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Chapter 1

Introduction

This thesis studies the theoretical and practical aspects of maintaining indexes

for long texts, especially the DNA sequences which find most applications nowa-

days, that are minute in space and exhibit competent text searching ability when

compared to the uncompressed counterparts. Particularly, two recent indexes,

namely the CSA and the FM-index, are studied. Our results include time-and-

space efficient algorithms that construct these indexes, experimentation for the

practical performance of these indexes, and extension of these indexes in solving

more complicated text queries. A brief introduction is shown as follows.

1.1 Survey on Traditional Text Indexes

Text searching is a classical problem in computer science. Let T be a text of

length n, and P be a pattern of length p. The basic problem is to locate all

occurrences of the pattern P in the text T efficiently. Using Knuth-Morris-Pratt

[49] or Boyer-Moore [12] algorithms, this can be solved in the optimal O(n + p)

time. In most applications, the text is often given in advance, and will be searched

against different patterns. It thus pays some extra memory to pre-process the

text and create an index on it, so as to facilitate the subsequent searching process.

Text indexes can be classified into two categories, namely, the word-based

indexes and the full-text indexes. Word-based indexes, such as inverted lists

[40] and signature files [21], are used for texts with word boundaries. They are

constructed based on the distinct words that appear in the texts. For instance,

the inverted lists of a text store, for each distinct word, the list of positions that

the word occurs in the text; and, the set of distinct words are stored via a trie or
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CHAPTER 1. INTRODUCTION 2

hashing to allow efficient access to a particular list. Subsequent searching for a

word can be done efficiently by locating the corresponding list and enumerating

all the positions of occurrence. For signature files, it is built by first partitioning

the text into pages; then, each word is hashed into a fixed length s-bit value, and

a page is represented by a signature that forms by ‘OR’ing all the hash values of

the words appearing in that page. Subsequent searching for a word can often be

confined to a small number of pages whose signature ‘agrees’ with the hash value

of the word. In general, word-based indexes are able to support fast word queries;

in addition, they are small in size, occupying about 20-30% of the original text

size [82].

Unfortunately, word-based indexes are not suitable to handle texts without

clear-cut word boundaries like DNA sequences, Chinese texts and Japanese texts.

In these circumstances, full-text indexes, which are indexes that make no assump-

tion on the word boundary, are relied upon, at the cost of increasing the space

occupancy. Basically, these indexes are constructed by storing information on

all the substrings occurring in the texts. Suffix trees [57, 79] and suffix arrays

[56] are two fundamental full-text indexes in the literature, which find numerous

applications in areas including biological research (e.g., gene hunting, promoter

consensus identification, and motif finding) [38], data mining [41] and text com-

pression [28]. Suffix tree is a compact version of the trie that stores all suffixes

of the given text. Each suffix is represented by a unique leaf storing its start-

ing position. Based on the suffix tree, any substring of the text can be found

by following some path descending from the root. The importance of the suffix

tree is underlined by the fact that it has been rediscovered many times in the

scientific literature, disguised under different names [34]. Some examples include

the compact bi-tree [79], the prefix tree [15], the PAT tree [30], the position tree

[3, 47, 53], the repetition finder [67], and the subword tree [8, 15]. On the other

hand, suffix array is a reduced form of a suffix tree, which is obtained by visiting

the leaves of the corresponding suffix tree from left to right. More precisely, it

is an array of positions, sorted in the lexicographic order of the corresponding

suffixes.

Both suffix tree and suffix array exhibit superb searching performance. Given

the suffix tree of a text T whose characters are from an alphabet Σ, we can search

for a pattern P within T using O(p log |Σ| + occ) time, ∗ where occ denotes the

∗We use the notation logcb n to denote (log n/ log b)c, which is the c-th power of the base-b
logarithm of n. Unless specified, we use b = 2.
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number of occurrences of P in T . Note that the time is independent of the text

size. For suffix array, its searching time is O(p+ log n+ occ), which is only a bit

slower. For the space concern, both of them require O(n log n) bits; suffix array

is associated with a smaller constant, though.

In the literature, there is another full-text index called directed acyclic word

graph (DAWG) [10], which is the smallest finite state automaton that recognizes

all the substrings appearing in the given text [17]. Thus, based on DAWG, the

existence of a pattern P in T can be determined in O(p) time. By compacting

the edges of the DAWG and augmenting additional information in the nodes,

we obtain the labeled compact DAWG (CDAWG) of [11], which is equivalently

obtained from the suffix tree of the text by merging its edge-isomorphic subtrees

and deleting part of the resulting structure [34]. CDAWG provides significant

reductions of the memory space required by suffix trees and DAWGs [18]; never-

theless, in order to support locating all the occurrences of a pattern in the text,

the space requirement is still O(n log n) bits.

With the advance in bio-technology, the complete DNA sequences for a num-

ber of living organisms have been known. Some examples of these DNA sequences

are depicted in Table 1.1. The size of the DNA sequences can be much longer

than the traditional texts. For instance, the human DNA comprises about 3.3 bil-

lion characters. For this DNA sequence, the best known implementation of suffix

tree and suffix array require 40 Gigabytes [29, 50] and 14 Gigabytes, respectively.

Such memory requirement far exceeds the capacity of ordinary computers. Ex-

isting approaches for indexing human DNA include (1) using supercomputers

with large main memory [75] and (2) storing the indexing data structure in the

secondary storage [16, 41]. The first approach is expensive and inflexible, while

the second one is slow. As more and more DNA are decoded, it is vital that

individual biologists can eventually analyze different DNA sequences efficiently

with their ordinary PCs. In the next section, we show the recent trend in tackling

the problem—by compressing the index.

1.2 Survey on Compressed Text Indexes

To overcome the memory requirement, we need to construct indexes that require

considerably less space. Perhaps the most effective way to start with is to reduce

the space of the existing indexes, while maintaining their searching powers. This

idea has stimulated many work in the last decade. Firstly, Kärkäinen (1995) [43]
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Table 1.1: The size of some known DNA sequences. [48]

Sequence Name Size (bases) Notes

Phi-X 174 5386 virus of E. coli

Human mitochondrion 16,569

Mycoplasma genitalium 580,073
three of the smallest true organismsUreaplasma urealyticum 751,719

Mycoplasma pneumoniae 816,394

Campylobacter jejuni 1,641,481 frequent cause of food poisoning

Helicobacter pylori 1,667,867 chief cause of stomach ulcers (not stress and diet)

E. coli 4,639,221

Saccharomyces cerevisiae 12,495,682 the budding yeast

Drosophila melanogaster 122,653,977 the fruit fly

Fugu rubripes 3.65× 108 the pufferfish

Rice 4.3× 108

Human 3.3× 109

Amphibians 109 - 1011

Psilotum nudum 2.5× 1011 the whisk fern

proposed a new suffix-tree-like index called suffix cactus, whose structure can be

seen as either a compact version of the suffix tree or as an augmented suffix array.

Its size lies between those of suffix tree and suffix array, and pattern matching

requires O(p|Σ|+ occ) time. Later, Kärkäinen and Ukkonen (1996) [45] initiated

the study of sparse suffix tree (SST), which is a suffix tree that represents only

a subset of suffixes of the text. In particular, they gave construction and search

algorithms for the special case called evenly spaced SST, which is an SST that

represents every k-th suffix of the text for some fixed k. By increasing k, the

SST can be made arbitrarily small; unfortunately, the pattern matching time

could be huge, requiring O(kn) time in the worst case. Afterwards, Munro,

Raman and Rao (1998) [62] devised the space efficient suffix tree, which requires

n log n+O(n) bits space. Under the standard unit-cost RAM model,† their index

supports pattern matching in O(p+occ) time. Recently, Abouelhoda, Ohlebusch

and Kurtz (2002) [1] enhanced the suffix array to support O(p+occ)-time pattern

matching query; their data structure requires two additional ndlog ne-bit arrays

†The standard unit-cost RAM model assumes that all the standard arithmetic and boolean
operations on logn bit words and reading and writing log n bit strings can be performed in
constant time.
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and makes no assumption on the computational model. On the other hand,

Mäkinen (2000) [54] proposed the compact suffix array, in an attempt to further

reduce the size of the suffix array. The idea is analogous to compacting the

suffix tree to become a CDAWG, where the compact suffix array is obtained by

replacing some areas of a suffix array with links of the other areas. In practice,

the compact suffix array achieves a 25% to 60% reduction in space; for searching,

it is comparable – ranging from 2 to 3 times – with the suffix array, though there

is no worst-case guarantee. Another interesting index is the Lempel-Ziv index by

Kärkkäinen and Sutinen (1996) [44], which requires O(n) bits and takes O(p+occ)

time to search patterns of length shorter than log n; for longer patterns, the index

may occupy Θ(n log n) bits.

Despite the remarkable improvements, all of the above indexes still require

O(n log n) bits in order to maintain competitive searching performance. Inno-

vative elements are quested to answer the space requirement problem. Recent

breakthrough results shed light in this direction. The first achievement of a new

trend started with Grossi and Vitter (2000) [35]. They transformed the suffix

array for binary texts into a more compressible function, called compressed suf-

fix arrays (CSA), which needed O(n) bits. Under the unit-cost RAM model,

accessing any entry of the suffix array can be done in O(logε n) time for any

ε > 0. Based on the CSA, they have proposed an index which occupies O(n) bits

and supports pattern matching in O(p/ log n+ occ logε n) time. Later, Sadakane

(2000) [74] extended the study of CSA for general texts, giving an index that re-

quires O(n(H0 + 1)) bits, where H0 denotes the zero-th order entropy of the text.

This index supports searching in O(p log n + occ logε n) time. Moreover, it does

not require to store the original text explicitly, while any substring of the text of

length ` can be retrieved in O(` + logε n) time. On the other hand, Rao (2002)

[69] targeted at the space-and-time tradeoff of the CSA, and proposed a family of

CSA for binary texts that takes O(nt(log n)1/t) bits and each entry of the suffix

array can be accessed in O(t) time, for any parameter t with 1 ≤ t ≤ log log n.

When t = O(1/ε), this tradeoff gives the most space-efficient representation of a

suffix array with constant access time; furthermore, when coupled with the idea

in the original paper of Grossi and Vitter, Rao obtained an index that requires

O(n logε n) bits and supports pattern matching in O(p/ log n+ occ) time.

At the same time as the debut of CSA, Ferragina and Manzini (2000) [25]

made use of another approach in compressing the suffix arrays. Their index,
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called FM-index,‡ is based on Burrows-Wheeler transform [13] and Move-to-

Front encoding [9]. For texts with constant-size alphabets, the index requires

at most 5nHk + o(n) bits, and can answer pattern matching query in O(p +

occ log1+ε n) time, where Hk is the k-th order entropy of the text; for general

texts, a 2O(|Σ| log |Σ|)-bit decoding table is required to maintain the query time.

An interesting point about CSA and FM-index is that, both indexes do not

require storing the original texts explicitly for searching, and we are able to

reproduce the original text without loss based on them. Thus, the original text

is included implicitly, and the two indexes are also referred as self-index. For

human DNA, the CSA or the FM-index occupy about 2 Gigabytes. Nowadays

a PC can have up to 4 Gigabytes of main memory and can easily accommodate

such a data structure.

Recently, Sadakane (2002) [73] enhanced the CSA to include the longest com-

mon prefix (LCP) information, with which we can count the occurrences of a

pattern P in O(p) time. The index requires nH1/ε+O(n) bits. Later, Sadakane

(2003) [74] made further use of the LCP information, and obtained the com-

pressed suffix tree (CST) which requires O(n(H0 + 1)) bits and supports every

navigation operation on the suffix tree in at most O(logε n) time.

Also, two new indexes are proposed recently that are based on the Ziv-Lempel

compression algorithms [83, 80]. The first one is by Ferragina and Manzini (2002)

[27] which extends their FM-index and achieves O(p + occ) time for the pattern

matching query. The index is suitable for texts over constant-size alphabets, and

it requires O(nHk logε n) + o(n) bits of storage, which is a factor of logε n more

than the original FM-index. The second one is the LZ-index by Navarro (2002)

[63], which, on the other hand, is suitable for general texts. Like CSA or FM-

index, this index is also a self-index. For the performance, it supports pattern

matching in O(p3 log |Σ|+(p+occ) log n) time, which could be slow when pattern

is long; on contrary, the space occupancy is little, requiring only nHk(4 + o(1))

bits of storage.

There are yet two more indexes that are noteworthy. The first one is by

Grossi, Gupta and Vitter (2003) [32], which provides another extension of CSA

for general texts, while aiming at storage space to be as close to the empirical

entropy of the text as possible. Basically, their idea is to organize the CSA using

wavelet trees and succinct static dictionaries [66, 68]. The space requirement is

nHk + o(n log |Σ| log log n/ log n) bits, and pattern matching can be supported

‡According to the authors, FM-index stands for full-text index in minute space.
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in O(p log |Σ| + polylog(n) + occ log2 n/ log log n) time. The second one is the

compressed compact suffix arrays introduced by Mäkinen and Navarro (2004)

[55], which is an improvement over the compact suffix arrays of Mäkinen [54].

The first improvement is that it becomes a self-index. In addition, the space is

reduced from O(n log n) bits to O(nHk log n)+O(n) bits, while pattern matching

has a worst-case guarantee, needing O((p+ occ) log n) time.

1.3 Our Contribution

The exciting development of the compressed text indexes has offered us the fer-

tile grounds for studies in this thesis. Theoretically, we have come up with two

space-and-time efficient construction algorithms for CSA and FM-index, and we

have designed compressed indexes that solve other text searching problem. Em-

pirically, we have examined the behavior of CSA and FM-index in practical use.

These results are presented as follows.

1.3.1 Space-and-Time Efficient Construction Algorithms

for CSA and FM-index

Theoretically speaking, the compressed suffix arrays, namely the CSA and the

FM-index, mentioned in the previous section can be constructed using O(n) time;

however, the construction process requires much more than O(n) bits of mem-

ory. Among others, the original suffix array has to be built first, taking up at

least n log n bits. In the context of human DNA, the memory for constructing a

compressed suffix array is at least 25 Gigabytes [75], far exceeding the capacity

of ordinary PCs. This motivates us to investigate whether we can construct a

compressed suffix array in O(n log n) time while using O(n) bits of memory.

Assuming the standard unit-cost word RAM,§ this thesis provides the first

two algorithms of such a kind, showing that CSA [35, 72] can be built in a space-

and-time efficient manner. These results also imply a space-and-time efficient

algorithm for constructing the FM-index, as FM-index can be conveniently con-

verted from CSA with O(n log |Σ|)-bit space and O(n logε n) time for any fixed

and positive ε. In general, our construction algorithms also work well for indexing

§In this computation model, standard arithmetic and bitwise boolean operations on word-
sized operands take constant time.
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other kinds of texts like Chinese or Japanese, whose alphabet consists of at least

a few thousand characters.

Our first algorithm does not require much space other than that for storing the

compressed suffix arrays. Precisely, for a text with an alphabet Σ, our algorithm

requires O(n(H0 + 1)) bits of memory, where H0 ≤ log |Σ| denotes the entropy

of the text; for the time complexity, it is O(n log n) which is independent of |Σ|.
Technically speaking, the efficiency in space is based on an observation that the

compressed suffix arrays of two consecutive suffixes are very similar. Thus, we can

build the entire compressed suffix array directly from the text in an incremental

‘character by character’ manner. Exploiting this observation further, we can

speed up the construction by processing more characters each time, yielding a

‘segment by segment’ algorithm that runs in O(n log n) time.

Our second algorithm, on the other hand, requires considerably less time,

while using slightly more space than the first one. Precisely, for a text with

an alphabet Σ, our algorithm requires O(n log log |Σ|) time and O(n log |Σ|) bits

of memory. Note that when |Σ| = O(1), both time and space requirements

become O(n), which is optimal. Another significant implication from this algo-

rithm is that, suffix tree and suffix array can be constructed in o(n log n) time

and o(n log n)-bit working space. Here, we assume that the output is written di-

rectly to a ‘write-only’ secondary storage¶ without occupying the main memory,

so that the working space does not include the space for the output. This solves

a question that has been open for a long time.

The second algorithm is technically more interesting. We have borrowed the

framework of Farach’s linear time suffix tree construction algorithm [22] to con-

struct our compressed suffix arrays. Basically, Farach’s algorithm first constructs

the suffix tree for the even-position suffixes by recursion, which is then used to

induce the one for the odd-position suffixes. Afterwards, these two suffix trees

are merged together to produce the required suffix tree. Here, we have make

use of CSA and the Burrows-Wheeler text [13] alternately to represent a suffix

tree so as to avoid storing the suffix pointers explicitly. Immediately, this gives

an O(n log n) time algorithm that constructs the compressed suffix arrays in

O(n log |Σ|)-bit space. A further improvement is related to the backward search

algorithm, which is used to find a pattern within the text based on the CSA. If

¶The ‘write-only’ condition separates our algorithm from the external memory algorithms
[78], which treat secondary storage as an extension of the main memory and the focus is to
reduce the number of I/O operations instead of CPU time.
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we apply a known method [75], each step of the algorithm requires O(log n) time.

This thesis presents a new O(n log |Σ|)-bit auxiliary data structure which speeds

up each backward search step into O(log log |Σ|) time. Consequently, the time

complexity of the construction algorithm is improved to O(n log log |Σ|).
A summary of our results and the existing methods for constructing the CSA

is shown in Table 1.2.

Table 1.2: The space and time complexities for constructing CSA.

Description Space (bits) Time

existing
via suffix tree [50, 57] 5n log n O(n)

via suffix array [52, 56] 2n log n O(n log n)

this thesis
optimal space O(n(H0 + 1)) O(n log n)

optimal (when |Σ| = O(1)) O(n log |Σ|) O(n log log |Σ|)

1.3.2 Design of Compressed Indexes for Advanced Text

Searching Problems

In previous sections, we have seen how a compressed version of a suffix array

can be constructed and applied to solve a simple text searching problem, under

the standard unit-cost word RAM. The next question is to ask if a compressed

version of a suffix tree exists, as suffix tree is the heart of many data structures for

solving more complicated queries. Sadakane [71] has answered this affirmatively,

giving a data structure that supports all the functionalities of a suffix tree in

O(n log |Σ|)-bit space, with each operation slowing down by at most a factor of

O(logε n), for any fixed ε > 0.

This thesis extends the above work, where we show that this compressed

version of a suffix tree, or CST, can be constructed from the CSA efficiently in

O(n logε n) time and O(n log |Σ|)-bit space. In addition, we show that CST can be

coupled with CSA and FM-index to solve three advanced text problems: finding

maximal unique matches (MUM), managing a dynamic library and managing a

dynamic dictionary. Then, our solutions to the latter two problems immediately

imply a compressed index for the dynamic text problem. Again, we have assumed

the standard unit-cost word RAM as our computation model. In the following,

we shall elaborate each of our results one by one.
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Finding Maximal Unique Matches

Aligning two DNA sequences has been a long-standing topic in computational

biology. Important early work includes Needleman and Wunsch [64], and Smith

and Waterman [77]. When two DNA sequences are aligned, many interesting

biological features may be identified. For example, exact matches may suggest

an occurrence of a gene, whereas SNPs (single nucleotide polymorphism), tandem

repeats, large inserts or reversals can be found around the mismatches.

However, traditional alignment algorithms require O(mn) time, where m and

n denote the length of the two input sequences. This is impractical for aligning

two whole DNA sequences where m and n are of the order of 106 or even more. To

circumvent the timing problem, Delcher et al. [19] designed an efficient heuristic

algorithm, which exploits a reasonable intuition that, if a long and identical

sequence occurs exactly once in each DNA sequence (which they called a maximal

unique match, or MUM), such a sequence is almost certain to be part of the

alignment. The alignment problem is now reduced to finding the MUM’s, aligning

the MUM’s and finally aligning the local gaps between successive MUM’s. When

the input DNA sequences are short enough, the first step can be solved inO(m+n)

time by constructing a suffix tree for the concatenation of the input sequences,

while the latter two steps in practice can be performed with little space and little

time.

When the input sequences are long, the above method is no longer applicable

because of the huge space required by the suffix tree in finding the MUM’s. Nev-

ertheless, in this thesis, we show that when given the CST for the concatenation

of the input sequences, this first step can still be done in optimal O(m+n) time,

while requiring only O((m + n) log |Σ|)-bit space. Table 1.3 gives a summary of

these results.

Table 1.3: Finding MUM’s for two texts with length m and n.

Description Space (bits) Time

existing via suffix tree [19] O((m+ n) log(m+ n)) O(m+ n)

this thesis
when CST is given O((m+ n) log |Σ|) O(m+ n)
only texts are given O((m+ n) log |Σ|) O((m+ n) logε(m+ n))
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Managing Dynamic Library

Given a collection L of texts of total length n, we want to maintain an index for

L such that when a pattern P is given later, all occurrences of P in L can be

reported efficiently. This extension of the simple text searching query is called

the library matching query, which appears naturally in homepage searching [31],

classification of genes or proteins [60], and many other real-life applications.

In the static case where the texts in L never change, we can concatenate all the

texts in L to form one text, and then build a suffix tree for this single text. The

space occupancy is O(n log n) bits, and the library matching query is reduced to

the simple text searching problem, which can be solved optimally in O(p + occ)

time, where p is the length of P and occ denotes the number of occurrences.

We can reduce the space to O(n log |Σ|) bits, making use of CSA or FM-index.

The searching times become O(p log log |Σ| + occ logε n) and O(p + occ logε n)

respectively, for any fixed ε > 0.

In the dynamic case where texts can be inserted or deleted from L, we need to

update the index properly so that the library matching query can be performed

correctly when L is changed. In addition, such an update should be done ef-

ficiently. We call this the dynamic library management problem. If O(n log n)

bits of space is allowed, one can build a generalized suffix tree, which is a single

compact trie containing the suffixes of each text in L. Then, to insert or delete a

text of length t in L, we update the generalized suffix tree by adding or removing

all suffixes of this text, which can be done in O(t) time. For searching a pattern

P , the time remains O(p+ occ).

To reduce space, one may attempt to ‘dynamize’ a compressed index such

as CSA or FM-index. Indeed, Ferragina and Manzini have demonstrated in [25]

how to maintain multiple FM-indexes for the dynamic library management. Their

solution requires O(n+m log n) bits, where m is the number of texts in the collec-

tion. Pattern matching is only slowed down slightly, using O(p log3 n+ occ log n)

time. However, insertion and deletion have only amortized performance guar-

antee; precisely, insertion and deletion of a text of length t takes O(t log n) and

O(t log2 n) amortized time, respectively. In the worst case, a single insertion or

deletion may require re-constructing many of the FM-indexes, using Θ(n/ log2 n)

time even if t is very small.

In this thesis, we introduce a compressed index for the dynamic library man-

agement problem for texts with constant-size alphabet, which requires only O(n)
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bits. Inserting or deleting a text of length t takes O(t log n) time, while searching

for a pattern takes O(p log n + occ log2 n) time. Note that the time complexi-

ties of all operations are measured in the worst case (instead of the amortized

case). To our knowledge, this is the first result that requires only O(n) bits,

yet supporting both update and searching efficiently, i.e., in O(t logO(1) n) and

O((p+ occ) logO(1) n) time, respectively.

