maxi-
mum numbers,” serving as the input sequence (Figure)EI
What follows is a program that solves the particular prob-
lem, serving as the output sequence (Figure) Figures
and 2k further illustrate two training samples of the afore-
mentioned programming problem.

2.2 Result and Analysis

Figure 2h is a sample code generated by RNN. Through
a quick analysis, we find that the code is almost executable:
with a little post-correction of 4 characters among ~280, the
program is compilable and functionally correct.

We would answer a very fundamental question: Is RNN
generating code by simply memorizing a particular training
sample? If this were the case, RNN would just work in a
copy-and-paste fashion, which degrades the problem to a
trivial case.

By examining the training data, we observe that there
does NOT exist a same program in the training set, which
rules out the possibility that RNN works by exact memoriz-
ing. We further use ccf indelﬂ to detect most similar code
in the training set. Two are shown in Figure [2] and the
results are particularly interesting. We provide our expla-
nation regarding several aspects of a program as follows.

e Structure. Figure[Zp shows the most similar code in
structure. The generated code implements the same
algorithm—scanning the array twice to find the max-
imum and second maximum numbers respectively. No-
tice, however, the two structures (abstract syntax trees,
say) are not exactly the same as there are differences in
variable definitions. A more interesting detail is that
RNN has recognized “i<n” and “i<=n-1”" are equivalent
in the for loop, and that it does not follow exactly the
sample code (b) in the training set but remains correct.

e Variable IDs. The training sample with the most
similar variable IDs is shown in Figure . Our gener-
ated code uses the same ID, a, for the array, and max1,
max?2 to cache the two wanted numbers; but later, the
structure diverges. Nevertheless, our network is aware
of the variable IDs it has generated, and remains co-
herent until the very end of the program.

3 Entire dataset and configurations are available on our web-
site. http://sites.google.com/site/rnngenprogram
“http://www.ccfinder.net/

http://sites.google.com/site/rnngenprogram

#include<stdio.h>
int main(){

#include<stdio.h>

void main()

{ (1) n
int @a['l@@] ,1,max1,max2;
scanf ("%d",&n);
for(i=0;i<=n-1;1i++)

int n,i,j,sz[100],max=0,ci=0;/{
scanf ("%d",&n);
for(i=0;i<n;i++){
scanf ("%sd",&sz[1]);

#include<stdio.h>
void main()

int n,i,all00],]i,maxl,max2;
scanf("%d",&n);
for(i=0;i<n;i++)

{ if(sz[il=max){ {
scanf("sd",&ali]); max=sz[1];}} scanf("%d",&al[i]);
if (alil=maxl) for(i=0;i<n;i++){ }

max2=al[i];}
for(i=1;i<=n;i++)
{ 22 3¢
if(alil=>ma &a[i]@maxl) return 0;

if(sz[il>ci&bsz[i]<max){
cl=sz[i];}}
printf("%d\n%d",max,ci);

maxl=a[0];
for(i=0;i<n;i++)

if(a[i]=maxl)

max2=al[i]; 1 maxl=ali];

} }
for(i=0;i<n;i++)

printf("sd\nsd",maxl,max2) ; {

return @; @ I[dell if(maxl==a[i])

1 (a) Generated code (b) Training sample 1) 1=1; (c)

if(max1!=a[0]) Training
max2=al[0]; sample 2

Figure 2: (a) Code generated by RNN. The code is almost correct
except 4 wrong characters (among ~280 characters in total), high-
lighted in the figure. (b) Code with the most similar structure in the

else max2Z=all];
for(i=0;i<n;i++)

training set, detected by ccfinder. (c¢) Code with the most similar { if(i==i) continue;
identifiers in the training set, also detected by ccfinder. Note that if(a[i]>max2) '
we preserve all indents, spaces and line feeds. The 4 errors are (1) max2=alil;
The identifier “x” should be “n”; (2) “max” should be “max2”; (3) “==" }

should be “<”; (4) return type should be void.

e Style. We find no particular training samples having
the same code style in terms of indents, line feeds, etc.
It makes much sense because the training programs are
written by junior programmers, who may not follow
standard style convention, and thus the network has no
idea about the “right” style. However, as all training
samples are “correct” programs, our network has little
difficulty in learning the syntax of C programs as the
generated code can almost be compiled.

