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Abstract
We propose a new approach to the problem of
neural network expressivity, which seeks to char-
acterize how structural properties of a neural net-
work family affect the functions it is able to com-
pute. Our approach is based on an interrelated
set of measures of expressivity, unified by the
novel notion of trajectory length, which mea-
sures how the output of a network changes as the
input sweeps along a one-dimensional path. Our
findings can be summarized as follows:

(1) The complexity of the computed function
grows exponentially with depth. We de-
sign measures of expressivity that capture
the non-linearity of the computed func-
tion. Due to how the network transforms
its input, these measures grow exponentially
with depth.

(2) All weights are not equal (initial layers mat-
ter more). We find that trained networks
are far more sensitive to their lower (ini-
tial) layer weights: they are much less ro-
bust to noise in these layer weights, and also
perform better when these weights are opti-
mized well.

(3) Trajectory Regularization works like Batch
Normalization. We find that batch norm
stabilizes the learnt representation, and
based on this propose a new regularization
scheme, trajectory regularization.

1. Introduction
Deep neural networks have proved astoundingly effective
at a wide range of empirical tasks, from image classifica-
tion (Krizhevsky et al., 2012) to playing Go (Silver et al.,
2016), and even modeling human learning (Piech et al.,
2015).
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Despite these successes, understanding of how and why
neural network architectures achieve their empirical suc-
cesses is still lacking. This includes even the fundamen-
tal question of neural network expressivity, how the archi-
tectural properties of a neural network (depth, width, layer
type) affect the resulting functions it can compute, and its
ensuing performance.

This is a foundational question, and there is a rich history
of prior work addressing expressivity in neural networks.
However, it has been challenging to derive conclusions that
provide both theoretical generality with respect to choices
of architecture as well as meaningful insights into practical
performance.

Indeed, the very first results on this question take a highly
theoretical approach, from using functional analysis to
show universal approximation results (Hornik et al., 1989;
Cybenko, 1989), to analysing expressivity via comparisons
to boolean circuits (Maass et al., 1994) and studying net-
work VC dimension (Bartlett et al., 1998). While these
results provided theoretically general conclusions, the shal-
low networks they studied are very different from the deep
models that have proven so successful in recent years.

In response, several recent papers have focused on under-
standing the benefits of depth for neural networks (Pas-
canu et al., 2013; Montufar et al., 2014; Eldan and Shamir,
2015; Telgarsky, 2015; Martens et al., 2013; Bianchini and
Scarselli, 2014). These results are compelling and take
modern architectural changes into account, but they only
show that a specific choice of weights for a deeper network
results in inapproximability by a shallow (typically one or
two hidden layers) network.

In particular, the goal of this new line of work has been
to establish lower bounds — showing separations between
shallow and deep networks — and as such they are based
on hand-coded constructions of specific network weights.
Even if the weight values used in these constructions are
robust to small perturbations (as in (Pascanu et al., 2013;
Montufar et al., 2014)), the functions that arise from these
constructions tend toward extremal properties by design,
and there is no evidence that a network trained on data ever
resembles such a function.

This has meant that a set of fundamental questions about
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neural network expressivity has remained largely unan-
swered. First, we lack a good understanding of the “typ-
ical” case rather than the worst case in these bounds for
deep networks, and consequently have no way to evalu-
ate whether the hand-coded extremal constructions provide
a reflection of the complexity encountered in more stan-
dard settings. Second, we lack an understanding of upper
bounds to match the lower bounds produced by this prior
work; do the constructions used to date place us near the
limit of the expressive power of neural networks, or are
there still large gaps? Finally, if we had an understanding
of these two issues, we might begin to draw connections
between network expressivity and observed performance.

Our contributions: Measures of Expressivity and their
Applications In this paper, we address this set of chal-
lenges by defining and analyzing an interrelated set of mea-
sures of expressivity for neural networks; our framework
applies to a wide range of standard architectures, indepen-
dent of specific weight choices. We begin our analysis at
the start of training, after random initialization, and later
derive insights connecting network expressivity and perfor-
mance.