Technically speaking, our compressed index is based on CSA and FM-index.

Yet a few more techniques are needed in order to achieve the optimal space

requirement and efficient updating. Firstly, recall that the index proposed in [25]

requires O(n+m log n) bits. We have a simple but useful trick in organizing the

texts to avoid using a lot of space when the collection involves a lot of very short

strings, thus eliminating the m log n term. Secondly, the original representations

of CSA and FM-index do not support updates efficiently. For instance, the index

proposed in [25], essentially requires re-building one or more FM-index whenever

a text is inserted. Inspired by a dynamic representation of CSA in [51], we

manage to dynamize the CSA and the FM-index to support efficient updates to

a collection of texts. With either of them, we can immediately obtain an O(n)-

bit index that supports updates in O(t log2 n) time. For pattern matching, using

FM-index alone can achieve O(p log n + occ log2 n) time, and using CSA alone

takes O(p log2 n+ occ log2 n) time.

Last but not the least, we find that FM-index and CSA can complement each

other nicely to further improve the update time. Roughly speaking, in the process

of updating such suffix-array based compressed indexes, we need two pieces of

crucial information; we observe that one of them can be provided quickly by FM-

index, and the other can be provided quickly by CSA. Thus, by maintaining both

CSA and FM-index together, we can perform the update in a straightforward

manner, improving the update time to O(t log n).

A summary of the results is shown in Table 1.4.

Remarks. In the above discussion, we assume that the alphabet Σ has a constant

size. For a variable size alphabet, our compressed index occupies O(n|Σ|) bits,

which may become a problem if |Σ| is huge. Nevertheless, our compressed index

based on CSA alone achieves a space complexity of O(n log |Σ|) bits, but with

update and pattern searching suffering a slowdown by a logarithmic factor.
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Table 1.4: Managing a collection of texts for library matching query.

Description Space (bits) Library Matching Time Insertion/Deletion Time

via suffix tree O(n log n) O(p+ occ)
stat. via CSA O(n log |Σ|) O(p log log |Σ|+ occ logε n)

via FM-index (|Σ| = O(1)) O(nHk) O(p+ occ logε n)

dyn.

via suffix tree O(n log n) O(p+ occ) O(t)
via FM-index (|Σ| = O(1)) O(nHk) O(p log3 n+ occ log n) amor. O(t log n)/O(t log2 n)

this thesis (|Σ| = O(1)) O(n) O(p log n+ occ log2 n) O(t log n)
this thesis O(n log |Σ|) O(p log2 n+ occ log2 n) O(t log2 n)

Managing a Dynamic Dictionary

The dynamic dictionary management problem forms a dual with the dynamic

library management problem, where the former one deals with indexing a collec-

tion D of patterns {P1, P2, . . . , Pk} with total length d, so as to answer efficiently

the occurrences of all Pi in any given text T (which is called a dictionary match-

ing query), and allow efficient insertion and deletion of patterns. This problem is

well studied in the literature [2, 4, 7, 5, 6, 76], and most of the previous solutions

are based on suffix trees. In particular, Amir et al. [6] showed that updating

a pattern of length p can be done in O(p log d/ log log d) time and a dictionary

matching query for a text T of length t takes O((t + occ) log d/ log log d) time.

Later, Sahinalp and Vishkin [76] devised a new data structure called fat-tree,

and improved the update time to O(p), and query time to O(t+ occ). The space

required by both data structures is O(d log d) bits, which becomes impractical

when d is large.

As far as we know, no one has considered the setting under the compressed

storage requirement of O(d log |Σ|) bits. In this thesis, we present a compressed

solution for a special case of this problem, where we assume that no pattern in

D is a proper substring of the other. Our solution is based on the CST, and it

supports dictionary matching in O((t log2 d)(logε d+ log |Σ|) + occ log2+ε n) time

for any fixed ε > 0. For updating of a pattern, both insertion and deletion can be

done in O(p log2+ε d) amortized time. See Table 1.5 for a summary of the results.



CHAPTER 1. INTRODUCTION 14

Table 1.5: Managing a dynamic dictionary.

Description Space (bits) Dictionary Matching Time Insertion/Deletion Time

existing
via suffix tree [6] O(d log d) O((t+ occ) log d/ log log d) O(p log d/ log log d)
via fat-tree [76] O(d log d) O(t+ occ) O(p)

this thesis via CST (special case) O(d log |Σ|) O((t+ occ) log3 d) amor. O(p log2+ε d)

Managing a Dynamic Text

In the above discussion, we have discussed the simple text searching problem, in

which we need to maintain a single piece of static text, and the library manage-

ment problem where we need to maintain a dynamic collection of texts. Another

related problem is to maintain a single piece of text which is subject to update

over the times. This problem is useful in managing DNA texts, as they are

frequently updated due to errors in sequencing process.

Ferragina and Grossi [24] proposed an interval partitioning scheme to exploit

the generalized suffix tree to give an index that occupies O(n log n) bits of space

where n is the length of the text. It supports searching of a pattern P of length p

in O(p+occ) time. In addition, it supports insertion (and deletion) of a substring

of length y at an arbitrary position in T in O(y+
√
n) time. Later, Sahinalp and

Vishkin [76] proposed the fat-tree and further improved the insertion and deletion

time to O(y + log3 n).

It was open whether there is a compressed index (i.e., using O(n log |Σ|)
bits) that can manage a dynamic text efficiently. In this thesis, we report the

progress of this dynamic problem. Precisely, we propose an index that occupies

O(n log |Σ|) bits of space for any fixed ε > 0, while supporting pattern searching

in O((p log2 n)(logε n + log |Σ|) + occ log2+ε n) time, and insertion/deletion of a

substring of length y in O((y +
√
n) log2+ε n) amortized time.

Briefly speaking, we make use of the interval partitioning technique in [24]

to reduce the dynamic text problem into the dynamic dictionary management

and the dynamic library management problems. Then, applying the compressed

solutions to the latter two problems, we produce the required compressed index.

A summary of the results are shown in Table 1.6.
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Table 1.6: Managing a dynamic text.

Description Space (bits) Searching Time Insertion/Deletion Time

existing
via suffix tree [24] O(n log n) O(p+ occ) O(y +

√
n)

via fat-tree [76] O(n log n) O(p+ occ) O(y + log3 n)

this thesis via CSA and CST O(n log |Σ|) O((p+ occ) log3 n) amor. O((y +
√
n) log2+ε n)

1.3.3 Experimental Results on the Practical Aspects of

CSA and FM-index

While theoretical bounds are important, the success of a data structure is often

measured in terms of its performance in practice. Indeed, both CSA and FM-

index have demonstrated their practicality for text indexing in the literature. For

instance, for the DNA sequence E. coli, Ferragina and Manzini have shown in their

experimental paper [26] that the corresponding FM-index occupies 2.689n bits,

while its performance is comparable to that of the suffix arrays when searching a

pattern whose length is short (8-15 chars). On the other hand, Grossi, Gupta and

Vitter [33] have shown that the most space-efficient variant of the CSA [32] can

be implemented in 2.392n bits while supporting fast searching queries. Moreover,

the performance of these indexes are also tested extensively across various texts,

whose lengths vary from 4 million to 70 million characters. Nevertheless, these

lengths cannot yet cover some of the popular DNA sequences such as fruit fly,

human, fugu, and rice. One possible reason may be due to the lack of a space-

efficient construction algorithm for these indexes as proposed in the previous

section. This, together with some other issues to be explained later, motivate us

to study the practical aspects of the CSA and FM-index from a different point of

view. In this thesis, we attempt to find out the answers to the following questions:

1. What is the largest DNA sequence whose CSA and FM-index can be con-

structed in main memory? Will the construction time be acceptable?

2. Previous studies on searching focus on short patterns. In real life, DNA

sequences are often searched against genes whose lengths are much longer.

Will the searching performance in this case be consistent with that for

searching short patterns? Also, will the length of the DNA sequences affect

the performance?
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3. In the literature, there are two types of searching methodology for CSA

or FM-index. One of them is called forward search, which is the classical

approach for suffix arrays. The other one is called backward search, which

is the method tailored for CSA or FM-index and is better than forward

search in theory. However, in practice, will backward search always beat

forward search?

4. Finally, can we conclude which one of the two indexes is best-suited for

indexing DNA sequences?

We conducted experiments on construction and searching performances with

an ordinary PC equipped with a 1.7 GHz Pentium IV processor with 256 Kbytes

of L2 cache, and 4 Gbytes of RAM. The operating system was Solaris 9. Note that

this modest configuration can easily be acquired by most research laboratories

nowadays. Our results can be briefly summarized as follows. For construction

limits, we have successfully construct the CSA and FM-index for DNA sequences

of length up to 3 Gbases. The construction times are 24 and 28 hours, respec-

tively. For the searching performance, we have constructed the CSA and the

FM-index for E. coli (4.6 Mbases), Fly (98 Mbases) and Human (2.88 Gbases).

In each setting, we tested the searching times (for both forward search and back-

ward search) using patterns of length from 10 to 10,000, where the patterns are

extracted from random positions in the corresponding DNA sequence to boost

the worst-case performance. From our experiments, we find that backward search

is sensitive to the length of the pattern, while forward search is not. On the other

hand, searching different DNAs against patterns of similar length shows similar

timing, indicating that the length of the DNA has little effect on the searching

performance.

For the comparison between forward search and backward search, we observe

that using backward search, FM-index is consistently faster than CSA. However,

using forward search, CSA is faster than FM-index. The most surprising result

is that, for long patterns, forward search is more efficient than backward search.

Roughly speaking, for patterns of length less than 2000, FM-index with backward

search is most efficient; otherwise, CSA with forward search is fastest, while FM-

index with forward search is comparable. See Figure 1.1 for the timing of the

experiments on the CSA and FM-index of Human, with each index occupying

about 2.2 Gbytes (6n bits) of space.
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Figure 1.1: Searching performance of CSA and FM-index of Human. The space

occupancy for each index is about 2.2 Gbytes.

In summary, our experiments suggested that FM-index is faster than CSA for

searching short patterns, while for long patterns, CSA is better.

1.4 Organization of this Thesis

This thesis is organized as follows. In the next chapter, we describe the data

structures of suffix trees, suffix arrays, CSA and FM-index, and define some basic

notations. Chapters 3 and 4 respectively discuss the two construction algorithms

for CSA. Chapter 5 gives the definition of CST, shows the conversion from CSA

to CST, and describes how to apply CST to find MUM’s efficiently. In Chapter

6, we present the compressed solution for maintaining a dynamic library; then,

in Chapter 7, we present the compressed solutions for maintaining a dynamic

dictionary and a dynamic text. Chapter 8 shows our experimental studies of the

CSA and FM-index. Finally, concluding remarks are given in Chapter 9.



Chapter 2

Preliminaries

In this chapter, we review the definition of the suffix tree, the suffix arrays, the

compressed suffix arrays (CSA), and the FM-index, and introduce some notations

to be used throughout the thesis. In addition, some simple observations on these

data structures are presented.

Let T be a text over an alphabet Σ. We assume that T is ended with a special

symbol $ not appearing anywhere else inside the text, and $ is lexicographically

smaller than the other characters in Σ. Let n be the number of characters (in-

cluding $) in T . We assume that T is stored in an array T [0, n − 1], where

T [n− 1] = $. For any integer i in [0, n− 1], we denote

• T [i] as the (i+ 1)-th character of T from the left; and

• Ti as the suffix of T starting from position i; that is, Ti = T [i, n − 1] =

T [i]T [i+ 1]...T [n− 1].

Furthermore, let S(T ) denote the set of all suffixes of T , {T0, T1, . . . , Tn−1}.
For instance, if T = acaaccg$, then S(T ) = {acaaccg$, caaccg$, aaccg$,

accg$, ccg$, cg$, g$, $}.

2.1 Suffix Tree

The suffix trie of T is a trie built on S(T ). Formally, it is a rooted, directed and

ordered tree with exactly n leaves, with each edge labeled by a character in Σ; in

addition, no two edges out of a node can have the same label, and the children of

a node are ordered by the lexicographical order of the edge label of their incident

edges; finally, by concatenating the characters on the edges along the path from

18
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the root to any leaf, we obtain a distinct suffix of T . Figure 2.1 shows the suffix

trie of the text acaaccg$.

Figure 2.1: The suffix trie of the text T = acaaccg$.

It is easy to check that a pattern P of length p occurs in the text T at position

i (that is, exactly matching the substring T [i, i + p − 1]) if and only if P is the

prefix of the suffix Ti. Exploiting this fact, we can traverse the suffix trie based

on P to determine whether P occurs in T or not. The idea is that we start from

the root, and set the current character to the first character of P . During the

traversal where we are at a particular node, we try to find the outgoing edge

whose label matches the current character of P . If such an edge is found, we

follow the edge to the child node, and advance the current character to the next

character of P ; otherwise, the traversal stops. In the end, if the traversal succeeds

in matching all the characters in P , this indicates that P is the prefix of some

suffix of T , thus implying P occurs in T ; otherwise, P is not a prefix of any suffix

of T , then by the fact, we can conclude that P does not occur in T .

A suffix trie usually requires large amount of storage, as it contains Ω(n2)

nodes and edges in the worst case. This leads to the definition of the suffix tree,

where we contract all the degree-1 internal nodes (except the root) in the suffix

trie, making the tree to contain O(n) nodes and edges only. Note that each

edge of the suffix tree is now labeled with a non-empty substring of T instead

of a single character, and the labels of different edges out of the same node are
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starting with different characters. Also, the children of a node is now ordered by

the lexicographical order of the first character of the edge label of their incident

edges. In addition, we label each leaf by the starting position of the corresponding

suffix. See Figure 2.2 for the suffix tree of the text acaaccg$.

Figure 2.2: The suffix tree of the text T = acaaccg$. The suffix link of an

internal node is shown by its outgoing dashed arrow.

For pattern matching, we proceed as if we are using a suffix trie, and determine

whether P occurs in T or not first. If so, suppose that the traversal last visits

the edge (u, v), where u is the parent of v in the suffix tree. Then, it is easy to

verify that the subtree rooted at v will contain the leaves of all suffixes having

P as the prefix. Now, by visiting these leaves and retrieving their labels, we

can obtain all positions where P occurs in T . Thus, pattern matching can be

done using O(p) character comparisons, O(p) retrieval of edge labels, O(p+ occ)

traversal operations, and O(occ) retrieval of leaf labels, where occ denotes the

number of occurrences. Under an O(|Σ|n log n)-bit implementation of a suffix

tree, the overall time complexity is O(p + occ), as each basic operation can be

performed in constant time.

A suffix tree is usually augmented with some short-cuts between internal

nodes, called suffix links, which are key ingredients in all existing efficient con-

struction algorithms of a suffix tree. Suffix links also find usage in solving com-

plicated text queries. Formally, its definition is as follows. For an internal node

u, let path label of u be the concatenation of edge labels along the path from the

root to u. (The path label of the root is defined to be the empty string.) The
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suffix link of an internal node u (excluding the root) is a link from u to some

node v, such that the path label of v is equal to the path label of u but with the

first character removed. For example in Figure 2.2, the suffix link of the node

with path label ac, is the link from that node to the one with path label c. It is

well-known that the suffix link of any internal node is well-defined. In Chapter 5,

we will show how suffix links can enhance a suffix tree to solve some complicated

text queries.

2.2 Suffix Arrays

The suffix array of T , denoted SA[0, n − 1], is a representation for the sorted

sequence of the suffixes of T . Formally, SA[i] stores the starting position of the

(i + 1)-th smallest suffix of T . In other words, according to the lexicographical

order, TSA[0] < TSA[1] < . . . < TSA[n−1]. See Figure 2.3 for an example. Note that

SA[0] = n− 1, and the suffix array can be obtained by visiting the leaves in the

suffix tree from left to right.

i Ti rank SA−1[i]

0 acaaccg$ 2 2

1 caaccg$ 4 4

2 aaccg$ 1 1

3 accg$ 3 3

4 ccg$ 5 5

5 cg$ 6 6

6 g$ 7 7

7 $ 0 0

i SA[i] TSA[i]

0 7 $

1 2 aaccg$

2 0 acaaccg$

3 3 accg$

4 1 caaccg$

5 4 ccg$

6 5 cg$

7 6 g$

Figure 2.3: The suffix array of acaaccg$, its inverse and the rank of a suffix.

Given a text T together with the suffix array SA[0, n − 1], the occurrences

of any pattern P in T can be found without scanning T again. The idea is to

perform p (the length of P ) binary search steps on the suffix array. Recall that

suffixes are lexicographically sorted in the suffix array, so that suffixes sharing the

same prefix will be placed at consecutive region in SA. We then find the maximal

region [`0, r0] in SA such that the corresponding suffixes shares the same prefix

P [0]. This can be achieved by binary search on SA. Afterwards, we proceed

similarly as follows. At the beginning of j-th binary search step, we have already
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determined the maximal region [`j−1, rj−1] in SA such that the corresponding

suffixes share the same prefix P [0, j − 1]. Then, by a binary search on SA in the

region [`j−1, rj−1], we can find the maximal region where the (j+ 1)-th character

of these suffixes is equal to P [j]. That is, after this binary search step, we obtain

the maximal region [`j, rj] in SA such that the corresponding suffixes share the

same prefix P [0, j]. (Note that if no such region exists, we can declare P does not

occur in T .) Thus, after p binary search steps, we obtain the region [`p−1, rp−1],

and all occurrences of P can be found by reading SA[i] for all i in this region.

The above pattern matching process requires O(p log n + occ) retrieval of

entries in the suffix array, and O(p log n) retrieval of characters in T . Under

an O(n log n)-bit implementation of suffix array, each of the retrieval can be done

in constant time, so that the overall time complexity is O(p log n+ occ).

If the suffix array is coupled with an LCP array that stores the length of the

longest common prefix between two suffixes that are adjacent in the binary search

order, all the p log n terms can be improved to p + log n. For more details, see

Manber and Myers [56].

For every i in [0, n−1], define SA−1[i] to be the integer j such that SA[j] = i.

Intuitively, SA−1[i] denotes the rank of Ti among the suffixes of T , which is the

number of suffixes of T lexicographically smaller than Ti. We use the notation

Rank(X,S) to denote the rank of X among a set of strings S. Thus, SA−1[i] =

Rank(Ti,S(T )). See Figure 2.3 for an example.

2.3 Compressed Suffix Arrays (CSA)

Based on SA and SA−1, the compressed suffix arrays (CSA) of a text T is an array

Ψ[0, n − 1] where Ψ[i] = SA−1[SA[i] + 1] for i = 1, 2, . . . , n − 1, whereas Ψ[0] is

defined as SA−1[0]. In other words, if Tk is the suffix with rank i, Ψ[i] is the rank

of the suffix Tk+1. See Figure 2.4 for an example. It is worth-mentioning that Ψ

can be used to recover SA−1 iteratively: SA−1[1] = Ψ[Ψ[0]], SA−1[2] = Ψ[Ψ[Ψ[0]]],

..., etc.

Note that Ψ[0, n − 1] contains n integers. A trivial way to store the array

requires n log n bits, which is the same space as SA. Nevertheless, the Ψ array

can be decomposed into |Σ| strictly increasing sequences, which allows it to be

stored succinctly. This increasing property is based on the following lemmas.

Lemma 2.1 For every i < j, if T [SA[i]] = T [SA[j]], then Ψ[i] < Ψ[j].
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i SA[i] SA−1[i] Ψ[i] T [SA[i]]

0 7 2 2 $

1 2 4 3 a

2 0 1 4 a

3 3 3 5 a

4 1 5 1 c

5 4 6 6 c

6 5 7 7 c

7 6 0 0 g

Figure 2.4: The CSA of acaaccg$. Note that the Ψ array can be partitioned into

|Σ| (= 4) increasing sequences based on T [SA[i]], namely, Ψ[0, 0], Ψ[1, 3], Ψ[4, 6],

and Ψ[7, 7].

Proof: Note that i < j if and only if TSA[i] < TSA[j]. This implies that if i < j and

T [SA[i]] = T [SA[j]], TSA[i]+1 < TSA[j]+1. Equivalently, we have TSA[Ψ[i]] < TSA[Ψ[j]].

Thus, Ψ[i] < Ψ[j] and the lemma follows. �

For each character c, let α(c) denote Rank(c,S(T )), which is the number of

suffixes starting with a character lexicographically smaller than c. Also, let #(c)

be the number of suffixes starting with c.

Corollary 2.2 For each character c, Ψ[α(c), α(c) + #(c) − 1] gives a strictly

increasing sequence.

Proof: For any character c, T [SA[α(c)]] = T [SA[α(c) + 1]] = · · · = T [SA[α(c) +

#(c)−1]] = c. By Lemma 2.1, Ψ is strictly increasing in Ψ[α(c), α(c)+#(c)−1].

�

See Figure 2.4 for an illustration.

Based on the above increasing property, Grossi and Vitter [36] devised the

following scheme to store Ψ in n(H0 + 2) bits, where H0 ≤ log |Σ| is the entropy

of the text T . For each character c, the sequence Ψ[α(c), α(c) + #(c) − 1] is

represented using Rice code [70]. That is, each Ψ[i] in the sequence is divided

into two parts qi and ri, where qi is the first (or most significant) log #(c) bits,

and ri is the remaining log(n/#(c)) bits. The ri’s are stored explicitly in an

array of size #(c) log(n/#(c)) bits. For the qi’s, since they form a monotonic

increasing sequence bounded by 0 and #(c)−1, we store qα(c), and the difference
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values qi+1− qi for i in [α(c), α(c) + #(c)− 2] using unary codes,∗ which requires

2#(c) bits. In total, the space required is
∑

c∈Σ #(c)(log(n/#(c)) + 2), which is

n(H0 + 2) bits. Together with an auxiliary data structure of o(n) bits, each Ψ

value can be retrieved in O(1) time [42, 61]. In addition, another O(n(H0+1))-bit

auxiliary data structure allows any SA[i] to be retrieved in O(logε n) time, for

any 0 < ε ≤ 1. We summarize the above discussion in the following lemma.

Lemma 2.3 Ψ can be represented using n(H0 +2+o(1)) bits, while allowing any

Ψ value to be retrieved in O(1) time. With an additional auxiliary data structure

of size O(n(H0 + 1)) bits, any SA[i] value can be retrieved in O(logε n) time,

for any 0 < ε ≤ 1. If we can enumerate the values of Ψ[i] sequentially, this

representation can be constructed incrementally using O(n) time without extra

space.

There are also some other ways for storing the Ψ array succinctly. In later

chapters, we will specify clearly whenever a different scheme is used.

