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Abstract

The definition of edge-adjacency can be generalized in multiple ways to hyper-
graphs, and extended from that, cycles and Hamilton cycles. One such generalization
of a Hamilton cycle is attributed to Kierstead and Katona. In a recent paper by Kuhl
and Schroeder, Hamilton cycle decompositions of complete r-partite r-uniform hyper-
graphs are discussed, a conjecture was made that the necessary numerical conditions
are sufficient, and was shown true for some cases. In this paper, the conjecture is
proved using constructions involving Hamming codes, comparisons between the two
constructions are made, and a classification of when they are equivalent is shown.

1 Introduction

Let G = G(V,E) be a graph whose vertex set V has n vertices and an edge set E. A decom-
position of G is a partitioning of E. A Hamilton cycle decomposition of G is a decomposition
of G into Hamilton cycles. The existence of Hamilton cycle decompositions for Kn (n odd)
and Kn−F (n even and F a 1-factor) was classified in the late 19th century by Walecki [6].
Such decompositions are also known for bipartite graphs Kn,n (n even) and Kn,n−F (n odd
and F a bipartite 1-factor) [3].

Let G be an r-uniform hypergraph with V = {v0, . . . , vn−1}. Berge [2] generalized the
definition of a Hamilton cycle H as a sequence of vertices and hyperedges

H = (v0, e1, v1, e2, v2 . . . , vn−1, en, v0),

where vi and vi−1 are incident with ei (1 ≤ i ≤ n − 1), vn−1 and v0 are incident with en,
and e1, e2 . . . , en are distinct hyperedges. A classification of complete 3-uniform hypergraphs
(also minus a 1-factor) was completed in 1994 by Verrall [9].
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Kierstead and Katona [4] introduced an alternative generalization of a Hamilton cycle; a
Hamilton cycle H is represented by a sequence of vertices of G

H = (v0, v1, . . . , vn−1, v0)

where the hyperedge {vi, vi+1, . . . , vi+r−1} (indices taken modulo n) is an edge of H for each
i ∈ Zn. Meszka and Rosa [7], along with Bailey and Stevens [1], investigated the existence

of a Hamilton cycle decomposition of the complete r-uniform hypergraph K
(r)
n for various

n and r using this of a Hamilton cycle. We will use this definition for the duration of the
paper.

Let K
(r)
r×m denote the complete balanced r-uniform r-partite graph, whose vertex set consists

of r parts, each having m vertices, and whose edge set consists of all subsets of vertices
containing exactly one vertex from each part. Thus K

(r)
r×m has rm vertices and mr edges,

so a necessary condition for the existence of a Hamilton cycle decomposition is r dividing
mr−1. In [5], this condition is shown to be sufficient for all applicable m when r is prime, r is
a product of distinct primes, or r = 4. Additionally, it is shown that such a decomposition
exists if r divides m, and it is conjectured that the necessary divisibility condition is sufficient.
In this paper, we briefly rehash some of the methods from [5] and prove the conjecture.

In Section 2, we discuss a relationship between decompositions of K
(r)
r×m and partitions of

Zr−1m . We strengthen the conjecture involving these partitions and reduce it to cases when
m is the largest square-free integer dividing r. In Section 3, we prove the conjecture when r
is a power of a prime, then prove the conjecture when r is any composite integer. In Section
4, we review the constructions used in [5] and show they are equivalent to the ones used in
this paper for certain cases.

2 Definitions and Background

Let r ≥ 2 and m ≥ 2 be given and let G = K
(r)
r×m. Let V 0, V 1, . . . , V r−1 denote the partite

sets of V (G), with V i = {0i, 1i, . . . , (m − 1)i}. To each vertex of V i, we associate its value
to the corresponding element of the quotient ring Zm; the use of the superscript indicates
a vertex and its absence indicates its value. For each i ∈ Zr, we use ai,0, ai,1, . . . , ai,m−1 to
be an ordering of the elements of Zm, and hence aii,0, a

i
i,1, . . . , a

i
i,m−1 is an ordering of the

vertices in V i.