Through the above analysis, we gain a basic idea on how
RNN is able to generate programs. The RNN first recog-
nizes the brief comment, “find the maximum and second
maximum numbers,” which precedes the code as input. We
would like to point out that, in this experiment, the RNN
does not understand the meaning of this sentence; but via
reading the brief comment, the RNN switches its hidden
states to generate code of the functionality in need. For
each functionality, RNN is aware of different aspects of a
possible program, including structures, IDs, etc. When gen-
erating, it chooses the most likely character conditioned on
the previous characters, also conditioned on the input. In
particular, the RNN does have the ability to mix different
structures and IDs but remain (almost) coherent.

3. PROSPECTIVES & ROAD MAP

While simple and preliminary, our case study and anal-
ysis provide illuminating pictures on end-to-end program
generation with deep neural networks. We point out sev-
eral scenarios where deep learning can benefit real-world SE
practice, which are also research topics in long-term studies.

e Understanding changeable user intention. The current
case study shows RNN’s ability of recognizing certain

printf("sd\n%d”,maxl,max2);

intention and generating corresponding code. In SE
practice, however, we are oftentimes facing changeable
requirement from users. To address the problem, a
direct extension is to train a parametric code gener-
ator with arguments (e.g., file names, protocols) im-
plicitly expressed using natural language. To tackle
a more challenging prospective, we might first train
a network to generate different “primitive” code snip-
pets, and then “glue” them together. For instance,
if a network has learned to write code of finding the
maximum number, and also of finding the minimum
number, then it shall be possible to generate these two
snippets subsequently if it reads an instruction “find
the maximum and minimum numbers.”

e Incorporating multiple sources of user intention. When
developing software, programmers usually find their
code dependent to context (e.g., previously defined
variables, existing API call sequences) in addition to
the functionality in need. In such scenarios, we might
train a network to fill missing blocks of code. While
we admit that code completion in general could hardly
make any sense, we think this problem is mostly real-
istic in some task-specific scenarios. For example, a
typical way of reading a txt file in Java involves cre-
ating FileReader, BufferedReader, reading lines in
the file, closing the file, and also catching exceptions.
Such standard pipelines might be generated automat-
ically by neural networks, provided context code.

Despite the promising future of using RNNs to generate
source code, efforts shall be made from multiple disciplines
including SE, NLP and machine learning communities. Most
important questions in the SE community are defining user’s
intention and providing datasets for training. How can we

specify the functionality that we want to generate? How
can we specify the arguments of a function? How can we
collect the dataset which is not only large and informative
enough for training, but also clean enough for not including
too much noise? These are among the open questions. The
NLP and machine learning communities, on the other hand,
are continuously improving neural architectures. Attention-
based networks [3| [21], for example, are proposed recently
to mitigate the problem of long input sequences that cannot
be composed into a fixed-size vector. More studies are still
needed in terms of understanding the memory capacity of
RNNs, generating data with more coherent semantics, or
even revising generated data, etc.

We concede that using RNNs to generate programs differs
significantly from writing programs by humans. It appears
unrealistic currently to train any learning machine, includ-
ing deep neural networks, to fully understand either natural
languages or programming languages. However, supported
by existing evidence in the literature and the case study in
this paper, we deem end-to-end program generation shall be
possible in the future.

4. RELATED WORK IN DEEP LEARNING
FOR PROGRAM ANALYSIS

Recent years have witnessed the birth of program anal-
ysis based on deep neural networks. Our previous work
learns programs’ vector representations, serving as a pre-
training phrase in deep learning [17]; we also propose tree-
based convolutional neural networks to classify programs by
functionality and detect source code of certain patterns [16].
Zaremba et al. use RNNs to estimate the output of a re-
stricted python program [22|. Allamanis et al. leverage vec-
tor representations to suggest method names [1]. All the
above models are discriminative, by which we mean the
tasks can be viewed as a classification problem. Karpathy
et al. train an RNN-based language model on C code, which
maximizes the joint probability of a program [11]. Differ-
ent from the above studies, this paper investigates whether
neural models can synthesize executable, functionally coher-
ent programs, which demands more need in matching users’
intention and capturing internal structures of source code.