Note that Lemma 2.3 immediately implies an O(p log1+ε n + occ logε n)-time

algorithm for finding all occurrences of P in T . Sadakane [72] observed that using

an extra min{n, |Σ| log n} bits of space, the p log1+ε n term can be improved to

p log n instead, based on the pattern matching algorithm of FM-index. We defer

the details to the next section, where we review the FM-index. Furthermore, in

Chapter 4, we show that if we are allowed to use yet another O(n) bits of extra

space, the p log n term can further be improved to p log log |Σ|.

2.4 FM-index

The Burrows-Wheeler transformation transforms a text T into another text W ,

such that W [i] = T [SA[i] − 1] if SA[i] > 0, and W [i] = $ if SA[i] = 0. The

FM-index basically consists of |Σ| functions, called count, that are defined based

on the transformed text W . For each character c in Σ and i = 0, . . . , n − 1, the

function count(c, i) is the number of character c appearing in W [0, i − 1]. See

Figure 2.5 for an example.

Now, we state a lemma that demonstrates the pattern searching ability of the

count functions.

∗The unary code for an integer x ≥ 0 is encoded as x 0’s followed by a 1.
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i SA[i] TSA[i] W count(‘$’,i) count(‘a’,i) count(‘c’,i) count(‘g’,i)

0 7 $ g 0 0 0 1

1 2 aaccg$ c 0 0 1 1

2 0 acaaccg$ $ 1 0 1 1

3 3 accg$ a 1 1 1 1

4 1 caaccg$ a 1 2 1 1

5 4 ccg$ a 1 3 1 1

6 5 cg$ c 1 3 2 1

7 6 g$ c 1 3 3 1

Figure 2.5: The Burrows-Wheeler text W , and the count functions.

Lemma 2.4 ([25]) Let P be any pattern and let c be any character over Σ.

Denote the rank of P among all suffixes of T as i. Then, the rank of cP among

all suffixes of T is equal to count(c, i) + α(c), where α(c) denotes the number of

suffixes of T starting with a character less than c.

We refer to an execution of the above lemma a backward search step. Suppose

that α(c) can be reported in constant time. Applying backward search steps

repeatedly, we can find the rank of any pattern P among the suffixes of T using

O(p) queries to the count function. This method can readily be extended to find

the maximal region [`, r] in the suffix array such that the corresponding suffixes

share P as their prefix, and it is known as the backward search algorithm in the

literature.

When the alphabet size is small, precisely, |Σ| log |Σ| = O(log n), Ferragina

and Manzini [25] gave a 5nHk + o(n)-bit implementation of FM-index that can

support any count query in constant time. In addition, if FM-index is augmented

with an o(n)-bit auxiliary data structure, each entry of the suffix array can be

reported in O(log1+ε n) time, for 0 < ε ≤ 1. This gives the follow lemma.

Lemma 2.5 ([25]) Suppose that |Σ| log |Σ| = O(log n). We can store the FM-

index of T in 5nHk + o(n) bits, which supports searching of any pattern P in

T in O(p + occ log1+ε n) time, where 0 < ε ≤ 1 and occ denotes the number of

occurrences.
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2.4.1 Relation between CSA and FM-index

The CSA and the FM-index are in fact closely related. In this section, we give two

lemmas that relates the Ψ function of CSA and the count function of FM-index.

Firstly, recall the following notation from Section 2.3. For each character

c, let α(c) denote Rank(c,S(T )), which is the number of suffixes starting with

a character lexicographically smaller than c. Also, let #(c) be the number of

suffixes starting with c.

Note that α(c) and #(c) can be stored in O(n) bits using the succinct index-

able dictionary of Raman, Raman and Rao [68], while maintaining constant time

retrieval. In addition, with this indexable dictionary, T [SA[i]] can be retrieved in

constant time.

Suppose that we are given this indexable dictionary. Then, we have the

following lemmas.

Lemma 2.6 For any i = 0, 1, . . . , n − 1, we can compute Ψ[i] using O(log n)

queries to the count function.

Proof: Let c = T [SA[i]] and y = i − α(c). Both c and y can be computed in

constant time based on the indexable dictionary. Now, suppose that the following

claim is correct: W [Ψ[i]] is the (y + 1)-th c in the transformed text W . Then,

Ψ[i] is the smallest k such that count(c, k) = y + 1. As count(c, ·) is monotonic

increasing, the value of k (and thus Ψ[i]) can be found based on binary search,

using O(log n) queries to the count function.

To prove the claim, we first show that W [Ψ[i]] = c. This is true since

W [Ψ[i]] = T [SA[i]]. Next, we observe that for each suffix of T that begins with

c, say, of the form cTSA[j], it is lexicographically smaller than or equal to TSA[i] if

and only if j ≤ Ψ[i] and W [j] = c. In other words, if r denotes the rank of the

suffix TSA[i] among all suffixes of T that begin with c, W [Ψ[i]] is the (r + 1)-th c

in W .

Clearly, r = i − α(c) = y. This completes the proof of the claim, and the

lemma follows. �

Lemma 2.7 For any c in Σ and i = 0, 1, . . . , n− 1, we can compute count(c, i)

using O(log n) queries to Ψ.

Proof: Observe that T [SA[j]] = c if and only if W [Ψ[j]] = c. This implies that

count(c, i) is the number of j satisfying T [SA[j]] = c and Ψ[j] ≤ i.
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However, for T [SA[j]] = c, j must be in the region [α(c), α(c) + #(c) − 1].

Thus, count(c, i) is equal to the number of j in [α(c), α(c) + #(c)− 1] satisfying

Ψ[j] ≤ i.

By Corollary 2.2, Ψ[α(c), α(c) + #(c) − 1] is an increasing sequence. Thus,

count(c, i), can be found by a binary search on the sequence Ψ[α(c), α(c)+#(c)−
1], using O(log n) queries to Ψ. �

Combining Lemma 2.3, Lemma 2.4, Lemma 2.7 and the succinct indexable

dictionary of [68], we get the following corollary.

Corollary 2.8 We can store the CSA of T in O(n(H0 + 1)) bits, which supports

searching of any pattern P in T in O(p log n + occ logε n) time, where 0 < ε ≤ 1

and occ denotes the number of occurrences.



Chapter 3

Constructing CSA in Optimal

Space

In this chapter, we present an O(n log n)-time construction algorithm for the CSA

defined in [36]. The space requirement is O(n(H0+1)) bits, which is optimal since

the CSA alone takes n(H0 +2) bits. The chapter is divided into two parts. In the

first part, we investigate the relationship between the CSA’s of two consecutive

suffixes, which provides insight for constructing CSA incrementally by processing

one character at a time. Then, in the second part, we extend this relationship to

give the main algorithm, which runs faster by allowing the incremental algorithm

to process more characters at a time.

3.1 CSA of Two Consecutive Suffixes

This section serves as a warm up to the main algorithm presented in the next

section. In particular, we investigate the relationship between the CSA of two

consecutive suffixes. Then, based on this relationship, we demonstrate an algo-

rithm that constructs the CSA for a text T , in an incremental manner. Since

this algorithm is not the main result of this thesis, we only give the high-level

description. One can refer to [51] for the implementation details.

Let T be a string with n characters. We assume that T is represented by an

array T [0, n− 1] and T [n− 1] = $. Let SAT and ΨT be the suffix array and CSA

of T , respectively.

Suppose that we are given the CSA of T , and we want to construct the CSA

for a longer text T ′ = cT , where c is a character. Let SAT ′ and ΨT ′ [0, n] denote

28
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the suffix array and the CSA of T ′, respectively. To see the relationship between

the CSA of T and T ′, we first show that the suffix array of T ′ can be easily

obtained from that of T .

Recall that SAT is a sequence of the starting positions of the suffixes of T ,

sorted according to their ranks. Except T ′ itself, T ′ shares all its suffixes with T ;

thus, SAT ′ has exactly one more entry than SAT , which is due to the suffix T ′.

Intuitively, to obtain SAT ′ , we can insert the suffix T ′ (which is represented by

the starting position 0) into T . Let x = Rank(T ′,S(T )) be the rank of T ′ among

the set of suffixes S(T ). T ′ should be inserted between SAT [x − 1] and SAT [x].

Also, since a character is added to the beginning of T , we increment every entry

of SAT by 1 to reflect the change in their starting position. Thus, we have the

following lemma.

Lemma 3.1 Let x = Rank(T ′,S(T )). Then,

SAT ′ [i] =


SAT [i] + 1 if 0 ≤ i ≤ x− 1

0 if i = x

SAT [i− 1] + 1 if i ≥ x+ 1

Based on Lemma 3.1, we observe the relationship between the CSA of T and

T ′ as follows.

Lemma 3.2 Let x = Rank(T ′,S(T )). Then,

• ΨT ′ [0] = x;

• for 1 ≤ i < x,ΨT ′ [i] =

{
ΨT [i] if ΨT [i] < x

ΨT [i] + 1 if ΨT [i] ≥ x
;

• for i = x,ΨT ′ [i] =

{
ΨT [0] if ΨT [0] < x

ΨT [0] + 1 if ΨT [0] ≥ x
;

• for x < i ≤ n,ΨT ′ [i] =

{
ΨT [i− 1] if ΨT [i− 1] < x

ΨT [i− 1] + 1 if ΨT [i− 1] ≥ x
.

The above lemma suggests that we can compute ΨT ′ from ΨT as follows.
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1. Compute x = the rank of T ′ among all suffixes of T .

2. Set ΨT ′ [0] = x.

3. For 1 ≤ i ≤ n, set ΨT ′ [i] =


ΨT [i] if i < x

ΨT [0] if i = x

ΨT [i− 1] if i > x

4. For each 1 ≤ i ≤ n, if ΨT ′ [i] ≥ x, increment ΨT ′ [i] by one.

To build the CSA for a text T of length n starting from scratch, we can

execute the above algorithm repeatedly, constructing the CSA for the suffixes

Tn−1, Tn−2, · · · , T0 incrementally. Each such execution can be implemented in

O(n) time. Thus, we can construct the CSA ΨT for T [0, n− 1] using O(n2) time.

In the next section, we will present the details of an O(n log n)-time algorithm

for constructing the CSA. The idea is that, instead of updating Ψ every time a

character is added, we collectively perform the update for every ‘segment’. This

gives an incremental algorithm which processes the text in a ‘segment by segment’

manner.

3.2 Incremental Construction Algorithm

In this section, we show how to compute Ψ[0, n− 1] for the text T incrementally,

in a ‘segment by segment’ manner. To do so, we first partition the text into dn/`e
consecutive segments T 1, T 2, . . . , T dn/`e, where ` = Θ(n/ log n) will be specified

later; each segment, except the last one, contains ` characters, i.e., T i refers to

the string represented by T [(i − 1)`, i` − 1]. The algorithm builds the Ψ array

of T incrementally, starting with that of T dn/`e, and then constructs the Ψ array

of T dn/`e−1T dn/`e and so on. Eventually the Ψ array of T 1T 2 . . . T dn/`e = T is

constructed. The construction time required for each segment is O(` log n+n) =

O(n) time, and the overall time is O(n log n), which is independent of |Σ|. The

space required is O(n(H0 + 1)) bits (precisely, n(H0 + 3 + ε + o(1)) bits for any

0 < ε < 1).

Recall from the last section that, when we construct the CSA character by

character, the key point is to compute the rank of the newly added suffix among

the existing ones, and alter the existing Ψ array accordingly. Indeed, when we

construct the CSA segment by segment, the idea is similar. To cater for a new

segment, we again compute the rank of all newly added suffixes among the exist-
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ing ones. Intuitively, this is to find all positions where the existing Ψ array needs

to be ‘expanded’ in order to accommodate the new suffixes. However, knowing

such rank is not sufficient. We also need the rank of the new suffixes among

themselves. Details are as follows.

Consider any i in [1, dn/`e − 1]. Let B denote the string T i+1T i+2 · · ·T dn/`e.
Suppose that we have built ΨB, the CSA of B. Let A = T iB. Adding T i to B

introduces ` new suffixes; we call them the long suffixes of A. The set of the long

suffixes are referred to as LS(A). Other suffixes of A are also suffixes of B, we

call them the short suffixes. Note that S(A) = S(B)∪LS(A). To determine the

rank of a long suffix x among S(A), we can compute the rank of x among S(B)

and the rank of x among LS(A), and then sum them up.

Fact 3.3 Let x be a long suffix of A (i.e., x = Ak for some k ∈ [0, `− 1]). Then

Rank(x,S(A)) = Rank(x,LS(A)) + Rank(x,S(B)).

Once the rank of the long suffixes among among S(A) is known, we can also

compute the rank of each short suffix among S(A) by simply adjusting the rank

of a short suffix among S(B) according to distribution of the long suffixes. To

speed up the computation, we exploits a data structure that supports in O(1)

time the rank and select operations.

In Sections 3.2.1 and 3.2.2, we show how to compute the values Rank(x,LS(A))

and Rank(x,S(B)) for every long suffix x, respectively. In addition, we describe

how to store them in a space efficient way to allow fast retrieval. In Section 3.2.3,

we give the details of constructing ΨA from ΨB, and show that the CSA of T can

be constructed in O(n log n) time using O(n(H0 + 1)) bits.

Before going into the details of the incremental construction, we give the

details for building the first Ψ array (i.e., the Ψ for T dn/`e). Note that T dn/`e

contains at most ` characters and a brute force approach for constructing Ψ does

not use too much space. Precisely, this Ψ can be obtained easily in O(` log `)

time using 3` log n bits of space as follows. We use three arrays of ` log n bits for

storing the SA, SA−1 and Ψ of T dn/`e explicitly. First, we compute the SA for

T dn/`e by suffix sorting, which takes O(` log `) time using ` log n bits in addition

to that for storing SA [52]. Afterwards, the SA−1 can be computed in O(`) time.

When both SA and SA−1 are available, we can construct the Ψ array in O(`)

time.
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3.2.1 Rank of Long Suffixes among Themselves

This section describes how to compute the rank of the ` long suffixes of A among

themselves (i.e., suffixes in LS(A)). A straightforward method is to sort the

suffixes of A and then determine the rank of every suffix of A among themselves.

However, this requires O(n log n) time when |A| = O(n) [52, 56]. In fact, when

given ΨB, a simple observation shows that it suffices to perform suffix sorting on

the prefix A[0, 2` − 1] only, and the time is reduced to O(` log `). The idea is

as follows: if the first ` characters of two suffixes (say, Ai and Aj) in LS(A) are

different, their relative order can be decided immediately; otherwise we resolve

their relative order by comparing their suffixes starting at the (`+1)-th character,

which are exactly the suffixes of B starting at position i and j (i.e., Bi and Bj).

Note that the relative order of Bi and Bj can be deduced from ΨB. More precisely,

define P and Q to be two arrays of ` integers such that for all k in [0, `− 1],

• P [k] is the rank of Ak among LS(A) when only the first ` characters are

considered;

• Q[k] is the rank of Bk among S(B).

Fact 3.4 Consider the tuples (P [k], Q[k]) for all k ∈ [0, ` − 1]. For any long

suffix Ah, Rank(Ah,LS(A)) is equal to the rank of (P [h], Q[h]) among these `

tuples.

Suppose that ΨB is given. Below we give the details of computing the arrays

P and Q. Then, we make use of the above fact to compute the rank of the long

suffixes of A among themselves. The results are stored in an array called M .

Details are as follows:

Step 1: Computing P . To sort the ` long suffixes of A according to their first

` characters, we focus on the substring A[0, 2` − 1] and apply the suffix sorting

algorithm of Larsson and Sadakane [52] for log ` rounds, which can figure out the

order of the suffixes according to the first 2log ` = ` characters. Then, for each k

in [0, `− 1], we extract the rank of Ak and store it into P [k]. The time required

is O(` log `).

Step 2: Computing Q. For any k in [0, `−1], Q[k] = Rank(Bk,S(B)), which

is equal to SA−1
B [k]. By definition, SA−1

B [0] = ΨB[0], SA−1
B [1] = ΨB[ΨB[0]], and

in general, SA−1
B [k] = Ψk+1

B [0]. Thus, we can compute Q by evaluating Ψk[0]

iteratively for k = 1, . . . , `. The time required is O(`).
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Step 3: Sorting. Consider the tuples (P [k], Q[k]) for all k in [0, `−1]. Perform

the sorting on these tuples in O(` log `) time, Then, for each k in [0, `− 1], M [k]

is the order of Rank(Ak,LS(A)).

Time and space requirement: Steps 1-3 altogether require O(` log `) time. As

to be shown later, we will also need the inverse of M , denoted M−1, which can

be computed from M in O(`) time. Note that M and M−1 each require ` log n

bits, and the above steps require an additional working space of 2` log n bits (for

storing P and Q). The total space requirement is 4` log n bits.

3.2.2 Rank of Long Suffixes among S(B)

This section shows that if ΨB is given, then the rank of the ` long suffixes of

A among all suffixes of B can be computed in O(` log n + n) time. Apart from

ΨB, the space required is ` log n bits, which is essentially needed for storing the

output.

For any character c, let #B(c) denote the number suffixes of B starting with

c, and let αB(c) denote the number of suffixes of B whose starting character is

lexicographically smaller than c. Note that O(n) time suffices to compute #B(c)

and αB(c) for all c. All suffixes of B starting with c have a rank in the range

[αB(c), αB(c) + #B(c)− 1], which is denoted RB(c) below. The following lemma

shows how to determine rank incrementally, i.e., how to derive Rank(cX,S(B))

from Rank(X,S(B)) for any string X and character c.

Lemma 3.5 Consider any string X and any character c. Let H denote the set

{r ∈ RB(c) | ΨB[r] < Rank(X,S(B))}. Then,

Rank(cX,S(B)) =

{
αB(c) if H is empty

max {r | r ∈ H} otherwise

Proof: First, we claim that H stores the rank of all those suffixes of B which

have c as the first character, and which are lexicographically smaller than cX.

The reason is as follows: Consider any suffix of Bi whose first character is c. Let r

be its rank among S(B). Note that r is within RB(c). If Bi < cX, then Bi+1 < X.

Denote the rank of Bi+1 as r′. Then r′ < Rank(X,S(B)). On the other hand, by

definition, ΨB[r] = SA−1
B [SAB[r]+1] = r′ (where SAB and SA−1

B denotes the suffix

array of B and its inverse). Therefore, ΨB[r] < Rank(X,S(B)). Reversing the

argument, we can show that for every r in RB(c) with ΨB[r] < Rank(X,S(B)),
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the suffix of B with rank r (i.e., BSAB [r]) is lexicographically smaller than cX.

Thus, the claim follows.

We are now ready to prove the lemma. If H is empty, any suffix of B

starting with character c is lexicographically larger than or equal to cX. Then,

Rank(cX,S(B)) is equal to the rank of the single character c among S(B), which

is αB(c). If H is not empty, Rank(cX,S(B)) = αB(c) + |H|. By Corollary 2.2,

ΨB[r] is strictly increasing for r in RB(c), and H is equal to {αB(c), αB(c) +

1, . . . , αB(c)+ |H|−1}. Thus, max {r | r ∈ H} = αB(c)+ |H|−1, and the lemma

follows. �

Based on the above lemma, we can compute the required rank in a backward

manner as follows. The result is stored in an array L[0, ` − 1] such that L[k] =

Rank(Ak,S(B)) for all k in [0, `− 1].

For k = `− 1 down to 0, compute L[k] as follows: Let c = A[k]. The

suffix Ak can be expressed as cAk+1. Note that Rank(Ak+1,S(B)) has

been computed and stored in L[k+ 1].∗ To compute L[k], we find the

maximum r in RB(c) satisfying ΨB[r] ≤ L[k+ 1]. Since ΨB is strictly

increasing in the range RB(c), we can use a binary search to find the

maximum r; this requires O(log n) time. If r exists, we set L[k] to be

r; otherwise, we set L[k] to be αB(c).

Time and space requirement: The time required for computing #B, αB, and L

is O(` log n+n). Note that L occupies ` log n bits. The array αB requires |Σ| log n

bits. We do not store #B explicitly as any of its entries can be computed from

αB in O(1) time. In most applications, we can assume that |Σ| ≤ n/ log n and

αB requires at most n bits.†

∗When k = `− 1, we assume that L[`] has been set to the value of ΨB [0]. Note that L[`] is
the rank of A` (or equivalently B0) among S(B), which is equal to SA−1

B [0] = ΨB [0].
†For the unusual case where |Σ| > n/ log n, we can still reduce the space requirement to

2n+o(n) bits by representing αB as a bit vector Z plus an indexing data structure that supports
O(1)-time rank and select operation [42, 68]. Z is defined as #B(a1) 0’s, a 1, #B(a2) 0’s, a
1, #B(a3) 0’s, a 1, and so on, where ai denotes the i-th smallest character in Σ. Z occupies at
most 2n bits, and it takes o(n) bits for the extra data structure [68]. Any entry αB [i] can then
be computed in O(1) time by a select-one operation (to obtain the position u of the (i− 1)-th
1 in Z), followed by a rank-zero operation (to count the number of zeroes before position u).
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3.2.3 Computing ΨA

This section shows how to make use of the results of Sections 3.2.1 and 3.2.2 to

compute ΨA in O(` log n+n) time. For the space requirement, it takes 4` log n+

o(n) bits in addition to that for maintaining ΨA and ΨB. Recall that the following

three arrays are available.

1. An array M such that M [i] stores Rank(Ai,LS(A)).

2. An array M−1, which is the inverse of M , such that M−1[i] stores the

position of the suffix among LS(A) whose rank is i.

3. An array L such that L[i] stores Rank(Ai,S(B)).

By Fact 3.3, we can compute the rank of each long suffix Ak (where k in

[0, ` − 1]) among S(A) by summing M [k] and L[k]. For the short suffixes of A,

their rank among S(A) can be figured out by adjusting their rank among S(B)

according to distribution of the long suffixes. Precisely, let m = |A|, and define

V [0,m− 1] to be a bit vector such that V [i] = 1 if the suffix of A with rank i is a

long suffix, and V [i] = 0 otherwise. We need V to support two types of efficient

queries:

• rank0(V, i) and rank1(V, i) returns the number of 0’s and 1’s preceding V [i],

respectively.

• select0(V, j) returns the position of the j-th 0 in V .

Before showing how to construct V , we present a simple way to make use of V

to calculate the rank of a short suffix among S(A) from its rank among S(B),

and vice versa.

Lemma 3.6 For any short suffix x of A, let r = Rank(x,S(A)) and r′ =

Rank(x,S(B)). Then, r = select0(V, r′ + 1) and r′ = rank0(V, r).

Proof: By definition, V [r] = 0. In the subarray V [0, r − 1], the number of 0’s

is equal to the number of short suffixes lexicographically smaller than x, which

is equal to r′. Furthermore, V [r] contains the (r′ + 1)-th 0. �

Next, we give the details of constructing V . Note that the number of bits in

V depends on the size of A, which can be as big as n.

Lemma 3.7 The bit vector V can be constructed from the array L in O(n) time.
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Proof: We assume that |A| bits are allocated for storing V explicitly. We

compute V from L as follows: Recall that L stores the ranks of the long suffixes

among S(B). These ranks can solely determine which entries in V store the 1’s.