The edges of G are all r-subsets of V containing a unique vertex from each V i, and hence
|E(G)| = mr. An r-tuple of Zrm may be associated to each edge of G:

{v00, v11, . . . , vr−1r−1} ∈ E(G)←→ (v0, v1, . . . , vr−1) ∈ Zrm.
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A Hamilton cycle H of G is necessarily of the form

H = ( a00,0, a
1
1,0, . . . , a

r−1
r−1,0,

a00,1, a
1
1,1, . . . , a

r−1
r−1,1,

...
a00,m−1, a

1
1,m−1, . . . , a

r−1
r−1,m−1, a

0
0,0 ).

(1)

Throughout this paper, we use ei to mean a vector with 1 in the ith entry and zero everywhere
else. Additionally, we use [n] to denote the positive integers {1, . . . , n}. Now, we give a series
of definitions along with restating a version of a useful lemma from [5].

Definition 2.1. Let e = (x0, . . . , xr−1) ∈ Zrm represent an edge of G. Then the difference
type of e is an (r − 1)-tuple given by (x1 − x0, . . . , xr−1 − xr−2) ∈ Zr−1m .

Definition 2.2. The Hamilton cycle H in (1) is cyclic if there exists a difference d ∈ Zm
such that ai,j − ai,j+1 = d for each i ∈ Zr and j ∈ Zm. This is equivalent to ai,j = ai,0 − jd
for each i ∈ Zr and j ∈ Zm. Thus d is a unit of Zm. In [5], cyclic Hamilton cycles with d = 1
and d = −1 are both used. For this paper, all cyclic Hamilton cycles have d = 1.

Lemma 2.3 (from [5]). If H is a cyclic Hamilton cycle of G with d = 1, then there exists
a difference type x ∈ Zr−1m such that H is the union of all edges of the r difference types
{x, x+ e1, · · · , x+ er−1}.

Definition 2.4. The set of difference types given in Lemma 2.3 is called a claw rooted at x.
Note that any claw of Zr−1m gives rise to a cyclic Hamilton cycle of K

(r)
r×m.

Example 2.5. Let r = 3, m = 4, and C = (00, 11, 32, 30, 01, 22, 20, 31, 12, 10, 21, 02, 00). This
Hamilton cycle is cyclic by our definition. The difference types of C are {(1, 2), (2, 2), (1, 3)}.
This is the claw rooted at (1, 2). Furthermore, this claw admits the Hamilton cycle C.

Definition 2.6. A set X ⊆ Zr−1m is a root set if (a) |X| = mr−1/r, and for every x ∈ X both
(b) x+ ei /∈ X for each i ∈ [r − 1] and (c) x+ ei − ej /∈ X for all {i, j} ⊆ [r − 1] (i < j).

Observe that condition (c) is equivalent to saying for all {x, x′} ⊆ X and {i, j} ⊆ [r − 1],
if x + ei = x′ + ej, then x = x′ and i = j. Thus, if X is a root set of Zr−1m , then X =
{{x, x+ e1, . . . , x+ er−1} : x ∈ X} is a partition of Zr−1m into claws, and hence gives rise

to a (cyclic) Hamilton cycle decomposition of K
(r)
r×m. So one way to find a Hamilton cycle

decomposition of K
(r)
r×m is to find a root set for Zr−1m . To this end, we seek to prove the

following:

Theorem 2.7. Let r ≥ 2 and m ≥ 2 be positive integers. Then Zr−1m has a root set if and
only if r | mr−1.

For a given r, let m0 be the largest square-free integer dividing r. Then r | mr−1 implies
that m0 | m. The following lemma shows that if Zr−1m0

has a root set, then so must Zr−1m .
From there on, we need only to show that Zr−1m0

has a root set, which is covered in Section 3.
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Lemma 2.8. Let r and m be positive integers with r ≥ 2 and suppose Zr−1m has a root set.
Then Zr−1qm also has a root set for any positive integer q.