S. CONCLUSIVE REMARKS

In this paper, we trained a recurrent neural network (RNN)
to generate (almost) executable, functionally coherent source
code. Our initial work has demonstrated the possibility of
automatic end-to-end program generation. Through analyz-
ing the RNN’s mechanism, we envisioned several scenarios
where such techniques can be applied in software engineer-
ing tasks in future decades. We call for studies from multiple
disciplines to further address this new research direction.

6. REFERENCES

[1] M. Allamanis, E. Barr, C. Bird, and C. Sutton.
Suggesting accurate method and class names. In
ESEC/FSE, 2015.

[2] K. Cho, B. van Merriénboer, D. Bahdanau, and
Y. Bengio. On the properties of neural machine
translation: Encoder-decoder approaches. arXiv
preprint, 1409.1259, 2014.

[3] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and
Y. Bengio. Attention-based models for speech
recognition. arXiv preprint, 1506.07503, 2015.

[4] A. Cozzie and S. T. King. Macho: Writing programs
with natural language and examples. Technical report,
University of Illinois at Urbana-Champaign, 2012.

[5] P. Flener and D. Partridge. Inductive programming.
Automated Softw. Engineering, 8(2):131-137, 2001.

[6] S. Gulwani. Dimensions in program synthesis. In Proc.
ACM SIGPLAN Symposium on Principles and
Practice of Declarative Programming, 2010.

[7] T. Helmuth and L. Spector. General program
synthesis benchmark suite. In Proc. Genetic and Evol.
Comput. Conf. ACM, 2015.

[8] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural Comput., 9(8):1735-1780, 1997.

[9] H. Hyotyniemi. Turing machines are recurrent neural
networks. Proc. STeP, 1996.

[10] A. Karpathy. The unreasonable effectiveness of
recurrent neural networks. http://karpathy.github.io/
2015/05/21/rnn-effectiveness/, 2015.

[11] A. Karpathy, J. Johnson, and F. Li. Visualizing and
understanding recurrent networks. arXiv preprint,
1506.02078, 2015.

[12] R. Knoll and M. Mezini. Pegasus: First steps toward a
naturalistic programming language. In OOPSLA,
2006.

[13] A. Kumar, O. Irsoy, J. Su, et al. Ask me anything:
Dynamic memory networks for natural language
processing. arXww preprint, 1506.07285, 2015.

[14] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning.
Nature, 521(7553):436-444, 2015.

[15] Z. Manna and R. Waldinger. A deductive approach to
program synthesis. ACM Trans. Programming
Languages and Syst., 2(1):90-121, 1980.

[16] L. Mou, G. Li, Z. Jin, L. Zhang, and T. Wang.
TBCNN: A tree-based convolutional neural network
for programming language processing. AAATI
Workshop, 2015.

[17] L. Mou, G. Li, Y. Liu, H. Peng, Z. Jin, Y. Xu, and
L. Zhang. Building program vector representations for
deep learning. arXiv preprint, 1409.3358, 2014.

[18] R. Pascanu, T. Mikolov, and Y. Bengio. On the
difficulty of training recurrent neural networks. arXiv
preprint, 1211.5063, 2012.

[19] L. Sutskever, O. Vinyals, and Q. Le. Sequence to
sequence learning with neural networks. In NIPS,
2014.

[20] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.
Automatically finding patches using genetic
programming. In ICSE, 2009.

[21] K. Xu et al. Show, attend and tell: Neural image
caption generation with visual attention. arXiv
preprint.

[22] W. Zaremba and I. Sutskever. Learning to execute.
arXiv preprint, 1410.4615, 2014.

	1 Introduction
	2 A Case Study
	2.1 The Model of Recurrent Networks
	2.2 Result and Analysis

	3 Prospectives & Road Map
	4 Related Work in Deep Learning For Program Analysis
	5 Conclusive Remarks
	6 References