Our first measure of expressivity is based on the notion of
an activation pattern: in a network where the units compute
functions based on discrete thresholds, we can ask which
units are above or below their thresholds (i.e. which units
are “active” and which are not). For the range of standard
architectures that we consider, the network is essentially
computing a linear function once we fix the activation pat-
tern; thus, counting the number of possible activation pat-
terns provides a concrete way of measuring the complexity
beyond linearity that the network provides. We give an up-
per bound on the number of possible activation patterns,
over any setting of the weights. This bound is tight as it
matches the hand-constructed lower bounds of earlier work
(Pascanu et al., 2013; Montufar et al., 2014).

Key to our analysis is the notion of a transition, in which
changing an input x to a nearby input x + δ changes the
activation pattern. We study the behavior of transitions as
we pass the input along a one-dimensional parametrized
trajectory x(t). Our central finding is that the trajectory
length grows exponentially in the depth of the network.

Trajectory length serves as a unifying notion in our mea-
sures of expressivity, and it leads to insights into the be-
havior of trained networks. Specifically, we find that the
exponential growth in trajectory length as a function of
depth implies that small adjustments in parameters lower
in the network induce larger changes than comparable ad-
justments higher in the network. We demonstrate this phe-
nomenon through experiments on MNIST and CIFAR-10,
where the network displays much less robustness to noise

in the lower layers, and better performance when they are
trained well. We also explore the effects of regularization
methods on trajectory length as the network trains and pro-
pose a less computationally intensive method of regulariza-
tion, trajectory regularization, that offers the same perfor-
mance as batch normalization.

The contributions of this paper are thus:

(1) Measures of expressivity: We propose easily com-
putable measures of neural network expressivity that
capture the expressive power inherent in different
neural network architectures, independent of specific
weight settings.

(2) Exponential trajectories: We find an exponen-
tial depth dependence displayed by these measures,
through a unifying analysis in which we study how the
network transforms its input by measuring trajectory
length

(3) All weights are not equal (the lower layers matter
more): We show how these results on trajectory length
suggest that optimizing weights in lower layers of the
network is particularly important.

(4) Trajectory Regularization Based on understanding the
effect of batch norm on trajectory length, we propose
a new method of regularization, trajectory regulariza-
tion, that offers the same advantages as batch norm,
and is computationally more efficient.

In prior work (Poole et al., 2016), we studied the propa-
gation of Riemannian curvature through random networks
by developing a mean field theory approach. Here, we take
an approach grounded in computational geometry, present-
ing measures with a combinatorial flavor and explore the
consequences during and after training.

2. Measures of Expressivity
Given a neural network of a certain architecture A (some
depth, width, layer types), we have an associated function,
FA(x;W ), where x is an input and W represents all the
parameters of the network. Our goal is to understand how
the behavior of FA(x;W ) changes asA changes, for values
of W that we might encounter during training, and across
inputs x.

The first major difficulty comes from the high dimension-
ality of the input. Precisely quantifying the properties of
FA(x;W ) over the entire input space is intractable. As a
tractable alternative, we study simple one dimensional tra-
jectories through input space. More formally:

Definition: Given two points, x0, x1 ∈ Rm, we say x(t)
is a trajectory (between x0 and x1) if x(t) is a curve
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parametrized by a scalar t ∈ [0, 1], with x(0) = x0 and
x(1) = x1.

Simple examples of a trajectory would be a line (x(t) =
tx1 + (1 − t)x0) or a circular arc (x(t) = cos(πt/2)x0 +
sin(πt/2)x1), but in general x(t) may be more compli-
cated, and potentially not expressible in closed form.

Armed with this notion of trajectories, we can begin to de-
fine measures of expressivity of a network FA(x;W ) over
trajectories x(t).

2.1. Neuron Transitions and Activation Patterns

In (Montufar et al., 2014) the notion of a “linear region”
is introduced. Given a neural network with piecewise lin-
ear activations (such as ReLU or hard tanh), the function
it computes is also piecewise linear, a consequence of the
fact that composing piecewise linear functions results in a
piecewise linear function. So one way to measure the “ex-
pressive power” of different architectures A is to count the
number of linear pieces (regions), which determines how
nonlinear the function is.