Proof. Let φm be the bijective map from Zq × Zm → Zqm defined as φm(a, b) = m · a + b.
This can be extended to a map from Zr−1q ×Zr−1m → Zr−1qm component-wise. Observe that for
any a ∈ Zq and b ∈ Zm, there exists a′ ∈ Zq such that φm(a, b) + 1 = φm(a′, b+ 1), (namely,
a′ = a or a+ 1). Furthermore, for any a ∈ Zr−1q , b ∈ Zr−1m , and {i, j} ⊆ [r− 1] (i < j), there
exist {a′, a′′} ⊆ Zr−1q such that

φm(a, b) + ei = φm(a′, b+ ei), and
φm(a, b) + ei − ej = φm(a′′, b+ ei − ej).

Let X ′ be a root set of Zr−1m . Define X ⊆ Zr−1qm as X = {φm(u, x) : u ∈ Zr−1q , x ∈ X ′}. We
now show that X is a root set:

(a) The cardinality of X is (mr−1/r) · qr−1 = (qm)r−1/r.

(b) Assume that x+ei ∈ X for some x ∈ X and i ∈ [r−1]. Then for some {u′, u′′} ⊆ Zr−1q

and {x′, x′′} ⊆ X ′, x = φm(u′, x′) and x + ei = φm(u′′, x′′). So for some u ∈ Zr−1q ,
φm(u′′, x′′) = x + ei = φm(u′, x′) + ei = φm(u, x′ + ei). Thus {x′, x′ + ei} ⊆ X ′, which
contradicts X ′ being a root set.

(c) Assume that x + ei − ej ∈ X for some x ∈ X, and {i, j} ⊆ [r − 1] (i < j). Then for
some {u′, u′′} ⊆ Zr−1q and {x′, x′′} ⊆ X ′, x = φm(u′, x′) and x+ ei − ej = φm(u′′, x′′).
So for some u ∈ Zr−1q , φm(u′′, x′′) = x+ei−ej = φm(u′, x′)+ei−ej = φm(u, x′+ei−ej).
Thus {x′, x′ + ei − ej} ⊆ X ′, contradicting X ′ being a root set.

3 Constructions of Root Sets

We begin by describing the existence and properties of Hamming codes. See [8] for further
information.

Let p ≥ 2 be prime and let t ≥ 1 be any positive integer. Let n = (pt − 1)/(p − 1). Then
there exists a subspace X ⊆ Znp (a Hamming code) such that

• X is of dimension n− t = (pt − 1)/(p− 1)− t, and thus contains pn−t vectors.

• X is a perfect 1-error correcting code, which means that for any vector y ∈ Znp , either
y ∈ X or there is a unique x ∈ X for which the Hamming distance d(x, y) (the number
of non-agreeing components in their vectors) is 1. Furthermore, d(x, x′) ≥ 3 for all
{x, x′} ⊆ X (x 6= x′).

4



3.1 The r = 2k case

First, we look at the case when m = 2 and r = 2k, i.e. we want a root set of Z2k−1
2 . From

what we just established, we can find a Hamming code X with prime p = 2 and t = k.
We claim that X is a root set. Observe that n = 2k − 1 = r − 1 and X has dimension
n− t = 2k − k− 1, having 22k−k−1 = mr−1/r vectors. We need only show properties (b) and
(c) hold.

Let x ∈ X and {i, j} ⊆ [2k − 1] (i 6= j). Since the Hamming distances d(x, x + ei) = 1 and
d(x, x+ ei − ej) = 2 and are each less than 3, x+ ei /∈ X and x+ ei − ej /∈ X.

Therefore, X is a root set of Z2k−1
2 .

3.2 The r = pk case

Let m = p be any prime and r = pk. Let t = k and n = (pk − 1)/(p − 1). Let z ∈ Z(p−2)n
p .

Define zφ as the (p − 2) × n matrix obtained by reading the entries of z row by row. Let
zσ ∈ Znp be the matrix product zσ = [1 2 · · · p− 2] · zφ. See Example 3.1.