We sort the ranks in L in ascending order, denoted as r0, r1, · · · , r`−1. Then we fill

V with the following bits: r0 0’s, a 1, (r1−r0) 0’s, a 1, · · ·, and finally (r`−1−r`−2)

0’s, a 1, followed by all zeroes. �

There are several data structures in the literature that support the rank and

select operations on a bit vector in constant time [42, 68]. In particular, we

can make use of the recent result by Raman, et al. [68]; precisely, we can build

a fully indexable dictionary for V (Lemma 2.3 in [68]) directly from L and we

do not need to store the vector V explicitly. The size of this data structure

and the construction space are both log
(
n
`

)
+ O(n log logn

logn
) = o(n) bits, and the

construction time is O(n). With this data structure, the retrieval of V [i] and the

queries rank0(V, i), rank1(V, i), and select0(V, j) are performed in O(1) time.

Finally, we are ready to show how to compute ΨA[r] for all r in [0,m − 1].

Recall that ΨA[r] is defined as SA−1
A [SAA[r]+1], or equivalently, if Ak is the suffix

such that Rank(Ak,S(A)) = r, then ΨA[r] = Rank(Ak+1,S(A)). The following

two lemmas show how to make use of V to figure out ΨA[r] from ΨB[r].

Lemma 3.8 Consider any short suffix Ak whose rank among S(A) is r. Then

• Rank(Ak+1,S(B)) = ΨB[rank0(V, r)]; and

• Rank(Ak+1,S(A)) = select0(V,ΨB[rank0(V, r)] + 1).

Proof: Since Ak is a short suffix whose rank among all suffixes of A is r, its

rank among all suffixes of B is r′ = rank0(V, r). The rank of Ak+1 among all

suffixes of B is p = ΨB[r′]. By Lemma 3.6, ΨA[r], the rank of Ak+1 among all

suffixes of A, is select0(V, p+ 1). �

Lemma 3.9 Consider any long suffix Ak whose rank among S(A) is r. Then

• k = M−1[rank1(V, r)]; and

• if k < ` − 1 then Rank(Ak+1,S(A)) = M [k + 1] + L[k + 1]; otherwise,

Rank(Ak+1,S(A)) = select0(V,ΨB[0] + 1).

Proof: Since x is a long suffix, its rank among all long suffixes is r′ = rank1(V, r).

By the definition of M , k = M−1[r′]. Note that k is in the range [0, ` − 1]. If

k < `− 1, then ΨA[r], which is the rank of Ak+1 among all suffixes of A, is equal

to M [k + 1] + L[k + 1] (by Fact 3.3).
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For the special case where k is equal to ` − 1, ΨA[r] is equal to the rank of

A` = B0 among all suffixes of A. We can find this rank as follows: Compute the

rank p of B0 among all suffixes of B, which is equal to SA−1
B [0] = ΨB[0]. Then,

by Lemma 3.6, the rank of B0 among all suffixes of A is select0(V, p+ 1). �

Based on the above two lemmas, we can compute ΨA[r] sequentially for r =

0, 1, . . . ,m−1. For the base case when r = 0, we note that ΨA[0], which is defined

as SA−1[0] or the rank of A0 among all suffixes of A, is exactly M [0] + L[0] (by

Fact 3.3). The details are depicted in Figure 3.1.

ΨA[0]←M [0] + L[0];

for r ← 1 to m− 1

if V [r] = 0 { % The suffix with rank r is a short suffix.

r′ ← rank0(V, r);

p← ΨB[r′];

ΨA[r]← select0(V, p+ 1);

}
else { % The suffix with rank r is a long suffix.

r′ ← rank1(V, r);

k ←M−1[r′];

if k < `− 1

ΨA[r]←M [k + 1] + L[k + 1];

else {
p← ΨB[0];

ΨA[r]← select0(V, p+ 1);

}
}

Figure 3.1: Computing ΨA[r] sequentially.

Calculating each ΨA[r] involves a constant number of O(1) time operations,

and the whole procedure takes O(m) = O(n) time. Combining the results of

Sections 3.2.1 and 3.2.2, we have the following lemma.

Lemma 3.10 Suppose that ΨB is given. Computing all the auxiliary data struc-

tures (M , M−1, L, and V ) and then enumerating the values of ΨA can be done in

O(` log n+n) time. Excluding the space for representing ΨA and ΨB, the working

space required is 4` log n+ n+ o(n) bits.
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As mentioned in Lemma 2.3 of Section 2.3, ΨA admits a compact represen-

tation using n(H0 + 2 + o(1)) bits. Together with Lemma 3.10, we conclude this

section with the following result.

Theorem 3.11 Given a string T of length n, the CSA of T can be computed in

O(n log n) time using O(n(H0 + 1)) bits.

Proof: The construction is divided into dn/`e = ΘO(log n) phases since ` =

Θ(n/ log n). Each phase takes O(` log n + n) = O(n) time, and the overall time

is O(n log n).

For the space requirement, it takes 4` log n+n+ o(n) bits in addition to that

for two Ψ arrays. The total space is thus n(2H0+5+o(1))+4` log n bits. Choosing

` = εn
4 logn

for any 0 < ε < 1, the space requirement becomes n(2H0+5+ε+o(1)) =

O(n(H0 + 1)) bits. Furthermore, by a careful memory management, we can

actually maintain the two Ψ arrays together using n(H0 + 2 + o(1)) bits only.

That is, we overwrite the old Ψ array when we store the new Ψ. Then the total

space requirement is reduced to n(H0 + 3 + ε+ o(1)) bits. �



Chapter 4

Constructing CSA and FM-index

in O(n log log |Σ|) time

In Chapter 2, we have described a representation of the Ψ function of the CSA

that takes O(n(H0 +1)) bits of storage, and show that this representation can be

stored easily when the Ψ values are output in sequential order. In this chapter,

we introduce another representation of Ψ, which takes slightly more space of

O(n log |Σ|) bits. In compensation, this representation can be produced easily

even if the Ψ values are output in an arbitrary order.

Based on this representation, we show that CSA and FM-index can be con-

structed in O(n log n) time and O(n log |Σ|)-bit working space, following the

framework of Farach’s linear-time suffix tree construction algorithm [22]. Intu-

itively, Farach’s idea is to first construct the suffix tree for even-position suffixes

using recursion, and then from which we obtain the suffix tree for odd-position

suffixes, and finally we merge the two suffix trees together to produce the desired

suffix tree. Here, we make use of the Ψ function of CSA and the Burrows-Wheeler

text alternately as an implicit representation of these suffix trees.

To achieve further speed up, we observe that the bottleneck of our algorithm

is the frequent execution of backward search steps. Using the known implemen-

tation by Sadakane and Shibuya [75], each step requires O(log n) time. In this

chapter, we introduce an auxiliary data structure of O(n log |Σ|) bits which can

improve each step to O(log log |Σ|) time instead. As a result, the total time for

our construction algorithm is improved to O(n log log |Σ|) time.

The organization of this chapter is as follows. In Section 4.1, we introduce

the new representation of Ψ and some preliminary lemmas. In Section 4.2, we

39
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introduce the auxiliary data structure that leads to the improvement in backward

search algorithm. Section 4.3 describes the framework for the construction algo-

rithm, while Section 4.4 and 4.5 details the main steps of the algorithm. Finally,

we discuss a further improvement when the alphabet size is small in Section 4.6.

4.1 Preliminaries

This section is divided into two parts. The first part describes the new represen-

tation of the Ψ function. In the second part, we discuss the duality between the

Ψ function and the Burrows-Wheeler text W .

Firstly, we review some of the basic notations and assumptions. For a text T

of length n over an alphabet Σ, it is denoted by T [0, n − 1]. Each character of

Σ is uniquely encoded by an integer in [0, |Σ| − 1] which occupies log |Σ| bits. In

addition, a character c is alphabetically larger than a character c′ if and only if

the encoding of c is larger than the encoding of c′.

Finally, we assume that T [n − 1] is a special character that does not appear

elsewhere in the text. Note that we have removed a previous assumption that

this special character is the smallest character in the alphabet. According to this

change, we generalize the definition of the Ψ function as follows:

• Ψ[i] = SA−1[SA[i] + 1] if SA[i] 6= n− 1;

• Ψ[i] = SA−1[0] otherwise.

4.1.1 Representation of Ψ

Recall from Corollary 2.2 that the Ψ function is piece-wise increasing. In addition,

each Ψ value is less than n. Therefore, we can make use of a function ρ(c, x) =

enc(c) · n + x and obtain a total increasing function Ψ′[i] = ρ(T [i],Ψ[i]), where

enc(c) denotes the encoding of the character c. Note that value of Ψ′ is less than

n|Σ|.
Based on the total increasing property, Ψ′ can be stored as follows [36]. We

divide each Ψ′[i], which takes log n+ log |Σ| bits, into two parts qi and ri, where

qi is the first (or most significant) log n bits, and ri is the remaining log |Σ| bits.

We encode the values q0, q1 − q0, . . . , qn−1 − qn−2 in a bit-vector B1 using unary

codes. (Recall that the unary code for an integer x ≥ 0 is encoded as x 0’s

followed by a 1.) Note that the encoding has exactly n 1’s where the (i + 1)-th
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1, which corresponds to Ψ[i], is at position i+ qi. Also, the total number of 0’s is

qn−1, which is at most n. Thus, B1 uses 2n bits. The ri’s are stored explicitly in

an array B2[0, n − 1] where each entry occupies log |Σ| bits. Thus, B2 occupies

n log |Σ| bits. Moreover, an auxiliary data structure of O(n/ log log n) bits is

constructed in O(n) time to enable constant time rank and select queries, and

thus supporting the retrieval of any qi in constant time [42, 61]. Then, the total

size is n(log |Σ|+2)+o(n) bits. Since qi and ri can be retrieved in constant time,

so can Ψ′[i] = |Σ|qi + ri. This gives the following lemma.

Lemma 4.1 The Ψ′ function can be encoded in O(n log |Σ|) bits, so that each

Ψ′[i] can be retrieved in constant time.

Corollary 4.2 The Ψ function can be encoded as Ψ′ in O(n log |Σ|) bits, so that

each Ψ[i] can be retrieved in constant time.

Proof: The retrieval time follows since Ψ[i] = Ψ′[i] mod n. �

4.1.2 Duality between Ψ and W

Recall that the Burrows-Wheeler text W is a transformation on T such that

W [i] = T [SA[i]− 1] if SA[i] > 0, and W [i] = $ otherwise. It is known that Ψ and

W are one-to-one corresponding. In the section, we show that the transformation

between them can be done in linear time and in O(n log |Σ|)-bit space.

We first give a property relating W and Ψ.

Definition 4.3 Given an array of characters x[0, n − 1], we define the stable

sorting order of x[i] in x to be the number of characters in x which is alphabetically

smaller than x[i], plus the number of characters x[j] with j < i which is equal to

x[i]. This is in fact the position of x[i] after stable sorting.

Lemma 4.4 ([13]) Let k be the stable sorting order of W [i] in W . Then, Ψ[k] =

i.

Proof: Let Yi denote the suffix TSA[i]−1 when SA[i] > 0, and the suffix T [n− 1]

otherwise. Note that when i < j, if Yi and Yj are starting with the same character,

the lexicographical order of Yi will be smaller than Yj. The reason is that, the

remaining part of Yi is TSA[i], and the remaining part of Yj is TSA[j], and since

i < j, we have TSA[i] < TSA[j] and thus Yi < Yj. Also, observe that the first
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character of Yi is equal to W [i]. Then, it follows that the stable sorting order of

W [i] in W is equal to the rank of Yi among the set of all Yi’s, which is the set of

all suffixes S(T ).

Thus, we have k = SA−1[SA[i] − 1] when SA[i] > 0, and k = SA−1[n − 1]

otherwise. In the former case, SA[k] = SA[i]−1 < n−1, so Ψ[k] = SA−1[SA[k]+

1] = SA−1[SA[i]] = i. For the latter case, we have i = SA−1[0] and SA[k] = n−1.

Thus we have Ψ[k] = SA−1[0] = i. In summary, Ψ[k] = i for all cases, and the

lemma follows. �

The next two lemmas show the linear time conversion between W and Ψ.

Lemma 4.5 Given W , we can store Ψ in O(n) time and in O(n log |Σ|) bits.

The working space is O(n log |Σ|) bits.

Proof: We construct Ψ′ in Section 4.1.1 from W as an encoding of Ψ (Corol-

lary 4.2). To construct Ψ′, we create a bit-vector B1[0, 2n − 1] and initialize all

bits to 0. We also create an array B2[0, n− 1] where each entry occupies log |Σ|
bits.

Now, we show how to compute the stable sorting order of W [i] in W , for

i = 0, 1, 2, . . .. To do so, we use three arrays for our help. The first array is L1

such that L1[c] stores the number of occurrences of the character c in W . This

array can be initialized by scanning W once. The second array is L2 such that

L2[c] stores the number of occurrences of a character that is smaller than c in

W . This array can be initialized by scanning L1 once. Finally, the third array is

L3 such that L3[c] stores the number of occurrences of c seen so far. Initially, all

entries of L3 are initialized to 0.

Now, we proceed to read W [0], W [1], and so on. Note that during the process,

when we read a character c, we maintain the correctness of L3 by incrementing

L3[c] just before the next character is read. Thus, at the beginning of step i, the

counter L3[W [i]] will be storing the number of occurrences of W [i] in W [0, i− 1],

and the stable sorting order of W [i] can be computed at by L2[W [i]] + L3[W [i]].

Let k be the stable sorting order of W [i] that is computed at step i in the

above algorithm. By Lemma 4.4, Ψ[k] = i. Thus, we have Ψ′[k] equals x =

ρ(T [SA[k]],Ψ[k]) = ρ(W [i], i). By our scheme, x is divided into two parts q and

r, where q = x div |Σ| is the first log n bits, and r = x mod |Σ| is the remaining

bits. For q, a 1 is stored at B1[k + q]. For r, it is stored at B2[k].

As the stable sorting order of each W [i] is different, all possible Ψ[k] will be

computed and stored eventually. A summary of the overall algorithm is shown
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1. Compute L1[c] to store the number of occurrences of each

c in Σ.

2. Compute L2[c] to store the number of occurrences of a char-

acter that is smaller than c. That is, L2[c] =
∑

d<c L1[c] for

c in Σ.

3. Let L3[c] be an array that stores the number of occurrences

of the character c seen so far.

4. Initialize all entries of L3 to be 0.

5. For i = 1, 2, . . . , n

Let c = W [i], k = L2[c] + L3[c]

Compute x = ρ(c, i)

Let q = x div |Σ|, r = x mod |Σ|
Set B1[k + q] = 1 and B2[k] = r

Increment L3[c] by one

6. Compute the O(n/ log log n)-bit auxiliary data structure

for B1.

Figure 4.1: Computing Ψ from W .

in Figure 4.1. It is easy to see that the overall time is O(n+ |Σ|). For the space

complexity, note that L1, L2 and L3 each occupies |Σ| log n bits, which is at most

n log |Σ| bits because |Σ| ≤ n. Thus, we use O(n log |Σ|)-bit working space. �

Lemma 4.6 Given Ψ and T , we can store W in O(n) time and in O(n log |Σ|)
bits. The working space is O(n log |Σ|) bits.

Proof: Let t = SA−1[0]. Then, we have Ψ[t] = SA−1[1]. In general, Ψk[t] =

SA−1[k].

Hence, we have W [Ψk[t]] = T [k−1]. To construct W , we can first compute t.

Recall that T [n− 1] is a unique character in T . By scanning T , we can find the

value x = SA−1[n−1], which is equal to the number of occurrences of a character

in T that is smaller than T [n − 1]. Then, by definition, Ψ[x] = SA−1[0], which

is equal to t. Thus, t can be found in O(n) time. Afterwards, we iteratively

compute Ψi[t] and set W [Ψi[t]] = T [i − 1], for i = 1 to n. As Ψi[t] corresponds

to the rank of a different suffix of T for different i, all the characters of W will



CHAPTER 4. CONSTRUCTING CSA IN O(N LOG LOG |Σ|) TIME 44

eventually be computed and stored by the above algorithm. The total time of

the algorithm is O(n), and the space for W ,T , and Ψ are all O(n log |Σ|) bits.

The lemma thus follows. �

4.2 Improving the Backward Search Algorithm

Let S be a text of length m over an alphabet ∆. In this section, we present an

O(m+ |∆|)-bit auxiliary data structure for the the Ψ function of S that improves

each backward search step in the backward search algorithm from O(logm) time

to O(log log |∆|) time.

Formally, a backward search step is defined as follows.

Definition 4.7 For any pattern P , suppose that the rank of P among all suffixes

of S is known. A backward search step then computes the rank of cP among the

suffixes of S for any character c ∈ ∆.

Let Ψ′ denote the total increasing function such that Ψ′[i] = ρ(S[SA[i]],Ψ[i])

and ρ(c, x) = enc(c) ·m+ x. Then, we have the following lemma.

Lemma 4.8 Let r be the rank of P among all suffixes of S. Then, the rank of cP

among all suffixes of S is equal to j ∈ [0,m] such that Ψ′[j− 1] < ρ(c, r) ≤ Ψ′[j].

(As a sentinel, we let Ψ′[−1] = −1 and Ψ′[m] = m|∆|.)

Proof: It is easy to check that for all i = 0, 1, . . . , j − 1, the rank-i suffix of S

must either be starting with a character smaller than c, or starting with c but the

remaining part is lexicographically smaller than P . Thus, for all i = 0, 1, . . . , j−1,

the rank-i suffix of S is lexicographically smaller than cP . On the other hand,

for all i ≥ j, the rank-i suffix of S is lexicographically not smaller than cP . Thus,

the rank of cP is j. �

Let Q be a set of numbers. For any integer x, the rank of x in Q is the number

of elements in Q which is smaller than x. Essentially, a backward search step that

computes the rank of cP in the above lemma, is equivalent to finding the rank of

ρ(c, r) in the set of all Ψ′ values. The following theorem shows a data structure

that is useful for finding such rank. Note that in contrast to the previous data

structures for the rank query [42, 68], our data structure requires either less space

for storage, or less time in the construction; the drawback is a blow-up in query

time. The proof of this theorem will be deferred to Section 4.2.1.
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Theorem 4.9 Let Q be a set of n numbers, each of length Θ(log n) bits. Then,

a data structure of size O(n log n) bits supporting O(log log n)-time rank query

in Q can be constructed in O(n) time and O(n log n)-bit working space.

Based on Theorem 4.9, we can use some extra space to achieve a more gen-

eralized result, as shown in the following corollary.

Corollary 4.10 Let Q′ be a set of n values, each of length log `+Θ(log n) bits for

any `. Then, a data structure of size O(n log n+ `) bits supporting O(log log n)-

time rank query in Q′ can be constructed in O(n+ `) time and O(n log n+ `)-bit

working space.

Proof: The idea is to apply Theorem 4.9 by transforming the set Q′ into another

set such that each value takes only Θ(log n) bits. Firstly, we scan Q′ and create a

bit-vector B[0, `− 1] such that B[i] = 1 if there is some number in Q′ whose first

log ` bits represents a value i, and B[i] = 0 otherwise. Afterwards, we construct

an auxiliary data structure for B of size o(`) bits to support constant time rank

and select queries.

Now, we transform each number in Q′ as follows: if the first log ` bit of the

number represents the value i, these bits are replaced by the binary bit-sequence

for the rank of i in B. Note that the rank of i is less than n, as there are only n

numbers. Thus, after the transformation, each value takes Θ(log n) bits, and in

addition, the transformation preserves the ordering among the elements in Q′.

Let the set of the transformed values be Q. We create the data structure of

Theorem 4.9 on Q. To perform a rank query for x in Q′ (we assume that x has

the same length as any number in Q′), we first obtain the first log ` bits of x.

Suppose that these bits represent the value ix. Then there are two cases:

(Case 1) If B[ix] = 1, we replace the first log ` bits of x by the log n-bits that

represents the rank of ix in B, and obtain a new value y. Then, it is easy

to see that the rank of x in Q′ is equal to the rank of y in Q.

(Case 2) Otherwise, we replace the first log ` bits of x by the log n-bits that

represents the rank of ix in B, while setting the remaining Θ(log n) bits to

zeroes, and obtain a new value z. Then, it is easy to see that the rank of x

in Q′ is equal to the rank of z in Q.

Finally, for the time and space complexity, B and its auxiliary data structures

can be created in O(`) time and stored in `+ o(`) bits, while the data structure
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for rank query in Q can be created in O(n) time and stored in O(n log n) bits

(By Theorem 4.9). The lemma thus follows. �

Now, we are ready to describe the main lemma of this section.

Lemma 4.11 Let S be a text of length m over an alphabet ∆. Suppose that the

Ψ function of S is given, which is stored as Ψ′ using the scheme in Section 4.1.1.

Then, an auxiliary data structure for the Ψ function of S can be constructed in

O(m+|∆|) time, which supports each backward search step in O(log log |∆|) time.

The space requirement is O(m+ |∆|) bits.

Proof: Let V denote the set of all Ψ′ values. To prove the lemma, it suffices to

show a data structure of O(m+ |∆|) bits that supports rank query for any x in

V in O(log log |∆|) time.

Firstly, recall that in our encoding of Ψ′, each value in V is stored in two

parts, where the first logm bits are encoded by unary codes in a bit-vector B1,

and the remaining log |∆| bits are encoded in an array B2 as it is. In addition,

there is an auxiliary data structure supporting constant time rank and select

queries.

Let Gi be the set of Ψ′ values whose first logm bits represents the value i.

Among the sets of Gi’s, we are concerned with those sets whose size is greater

than log |∆|. Let Gi1 , Gi2 , . . . , Gik be such sets, and i1 < i2 < · · · < ik.

Note that the groups Gi1 , Gi2 , . . . , Gik each has size between log |∆| and |∆|.
Now, we combine the groups, from left to right, into super-groups of size Θ(|∆|).
More precisely, we start from Gi1 , merge it with Gi2 , Gi3 and so on, until the

size exceeds |∆|. Then, we merge the next unmerged group with its succeeding

group and so on, until the size exceeds |∆|. The process is repeated until all

groups are within a super-group. (To ensure that each super-groups would have

size Θ(|∆|), we add a dummy group Gm = {m|∆|,m|∆|+ 1, . . . , (m+ 1)|∆| − 1}
as a sentinel.)

For each super-group G, let v0, v1, . . . , vp be its Θ(|∆|) elements. Now, we

pick every log |∆| elements (i.e., v0, vlog |∆|, v2 log |∆|, . . .), subtract each of them by

v0, and make them the representatives of this super-group. Then, we construct

the data structure for rank query of Corollary 4.10 over these representatives.