In fact, a change in linear region is caused by a neuron
transition in the output layer. More precisely:

Definition For fixed W , we say a neuron with piecewise
linear region transitions between inputs x, x+ δ if its acti-
vation function switches linear region between x and x+δ.

So a ReLU transition would be given by a neuron switching
from off to on (or vice versa) and for hard tanh by switch-
ing between saturation at −1 to its linear middle region to
saturation at 1. For any generic trajectory x(t), we can thus
define T (FA(x(t);W )) to be the number of transitions un-
dergone by output neurons (i.e. the number of linear re-
gions) as we sweep the input x(t). Instead of just concen-
trating on the output neurons however, we can look at this
pattern over the entire network. We call this an activation
patten:

Definition We can defineAP(FA(x;W )) to be the activa-
tion pattern – a string of form {0, 1}num neurons (for ReLUs)
and {−1, 0, 1}num neurons (for hard tanh) of the network en-
coding the linear region of the activation function of every
neuron, for an input x and weights W .

Overloading notation slightly, we can also define (similarly
to transitions) A(FA(x(t);W )) as the number of distinct
activation patterns as we sweep x along x(t). As each
distinct activation pattern corresponds to a different linear
function of the input, this combinatorial measure captures
how much more expressive A is over a simple linear map-
ping.

Returning to Montufar et al, they provide a construction
i.e. a specific set of weights W0, that results in an exponen-

tial increase of linear regions with the depth of the archi-
tectures. They also appeal to Zaslavsky’s theorem (Stan-
ley, 2011) from the theory of hyperplane arrangements to
show that a shallow network, i.e. one hidden layer, with the
same number of parameters as a deep network, has a much
smaller number of linear regions than the number achieved
by their choice of weights W0 for the deep network.

More formally, letting A1 be a fully connected network
with one hidden layer, and Al a fully connected network
with the same number of parameters, but l hidden layers,
they show

∀WT (FA1
([0, 1];W )) < T (FA1

([0, 1];W0) (*)

We derive a much more general result by considering the
‘global’ activation patterns over the entire input space, and
prove that for any fully connected network, with any num-
ber of hidden layers, we can upper bound the number of lin-
ear regions it can achieve, over all possible weight settings
W . This upper bound is asymptotically tight, matched by
the construction given in (Montufar et al., 2014). Our result
can be written formally as:

Theorem 1. (Tight) Upper Bound for Number of Activa-
tion Patterns Let A(n,k) denote a fully connected network
with n hidden layers of width k, and inputs in Rm. Then the
number of activation patterns A(FAn,k

(Rm;W ) is upper
bounded byO(kmn) for ReLU activations, andO((2k)mn)
for hard tanh.

From this we can derive a chain of inequalities. Firstly,
from the theorem above we find an upper bound of
A(FAn,k

(Rm;W )) over all W , i.e.

∀W A(FA(n,k)
)(Rm;W ) ≤ U(n, k,m).

Next, suppose we haveN neurons in total. Then we want to
compare (for wlog ReLUs), quantities like U(n′, N/n′,m)
for different n′.

But U(n′, N/n′,m) = O((N/n′)mn
′
), and so, noting that

the maxima of
(
a
x

)mx
(for a > e) is x = a/e, we get, (for

n, k > e), in comparison to (*),

U(1, N,m) < U(2,
N

2
,m) < · · ·

· · · < U(n− 1,
N

n− 1
,m) < U(n, k,m)

We prove this via an inductive proof on regions in a hy-
perplane arrangement. The proof can be found in the Ap-
pendix. As noted in the introduction, this result differs
from earlier lower-bound constructions in that it is an upper
bound that applies to all possible sets of weights. Via our
analysis, we also prove
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Figure 1. Deep networks with piecewise linear activations subdi-
vide input space into convex polytopes. We take a three hidden
layer ReLU network, with input x ∈ R2, and four units in each
layer. The left pane shows activations for the first layer only. As
the input is in R2, neurons in the first hidden layer have an associ-
ated line in R2, depicting their activation boundary. The left pane
thus has four such lines. For the second hidden layer each neuron
again has a line in input space corresponding to on/off, but this
line is different for each region described by the first layer activa-
tion pattern. So in the centre pane, which shows activation bound-
ary lines corresponding to second hidden layer neurons in green
(and first hidden layer in black), we can see the green lines ‘bend’
at the boundaries. (The reason for this bending becomes appar-
ent through the proof of Theorem 2.) Finally, the right pane adds
the on/off boundaries for neurons in the third hidden layer, in pur-
ple. These lines can bend at both black and green boundaries, as
the image shows. This final set of convex polytopes corresponds
to all activation patterns for this network (with its current set of
weights) over the unit square, with each polytope representing a
different linear function.