Observe that (z + z′)φ = zφ + z′φ and (z + z′)σ = zσ + z′σ for any z, z′ ∈ Z(p−2)n
p . Note that

φ provides a 1-1 correspondence between the ordinates of z and the cells of zφ. Let the ith
ordinate of z correspond with the (ri, ci) cell in zφ. Then [ei]σ = rieci .

Example 3.1. Let p = 5 and k = 2, making n = 6. Let z ∈ Z18
5 be given as below.

z =
[

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2
]

Then zφ and zσ are

zφ =

 0 1 2 3 4 0
1 2 3 4 0 1
2 3 4 0 1 2

 and zσ =
[

1 2 3
]
· zφ =

[
3 4 0 1 2 3

]
.

If i = 10, then

[ei]φ =

 0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

 and [ei]σ =
[

1 2 3
]
· [ei]φ =

[
0 0 0 2 0 0

]
.

Let X ⊆ Znp be a Hamming code which has dimension n − t = (pk − 1)/(p − 1) − k. From

this set, we build a set X ⊆ Zpk−1p in the following way:

X = {(x+ zσ)× z : x ∈ X and z ∈ Z(p−2)n
p }.
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Lemma 3.2. X is a root set.

Proof. We need to show the three properties outlined in Definition 2.6.

(a) The cardinality of X is pn−k × pn(p−2) = pn(p−1)−k = pp
k−1−k = mr−1/r.

(b) Assume that x + ei ∈ X for some x ∈ X and i ∈ [r − 1]. Then x = (x + zσ) × z and

x+ ei = (x′ + z′σ)× z′ for some {x, x′} ⊆ X and {z, z′} ⊆ Z(p−2)n
p . So

(x+ zσ)× z + ei = (x′ + z′σ)× z′.

First, suppose i > n. Then z′ = z + ei−n and x + zσ = x′ + z′σ. Let (ri, ci) be the cell
of zφ corresponding to the (i− n) entry of z. Then zσ + rieci = z′σ. Therefore,

x = x′ + z′σ − zσ = x′ + (zσ + rieci)− zσ = x′ + rieci .

So d(x, x′) = 1, which contradicts X being a Hamming code. Then i ≤ n. So z = z′

(and hence zσ = z′σ) and x + zσ + ei = x′ + z′σ. Then x + ei = x′, which gives that
d(x, x′) = 1, which again contradicts X being a Hamming code. Thus if x ∈ X, then
x+ ei /∈ X.

(c) Assume that x + ei − ej ∈ X for some x ∈ X and {i, j} ⊆ [r − 1] (i < j). Then

x = (x+zσ)×z and x+ei−ej = (x′+z′σ)×z′ for some {x, x′} ⊆ X and {z, z′} ⊆ Z(p−2)n
p .

So
(x+ zσ)× z + ei − ej = (x′ + z′σ)× z′.

This argument is split into three cases:

Case 1. Suppose n < i < j. Then x+ zσ = x′+ z′σ and z+ ei−n− ej−n = z′. Let (ri, ci)
and (rj, cj) be the cells in zφ which correspond to the (i− n) and (j − n) entries of z,
respectively. Then zσ + rieci − rjecj = z′σ. Thus

x = x′ + z′σ − zσ = x′ + (zσ + rieci − rjecj)− zσ = x′ + rieci − rjecj .

If ci = cj, then ri 6= rj, and d(x, x′) = 1, which contradicts X being a Hamming code.
If ci 6= cj, then d(x, x′) = 2, which also contradicts X being a Hamming code.

Case 2. Suppose i ≤ n < j. Then x+ zσ + ei = x′ + z′σ and z − ej−n = z′. Let (rj, cj)
be the cell of zφ which corresponds to the (j − n) entry of z. Then zσ − rjecj = z′σ. So

x = x′ + z′σ − zσ − ei = x′ + (zσ − rjecj)− zσ − ei = x′ − rjecj − ei.

If cj 6= i, then d(x, x′) = 2, which contradicts X being a Hamming code. Since
1 ≤ rj ≤ p− 2, if cj = i, then d(x, x′) = 1, which also contradicts X being a Hamming
code.