With the above data structure, rank query for any x in G can be supported

as follows. We first check if x ≤ v0. If so, the rank of x is 0. Otherwise, we find

the rank of x − v0 among the representatives, which takes O(log log |∆|) time.
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Suppose the rank is r. Then, the rank of x in G must lie between r log |∆| and

(r + 1) log |∆| − 1, and this can be found by a binary search in the elements

{vr log |∆|, . . . , v(r+1) log |∆|−1} which takes O(log log |∆|) time. In summary, the

time required is O(log log |∆|).
Now, let us complete the whole picture to show how to perform the rank

query for x in V . Firstly, we extract the first logm bits of x by dividing it with

|∆|. Let i′ = x div |∆| be its value. Next, we determine the size of Gi′ , which

can be done in constant-time using rank and select queries on B1. If the size is

0 (i.e., Gi′ is empty), the rank of x in V can be computed immediately (precisely,

the required rank is equal to the number of 1’s in B1[0, i′ − 1], which can be

computed in constant time using B1 and its auxiliary data structure). If the size

is smaller than log |∆|, the rank of x can be found by performing a binary search

with the elements in Gi′ , which takes O(log log |∆|) time. Finally, if the size is

greater than log |∆|, we locate the super-group G that contains the elements of

Gi′ , and retrieve the rank r of its smallest element v0 in V . Then, the required

rank is r plus the rank of x in G. We now claim that locating the super-group

and retrieval of r can be done in constant time (to be proved shortly), so that

the total time is O(log log |∆|).
We prove the above claim as follows. To support finding the smallest element

in each super-group, and retrieval of its rank in V , we use a bit-vector B′1 of

O(m) bits, obtained from B1 by keeping only those 1’s whose corresponding Ψ′

value is a smallest element in some super-group. Also, we augment B′1 with

constant-time rank and select date structures. Then, the smallest value of the

(i + 1)-th super-group, and its rank in V , can be found by consulting B1 and

B′1 in constant time. In addition, for any Gi (with size greater than log |∆|), the

rank of its super-group among the other super-groups can be found by consulting

B′1 in constant time.

On the other hand, to support locating the rank data structure of the super-

group, we first analyze the space requirement of these data structures. For

a particular super-group G = {v0, v1, . . . , vp}, the data structure is built for

p/ log ∆ = Θ(∆/ log ∆) elements, each of which has value in [0, vp − v0], so that

the space is O(vp−v0 + p
log |∆| · log |∆|) bits (by Corollary 4.10), which is O(vp−v0)

bits since p ≤ vp−v0. Thus, the total space requirement is O(m+ |∆|) bits,∗ and

we assume that the data structures of the super-groups are stored consecutively

according to the rank of its smallest element. Then, we create a bit-vector B3

∗The additional O(|∆|) bits are due to the dummy group Gm.
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whose length is identical to the above data structures, which is used to mark the

starting position of each data structure. Also, we augment the bit-vector with an

o(m+|∆|)-bit auxiliary data structure to support constant time rank and select

query. Thereafter, when we want to locate a super-group for Gi, we find its rank

r among the other super-groups using B′1, and then this rank-r super-group can

be accessed in constant time using B3.

In summary, our data structure takes a total space of O(m + |∆|) bits and

supports each backward search step in O(log log |∆|) time. For the construction,

it takes at most O(m+ |∆|) time. The lemma thus follows. �

4.2.1 Data Structure for Efficient Rank Query

This section is devoted to proving Theorem 4.9. We begin with two supporting

lemmas. The first one is on perfect hash function, which is obtained by rephrasing

the result of Section 4 of [39] as follows.

Lemma 4.12 Given x b-bit numbers, where b = Θ(log x), a data structure of size

O(xb) bits supporting O(1)-time existential query can be constructed in O(x log x)

time and O(xb)-bit working space.

The second one is derived from adapting a result in [58, 81] based on Lemma 4.12.

Lemma 4.13 Given z w-bit numbers, where w = Θ(log z), a data structure of

size O(zw2) bits supporting O(logw)-time rank queries can be constructed in

O(zw log(zw)) time and O(zw2)-bit working space.

Proof: It is shown that rank queries can be solved in O(logw) time, if existential

query for all prefixes of the z numbers can be answered in O(1) time [58, 81].†

The idea is that, given a w-bit number k, its longest common prefix with the z

numbers can be found by binary search (on the length) using O(logw) existential

queries, and such a prefix uniquely determines the rank of k.

†In the original papers, the results are for another query called predecessor, which finds
the largest element in the z numbers that is smaller than the input w-bit number k. However,
such a result can be modified easily for the rank query as follows. For each number i in the z
numbers, it is replaced by the number iz + the rank of i (so that the number now has w+log z
bits), and we construct the predecessor data structure for these modified numbers. For the
intended rank query, we first try to find the predecessor for kz in the modified numbers, and
if no predecessor is found, the rank of k in the z numbers is 0. Otherwise, let this predecessor
be p. It is easy to see that the required result is equal to (p mod z) + 1.
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Notice that only O(zw) strings can be a prefix of the z numbers and each can

be represented in Θ(w) bits. Applying Lemma 4.12 on this set of strings (with

x = O(zw) and b = Θ(w)), we have the required data structure. The lemma thus

follows. �

Now, we prove Theorem 4.9 with the data structure constructed as follows.

1. Let k0 < k1 < · · · < kn−1 be n numbers stored in ascending order by an

array.

2. Partition the n numbers into n/w2 lists, each containing w2 numbers. Pre-

cisely, the lists are in the form {ki, ki+1, . . . , ki+w2−1}, where i ≡ 0 (mod w2).

3. Let the smallest element in each list be its representative. Construct a data

structure for rank query for these representatives based on Lemma 4.13.

The above data structure occupies O(nw) bits, and can be constructed in

O(n) time and O(nw)-bit working space. With such a data structure, the rank

of x among the n numbers can be found in O(logw) time as follows.

1. Find the rank of x among the n/w2 representatives of the lists. Let this be

r.

2. Then, the rank of x among the n numbers must now lie in [rw2, (r+1)w2−1].

Binary search on the w2 elements {krw2 , krw2+1, . . . , k(r+1)w2−1} to find the

rank of x.

Both steps thus take O(logw) time. This completes the proof of Theorem 4.9.

4.3 The Framework of Constructing CSA and

FM-index

Recall that T [0, n − 1] is a text of length n over an alphabet Σ, and we assume

that T [n − 1] is a special character that does not appear elsewhere in T . This

section describes how to construct the Ψ function and the Burrows-Wheeler text

W of T in O(n log log |Σ|) time. Our idea is based on Farach’s framework for

linear-time construction of the suffix tree [22], which first constructs the suffix

tree for even-position suffixes by recursion, based on which induces the suffix
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tree for odd-position suffixes, and then merge the two suffix trees to obtain the

required one.

For our case, we first assume that the length of T is a multiple of 2dlog log|Σ| ne+1.

(Otherwise, we add enough $ and a $′ at the end of T , where $′ is a character

alphabetically smaller than the other characters in T , and proceed with the al-

gorithm. The Ψ of this modified string can be converted into the Ψ of T in O(n)

time.) Let h be dlog log|Σ| ne. For 0 ≤ k ≤ h, we define T k to be the string over

the alphabet Σ2k , which is formed by concatenating every 2k characters in T to

make one character. That is, T k[i] = T [i · 2k1, (i+ 1) · 2k − 1], for 1 ≤ i ≤ n/2k.

By definition, T 0 = T .

In addition, we introduce two notations associating with a string. For any

string S[0,m − 1] with even number of characters, denote Se and So to be the

strings of length m/2 formed by merging every 2 characters in S[0,m − 1] and

S[1,m − 1]S[0], respectively. More precisely, Se[i] = S[2i]S[2i + 1] and So[i] =

S[2i + 1]S[2i + 2], where we set S[m] = S[0]. Intuitively, the suffixes of Se and

So corresponds to the even-position and odd-position suffixes of S, respectively.

We have the following observation.

Observation 4.14 T ie = T i+1.

Also, note that the last characters of T io and T ie are unique among the cor-

responding string. This makes the results in Sections 4.1 and 4.2 applicable for

both texts.

Our basic framework is to use a bottom-up approach to construct Ψ of T i,

or ΨT i , for i = dlog log|Σ| ne down to 0, thereby obtaining Ψ of T in the end.

Precisely,

• For Step i = dlog log|Σ| ne, ΨT i is constructed by first building the suffix

tree for T i using Farach’s algorithm [22], and then converting it back to the

Ψ function.

• For the remaining steps, we construct the ΨT i based on the ΨT i+1 , the latter

of which is in fact ΨT ie
by Observation 4.14. We first obtain ΨT io

based on

T i and ΨT ie
. Afterwards, we merge ΨT io

and ΨT ie
to give ΨT i . The complete

algorithm is shown in Figure 4.2.

Sections 4.4 and 4.5 describe in details how to obtain ΨT io
from ΨT ie

and T i,

and how to merge ΨT io
and ΨT ie

to obtain ΨT i , respectively. This gives the main

theorem of this section.
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1. For i = dlog log|Σ| ne

(a) Construct suffix tree for T i.

(b) Construct ΨT i from the suffix tree.

2. For i = dlog log|Σ| ne − 1 to 0

(a) Construct ΨT io
based on ΨT ie

. (Note: ΨT ie
= ΨT i+1 .)

(b) Construct ΨT i based on the ΨT io
and ΨT ie

.

Figure 4.2: The construction algorithm of Ψ function of T .

Theorem 4.15 The Ψ function and the Burrows-Wheeler text W of T can be

constructed in O(n log log |Σ|) time and O(n log |Σ|)-bit working space.

Proof: We refer to the algorithm in Figure 4.2, which has two phases. For

Phase 1, we have i = dlog log|Σ| ne. We first construct the suffix tree for T i whose

size is n/2dlog log|Σ| ne ≤ n log |Σ|/ log n. This requires O(n log |Σ|/ log n) time and

O(n log |Σ|)-bit space by using Farach’s suffix tree construction algorithm [22].

Then, ΨT i can be constructed in O(n log |Σ|/ log n) time and O(n log |Σ|)-bit

working space. Thus, Phase 1 in total takes O(n) time and O(n log |Σ|)-bit

space.

For every Step i in Phase 2, we construct ΨT i . Let ∆i be the alphabet

of T i. Then, Part (a) takes O(|T i| + |∆i|) time (Lemma 4.21), and Part (b)

takes O(|T i| log log |∆i| + |∆i|) time (Lemma 4.23). For the space, both require

O(|T i| log |∆i| + |∆i|) bits. Note that |T i| = n/2i and |∆i| ≤ |Σ|2
i ≤ n, so the

space used by Step i is O(|T i| log |∆i|+ |∆i|) = O(n log |Σ|) bits, and the time is

O(|T i| log log |∆i|+ |∆i|) = O((n/2i) · (i+ log log |Σ|) + |Σ|2i). In total, the space

for Phase 2 is O(n log |Σ|) bits and the time is:

dlog log|Σ| ne−1∑
i=1

O
( n

2i
(i+ log log |Σ|) + |Σ|2i

)
= O(n log log |Σ|).

The whole algorithm for constructing Ψ of T therefore takes O(n log log |Σ|) time

and O(n log |Σ|)-bit space. Finally, the Burrows-Wheeler text W can be con-

structed from Ψ using Lemma 4.6 in O(n) time and O(n log |Σ|)-bit space. This

completes the proof. �
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Once the Burrows-Wheeler transformation is completed, FM-index can be

created by encoding the transformed text W using Move-to-Front encoding and

Run-Length encoding [25]. When the alphabet size is small, precisely, when

|Σ| log |Σ| = O(log n), Move-to-Front encoding and Run-Length encoding can be

done in O(n) time based on a pre-computed table of o(n) bits. In summary,

this encoding procedure takes O(n) time using o(n)-bit space in addition to the

output index. Thus, we have the following result.

Theorem 4.16 The FM-index of T can be constructed in O(n log log |Σ|) time

and O(n log |Σ|)-bit working space, when |Σ| log |Σ| = O(log n).

4.4 Constructing ΨSo

Given S[0,m − 1] and ΨSe , this section describes how to construct ΨSo . Our

approach is indirect, as prior to obtaining ΨSo , we need to construct the Burrows-

Wheeler text Co of So.

Let ∆ be the alphabet of S. Define x[0,m/2− 1] to be an array of characters

such that x[i] = S[2SAe[i] − 1] where 2SAe[i] − 1 is computed in modulo-m

arithmetic. Let Xi be the string x[i]Se[SAe[i],m/2− 1]S[0].

Observation 4.17 Xi is a suffix of So if SAe[i] 6= 0. Otherwise, the first char-

acter of Xi is S[m− 1], which is unique among other characters in S.

Let X be the set {Xk | 0 ≤ k ≤ m/2 − 1}. Intuitively, X is the same as the

set of suffixes of So. See Figure 4.3(a) for an example of Xi.

Lemma 4.18 The stable sorting order of x[i] in x equals the rank of Xi in X.

Proof: By omitting the first characters of every Xi’s, they are of the form

Se[SAe[i],m/2− 1]S[0], which are already sorted. Thus, the rank of Xi is equal

to the stable sorting order of x[i] in x. �

Lemma 4.19 Given ΨSe and S, we can construct Co in O(m + |∆|) time and

O(m log |∆|+ |∆|)-bit space.

Proof: Let y[0,m/2−1] be an array such that y[i] stores the two characters that

immediately precedes x[i] in S (i.e., S[2SAe[i]− 3]S[2SAe[i]− 2]). In fact, y[i] is
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Xi

i y[i] x[i] Se[SAe[i],m/2− 1] S[0]

0 $a c aa cc g$ a

1 cg $ ac aa cc g$ a

2 ca a cc g$ a

3 ac c g$ a

(a)

i y → Co x→ sorted x

0 cg $

1 ca a

2 $a c

3 ac c

(b)

Figure 4.3: Consider S = acaaccg$. (a) The relationship between x[i], y[i] and

Xi. Note that Xi corresponds to a suffix of So. (b) After stable sorting on the

array x, the array y becomes Co.

the preceding character of Xi in So. Using similar approach as in Lemma 4.6, x

and y can be computed in O(m) time, and both arrays occupy O(m log |∆|) bits.

To construct Co, we perform a stable sort on x as in Lemma 4.5, and iteratively

compute the stable sorting order k of x[i], which is equal to the rank of Xi by

Lemma 4.18. During the process, we set Co[k] = y[i]. The total time is O(m+|∆|)
and the total space is O(m log |∆|+ |∆|) bits. See Figure 4.3 for an example. �

Lemma 4.20 ΨSo can be constructed from Co in O(m+|∆|) time and O(m log |∆|+
|∆|)-bit space.

Proof: The proof is similar to Lemma 4.5. �

Thus, we conclude this section with the following lemma.

Lemma 4.21 Given ΨSe and S, we can construct ΨSo in O(m + |∆|) time and

O(m log |∆|+ |∆|)-bit space.

Proof: The construction is as follows. First, Co is constructed from ΨSe and S

by Lemma 4.19. Then, ΨSo is constructed from Co by Lemma 4.20. The lemma

thus follows. �

4.5 Merging ΨSo and ΨSe

In this section, we construct ΨS from ΨSo and ΨSe . The idea is to determine the

rank of any suffix of S among all suffixes of S, and based on this information,



CHAPTER 4. CONSTRUCTING CSA IN O(N LOG LOG |Σ|) TIME 54

we construct the Burrows-Wheeler text C of S. Finally, we convert C to ΨS by

Lemma 4.5.

Let s be any suffix of S. Observe that the rank of s among the suffixes of

S, is equivalent to the sum of the rank of s among the odd-position suffixes and

that among the even-position suffixes of S. Based on this observation, we can

construct the C array (the Burrows-Wheeler transformation of S) as follows.

Firstly, we construct the auxiliary data structures of Lemma 4.11 for ΨSo and

for ΨSe . Next, we perform backward searches for Se on ΨSo and ΨSe simultane-

ously by Lemma 4.8, so that at step i, we obtain the ranks of Se[m/2− i,m/2−1]

among the odd-position suffixes and even-position suffixes of S, respectively. By

summing these two ranks, we get the rank k of Se[m/2 − i,m/2 − 1] among all

suffixes of of S. Then, we set C[k] to be S[m − 2i − 1], which is the preceding

character of the suffix S[m− 2i,m− 1] = Se[m/2− i,m/2− 1].

Similarly, we perform a simultaneous backward search for So on ΨSo and ΨSe

to complete the remaining entries of C. Thus, we obtain C by O(m) backward

search steps. The algorithm is depicted as MergeCSA in Figure 4.4.

MergeCSA

1. Construct the auxiliary data structures for ΨSo and for ΨSe to sup-

port efficient backward search.

2. Backward search for Se on ΨSo and ΨSe simultaneously, and

(a) at Step i, we obtain the rank of Se[m/2 − i,m/2 − 1] among

the odd-position suffixes and that among the even-position

suffixes of S. Let the sum of the ranks be k.

(b) Set C[k] = S[m− 2i− 1].

3. Backward search for So on ΨSo and ΨSe simultaneously, and fill in

C[k] accordingly.

Figure 4.4: Merging ΨSo and ΨSe .

The following lemma shows the correctness of our algorithm.

Lemma 4.22 The algorithm MergeCSA in Figure 4.4 correctly constructs C[0,m−
1].



CHAPTER 4. CONSTRUCTING CSA IN O(N LOG LOG |Σ|) TIME 55

Proof: Recall that for every suffix S[i,m− 1], C[SA−1[i]] equals the preceding

character of S[i,m−1]. For every even-position suffix S[i,m−1] = Se[i/2,m/2−
1], Step 2 computes its rank k among all odd-position and even-position suffixes.

By definition, k = SA−1[i]. Therefore, Step 2 correctly assigns C[k] to be the

preceding character of S[i,m−1]. By the same argument, Step 3 handles the odd-

position suffixes and correctly assigns C[SA−1[i]] to be the preceding character

of S[i,m− 1].

Therefore, after Steps 2 and 3, MergeCSA completely constructs C[0,m − 1].

The lemma thus follows. �

By Lemma 4.11, the auxiliary data structures can be constructed in O(m +

|∆|) time and O(m+|∆|)-bit space, and then each backward search step is done in

O(log log |∆|) time. On the other hand, the Ψ functions occupies O(m log |∆|)-bit

space. Thus, we have the following lemma.

Lemma 4.23 Given ΨSo and ΨSe, we can construct ΨS in O(m log log |∆|+ |∆|)
time and O(m log |∆|+ |∆|)-bit space.

4.6 Improvement when log |Σ| = O((log log n)1−ε)

In case when the alphabet size is small, precisely, when log |Σ| = O((log log n)1−ε),

we can improve the construction time of CSA and FM-index to O(n), which is

optimal. The improvement is based on the following data structure of Pagh for

supporting constant-time rank queries [66].

Theorem 4.24 [66] Given n distinct numbers in [0,m − 1] such that m =

n logO(1) n, a data structure of size B + O(n(log logn)2

logn
) bits supporting constant-

time rank queries can be constructed in O(n) time and O(B)-bit space where

B = dlog
(
m
n

)
e = n log m

n
+O(n).

We apply the same algorithm as in Section 4.3 for the construction of CSA,

but we make changes only in the encodings of ΨT i , for i < log log log |Σ|. For

those values of i, we have |T i| = n/2i and the alphabet size of T i is |Σ|2i . When

log |Σ| = O((log log n)1−ε), we have |Σ|2i = logO(1) |T i|.‡ Thus, the total increas-

ing sequence of such Ψ′T i ’s can be encoded by Theorem 4.24, and each backward

‡This can be seen by considering the boundary case of i = log log log |Σ|, so that |T i| becomes
smallest while the alphabet size becomes largest.
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search step on these Ψ functions can be done in constant time. This gives the

following theorem.

Theorem 4.25 The CSA, FM-index and the Burrows-Wheeler text W of T

can be constructed in O(n) time and O(n log |Σ|)-bit working space if log |A| =

O((log log n)1−ε).

Proof: We refer to the algorithm in Figure 4.2. After the change in the encodings

of ΨT i for i < log log log |Σ|, the time required by each phase is as follows.

• Phase 1 takes O(n) time;

• For i ≥ log log log |Σ|, Step i in Phase 2 takes O((n/2i) · (i + log log |Σ|) +

|Σ|2i) time;

• For i < log log log |Σ|, Step i in Phase 2 takes O(n/2i + |Σ|2i) time.

It follows that the total time required is O(n). For the space complexity, it

remains O(n log |Σ|) bits. Thus, the CSA and the Burrows-Wheeler text W of

T can be constructed in the stated time and space, while the FM-index can be

constructed in O(n) time and O(n log |Σ|)-bit space once W is obtained. This

completes the proof. �



Chapter 5

Construction of Compressed

Suffix Trees and its Application

for Finding Maximal Unique

Matches

In this chapter, we first give the definition of Compressed Suffix Tree (CST) of

Sadakane [71], and show that CST can be converted from CSA inO(n logε n) time.

Afterwards, we introduce the problem of finding the maximal unique matches

(MUMs) between two texts, and propose efficient algorithm based on CST.

Before we give the definition of the CST, we introduce its basic components

as follows.

Definition 5.1 The parentheses encoding of an ordered tree is defined by at most

2n nested open and close parentheses, which can be constructed by a preorder

traversal of the tree, where we write an open parenthesis when a node is first

visited, then the parentheses encodings for the subtrees of the child node according

to their order, and finally write a close parenthesis when it is last visited.

The parentheses encoding is used to store the topology of the suffix tree.

However, it does not store the information of edge lengths or edge labels. Such

information is stored using the Hgt array as follows.

Definition 5.2 Let LCP(T1, T2) denote the length of the longest common prefix

between T1 and T2. Then, the array Hgt [0, n − 2] is defined such that Hgt [i] =

LCP(TSA[i], TSA[i+1]).

57
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The Hgt array occupies n log n bits without compression. However it can be

represented in linear size by using the suffix array or the compressed suffix array.

Lemma 5.3 ([73]) Given i and SA[i], the value Hgt [i] can be computed in con-

stant time using a data structure of size 2n+ o(n) bits.

For example, the parentheses encoding, and the Hgt array for the suffix tree

of acaaccg$ are shown in Figure 5.1.

Formally, the CST for a text T is defined as follows.

Definition 5.4 The compressed suffix tree of a string T consists of the CSA of

T , the Hgt array, and the parentheses encoding of the topology of the suffix tree

of T .

i 0 1 2 3 4 5 6

Hgt [i] 0 1 2 0 1 1 0

Parentheses Encoding: (()(()(()()))(()()())())

Figure 5.1: The suffix tree of the text T = acaaccg$, the Hgt array, and the

parentheses encoding. Note that each () in the parentheses encoding corresponds

to a leaf in the suffix tree.

We have the following theorem concerning the performance of the CST.

Theorem 5.5 ([74]) For a text T over a constant-size alphabet, the CST of T

occupies O(n) bits, which can simulate each navigation operation in the suffix tree

of T in O(logε n) time, and any leaf label can be retrieved in O(logε n) time.
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Remark. In fact, by modifying the definition of the parentheses encoding slightly,

we obtain the following result based on the previous theorem.