Theorem 2. Regions in Input Space Given the correspond-
ing function of a neural network FA(Rm;W ) with ReLU
or hard tanh activations, the input space is partitioned into
convex polytopes, with FA(Rm;W ) corresponding to a dif-
ferent linear function on each region.

This result is of independent interest for optimization – a
linear function over a convex polytope results in a well be-
haved loss function and an easy optimization problem. Un-
derstanding the density of these regions during the training
process would likely shed light on properties of the loss
surface, and improved optimization methods. A picture of
a network’s regions is shown in Figure 1.

2.1.1. EMPIRICALLY COUNTING TRANSITIONS

We empirically tested the growth of the number of acti-
vations and transitions as we varied x along x(t) to under-
stand their behavior. We found that for bounded non linear-
ities, especially tanh and hard-tanh, not only do we observe
exponential growth with depth (as hinted at by the upper
bound) but that the scale of parameter initialization also af-
fects the observations (Figure 2). We also experimented
with sweeping the weights W of a layer through a trajec-
tory W (t), and counting the different labellings output by
the network. This ‘dichotomies’ measure is discussed fur-
ther in the Appendix, and also exhibits the same growth
properties, Figure 14.
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Figure 2. The number of transitions seen for fully connected net-
works of different widths, depths and initialization scales, with
a circular trajectory between MNIST datapoints. The number of
transitions grows exponentially with the depth of the architecture,
as seen in (left). The same rate of growth is not seen with increas-
ing architecture width, plotted in (right). There is a surprising
dependence on the scale of initialization, explained in 2.2.

Figure 3. Picture showing a trajectory increasing with the depth
of a network. We start off with a circular trajectory (left most
pane), and feed it through a fully connected tanh network with
width 100. Pane second from left shows the image of the circular
trajectory (projected down to two dimensions) after being trans-
formed by the first hidden layer. Subsequent panes show pro-
jections of the latent image of the circular trajectory after being
transformed by more hidden layers. The final pane shows the the
trajectory after being transformed by all the hidden layers.

2.2. Trajectory Length

In fact, there turns out to be a reason for the exponential
growth with depth, and the sensitivity to initialization scale.
Returning to our definition of trajectory, we can define an
immediately related quantity, trajectory length

Definition: Given a trajectory, x(t), we define its length,
l(x(t)), to be the standard arc length:

l(x(t)) =

∫
t

∣∣∣∣∣∣∣∣dx(t)

dt

∣∣∣∣∣∣∣∣ dt
Intuitively, the arc length breaks x(t) up into infinitesimal
intervals and sums together the Euclidean length of these
intervals.

If we letA(n,k) denote, as before, fully connected networks
with n hidden layers each of width k, and initializing with
weights ∼ N (0, σ2

w/k) (accounting for input scaling as
typical), and biases ∼ N (0, σ2

b ), we find that:

Theorem 3. Bound on Growth of Trajectory Length Let
FA(x′,W ) be a ReLU or hard tanh random neural network
and x(t) a one dimensional trajectory with x(t+ δ) having
a non trival perpendicular component to x(t) for all t, δ



On the Expressive Power of Deep Neural Networks

1 2 3 4 5 6 7 8 9
Network depth

101

102

103

104

105

Tr
aj

ec
to

ry
 le

ng
th

Trajectory length growth with increasing depth

scl5
scl8
scl12
scl16
scl20
scl32

Figure 4. We look at trajectory growth with different initializa-
tion scales as a trajectory is propagated through a convolutional
architecture for CIFAR-10, with ReLU activations. The analy-
sis of Theorem 3 was for fully connected networks, but we see
that trajectory growth holds (albeit with slightly higher scales) for
convolutional architectures also. Note that the decrease in trajec-
tory length, seen in layers 3 and 7 is expected, as those layers are
pooling layers.