Case 3. Suppose i < j ≤ n. Then x+ zσ + ei − ej = x′ + z′σ and z = z′. Thus zσ = z′σ,
which gives x + ei − ej = x′. Since i 6= j, we have d(x, x′) = 2, which contradicts X
being a Hamming code.

Therefore, X is a root set of Zpk−1p .
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3.3 The composite case

Let r = PQ for relatively prime integers P and Q. Let p and q be the largest square-free
integers dividing P and Q, respectively. Suppose X ′p ⊆ ZP−1p and X ′q ⊆ ZQ−1q are root sets.
From these, we construct a root set of ZPQ−1pq . Such a construction, coupled with Lemmas
3.2 and 2.8, proves Theorem 2.7 for any r and m for which r | mr−1.

Let z ∈ Z(P−1)(Q−1)
pq . Define zφ as the (P − 1)× (Q− 1) matrix whose entries are from z read

in row by row. Let zρ ∈ ZP−1pq be the transpose of the row sum vector of zφ. Let zτ ∈ ZQ−1pq

be the column sum vector of zφ. Observe that (z+ z′)a = za + z′a when a ∈ {φ, ρ, τ}. Again,
note that φ provides a 1-1 correspondence between the ordinates of z and the cells of zφ. Let
(ri, ci) denote the cell of zφ corresponding with the ith ordinate of z. Then (ei)ρ = eri and
(ei)τ = eci .

Example 3.3. Let P = 4 and Q = 5 (and hence p = 2 and q = 5). Let z ∈ Z12
10 be as given

below.
z =

[
0 1 2 3 4 5 6 7 8 9 0 1

]
Then zφ, zρ, and zτ are

zφ =

 0 1 2 3
4 5 6 7
8 9 0 1

 , zρ =
[

6 2 8
]

, and zσ =
[

2 5 8 1
]
.

Additionally,

[e7]φ =

 0 0 0 0
0 0 1 0
0 0 0 0

 , [e7]ρ =
[

0 1 0
]

, and [e7]σ =
[

0 0 1 0
]
.

By Lemma 2.8, there exist root sets Xp ⊆ ZP−1pq and Xq ⊆ ZQ−1pq constructed from X ′p and
X ′q. Define X ⊆ ZPQ−1pq in the following manner:

X =
{

(xp + zρ)× (xq + zτ )× z | xp ∈ Xp, xq ∈ Xq, z ∈ Z(P−1)(Q−1)
pq

}
(2)

For sake of clarity, we denote the indices as

P = {1, . . . , P − 1} (the indices for xp + zρ)
Q = {P, . . . , P +Q− 2} (the indices for xq + zτ )
R = {P +Q− 1, . . . , PQ− 1} (the indices for z)

Lemma 3.4. X is a root set of ZPQ−1pq .

Proof. As with Lemma 3.2, we must show the three properties of Definition 2.6 hold.
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(a) The cardinality of X is

(pq)P−1

P
· (pq)Q−1

Q
· (pq)(P−1)(Q−1) =

(pq)PQ−1

PQ
=
mr−1

r
.

(b) Assume that x+ ei ∈ X for some x ∈ X and i ∈ [PQ− 1]. Then

(xp + zρ)× (xq + zτ )× z + ei = (x′p + z′ρ)× (x′q + z′τ )× z′

for some {xp, x′p} ⊆ Xp, {xq, x′q} ⊆ Xq, and {z, z′} ⊆ Z(P−1)(Q−1)
pq .

If i ∈ P , then z = z′ (and hence zρ = z′ρ), giving xp + ei = x′p, which contradicts Xp

being a root set. If i ∈ Q, again z = z′ (and hence zτ = z′τ ), giving xq + ej = x′q (where
j = i− P + 1), which contradicts Xq being a root set. If i ∈ R, then z+ej = z′ (where
j = i− (P +Q− 2)). Let (rj, cj) be the cell of zφ corresponding with the jth ordinate
of z. So z′ρ = [z + ej]ρ = zρ + erj . Then

xp = x′p + z′ρ − zρ = x′p + (zρ + erj)− zρ = x′p + erj ,

contradicting Xp being a root set. Thus, if x ∈ X, then x+ ei /∈ X for all i ∈ [PQ−1].