Theorem 5.6 For a text T over an alphabet Σ, the CST occupies O(n log |Σ|)
bits, which can simulate each navigation operation in the suffix tree of T in

O(logε n+ log |Σ|) time, and any leaf label can be retrieved in O(logε n) time.

5.1 Conversion from CSA to CST

In this section, we describe a space-efficient construction algorithm for CST of

T .

Firstly, assume that the CSA of T is given. Then, we augment the CSA with

an auxiliary data structure of O(n log |Σ|) bits, which can support the retrieval

of any entry of SA−1 in O(logε n) time. The above auxiliary data structure is

similar to that for the retrieval of SA, and can be constructed in O(n log |Σ|) time

[72].

In [46], it is shown that the Hgt [i] can be enumerated iteratively with O(n)

queries to the text, SA and SA−1. Based on this algorithm, the Hgt array can

easily be encoded in 2n+o(n) bits without extra working space (See [73] for more

details on the Hgt array). The time required is O(n logε n) time since each of the

query can be answered in O(logε n) time given the augmented CSA.

Next, we construct the parentheses representation for the suffix tree topology.

Basically, with the provision of the Hgt array and the CSA, we can simulate a

bottom-up (left to right) traversal of the suffix tree using the algorithm in [46].

Let L be a list of 2n bits. During the traversal, we append () to the end of L if

we visit a leaf, and we append ) to the end of L if we last visit an internal node.

Essentially, after the traversal, L is very close to the parentheses encoding of the

CST, only with all the (’s corresponding to the internal nodes removed. Similarly,

by performing a bottom-up (right to left) traversal starting from the rightmost

leaf, we can obtain a list of parentheses L′ which is equal to the parentheses

encoding of the CST, but with all the )’s corresponding to the internal node

removed. The above algorithm requires retrieval of O(n) queries to the Hgt array

and the CSA, so that it takes O(n logε n) time in total. Afterwards, it is easy to

combine L and L′ in O(n) time to obtain the parentheses encoding of the CST.

For the space complexity, the original algorithm of [46] requires the mainte-

nance of a stack, which takes O(n log n) bits without compression. Fortunately,
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the values in the stack are always monotone, so that we can encode them with the

difference encoding. Then, the space required to store the numbers is bounded

by O(n) bits if the differences are encoded by γ code or δ code [20].

Thus, we have the following theorem.

Theorem 5.7 Given the text T , the CST of T [0, n − 1] can be constructed in

O(n logε n) time and in O(n log |Σ|)-bit working space.∗

5.2 Finding Maximal Unique Matches

In this section, we show how to find the MUMs between two texts A and B

efficiently. Formally, it is defined as follows.

Definition 5.8 A pattern P is said to be a unique match (UM) of two strings

A and B if P appears exactly once in both A and B. A pattern P is said to be

a maximal unique match (MUM) if P is a UM and it is not contained in any

other UMs.

Note that unique match and maximal unique match are similar to maximal

repeat and super-maximal repeat [38], respectively.

Lemma 5.9 If an internal node v of a suffix tree for A$1B$2 has an internal

node as its child, or has more than three children, then the path label of v is not

an MUM of A and B.

Proof: Let the internal node be v. In both cases, the path lablel of v is a

common prefix of at least three suffixes of A$1B$2. This implies that the path

label of v appears in A or B at least twice, so that it cannot be an MUM. �

On the other hand, it is easy to verify that an MUM of A and B must be

the path label of some internal node in the suffix tree for A$1B$2. Therefore,

an MUM of A and B must be a path label of an internal node with exactly two

leaves, one for the suffix in A and the other for the suffix in B. (Note that the

converse is not true, because the path label may not be maximal.)

Based on the suffix tree of A$1B$2, we can find the MUMs as follows:

∗Note that this time and space bound also hold for the CST in Theorem 5.6 that is based
on another parentheses encoding.
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1. Mark each internal node v with exactly two leaves, one from a suffix in A

and the other from a suffix in B.

2. For each internal v, unmark the suffix link of v

3. Report the path labels of all marked nodes

Note that in Step 3, we unmark the suffix link of v even if v is not marked,

which implies that we can actually unmark the nodes in any order. This observa-

tion is crucial to this algorithm, and our later algorithm as well. The correctness

is shown in the following lemma. Note also that the total length of MUMs can

be much larger than O(n), so that we report each MUM implicitly, by a tuple

(j, `) for the path label A[j, j + `− 1], to save the time.

Lemma 5.10 Suppose the length of the string A$1B$2 is n. The above algorithm

reports all the MUMs of A and B in O(n) time.

Proof: Step 1 of the algorithm marks all nodes that correspond to an MUM.

Step 2 correctly unmarks all the internal nodes that cannot correspond to an

MUM for the following reason: Let u be the suffix link of v. If u is an UM, then

v must also be an UM. This implies that u can never be an MUM. Step 3 outputs

all the MUMs, assuming that each node in the suffix tree has stored the tuple

representing its path label. As each step can be done in O(n) time, the lemma

follows. �

Now, we are ready to show our compressed solution for finding MUMs.

5.2.1 Finding MUMs with CSA

Firstly, we show a trivial algorithm for the case when we are given the CSA for

the string A$1B$2. The algorithm is as follows.

1. Construct the Hgt array of A$1B$2.

2. For i = 0, 1, . . . , n− 1

if Hgt[i] > Hgt[i− 1]

and Hgt[i] < Hgt[i+ 1]

and leaf (i) and leaf (i+ 1) come from different strings

and T [SA[i]− 1] and T [SA[i+ 1]− 1] differ

then Output (SA[i],Hgt [i]) to represent the substring

T [SA[i], SA[i] + Hgt [i]− 1].
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The correctness of the above algorithm is shown below.

Theorem 5.11 The above algorithm reports all MUMs of A and B in O(n logε n)

time and requires O(n log |Σ|)-bit working space.

Proof: The first two conditions in the if statement guarantee that we are dealing

with a node which has exactly two leaf children, one corresponding to a suffix of

A and the other corresponding to a suffix of B. Thus, the node corresponds to a

UM. The third condition in the if statement guarantees the maximality of UM.

Thus, any node passing all the three conditions would correspond to an MUM.

On the other hand, we can see that the converse is also true. Thus, the above

algorithm correctly reports all MUMs of A and B.

For the time complexity, since Hgt [i] and T [SA[i] − 1] can be computed in

O(logε n) time, the algorithm runs in O(n logε n) time. The space required con-

sists of the CSA and the Hgt array, which is O(n log |Σ|) bits. �

5.2.2 Finding MUMs with CST

The algorithm with CSA in Section 5.2.1 takes O(n logε n) time because some

basic operations of the CSA requires O(logε n) time. Interestingly, we can solve

the problem in O(n) time when the CST is given, even if CSA is a core part of

the CST. Note that the CST does not have suffix links. However, we can simulate

suffix links by using CSA.

A high-level description of the algorithm is shown below, which is followed

the details of each step.

1. Compute a bit-vector D[0, n − 1] such that D[i] = 1 if leaf (i) is a suffix

from A, and D[i] = 0 otherwise.

2. Mark nodes which have exactly two leaves, one from A and the other from

B.

3. Unmark non-maximal nodes.

4. Report all MUMs.

In Step 1, to compute the bit-vector, we compute i = p,Ψ[p],Ψ2[p],Ψ3[p], . . .,

where p = SA−1[0]. We set D[i] = 1 for the first |A| + 1 iterations, and set

D[i] = 0 for the remaining |B| + 1 iterations. This takes O(n) time because

computing each Ψ takes constant time.



CHAPTER 5. COMPRESSED SUFFIX TREES AND FINDING MUMS 63

In Step 2, we scan the parentheses encoding of the suffix tree from left to right

to find a pattern ‘(()())’ which corresponds to an internal node with exactly two

leaves. Let i be the rank of the left leaf, which can be reported in constant time

while we scan the parentheses encoding. We mark this i if leaf i and leaf i + 1

in the suffix tree correspond to suffixes from different strings. To do so, we use

another bit-vector V [0, n− 2], and set V [i] = 1 if D[i] 6= D[i+ 1].

Then, Step 3 and Step 4 can be done as follows.

3.1. Define a temporary bit-vector W [0, n− 2].

3.2. For i = 0, 1, . . . , n− 2, set W [i] = V [i].

3.3. For i = 0, 1, . . . , n− 2

if Ψ[i] + 1 = Ψ[i+ 1]

Set W [Ψ[i]] = 0.

4.1. Set i = SA−1[0].

4.2 For j = 0, 1, . . . , n− 2

if V [i] = 1 and W [i] = 1

Output (j,Hgt [i]) that represents the substring

T [j, j + Hgt [i]− 1].

Set i = Ψ[i].

Then, we have the following theorem which gives the timing and correctness

of the algorithm with CST.

Theorem 5.12 The above algorithm reports all MUMs of A and B in O(n) time

and O(n log |Σ|)-bit working space.

Proof: After Step 1 and Step 2, the bit-vector V stores all the nodes whose path

label is a candidate of MUM. All the internal nodes which has two leaf children,

and is pointed by some other node with a suffix link are unmarked by Step 3.3,

while the internal nodes for an MUM are unaffected. Thus, it follows that if

V [i] = 1 and W [i] = 1 after Step 3, the path label represented by (SA[i],Hgt [i])

is the MUM of A and B. This completes the proof of the correctness.

For the time complexity, Step 1 and Step 3 are done in O(n) time because

computing a value of Ψ takes constant time. Step 2 takes O(n) time for the

scanning. For Step 4, although it involves queries to the Hgt array, it takes O(n)

time because we know SA[i] = j in each iteration, so that we can compute each

Hgt [i] in constant time. Thus, the total time is O(n). For the space complexity,
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it requires O(n log |Σ|) bits for the CST, and O(n) bits for the bit-vectors. The

theorem thus follows. �



Chapter 6

Managing a Dynamic Library

The problem of managing a dynamic library is defined as follows: We need to

maintain a collection L of texts of total length n, with characters drawn from an

alphabet Σ; from time to time, a text may be inserted or deleted from L, and a

pattern P may be given and its occurrences in L are to be reported.

In this chapter, we introduce a compressed index for the dynamic library

management problem, which requires only O(n) bits for constant-size alphabet.

Inserting or deleting a text of length t takes O(t log n) time, while searching for

a pattern takes O(p log n + occ log2 n) time. Note that the time complexities of

all operations are measured in the worst case. To our knowledge, this is the first

result that requires only O(n) bits, yet supporting both update and searching

efficiently, i.e., in O(t logO(1) n) and O((p+ occ) logO(1) n) time, respectively.

Technically speaking, our compressed index is based on CSA and FM-index

to support efficient pattern searching. However, the CSA and the FM-index we

employ are designed so as to allow efficient updates. This is achieved through a

dynamic representation of them. In addition, we have a simple trick in organiz-

ing the texts to avoid the use of pointers, thus eliminating the O(m log n) bits

generally required, where m denotes the number of texts in L.

The remaining of this chapter is organized as follows. In the first part, we

describe the high level organization of our index, where we introduce the dynamic

representations of CSA and FM-index for a collection of texts, and show how to

use them to achieve our stated result. For the implementation details, they are

deferred to the second part of this chapter.

Remarks. In case of a variable-size alphabet, the FM-index in our compressed

index occupies O(n|Σ|) bits, which may become a problem if |Σ| is huge. Never-

theless, we can reduce the space complexity to O(n log |Σ|) bits by keeping the

65



CHAPTER 6. MANAGING A DYNAMIC LIBRARY 66

CSA alone, while the use of FM-index is simulated by the CSA when needed (See

Lemma 2.7). Afterwards, inserting or deleting a text of length t takes O(t log2 n)

time, while searching for a pattern takes O(p log2 n+ occ log2 n) time.

6.1 High Level Organization

This section gives the high level description of our compressed index. In particu-

lar, we introduce three data structures, namely, COUNT, MARK, and PSI, that

correspond to the dynamic representations of the count functions of FM-index,

the auxiliary data structure to retrieve suffix array entries, and the Ψ function

of CSA, respectively.

Below we first introduce COUNT, which is the core data structure that al-

ready supports counting the occurrences of a pattern P in L efficiently, and fast

insertion or deletion of texts. Afterwards, we discuss how to exploit MARK and

PSI to support efficient enumeration of the positions where a pattern P occurs,

and further speed up the updating process.

Consider a set of texts L = {T1, T2, . . . , Tm} over a constant-size alphabet

Σ. We assume that the texts are distinct, and each text T starts with a special

character $ in Σ, which is alphabetically smaller than all other characters in Σ

and $ does not appear in any other part of a text.

Denote the total length of texts as n. In case the contents of the text collection

is changed, we always label the existing texts in L in such a way that Tj refers

to the rank-j texts currently in L.

Conceptually, we want to construct a suffix array SA for the texts by listing

out all suffixes of all texts in lexicographical order. For i = 0, 1, 2, . . . , n− 1,

SA[i] = (j, k)

if the suffix Tj[k, |Tj| − 1] is the rank-i suffix among all suffixes. Then, to insert

a text T to L, we insert all suffixes of T into the SA. Similarly, to delete a text

from L, we delete all suffixes of T from SA. Searching for a pattern P is done by

determining the interval [x, y] such that each suffix from SA[x] up to SA[y] has

P as a prefix. SA[x], SA[x+ 1], . . . , SA[y] gives all locations where P occurs in L.

6.1.1 The COUNT Data Structure

Due to the space restriction, we cannot directly store the SA table. Instead,

we use the FM-index, which requires only O(n) bits, to represent the SA table
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implicitly. The FM-index for L consists of the functions count(c, i) for each c

in Σ, which returns the total number of occurrences of character c in W [0, i],

where W [i] is defined as the character Tj[k − 1] if SA[i] = (j, k).∗ Note that this

definition is analogous to the original definition of FM-index for a single text, so

that we refer W as the Burrows-Wheeler transformation of L.

We implement the count(c, i) function with a dynamic data structure COUNT,

whose performance is summarized in the lemma below. The proof (i.e., the

detailed construction of COUNT) will be in Section 6.2.1.

Lemma 6.1 We can maintain the COUNT data structure using O(n) bits space

such that each of the following operations is supported in O(log n) time.

• Report(c, i): Returns the value of count(c, i).

• Insert(c, i): Updates all count functions due to a character c inserted to the

position i of W .

• Delete(i): Updates all count functions due to a character deleted from the

position i of W .

Note that COUNT allows efficient updates which is needed when the W array

is changed due to insertion or deletion of texts. Our implementation is different

from the original one in [25], where the count functions are stored in a data

structure which is difficult to update (but allows constant-time query).

Pattern matching. We define #(c) for each character c to be the number of

suffixes whose first character is c, and α(c) to be the rank of the character c among

all the suffixes. We maintain the #(c) values explicitly. Then, since the alphabet

size is constant, α(c) or T [SA[i]] can be computed in constant time.† Together

with the COUNT data structure, we can support counting the occurrences of

P [0, p − 1] in L in O(p log n) time, using the traditional backward search as

follows: Firstly, the rank of P [p − 1] among all suffixes can be computed by

α(P [p− 1]). Then, by Lemma 2.4, we can find the rank of P [p− 2, p− 1] using

one query to the count functions. The process is repeated, so that eventually we

can find the rank (say, x) of P [0, p− 1]. Similarly, we can find the rank (say, y)

∗Precisely, the index k − 1 in Tj [k − 1] is defined under modulo-|Tj | arithmetic.
†For general alphabet, we can organize the #(c) values in a ‘differential’ red-black tree [51],

so that #(c), α(c) or T [SA[i]] can be retrieved in O(log |Σ|) time. Updating takes O(log |Σ|)
time as well.
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of P [0, p− 1]z, where z is assumed to be an arbitrary string of rank n among all

suffixes. Then, the number of occurrences of P is y − x. As the whole process

requires O(p) queries to the count functions and each query takes O(log n) time,

the total time follows.

Text insertion. To insert a text T [0, t − 1], we conceptually insert all the

suffixes of T to SA, starting from the shortest one. The rank of T [t− 1] among

the suffixes stored in SA, denoted as i, is α(T [t − 1]). Conceptually, we want

to insert T [t − 1] at the (i + 1)-th row in SA. However, as the SA table is not

stored explicitly, we reflect the change in SA by the corresponding change in W

instead, where we insert the character T [t − 2] to the (i + 1)-th position of the

W array. This is done by performing Insert(T [t − 1], i) provided by COUNT.

Next, to insert (conceptually) the suffix T [t− 2, t− 1] to SA, let i′ be the rank of

T [t− 2, t− 1] among the suffixes stored in the updated SA, which can be found

easily by one backward search step in the updated COUNT data structure. The

required change in SA is reflected by inserting T [t− 3] to the (i′ + 1)-th position

of W . The process continues until the longest suffix T [0, t− 1] is inserted to SA,

which is reflected by inserting T [t− 1] to W . The whole process takes O(t log n)

time.

Text Deletion. Deleting a text T [0, t − 1] from the collection of texts is

more troublesome because among all those single-character suffixes that equals

to T [t− 1], we do not know which one belongs to T .‡ To handle the problem, we

first perform a backward search for T [0, t− 1] and let [x, y] be the interval such

that for any i in [x, y], T [0, t− 1] is a prefix of SA[i]. Recall that all texts in the

collection are distinct and each of them starts with a special character $ which

is alphabetically smaller than all other characters. Thus, we can conclude that

SA[x] corresponds to the text T [0, t− 1] to be deleted because no other text can

be lexicographically less than T [0, t− 1] and have T [0, t− 1] as a prefix.

Then, performing Delete(x) provided by COUNT, we can (conceptually)

delete the suffix T [0, t−1] and update the SA accordingly. Afterwards, we repeat

the process to delete the remaining suffixes T [i, t − 1] for i = 1, 2, ..., t − 1, i.e.,

from the longest one to the shortest one. This is done by first computing the rank

x′ of T [i, t−1] among the suffixes stored in the updated SA, and then performing

‡We assume that the suffixes of all texts in L each has a distinct rank, even if they are the
same in appearance. As can be seen from the above discussion, the relative rank among equal
suffixes is fixed according to the order of insertion.
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Delete(x′).

Note that if the Ψ function of CSA is given,§ we can compute the rank of

T [i, t − 1] easily from the rank of T [i − 1, t − 1]. However, as the Ψ function is

not available, we need to simulate each query to Ψ by O(log n) queries to the

count functions. Since a query to count takes O(log n) time, deleting each suffix

of T [0, t− 1] takes O(log2 n) time, and the whole process takes O(t log2 n) time.

Summarizing the discussion, we have the following theorem.

Theorem 6.2 Let L = {T1, T2, · · · , Tm} be a set of m distinct strings over a

constant-size alphabet Σ. Let n be the total length of all strings in L. We can

maintain L in O(n)-bit space such that counting the occurrences of a pattern

P [0, p− 1] takes O(p log n) time, inserting a text T [0, t− 1] takes O(t log n) time,

and deleting a text T [0, t− 1] takes O(t log2 n) time.

6.1.2 The MARK Data Structure

The COUNT data structure in the previous discussion does not support retriev-

ing SA[x] and thus cannot report the positions where a pattern occurs. In the

following, we give an additional data structure called MARK for the retrieval of

SA values.

Recall that all texts in L start with the character $ which is lexicographically

smaller than any other character in Σ. As a result, for the set of m texts in L, the

first m entries of SA corresponds to the m texts sorted in lexicographical order.

Consider the entries SA[i] = (j, k) where k is a positive integral multiple of

log n. There are at most n/ log n such entries and our MARK data structure

stores a tuple (i, (j, k)) for each of them. Now, suppose that given a certain x, we

want to find the value (j, k) with SA[x] = (j, k). We first check whether SA[x] is

stored in MARK. If so, we obtain the value of SA[x] immediately. Otherwise, we

check whether x ≤ m, which would imply that SA[x] = (x, 0). If both cases are

false, we can determine the rank of the suffix Tj[k − 1, |Tj| − 1], denoted as x′,

easily using backward search with the COUNT data structure. We check whether

the entry SA[x′] is stored in MARK or x′ ≤ m. The process continues and after

log n steps, we must either meet a suffix Tj[k − r, |Tj| − 1] such that k − r is a

multiple of log n, or k − r = 0. In both cases, the value of (j, k) can be found

accordingly.

§If SA[i] = (j, k), then Ψ[i] is the rank of Tj [k + 1, |Tj | − 1] among the suffixes of all texts,
where k + 1 is computed under modulo-|Tj | arithmetic.
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As to be shown in Lemma 6.3, for any value x, MARK determines whether

the tuple SA[x] is stored (and if so, reports its value) in O(log n) time. Thus, it

takes O(log2 n) time to find the value of SA[x] for any value x.

When a suffix is inserted to or deleted from SA, some of the originally stored

tuples may require updates. For example, when a new suffix with rank u among

the existing suffixes is inserted, a tuple (j, k), corresponding to SA[v] originally,

becomes a tuple corresponding to SA[v + 1] if v ≥ u. That is, we may need to

update the i-value of a stored tuple whenever a suffix is inserted to or deleted from

SA. Also, the rank of an original text Tj in L may change due to text insertion

or deletion, so that we may need to update the j-value of a stored tuple.

Bearing the above concern in mind, MARK must allow a set of operations

for handling the updates carefully. We summarize the performance of MARK in

the lemma below. Note that MARK stores at most n/log n entries of SA, and

the i-values of the stored tuples are distinct. We defer the proof in Section 6.2.2.

Lemma 6.3 Consider the entries SA[i] = (j, k) where k is a positive integral

multiple of log n. We can maintain a data structure MARK in O(n) bits for

storing the tuples (i, (j, k)) for each of these entries, such that each of the following

operations is supported in O(log n) time.

• Report(i): Returns the (i, (j, k)) if this tuple is stored. Else, return false.

• Insert(i, j, k): Inserts the tuple (i, (j, k)) to MARK.

• Delete(i): Deletes the tuple (i, (j, k)) from MARK.

• Increment lexico(`): For each tuple stored, the j-value is incremented by

one if the original j-value is at least `. This function allows us to update

the rank of the original texts after a new text with lexicographical order ` is

inserted.

• Decrement lexico(`): For each tuple stored, the j-value is decrement by one

if the original j-value is greater than `.

• Shift up(`): For each tuple stored, the i-value is incremented by one if the

original i-value is at least `. This function allows us to update the corre-

spondence between tuples and SA after a new suffix is inserted to position

` of SA.
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• Shift down(`): For each tuple stored, the i-value is decremented by one if

the original i-value is greater than `.

With COUNT and MARK, we can find the positions where a pattern P [0, p−
1] occurs in the collection of texts in O(p log n+ occ log2 n) time.

6.1.3 The PSI Data Structure

Recall that to delete a text T [0, t−1] in COUNT, we first determine the location

of T [0, t − 1] in SA. Then, we delete all the suffixes of T starting from the

longest one. The bottleneck for the deletion operation is determining the rank

of T [i, t− 1] after the deletion of the suffix T [i− 1, t− 1]. We observe that CSA

provides a good solution for it. In fact, the Ψ function of CSA stores exactly the

information we needed.