(i.e, not a line). Then defining z(d)(x(t)) = z(d)(t) to be
the image of the trajectory in layer d of the network, we
have

(a)

E
[
l(z(d)(t))

]
≥ O

(
σw
√
k√

k + 1

)d
l(x(t))

for ReLUs

(b)

E
[
l(z(d)(t))

]
≥ O

 σw
√
k√

σ2
w + σ2

b + k
√
σ2
w + σ2

b

d

l(x(t))

for hard tanh

That is, l(x(t) grows exponentially with the depth of the
network, but the width only appears as a base (of the expo-
nent). This bound is in fact tight in the limits of large σw
and k.

A schematic image depicting this can be seen in Figure 3
and the proof can be found in the Appendix. A rough out-
line is as follows: we look at the expected growth of the
difference between a point z(d)(t) on the curve and a small
perturbation z(d)(t+dt), from layer d to layer d+1. Denot-
ing this quantity

∣∣∣∣δz(d)(t)∣∣∣∣, we derive a recurrence relat-
ing
∣∣∣∣δz(d+1)(t)

∣∣∣∣ and
∣∣∣∣δz(d)(t)∣∣∣∣ which can be composed

to give the desired growth rate.

The analysis is complicated by the statistical dependence
on the image of the input z(d+1)(t). So we instead form
a recursion by looking at the component of the difference
perpendicular to the image of the input in that layer, i.e.

∣∣∣∣∣∣δz(d+1)
⊥ (t)

∣∣∣∣∣∣, which results in the condition on x(t) in the
statement.

In Figures 4, 12, we see the growth of an input trajectory
for ReLU networks on CIFAR-10 and MNIST. The CIFAR-
10 network is convolutional but we observe that these lay-
ers also result in similar rates of trajectory length increases
to the fully connected layers. We also see, as would be
expected, that pooling layers act to reduce the trajectory
length. We discuss upper bounds in the Appendix.

Figure 5. The number of transitions is linear in trajectory length.
Here we compare the empirical number of transitions to the length
of the trajectory, for different depths of a hard-tanh network. We
repeat this comparison for a variety of network architectures, with
different network width k and weight variance σ2

w.

For the hard tanh case (and more generally any bounded
non-linearity), we can formally prove the relation of trajec-
tory length and transitions under an assumption: assume
that while we sweep x(t) all neurons are saturated un-
less transitioning saturation endpoints, which happens very
rapidly. (This is the case for e.g. large initialization scales).
Then we have:

Theorem 4. Transitions proportional to trajectory length
Let FAn,k

be a hard tanh network with n hidden layers each
of width k. And let

g(k, σw, σb, n) = O

 √
k√

1 +
σ2
b

σ2
w

n

Then T (FAn,k
(x(t);W ) = O(g(k, σw, σb, n)) for W ini-

tialized with weight and bias scales σw, σb.

Note that the expression for g(k, σw, σb, n) is exactly the
expression given by Theorem 3 when σw is very large and
dominates σb. We can also verify this experimentally in
settings where the simpilfying assumption does not hold,
as in Figure 5.

3. Insights from Network Expressivity
Here we explore the insights gained from applying
our measurements of expressivity, particularly trajectory
length, to understand network performance. We examine
the connection of expressivity and stability, and inspired
by this, propose a new method of regularization, trajectory
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Figure 6. We then pick a single layer of a conv net trained to high
accuracy on CIFAR10, and add noise to the layer weights of in-
creasing magnitudes, testing the network accuracy as we do so.
We find that the initial (lower) layers of the network are least ro-
bust to noise – as the figure shows, adding noise of 0.25 magni-
tude to the first layer results in a 0.7 drop in accuracy, while the
same amount of noise added to the fifth layer barely results in a
0.02 drop in accuracy. This pattern is seen for many different ini-
tialization scales, even for a (typical) scaling of σ2

w = 2, used in
the experiment.

regularization that offers the same advantages as the more
computationally intensive batch normalization.