(c) Assume that x+ ei − ej ∈ X for some {i, j} ⊆ [PQ− 1], (i < j), and x ∈ X.

(xp + zρ)× (xq + zτ )× z + ei − ej = (x′p + z′ρ)× (x′q + z′τ )× z′

for some {xp, x′p} ⊆ Xp, {xq, x′q} ⊆ Xq, and {z, z′} ⊆ Z(P−1)(Q−1)
pq . We will consider

this in cases based on the location of the indices i and j.

Case 1. Suppose that j /∈ R (and hence i /∈ R). Then z = z′, and thus zρ = z′ρ and
zτ = z′τ . If {i, j} ⊆ P , then xp + ei − ej = x′p, contradicting Xp being a root set.
If {i, j} ⊆ Q, then xq + ei′ − ej′ = x′q (where i′ = i − P + 1 and j′ = j − P + 1),
contradicting Xq being a root set. If i ∈ P and j ∈ Q, then xp + ei = x′p, contradicting
Xp being a root set.

Case 2. Suppose that j ∈ R and i /∈ R. Then z′ = z + ej′ (where j′ = j − P −Q+ 2).
Let (rj, cj) denote the cell of zφ corresponding to the (j′)th entry of z. If i ∈ P ,
then x′q = xq − ecj , contradicting Xq being a root set. If i ∈ Q, then x′p = xp − erj ,
contradicting Xp being a root set.

Case 3. Suppose {i, j} ⊆ R. Let k = i − (P + Q − 2) and l = j − (P + Q − 2), so
z+ ek− el = z′. Then zρ+ erk− erl = z′ρ and zτ + eck− ecl = z′τ . Suppose rk 6= rl. Then

xp = x′p + z′ρ − zρ = x′p + (zρ + erk − erl)− zρ = x′p + erk − erl ,

contradicting Xp being a root set. If rk = rl, then ck 6= cl, and thus

xq = x′q + z′τ − zτ = x′q + (zτ + eck − ecl)− zτ = x′q + eck − ecl ,

contradicting Xq being a root set. Therefore, if x ∈ X, then x+ ei − ej /∈ X.
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Combining the results of Lemmas 2.8, 3.2, and 3.4 give a proof of Theorem 2.7. Thus, we
have the following result:

Theorem 3.5. Let m, r ≥ 2 be integers. Then K
(r)
r×m has a Hamilton cycle decomposition if

and only if r | mr−1.

4 Previous Constructions

For the remainder of the paper, we say the root sets constructed in the previous sections are
code-constructed. In [5], a root set is found for cases where r divides m, and is constructed
differently.

Definition 4.1 (from [5]). Let r ≥ 2 and m ≥ 2 so that r divides m. For each j ∈ Zr,
define Aj ⊆ Zr−1m as

Aj =

{
(x1, . . . , xr−1) :

r−1∑
i=1

ixi = j (mod r)

}

Suppose x ∈ A0. Then x+ei ∈ Ai and x+ei−ej ∈ Ai−j, for all pairs {i, j} ⊆ Zr. Therefore,
|Aj| = mr−1/r for each j ∈ Zr. Hence, A0 is a root set of Zr−1m .

Definition 4.2. Let X be a root set of Zr−1m . Then X is satisfactory if there exists an
ordering (a1, . . . , ar−1) of [r − 1] such that for each x = (x1, . . . , xr−1) ∈ X,

r−1∑
i=1

aixi = 0 (mod r). (3)

Observe that A0 is a satisfactory root set, and any other satisfactory root set is isomorphic
to A0 by permuting the ordinates. In [5], the constructions assumed that r divides m. We
first show this is a necessary condition, and that a code-constructed set is satisfactory if,
and only if, r is square-free. Note that when r is not square-free, the previous result in
Section 3.2 gives rise to a code-constructed Hamilton cycle decomposition of K

(r)
r×m which is

not isomorphic to the satisfactory Hamilton cycle decomposition found in [5].