However, we cannot use the original implementation of Ψ as we need to update

Ψ efficiently. We dynamize Ψ with the data structure PSI whose performance is

summarized in the lemma below. The proof of the lemma is presented in Section

6.2.3.

Recall that Ψ is a list of n integers such that if SA[i] = (j, k), then Ψ[i] is the

rank of Tj[k+ 1, |Tj|− 1] among the suffixes of all texts (where k+ 1 is computed

under modulo-|Tj| arithmetic).

Lemma 6.4 We can maintain the PSI data structure in O(n) bits such that each

of the following operations is supported in O(log n) time.

• Report(i): Returns Ψ[i].

• Insert(i, x): Inserts the integer x to position i of the list. This function is

needed when we insert a suffix to SA.

• Delete(i): Deletes the integer from position i of the list.

• Shift up(`): Each integer in the list with value at least ` is incremented by

one. This function is needed when we insert a suffix to position ` of SA.

• Shift down(`): Each integer in the list with value greater than ` is decre-

mented by one.

With the PSI data structure, insertion and deletion of a text of length t can

both be improved to O(t log n) time.
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6.1.4 All in a Nutshell

We summarize how the search, insert and delete operations are performed with

COUNT, MARK, and PSI.

Searching for a pattern P [0, p−1]. We perform backward search to determine

the interval [x, y] such that for each i in [x, y], SA[i] corresponds to an occurrence

of P . This can be done in O(p log n) time using the COUNT data structure.

Then, for each i in [x, y], the value of SA[i] is obtained by at most log n backward

search steps, with one query to MARK in each step. Thus, the time is O(p log n+

occ log2 n).

Inserting a text T [0, t−1]. Intuitively, we insert each suffix of T to SA starting

from the shortest one. For x = t − 1, t − 2, . . . , 0, we first determine the rank

(say, r) of T [x, t − 1] among the existing suffixes. Then, to simulate the effect

of inserting T [x, t − 1] into position r of SA, we update COUNT by inserting

T [x− 1] to position r of W . Then, we update PSI by incrementing all integers in

the stored list whose value at least r, insert the rank of T [x+ 1, t− 1] to position

r of PSI, and increment #(T [x]) by one.

The MARK data structure is updated as follows. We first determine the

rank r′ of T among all texts in L using backward search algorithm. This takes

O(t log n) time. Then, we update the j-value of all tuples in MARK such that for

each tuple with j-value at least r′, we increment its j-value by one. Then, when

each suffix of T is inserted to SA (whose rank is r among all existing suffixes),

we increment the i-value for any tuples whose i-value is at least r. Finally, we

insert tuples corresponding to T to MARK. The total time is O(t log n).

Deleting a text T [0, t − 1]. Intuitively, we delete each suffix of T starting

from the longest one. We first determine the rank of T among all suffixes of all

texts. Afterwards, the rank of the other suffixes of T can be found using the PSI.

Updating of COUNT, MARK, and PSI are done similarly to that of inserting

a text, except that we are decrementing the values this time. The total time

required is O(t log n) as well.

Adjustment due to huge updates. Note that in the above discussion, our

data structures require the value of dlog ne as a parameter, and we have assumed

that this value is fixed over the time. This is not true in general as texts can be

inserted or deleted in the collection. Thus, when the value of dlog ne changes, our

data structures should be changed basing on a different parameter. A simple way



CHAPTER 6. MANAGING A DYNAMIC LIBRARY 73

to handle this is to reconstruct everything when necessary, but this would imply

huge update time, say, O(n) time, on the single update operation that induces

the change. To avoid this, we use a standard technique for global rebuilding [65],

where we maintain three copies of each data structure, one based on the current

parameter x, and the other two partially constructed based on the parameters

x− 1 and x+ 1, respectively, and distribute the reconstruction process over each

update operation. In this way, we can bound the update time to be O(t log n),

while having a new data structure ready when dlog ne is changed.

Summarizing the results, we have the following theorem.

Theorem 6.5 Let L = {T1, T2, · · · , Tm} be a set of m distinct strings over a

constant-size alphabet Σ. Let n be the total length of all strings in L. We can

maintain L in O(n)-bit space such that inserting or deleting a text T [0, t−1] takes

O(t log n) time, and searching for a pattern P [0, p−1] takes O(p log n+occ log2 n)

time, where occ is the total of occurrences.

6.2 Implementation Details

In this section, we explain how each of data structures COUNT, MARK, and PSI

is implemented.

6.2.1 Implementation of COUNT

Recall that the COUNT data structure maintains the functions count(c, i), which

returns the total number of occurrences of the character c in W [0, i − 1], where

W is the Burrows-Wheeler transformation of L. To implement COUNT, we store

|Σ| lists of bits, denoted as COUNTc for each c in Σ. Each list is n-bit long, with

COUNTc[i] = 1 if W [i] = c and COUNTc[i] = 0 otherwise.

To support updates easily, for each list COUNTc, we partition it into segments

of log n bits to 2 log n bits. The segments are stored in the nodes in a red-black

tree, so that a left to right traversal of the tree gives the list COUNTc. Precisely,

each node u in the tree contains the following fields.

• A color bit (red or black), a pointer to parent, a pointer to the left child

and a pointer to the right child.

• A segment of bits, with length log n to 2 log n.
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• An integer size indicating the total number of bits contained in the subtree

rooted at u.

• An integer sum indicating the total number of 1’s contained in the subtree

rooted at u.

To support the function count(c, i), we use the size value in each node to tra-

verse the tree of COUNT c and locate the node u that contains the bit COUNT c[i].

We record the number of 1’s in the segment of u up to this bit,¶ and also the sum

in the left child of u. Then, we traverse from u to the root. For every left parent

v on the path, we record the number of 1’s in the segment of v and also the sum

in the left child of v. We can see that summing up all these recorded values gives

the number of 1’s in the list of COUNTc up to the bit COUNTc[i − 1], which

equals count(c, i). The whole process takes O(log n) time.

To update the COUNT data structure when a character c is inserted to po-

sition i of W , we insert a bit 1 to position i of COUNTc and insert a bit 0 to

position i of COUNTc′ for each c′ 6= c. The time required is O(log n). Deletion

of a character from W can be done in the opposite way in O(log n) time.

For the space requirement, we note that each node takes O(log n) bits and

there are O(n/log n) nodes. Thus, the space requirement is O(n) bits.

6.2.2 Implementation of MARK

Recall that MARK is a set of at most n/log n tuples, each in the format of

(i, (j, k)). Note that no two tuples have the same i-value, but there may be more

than one tuple having the same j-value.

To support efficient update, we maintain two red-black trees, one for the

i-values and the other for the (j, k)-values as follows.

For all the i-values of the tuples, they are stored in a red-black tree Ri, such

that the left to right traversal of the tree gives the i-values of the tuples in sorted

order.

For all the j-values of the tuples (allowing duplication), they are stored in

a red-black tree, denoted as Rj, such that the left to right traversal of the tree

gives the j-values of all the tuples in sorted order.

Let i(u) be the i value stored in the node u in Ri. Let j(v) be the j value

stored in the node v in Rj. To represent the tuples, we store a pointer at each

¶This can be done in constant time in RAM with a universal decoding table of o(n) bits [42].
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node u in Ri, pointing to the node v in Rj if i(u) and j(v) belongs to the same

tuple. Furthermore, the k-value of the corresponding tuple (i(u), (j(v), k)) is

stored in the node v in Rj.

More precisely, each node in Ri has the following fields.

• A color bit (red or black), a pointer to the left child and a pointer to the

right child.

• An integer diff(u) = i(u)− i(lp(u)), where lp(u) denotes the left parent of

u. i(lp(u)) = 0 if lp(u) does not exist.

• A pointer to a node v in Rj.

Each node in Rj has the following fields.

• A color bit (red or black), a pointer to the left child and a pointer to the

right child.

• An integer diff(v) = j(v)− j(lp(v)), where lp(v) denotes the left parent of

u. j(lp(v)) = 0 if lp(v) does not exist.

• A pointer to a node u in Ri.

• An integer k.

Although we do not store the value i(u) explicitly for every node u in Ri, its

value can be recovered when we traverse down the tree Ri starting from the root.

The idea is that, when we traverse down the tree, for every node x we meet on

the path, we can compute the values lp(x) and i(x) in constant time along the

way as follows. Let x′ be the parent of x and assume inductively that lp(x′) and

i(lp(x′)) are known. If x is the left child of x′, lp(x) = lp(x′). Else, lp(x) = x′.

In both cases, i(x) = i(lp(x)) + diff(x).

Note that Ri and Rj are very similar to a red-black tree and they inherit the

advantages of a balanced binary search tree. Searching, inserting and deleting a

tuple can be done easily in O(log n) time. For any integer `, let X` = {u |u ∈
Ri and i(u) ≥ k}. To support the function Shift up(`), we need to increment

i(u) by one for each u in X`. Recall that the actual value of i(u) is not stored in

the node u of Ri. Instead, we store diff(u) = i(u) − i(lp(u)). Thus, if the value

i(lp(u)) is increased by one, the value i(u) is also increased by one automatically.

Precisely speaking, to increment i(u) by one for all node u in X`, we search Ri
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for the node x with smallest i(x) such that i(x) ≥ `. Then, for any node w not

equal to x but on the path from from root to x, we increment the value diff(w)

by one if w is a right parent of some other node on the path. We also increment

diff(x) by one. It is easy to see that i(u) is incremented by one for each node u

in X`. Thus, operation Shift up(`) can be done in O(log n) time.

The other operations, Shift down, Increment lexico and Decrement lexico are

supported similarly in O(log n) time. This completes the discussion for MARK.

6.2.3 Implementation of PSI

The PSI data structure has been used in the space-efficient CSA construction al-

gorithm by Lam et al. [51]. In their paper, PSI was used as a dynamic represen-

tation of Ψ, allowing the CSA of a text T [0, t−1] to be constructed incrementally

in t phases where phase i modifies the Ψ of T [t− i, t− 1] slightly to become Ψ of

T [t− i− 1, t− 1].

The main idea is to maintain Ψ as |Σ| increasing sequences, one for each c

in Σ. Each sequence, say v1, v2, ..., vk, is represented by a sequence of difference

values vi − vi−1, encoded by γ code [20] to save space. The γ-coded sequence is

partitioned into chunks of O(log n) bits, which are stored as nodes in a red-black

tree (in a way similar to Ri in Section 6.2.2). The height of the red-black tree

is O(log n). With the aid of an o(n)-bit decoding table, reporting a Ψ value, or

updating with Insert or Delete can be done in O(log n) time in the RAM. For

Shift up or Shift down, they can also be performed in O(log n) time due to the

‘differential’ nature of how the sequence is stored. The total space is O(n log |Σ|)
bits, which is O(n) bits for constant-size alphabet.



Chapter 7

Managing Dynamic Dictionary

and Dynamic Text

In Chapter 6, we have discussed the problem of managing a dynamic library. In

this chapter, we first study a dual problem which deals with indexing a collection

patterns, so as to answer efficiently the occurrences of all patterns in any given

text T . This query is referred as the dictionary matching query.

Our solution for managing the dynamic dictionary is based on its static

counter-part, which can be ‘dynamized’ using a technique applied in [25]. As

a side result, we also give an alternative index for managing a dynamic library.

The difference with the index in Chapter 6 is that, the library matching time be-

comes faster, but the time to handle updates of the library becomes amortized,

and could be much slower in the worst case.

Afterwards, we study the problem of managing a dynamic text, where we

want to build an index for a text T to support efficient pattern matching, but T

itself is subjected to insertion or deletion of substring at arbitrary position. In

Section 7.2, we describe a technique called interval partitioning, which has been

used previously to index a dynamic text in Θ(n log n) bits. In Section 7.3, we

propose a compressed solution for the dynamic text, by combining the interval

partitioning technique with our dynamic dictionary and dynamic library.

7.1 Managing a Dynamic Dictionary

In this section, we show how to apply the CST and the CSA to manage a static

dictionary and a static library, respectively. Then, we apply the technique used
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in [25] to turn our indexes into those for the dynamic cases.

We start by demonstrating the power of CST for answering the dictionary

matching query for a static set of patterns {S1, S2, . . . , Sk} of total length n, such

that no Si is a proper substring of the other.∗ This is done by adapting the

algorithm of Chang and Lawler [14] as follows.

Lemma 7.1 Let S = S1$S2$ . . . Sk$, where $ is a special character not appearing

in any Si. Suppose that no Si is a proper substring of the other. Given the CST

of S, denoted by CST (S), we can find all occurrences of each of the Si’s in a text

T [0, |T | − 1] in O(|T |(logε n+ log |Σ|) + occ logε n) time, where 0 < ε ≤ 1.

Proof: To report the occurrences, we traverse CST (S) by matching characters

of T , starting from the first character. This is similar to finding an occurrence of

T in S using a suffix tree; but whenever we encounter a mismatch, or the previous

step revealed an occurrence of Si in T , we restrict the search by omitting the first

character of the substring of T that is currently matched. For instance, suppose

that we are at the position of the tree that matches the substring T [q, r] (i.e., the

position reached by matching T [q, r] starting from the root of CST (S)). Then,

we locate the position of the tree that matches the substring T [q + 1, r]. This

can be done by following a suffix link (which is a tree navigation operation) and

then moving downwards a couple of nodes in the tree. Afterwards, we continue

matching the next character T [r + 1] there.

Note that each Si corresponds to a distinct leaf edge in CST (S). At the

(r+1)-th step where we match T [r], we can check whether there is an occurrence

of some Si in T ending at T [r], by examining whether matching an extra $ would

bring us to a leaf edge of some Si.

Assuming that no Si is a proper substring of the other, it is easy to verify

that the above algorithm locates all occurrences of each Si in T . For the running

time, it follows since we can show that the number of tree navigation operations

required (based on the arguments in [14]) is O(|T |), and each operation requires

at most O(logε |S|+ log |Σ|) time by Lemma 5.6. This completes the proof of the

lemma. �

On the other hand, CSA can be directly applied to answer the library match-

ing query as follows.

∗As to be shown in the later section, the reduction from the compressed dynamic indexing
problem involves a collection of strings satisfying this restriction.
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Lemma 7.2 Let S = S1$S2$ . . . Sk$. Given the CSA of S, denoted by CSA(S),

we can find all occurrences of a pattern P in each of the Si’s in O(|P | log log |Σ|+
occ logε n) time.

Proof: We use the definition in Chapter 4 for the CSA of S, which occupies

O(n log |Σ|) and supports each backward search step in O(log log |Σ|) time. Also,

the CSA is augmented with an auxiliary data structure of O(n log |Σ|) bits to

support retrieval of an SA entry in O(logε n) time. Then, by performing a back-

ward search of P with |P | backward search step by Lemma 2.4, each occurrence

of P can be reported in O(logε n) time. The lemma thus follows. �

Next, we describe how to manage a dynamic dictionary and a dynamic library

based on our results for the static cases. The idea follows closely to how Ferragina

and Manzini ‘dynamize’ the FM-index, which is shown in [25]. Basically, we

divide the texts in the collection into O(log n) groups. Groups are labeled by

consecutive integers starting from 1, so that group i is either empty, or contains

texts with total length in the range [2i, 2i+1). Note that each group is in fact a

(sub-)collection of texts, and therefore we can support dictionary matching and

library matching queries in each group using Lemmas 7.1 and 7.2. In other words,

the total time for both queries will be increased by a factor of O(log n) in order

to search all groups.

To insert a text X into the collection, we let x = dlog |X|e and insert X into

group x. However, there can be overflow during the insertion, since we require

that the total length of texts in group x is less than 2x+1. In this case, we merge

group x and group x + 1 (and possibly more groups) to form a new group, and

construct a new CSA and CST accordingly. In the worst case, an insertion of a

text can require a construction of CSA and CST for texts of total length O(n);

however, such a worst case would not be frequent, by considering that a particular

text can be merged with the others at most O(log n) times. Thus, the amortized

insertion time can be bounded by O(log n · (|X| log1+ε n)).

For deletion, we apply a lazy update scheme so that the CST and the CSA of

a group is re-constructed only when a fraction of O(1/log n) of the total length

is marked deleted. To do so, we keep a record on which texts are deleted, and a

balanced search tree of height O(log n) for marking the intervals in the CSA and

CST of the deleted texts. Then, deletion of Si from the collection can be done

in O(log n · (|Si| log1+ε n)) amortized time, but the time of the the dictionary or

library matching queries is further increased by a factor of O(log n).
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In summary, we have the following theorem.

Theorem 7.3 Consider all texts over an alphabet Σ. Let ∆ = {S1, S2, . . . , Sk}
be a collection of strings with total length n. For any fixed ε with 0 < ε ≤ 1, we

can maintain a data structure CDL(S) of size O(n log |Σ|) bits that supports

• finding all occurrences of Si in a text T for all i in O(|T | log2 n(logε n +

log |Σ|) + occ log2+ε n) if no Si is a proper substring of the other, where occ

denotes the total number of occurrences of all the Si’s;

• finding all occurrences of a pattern P in the texts in ∆ in O(|P | log2 n

log log |Σ| + occ′ log2+ε n) time, where occ′ denotes the total number of oc-

currences of P ;

• inserting a text X into ∆ in O(|X| log2+ε n) amortized time; and,

• deleting a text Si from ∆ in O(|Si| log2+ε n) amortized time.

The data structure in Theorem 7.3 can also be used to solve the prefix-suffix

matching problem, which finds the longest suffix of a pattern P which is a prefix

of any Si in ∆. Basically, this is done by performing a backward search of P for

smax steps, where smax = max |Si|. Then, we can partition the SA into O(smax)

ranges, such that for a particular range, the longest suffix of P matching the

prefix of any suffix of in this range has the same length. Afterwards, by checking

those SA entries that correspond to the whole string of Si’s, we obtain the desired

lengths. The result is stated in the following lemma.

Lemma 7.4 The data structure in Theorem 7.3 supports finding the longest suf-

fix of a pattern P which is a prefix of Si for each i in O(smax log2 n log log |Σ| +
k log2+ε n), where smax denotes the length of the longest text in {S1, S2, . . . , Sk}.

7.2 Interval Partitioning

After studying the dictionary and library problem, we are ready to discuss the

indexing of a dynamic text to allow substring insertion and deletion at arbitrary

positions. In this section we review a basic technique called interval partitioning,

which was commonly used in previous work on indexing a dynamic text with

Θ(n log n) bits (e.g., [23], [24]). The idea is that, given a text T , we divide it into

“short”, possibly overlapping substrings, so that a change in T at some position
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p is limited to changes in a few intervals around p. The drawback is that pattern

searching would become a more involved operation.

The following interval partition scheme is proposed in [24]. Let ` be an integer

(which will be chosen as
√
n). Suppose that T is partitioned into k = Θ(n/`)

intervals I1, I2, . . . , Ik with each Ii is of length between ` to 2`. Let c1 > c2 be

some suitable constants. Define two boundary intervals I0 and Ik+1 containing

c1` $’s. To allow efficient searching, each interval Ii is to be represented by five

“short” strings, which are of length O(`):

• Xi to be the string Ii · · · Ii+r, where r is the smallest integer such that

|Ii|+ · · ·+ |Ii+r| ≥ c1`;

• Ci and C ′i to be Ii’s prefix and suffix of length `, respectively;

• Li to be the suffix of I0Ii · · · Ii of length c2` and Ri to be the prefix of

Ii · · · IkIk+1 of length c2`.

In other words, T is represented by several collections of short strings (namely,

Xi, Ci and C ′i, Li, and Ri). Notice that for a pattern P of length at most (c1−2)`,

if it occurs in T , it must occur in some Xi. Thus, we only need to search the

collection of Xi’s.

Lemma 7.5 Let Query-X(P) denote the query of finding all occurrences of a

pattern P in each X ∈ {X1, · · · , Xk}. Suppose that Query-X(P) can be answered

in tX time. Then, if |P | ≤ (c1 − 2)`, all occurrences of P in T can be found in

O(tX) time.

Searching for longer patterns is non-trivial, yet Ferragina and Grossi [24] were

able to devise an efficient algorithm based on the following batch queries to the

four collections. The time complexity is stated in the following lemma.

• Query-C(P): For each X ∈ {C1, · · · , Ck, C ′1, · · · , C ′k}), find an occurrence

of P .

• Query-L(P): For each X ∈ {L1, · · · , Lk}, find P ’s longest prefix that is a

suffix of X.

• Query-R(P): For each X ∈ {R1, · · · , Rk}, find P ’s longest suffix that is a

prefix of X.
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Lemma 7.6 [24] Suppose that Query-C(P), Query-L(P) and Query-R(P) can

be answered in tC, tL and tR time, respectively. Then, if |P | > (c1 − 2)`, all

occurrences of P in T can be found in O(tC + tL + tR + occ) time, where occ

denotes the number of occurrences of P in T .

If O(n log n)-bit space is given, one can use generalized suffix trees to represent

the Xi’s, Ci’s, Li’s, and Ri’s. Then Query-X can then be answered in O(|P |+occ),
where occ denotes the total number of occurrences of P in each Xi’s, and the other

three queries can be supported in O(|P |+ k + `) time.

In the next section, we propose a compressed data structure for storing the

short strings in O(n log |Σ|) bits, and show how to support the queries efficiently.

Then based on Lemma 7.5 and 7.6, any pattern can be searched efficiently.

7.3 Managing a Dynamic Text

In this section, we describe the compressed indexing data structure for the dy-

namic text problem using O(n log |Σ|) bits of space.

Recall from the previous section that a text T is represented by several

collections of short strings (namely, Xi’s, Ci’s and C ′i’s, Li’s and Ri’s), each

of length O(`). We apply the compressed index discussed in Section 7.1 to

represent each collection and support the update of strings in the collection,

dictionary matching and library matching. Denote as CDLX the resulting in-

dex CDL({X1, X2, . . . , Xk}), and similarly CDLC , CDLR, and CDLL for re-

spectively the indexes CDL({C l
1, . . . , C

l
k, C

r
1 , . . . , C

r
k}), CDL({R1, . . . , Rk}) and

CDL({L′1, . . . , L′k}), where L′i denotes the reverse of Li.

Note that all Ci’s and C ′i’s have equal length, so that none of them can be a

proper substring of the other. This is also true for Li’s and Ri’s. Thus, the time

complexity stated in Theorem 7.3 for the dictionary matching query holds for

CDLC , CDLR, and CDLL. Also, recall that finding all occurrences of a pattern P

in T can be reduced to answering some batch queries Query-X, Query-C, Query-L

and Query-R. It is easy to see that these queries are readily supported by CDLX ,

CDLC , CDLL and CDLR based on Theorem 7.3 and Lemma 7.4. Precisely,

Query-X corresponds to a library management query on CDLX , Query-C corre-

sponds to a dictionary matching query on CDLC , while Query-L and Query-R

correspond to prefix-suffix queries on CDLL and CDLR, respectively. The time

complexity is stated in the following lemmas.
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Lemma 7.7 Given CDLX , Query-X(P) can be done in O(|P | log2 n log log |Σ|+
occX log2+ε n) time, where occX denotes the total number of occurrence of P in

all Xi’s.