Lemma 4.3. Let r and m be integers and let X ⊆ Zr−1m be a satisfactory root set. Then r
divides m.

Proof. Without loss of generality, we assume that X = A0. Since r divides mr−1, every
prime dividing r also divides m. Since m and r have common factors, it follows that m 6= 1
mod r. Let j = 1−m mod r, (so j 6= 0) and let y = ej − e1 = ej + (m− 1)e1. So

r−1∑
i=1

iyi = j + (m− 1) = 0 mod r. (4)
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So y ∈ X. Since {~0, y} ⊆ X and ~0 + ej = y + e1, it follows that j = 1 and y = ~0. So by (4),
m = 0 mod r, giving that r divides m.

Lemma 4.4. Let r, m, and q be positive integers with r ≥ 2 and r dividing m. Let X and
X be the code-constructed sets of Zr−1m and Zr−1qm , respectively. If X is satisfactory, then X
is also satisfactory.

Proof. Let m = tr and let (a1, . . . , ar−1) be an ordering of [r− 1] such that for each x′ ∈ X,

r−1∑
i=1

aix
′
i = 0 (mod r).

Let x ∈ X. Then x = x′ +m · u′, where x′ ∈ X and u′ ∈ Zr−1q . So

r−1∑
i=1

aixi =
r−1∑
i=1

ai(x
′
i +mu′i) =

r−1∑
i=1

ai(x
′
i + tru′i) = 0 (mod r).

Therefore, X is satisfactory.

Lemma 4.5. Let r and m be integers such that r ≥ 2 and r divides m. If X ⊆ Zr−1m is a
satisfactory, code-constructed root set, then r is square-free.

Proof. Let (a1, . . . , ar−1) be a reordering of [r− 1] such that (3) holds for each x ∈ X. Let r′

be the largest square-free integer dividing r and define t so that r = tr′. By the construction
in Lemma 2.8, the code-constructed root set X ′ ⊆ Zr−1r′ is embedded in X, and x′+ r′ei ∈ X
for each i ∈ [r − 1], x′ ∈ X ′, and ei ∈ Zr−1m . Let x ∈ X ′ be fixed. Since x′ + r′ei and x′

each satisfy (3), then so must r′ei. So air
′ = 0 (mod r), meaning that ai = bit for some

bi ∈ [r′ − 1]. It follows that for a1, . . . , ar−1 to be distinct, r = r′. So r is squarefree.

Proposition 4.6. Let X ⊆ Zp−1p be a code-constructed root set. Then X is satisfactory.

Proof. The code-constructed root set X with m = p, r = p, and k = 1 (and thus n = 1)
involves the use of a trivial Hamming code of dimension 0, which is {0} ⊆ Zp. Let x ∈ X.
Then x = zσ × z, where z ∈ Zp−2p . By its definition, zσ is given by the sum

zσ =

p−2∑
i=1

izi

Let a1 = p− 1 and ai = (i− 1) for each i, 2 ≤ i ≤ p− 1. Then

p−1∑
i=1

aixi = a1x1 +

p−1∑
i=2

aixi = (p− 1)zσ +

p−2∑
i=1

izi = pzσ = 0 (mod p)

Thus, X is satisfactory.
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Proposition 4.7. Let p and q be relatively prime integers and suppose the code-constructed
root sets of Zp−1p and Zq−1q are satisfactory. Then the code-constructed root set of Zpq−1pq is
satisfactory.

Proof. Since the code-constructed root sets of Zp−1p and Zq−1q are satisfactory, by Lemma 4.4,
so must the root sets Xp ⊆ Zp−1pq and Xq ⊆ Zq−1pq . So there exist orderings (a′1, . . . , a

′
p−1) and

(b′1, . . . , b
′
q−1) of [p− 1] and [q − 1] respectively so that for each xp ∈ Xp and xq ∈ Xq,

p−1∑
i=1

a′i[xp]i = 0 (mod p) and

q−1∑
i=1

b′i[xq]i = 0 (mod q)

Let X be the code-constructed root set as defined in (2) of Section 3.3. Let x ∈ X, where

x = (x + zρ) × (x + zτ ) × z for some xp ∈ Xp, xq ∈ Xq, and z ∈ Z(p−1)(q−1)
pq . It is sufficient

to show that there exists an ordering (a1, . . . , ap−1, b1, . . . , bq−1, c1, . . . , c(p−1)(q−1)) of [pq − 1]
such that

p−1∑
i=1

ai[xp + zρ]i +

q−1∑
i=1

bi[xq + zτ ]i +

(p−1)(q−1)∑
i=1

cizi (5)

is congruent to 0 (mod pq). Let ai = a′iq and bj = b′jp for each i ∈ [p− 1] and j ∈ [q− 1]. So

p−1∑
i=1

ai[xp]i = 0 (mod pq) and

q−1∑
i=1

ai[xq]i = 0 (mod pq).

With our definitions of ai and bj, the expression in (5) reduces to

p−1∑
i=1

ai[zρ]i +

q−1∑
i=1

bi[zτ ]i +

(p−1)(q−1)∑
i=1

cizi (mod pq). (6)

Let (ri, ki) be the corresponding cell in zφ of the ith ordinate in z. Recall that [ei]ρ = eri
and [ei]τ = eki . Let R = [(p− 1)(q − 1)]. Observe that

[zρ]i =
∑
j∈R
rj=i

zj and [zτ ]i =
∑
j∈R
kj=i

zj.

For each i ∈ R, define ci ∈ Zpq so ci = −ari (mod p) and ci = −bki (mod q). Observe that
ci 6= 0 modulo p or q, and hence ci /∈ {a1, . . . , ap−1, b1, . . . , bq−1}. Since (ri, ki) is distinct for
each i, each ci is distinct. So (a1, . . . , ap−1, b1, . . . , bq−1, c1, . . . , c(p−1)(q−1)) is an ordering of
[pq − 1]. Now, we show that the expression in (5) is congruent to 0 modulo pq. First, we
look at the expression in (6) modulo p:

p−1∑
i=1

ai[zρ]i +

(p−1)(q−1)∑
j=1

cjzj =

p−1∑
i=1

ai[zρ]i +

(p−1)(q−1)∑
j=1

(−arj)zj =

p−1∑
i=1

ai[zρ]i +

p−1∑
i=1

∑
j∈R
rj=i

(−ai)zj

=

p−1∑
i=1

ai[zρ]i −
p−1∑
i=1

ai
∑
j∈R
rj=i

zj =

p−1∑
i=1

ai[zρ]i −
p−1∑
i=1

ai[zρ]i = 0.
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Similarly, when looking at the expression in (6) modulo q:

q−1∑
i=1

bi[zτ ]i +

(p−1)(q−1)∑
j=1

cjzj =

q−1∑
i=1

bi[zτ ]i +

(p−1)(q−1)∑
j=1

(−bkj)zj =

q−1∑
i=1

bi[zτ ]i +

q−1∑
i=1

∑
j∈R
kj=i

(−bi)zj

=

q−1∑
i=1

bi[zτ ]i −
q−1∑
i=1

bi
∑
j∈R
kj=i

zj =

q−1∑
i=1

bi[zτ ]i −
q−1∑
i=1

bi[zτ ]i = 0.

Since the expression in (6) is congruent to 0 modulo p and q, the expression in (5) is congruent
to 0 modulo pq, proving the proposition.

The results of this section are summarized as follows:

Theorem 4.8. Let r and m be positive integers with r ≥ 2 and r dividing mr−1. Then Zr−1m

has a satisfactory root set if and only if r divides m. In this case, the code-constructed root
set of Zr−1m is satisfactory if and only if r is square-free.

References

[1] R. F. Bailey and B. Stevens, Hamiltonian decompositions of complete k-uniform
hypergraphs, Discrete Math., 310 (2010), pp. 3088–3095.

[2] C. Berge, Graphes et hypergraphes, Dunod, Paris, 1970. Monographies Universitaires
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