Lemma 7.8 Given CDLC, Query-C(P) can be answered in O(|P | log2 n(logε n+

log |Σ|) + k log2+ε n) time.

Proof: It follows from a minor modification to Lemma 7.1 which outputs only

one occurrence for each of the Si’s in P . �

Lemma 7.9 Given CDLL and CDLR, Query-L(P) and Query-R(P) can both

be answered in O(` log2 n log log |Σ|+ k log2+ε n) time.

By combining the above three lemmas with Lemma 7.5 and Lemma 7.6, we

get the following result.

Corollary 7.10 Let occ be the number of occurrences of P in T .†

1. If |P | ≤ (c1 − 2)`, all occurrences of P in T can be found in O(|P | log2 n

log log |Σ|+ occ log2+ε n) time;

2. Otherwise, all occurrences can be found in O(|P | log2 n(logε n + log |Σ|) +

(k + occ) log2+ε n+ ` log2 n log log |Σ|) time.

Now, let us consider how to update the above CDL’s. Our method is based

on the one used by [24] (where they are updating the generalized suffix trees

instead). Firstly, suppose an arbitrary substring Y of length y is deleted from

T . we observe that only those intervals Ii, Ii+1, . . . , Ij that overlap with Y is

affected. (Note that the total length of these overlap intervals is at most y+ 4`.)

Consequently, we can update each of the CDL’s by removing those strings that

depend on the overlap intervals from the corresponding collection. This in turn

corresponds to the deletion of texts in CDLX , CDLC , CDLL, and CDLR of total

length at most c1(y + 4`), 2(y + 4`), c2(y + 4`) and c2(y + 4`), respectively. To

complete the discussion, note that there may be characters remaining in Ii and

Ij after the deletion of Y . These characters can be merged together with Ii−1 to

form a new interval in T (and splitting may be required if the resulting length

exceeds 2`). Afterwards, we create new strings that depend on Ii−1 and insert

†Note that occX ≤ (c1 − 2)occ, where occX is the number of occurrences of P in all Xi’s.
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them into the corresponding CDL’s. Together, this corresponds to deletions and

insertions of texts of total length O(`) in each of the CDL’s.

On the other hand, when a text Y of length y is inserted into T , where the

insertion point is either in the middle of some interval Ii, or between some interval

Ii and Ii+1, we see that those strings in the CDL’s that depend on Ii (and Ii+1

as well for the latter case) are needed to be removed. This corresponds to the

deletions of texts of total length O(`) in each of the CDL’s. Afterwards, we create

intervals in T to accommodate Y . The total length of these intervals is at most

y + 2` (in case Y is inserted in the middle of Ii). This in turn corresponds to

insertions of texts of total length O(y + `) in each of the CDL’s.

In summary, an insertion or deletion of an arbitrary text of length y in T

would require insertions and deletions of texts of total length at most O(y + `)

in CDLX , CDLC , CDLL, and CDLR. Thus, we have the following lemma.

Lemma 7.11 We can update the data structures CDLX , CDLC, CDLL and

CDLR in O((y + `) log2+ε n) amortized time, when an arbitrary text of length

y is inserted or deleted in T .

By setting ` =
√
n, we have k = O(

√
n). This immediately leads to the

following theorem.

Theorem 7.12 For any fixed ε with 0 < ε ≤ 1, we can maintain a compressed

index for T [0, n− 1] over an alphabet Σ in O(n log |Σ|) bits that supports

• searching a pattern P in T , using O(|P | log2 n(logε n+log |Σ|)+occ log2+ε n)

time; and,

• insertion/deletion of an arbitrary text Y , using O((|Y |+
√
n) log2+ε n) amor-

tized time.

Proof: The insertion and deletion time follows from Lemma 7.11. If |P | ≤
(c1−2)

√
n, the searching time follows, as it is O(|P | log2 n log log |Σ|+occ log2+ε n)

by Corollary 7.10(1). Otherwise, we have k = O(|P |), and the searching time

follows from Corollary 7.10(2). �



Chapter 8

Experimental Studies of CSA and

FM-index for DNA Sequences

With more and more DNA sequences being decoded, searching DNA sequences

has become a frequent and mundane part of most biological research nowadays.

This has posted a real challenge in traditional indexes, for the length of DNA

sequences can be very long which dictates the use of huge amount of computer

memory. Though the above problem can usually be solved by using a super-

computer, this expensive solution is seldom a convenient choice for a biology

laboratory of moderate scale.

The invention of CSA and FM-index advanced a big step towards indexing

with an ordinary PC. For DNA sequence, which is basically a text over a four-

letter alphabet {a, c, g, t}, the bound for the basic Ψ function of the CSA requires

only 5n bits in theory, while for FM-index, it occupies 3n bits in practice [26].

These figures immediately imply that we can store the CSA and FM-index of

DNA of length up to a few Gigabases, which covers almost every known DNA

sequences nowadays.

However, if CSA and FM-index are to be workable in practice, we have to

consider yet another important issue: the memory requirement for their construc-

tion. In Chapters 3 and 4, we have shown that CSA can be directly constructed

from the DNA sequence in O(n) bits space, while FM-index can be converted

from the CSA in negligible space. We would like to determine the maximum

length of a genome whose CSA and FM-index can be constructed, and the time

required for constructing these indexes.

On the other hand, the searching performance of CSA and FM-index is asymp-
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totically of the same order as (or even better than) the traditional suffix arrays,

despite the compactness of their sizes. Given this promising theoretical bound, it

is natural to ask how fast CSA and FM-index can search in practice? Moreover,

which one is better?

For FM-index, previous experiments [26] have shown that its performance is

comparable to suffix arrays, when searching a pattern whose length is short (8-15

bases). However, for searching long patterns (say, a few hundred or even a few

thousand bases), it is not known whether the result will be consistent.

In addition, as we may recall, there are two types of searching methodology

for CSA or FM-index. The first one is the backward search mentioned in Chapter

2, which is the method tailored for CSA or FM-index. The second one is to apply

the traditional pattern searching algorithm with suffix arrays, while using CSA

or FM-index for the retrieval of suffix array entries when needed. Theoretically

speaking, backward search is faster than forward search. Table 8.1 gives a sum-

mary of the worst-case searching performance of CSA and FM-index. Note that

in the table, the bounds depend on a parameter ε, where 0 < ε ≤ 1. This ε is

in fact a tradeoff parameter for the searching time and index space. In order to

achieve the stated timing bounds, the corresponding CSA or FM-index would

require 1
ε

times the size of the basic structure. In this paper, we consider ε to be

1.∗

Although the worst-case behavior of backward search (in both indexes) is

better than that of the forward search, in practice, however, forward search may

surpass backward search for two reasons: Firstly, based on Manber and Myers

[56], the average time of forward search is expected to be O(|P | log n+ occ log n)

and O(|P |+occ log n) for CSA and FM-index, respectively, which matches to the

worst-case time of backward search. Secondly, each operation of the backward

search is usually more computationally involved, so that the hidden constant in

the worst-case bound could be very high. Thus, it is interesting to find out in

practice, which searching methodology prevails?

This chapter evaluates the performance of the CSA and FM-index when they

are used to index DNA sequences, and attempts to answer all the above questions.

We ran all the experiments on a machine equipped with a 1.7 GHz Pentium IV

processor with 256 Kbytes of L2 cache, and 4 Gbytes of RAM. The operating

∗Readers may also note that we are referring a simpler implementation of CSA, so that
pattern searching by backward search takes O(|P | log n) time, instead of the better result of
O(|P | log log |Σ|) time mentioned in Chapter 4.
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Table 8.1: Searching performance of CSA and FM-index.

Index Forward Search Backward Search

CSA O(|P | log1+ε n+ occ logε n) O(|P | log n+ occ logε n)

CSA (ε = 1) O(|P | log2 n+ occ log n) O(|P | log n+ occ log n)

FM-index O(|P | logε n+ occ logε n) O(|P |+ occ logε n)

FM-index (ε = 1) O(|P | log n+ occ log n) O(|P |+ occ log n)

system was Solaris 9. Over this platform, we implement programs to construct

and to test the CSA and the FM-index for three genomes, of size from different

scales: E. coli (4.6 Mbases), Fly (98 Mbases) and Human (2.88 Gbases).† Our

programs are implemented in C, which is compiled by gcc with the option -O3.

The remaining of the chapter is organized as follows. In Section 7.1, we

explain our implementation of CSA and FM-index, where we have made slight

changes over the original definitions. In Section 7.2, we report the time and space

requirements for our implementation of the construction algorithm. Finally, Sec-

tion 7.3 presents our preliminary findings concerning the searching performance

of CSA and FM-index,

8.1 Implementation Details

Our encoding for the Ψ function of CSA in this chapter is based on Lam et al.

[51], which is different from those discussed in the previous chapters.‡ Basically,

our encoding makes use of Corollary 2.2 and store Ψ as four increasing sequences,

with values between 0 and n, as follows: for each sequence s1, s2, . . ., we store

the difference values (that is, s1, s2 − s1, s3 − s2, and so on) instead of the orig-

inal values. Compression is achieved by encoding each of these difference values

separately using variable-length prefix-free codes, such as γ code or δ code [20].

The original paper suggests to use δ code, which has better worst-case size

bound for general alphabets; but for our case, we use γ code instead, for it

achieves smaller size than δ code when encoding the Ψ function of DNA sequence

†The genomes are obtained from the Genome Bioinformatics Group of University of Califor-
nia, Santa Cruz [37], which was the latest version by the time our experiments are conducted.
‡We have implemented and tested three other variations of encodings. The performance for

searching DNA sequence is quite similar; the variation reported in this chapter is consistently
the best in our studies.
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in practice.

Note that the use of variable-length code has a disadvantage: to decode any

region of the sequence, we must start the decoding process from the beginning

of the encoded sequence. In order to speed up the decoding process, we adopt

a simple scheme by storing the value of Ψ[i] and the starting position of its

encoding explicitly whenever i mod ` = 0 for some ` = O(n/ log n). Then, to

compute Ψ[k], we first find Ψ[c`] with c` ≤ k < (c + 1)` in constant time.

Afterwards, we look at the encoded sequence for Ψ[c` + 1] − Ψ[c`],Ψ[c` + 2] −
Ψ[c` + 1], . . . ,Ψ[k] − Ψ[k − 1] to compute Ψ[k] − Ψ[c`]. The latter part can be

done by O(log n) table-lookups in the worst-case; but on average, the number

of table-lookups is constant. Thus, the time to compute Ψ takes O(1) time on

average. The space requirement for this auxiliary data structure is O(n) bits.

Note that the more values of Ψ we store explicitly, the more space we need, but

the faster the decoding process.

To support retrieval of the suffix array entries, we need to store another

O(n)-bit auxiliary data structure. Precisely, we store SA[i] explicitly when-

ever i mod t = 0 for some t = O(n/ log n). To compute SA[i], we compute

Ψ[i],Ψ2[i],Ψ3[i] and so on, until Ψk[i] mod t = 0. Then, we obtain the value

s = SA[Ψk[i]], and it is easy to verify that SA[i] = s− k. However, this auxiliary

data structure does not guarantee the number of Ψ calls for retrieving the SA

values, where in the worst case, O(n) calls are required. Despite of this, it has a

good average case performance, where an SA value can be retrieved in expected

O(log n) Ψ calls. This equals to an average O(log n) time in practice. In the-

ory, we can guarantee the worst number of Ψ calls to be O(log n) by sacrificing

some space for constant-time rank and select data structures of [42]; however,

the hidden constant accompanied in the O(log n) term is high in practice, which

means more space for the index and more time for getting the SA.

For the same reason, our implementation of FM-index adopts an auxiliary

data structure that supports the retrieval of SA in average O(log n) time instead

of worst-case. For the other parts, it follows closely to that in [25], which includes

the Burrows-Wheeler transform [13], move-to-front encoding [9] and run-length

encoding for the compression. (See the original paper for more details.)
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8.2 Construction Requirements

In Chapters 3 and 4, we have shown that CSA can be directly constructed from

the DNA sequence. The space requirement is (5 + r)n bits space, for any r > 0.

Afterwards, FM-index can be converted from the CSA in negligible extra space.

Note that the larger the r, the faster the algorithm is.

For the actual construction, we apply the algorithm of Lam et al. [51], which

is the precursor of our construction algorithm in Chapter 3. Based on this, we

have implemented space-efficient programs for constructing CSA and FM-index

on a PC, and tested it with E. coli, Fly and Human as the input genomes.

We set r = 5 to make the maximal use of the main memory. Table 8.2 shows

the corresponding construction space and time for each genome.

Table 8.2: Construction time and space for CSA and FM-index.

DNA Construction Space
Construction Time
CSA FM-index

E. coli 5.8M byte (10n bits) 60 sec 72 sec
Fly 125M byte (10n bits) 30 min 36 min

Human 3.6G byte (10n bits) 24 hour 28 hour

From the indexes constructed, we found that if we discount the space for all

the auxiliary data structures, the size of CSA is close to 4n bits, while the size

of FM-index is close to 3n bits. To conclude this section, Table 8.3 shows the

limitations on the index that can be constructed and resided in an ordinary PC

nowadays, assuming a RAM of size 4 Gbytes.§

8.3 Searching a Pattern with CSA and FM-index

This section investigates the practical searching behavior of CSA and FM-index.

In the first part, we compare the two searching methodologies for CSA and FM-

index, where our experimental results show that forward search in practice per-

forms better than backward search when the pattern length is long. In addition,

other interesting findings are also observed. In the second part, we perform a

§Technically speaking, we cannot make full use of all the RAM as some space must be
reserved for the operating system. In our case, only a maximum of 3.6 Gbytes out of 4 Gbytes
are available.
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Table 8.3: Limitations on various indexes, assuming a RAM of 4 Gbytes.

Index
Construction Maximum Genome Maximum Genome

Algorithm Constructed Able To Reside

Suffix Tree Kurtz [50] 180 Mbases 180 Mbases
Suffix Array Larsson-Sadakane [52] 450 Mbases 900 Mbases

CSA Lam et al. [51] 5000 Mbases 7200 Mbases
FM-index this thesis 5000 Mbases 9600 Mbases

case study to compare the performance of CSA and FM-index with the suffix

tree and suffix arrays.

8.3.1 Forward Search and Backward Search

We have constructed the CSA and the FM-index for the following genomes: E.

coli (4.6 Mbases), Fly (98 Mbases), Human Genome (2.88 Gbases). As men-

tioned, the amount of auxiliary information affects the performance of the com-

pressed index greatly. For our experiments, we have investigated three implemen-

tations of each index, which respectively requires a total of 4.5n, 6n and 8n bits

of space, which are refer to as the small, medium and large implementations.¶ In

case where we conduct forward search, an additional 2n bits of memory is used

for storing the DNA text.

For each genome, we have tested the searching times using patterns of lengths

10, 50, 100, 500, 1000, 5000, and 10000, where patterns are selected from the

corresponding genome at random positions, so as to get a more accurate account

of the worst-case behavior.‖ For each test case, it is repeated for 1000 times to

obtain an average timing. Finally, only searching times for existence (that is, to

determine whether the pattern P occurs in the DNA sequence T ) are reported,

as the time for enumeration (that is, reporting the occurrence of P in T ) is

independent of the searching methodology. From our experiments, we observe

¶We have also investigated another setting in which both data structures have the same
amount of auxiliary storage (precisely, 2n bits). Note that this setting is not fair to FM-index
as we allow CSA together with its auxiliary storage to use more memory; nevertheless, the
finding is similar to those to be reported below.
‖As DNA is a very biased string, a random pattern is unlikely to be found there; thus,

searching for a random string is often very fast as a few comparisons could confirm the non-
existence. To test the worst behavior of the indexing data structures, we use substrings or
modified substrings of the DNA.
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that if for a fixed type of index, if we are provided with the same amount of space

(in terms of n), the searching performance does not vary a lot with respect to

the length of the underlying genome. For instance, see Figures 8.1, 8.2 and 8.3

for the searching performance of CSA and FM-index for different genomes under

the medium implementation, and observe the similarity across the three figures.
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Figure 8.1: Searching performance of the meidum implementations of CSA and

FM-index of E. coli.
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Figure 8.2: Searching performance of the meidum implementations of CSA and

FM-index of Fly.

In this section, we shall focus on the experimental result of Human (Table 8.4),

and use it to present the general observations that we have made.

Some interesting findings can be summarized as follows.
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Figure 8.3: Searching performance of the meidum implementations of CSA and

FM-index of Human.

• Using backward search, FM-index is at least ten times faster than CSA in

all testing cases. Both CSA and FM-index have searching time increasing

linearly on pattern length.

• Using forward search, CSA is, however, two times faster than FM-index in

the medium or the large implementation, and slightly slower than FM-index

in the small implementation.

Unlike backward search, forward search is not sensitive to pattern length.

We believe that in practice, forward searching with CSA and FM-index

requires α|P |+β log n time, for some constants α� β. In other words, the

time is determined by the log n factor instead of the pattern length.

• Theoretically, backward search is better than forward search for both in-

dexes. Most surprisingly, experiments show that for long patterns, forward

search is more efficient. For CSA, forward search outperforms backward

search for patterns of length 200 or more; for FM-index, this occurs for

patterns of length around 3000 or more.

Roughly speaking, for patterns of length less than 1500, FM-index with

backward search is the best; otherwise, CSA with forward search is fastest,

while FM-index with forward search is comparable.
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Table 8.4: Searching performance (in msec) of CSA and FM-index for Human.

Index
Index Searching Pattern Length
Size Method 10 50 100 500 1000 5000 10000

CSA

small
forward 38.96 38.96 38.98 38.98 39.01 39.10 39.20

backward 2.51 12.37 24.74 123.7 247.6 1235 2474

medium
forward 3.603 3.604 3.607 3.618 3.656 3.658 3.757

backward 0.852 4.200 8.443 42.66 85.15 425.2 851.2

large
forward 1.359 1.359 1.360 1.362 1.370 1.454 1.545

backward 0.584 2.910 5.802 29.17 58.45 291.5 583.2

FMI

small
forward 20.01 20.02 20.04 20.05 20.08 20.13 20.22

backward 0.074 0.352 0.710 3.554 7.120 35.62 71.31

medium
forward 7.805 7.805 7.806 7.808 7.811 7.819 7.829

backward 0.044 0.208 0.412 2.051 4.108 20.55 41.15

large
forward 2.638 2.639 2.640 2.644 2.672 2.735 2.821

backward 0.032 0.155 0.312 1.536 3.084 15.37 30.72

8.3.2 Comparison with Suffix Trees and Suffix Arrays

As one can expect, the searching performance for suffix tree or suffix arrays should

be better than CSA and FM-index, as there are no compression involved in the

former indexes. In this section, we try to give a quantitative comparison between

these four indexes in practice.

We have constructed the four indexes for the E. coli (4.6 Mbases) genome. For

CSA and FM-index, we just consider the medium implementations, which each

occupies 6n bits. We have tested the searching times using patterns of lengths

10, 50, 100, 500, 1000, 5000, and 10000. Forward search are conducted for all

the indexes, and backward search are conducted for CSA and FM-index. In case

where we conduct forward search, an additional 2n bits of memory is used for

storing the DNA text.

Patterns are selected from the E. coli genome at random positions. For each

test case, it is repeated for 1000 times to obtain an average timing. The searching

times are separated into two parts: the time for reporting whether the pattern

exists in the text, and the time for enumerating the location of each occurrence.

Tables 8.5(a) and 8.5(b) show the best time obtained by each index.

From Table 8.5, we observe that both CSA and FM-index are much slower

than suffix trees and suffix arrays for both existential query or enumerating oc-

currences. Nevertheless, in terms of absolute time, each existential query using
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Table 8.5: Searching performance of different indexes. (a) Average time (in msec)

for one existential query for different pattern length. (b) Average time (in µsec)

for reporting the location of one occurrence

Index
Pattern Length

10 50 100 500 1000 5000 10000

Suffix Tree 0.003 0.003 0.004 0.006 0.010 0.035 0.067

Suffix Array 0.010 0.010 0.011 0.015 0.021 0.060 0.111

CSA 0.512 2.145 2.150 2.166 2.173 2.232 2.318

FM-index 0.035 0.162 0.320 1.573 3.152 5.225 5.309

Index Time

Suffix Tree 11.5
Suffix Array 0.5

CSA 49.0
FM-index 114.0

(a) (b)

CSA or FM-index can be answered within a few milliseconds, and the enumer-

ation of one occurrence is in the order of microseconds, which is acceptable in

most applications.



Chapter 9

Concluding Remarks and Further

Work

With the advance in bio-technology and information technology, the needs for

indexing very long texts while supporting efficient query are becoming more and

more important. The most promising solution lies in the compressed text indexes.

In this thesis, we have studied the construction and the application, and the

design of some of these indexes. Our results, and possibly some directions for

further study, are summarized as follows.

1. In Chapter 3, we have given an O(n log n)-time algorithm for construct-

ing CSA in the optimal space of O(nH0 + n) bits. Then, in Chapter 4,

an O(n log log |Σ|)-time algorithm for constructing CSA and FM-index in

O(n log |Σ|) bits of working space is described. One would naturally ask:

Is there a construction algorithm for CSA and/or FM-index that requires

optimal space, and runs in o(n log n) time?

2. In Chapter 5, we have shown the conversion algorithm from CSA to CST.

In addition, we have shown how to apply CSA or CST to solve the maximal

unique matches problem.

3. In Chapter 6 and Chapter 7, we have proposed the first compressed indexes

of O(n log |Σ|)-bits for managing a dynamic library, a dynamic dictionary,

and a dynamic texts.

Many grounds are still open for further research.

• Though our solution for the dynamic library supports query and up-

date times within a polylog(n) factor from the best results achieved by

95
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the uncompressed index in the literature, it may be possible to further

improve it to be within O(log n) factor.

• In our solution for the dynamic dictionary, we are in fact assuming in

the text collection we manage, no one is a substring of the other. Is it

possible to remove this requirement?

• In our solution for the dynamic dictionary and dynamic texts, only

query time admits a worst-case performance. Can we improve the

update time from amortized-case to worst-case? Also, can both the

time be improved to be closer to from the best results achieved by

uncompressed index in the literature?

4. In Chapter 8, we have given preliminary experimental studies for the CSA

and FM-index. For further work, there are many other compressed indexes,

such as the Compressed Compact Suffix Arrays (CCSA) [55] of Mäkinen and

Navarro, and other versions of the CSA and FM-index, should be included

for a thorough comparison. Also, our input texts have been only the DNA

sequences, but texts with large alphabets, such as most texts in Asian

languages, should also be investigated.

On the other hand, during the implementation of our construction algo-

rithms, we feel that it would be convenient if the implementations of the

existing compressed data structures, such as rank and select data struc-

tures of Jacobson [42], are available through a simple library call. The

quest for such a library, like LEDA [59], will be a most meaningful piece of

research in the era of overwhelming information.