3.1. Expressivity and Network Stability

The analysis of network expressivity offers interesting
takeaways related to the parameter and functional stabil-
ity of a network. From the proof of Theorem 3, we saw
that a perturbation to the input would grow exponentially
in the depth of the network. It is easy to see that this anal-
ysis is not limited to the input layer, but can be applied to
any layer. In this form, it would say

A perturbation at a layer grows exponentially in the
remaining depth after that layer.

This means that perturbations to weights in lower layers
should be more costly than perturbations in the upper lay-
ers, due to exponentially increasing magnitude of noise,
and result in a much larger drop of accuracy. Figure 6, in
which we train a conv network on CIFAR-10 and add noise
of varying magnitudes to exactly one layer, shows exactly
this.

We also find that the converse (in some sense) holds: after
initializing a network, we trained a single layer at different
depths in the network and found monotonically increasing
performance as layers lower in the network were trained.
This is shown in Figure 7 and Figure 17 in the Appendix.

3.2. Trajectory Length and Regularization: The Effect
of Batch Normalization

Expressivity measures, especially trajectory length, can
also be used to better understand the effect of regulariza-
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Figure 7. Demonstration of expressive power of remaining depth
on MNIST. Here we plot train and test accuracy achieved by train-
ing exactly one layer of a fully connected neural net on MNIST.
The different lines are generated by varying the hidden layer cho-
sen to train. All other layers are kept frozen after random initial-
ization. We see that training lower hidden layers leads to better
performance. The networks had width k = 100, weight variance
σ2
w = 1, and hard-tanh nonlinearities. Note that we only train

from the second hidden layer (weights W (1)) onwards, so that
the number of parameters trained remains fixed.

tion. One regularization technique that has been extremely
successful for training neural networks is Batch Normal-
ization (Ioffe and Szegedy, 2015).
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Figure 8. Training increases trajectory length even for typical
(σ2

w = 2) initialization values of σw. Here we propagate a cir-
cular trajectory joining two CIFAR10 datapoints through a conv
net without batch norm, and look at how trajectory length changes
through training. We see that training causes trajectory length
to increase exponentially with depth (exceptions only being the
pooling layers and the final fc layer, which halves the number of
neurons.) Note that at Step 0, the network is not in the exponen-
tial growth regime. We observe (discussed in Figure 9) that even
networks that aren’t initialized in the exponential growth regime
can be pushed there through training.

By taking measures of trajectories during training we find
that without batch norm, trajectory length tends to increase
during training, as shown in Figures 8 and Figure 18 in
the Appendix. In these experiments, two networks were
initialized with σ2

w = 2 and trained to high test accuracy on
CIFAR10 and MNIST. We see that in both cases, trajectory
length increases as training progresses.

A surprising observation is σ2
w = 2 is not in the exponential

growth increase regime at initialization for the CIFAR10
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architecture (Figure 8 at Step 0.). But note that even with a
smaller weight initialization, weight norms increase during
training, shown in Figure 9, pushing typically initialized
networks into the exponential growth regime.
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Figure 9. This figure shows how the weight scaling of a CIFAR10
network evolves during training. The network was initialized with
σ2
w = 2, which increases across all layers during training.

While the initial growth of trajectory length enables greater
functional expressivity, large trajectory growth in the learnt
representation results in an unstable representation, wit-
nessed in Figure 6. In Figure 10 we train another conv
net on CIFAR10, but this time with batch normalization.
We see that the batch norm layers reduce trajectory length,
helping stability.
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Figure 10. Growth of circular trajectory between two datapoints
with batch norm layers for a conv net on CIFAR10. The network
was initialized as typical, with σ2

w = 2. Note that the batch norm
layers in Step 0 are poorly behaved due to division by a close to 0
variance. But after just a few hundred gradient steps and contin-
uing onwards, we see the batch norm layers (dotted lines) reduce
trajectory length, stabilising the representation without sacrificing
expressivity.

3.3. Trajectory Regularization

Motivated by the fact that batch normalization decreases
trajectory length and hence helps stability and generaliza-
tion, we consider directly regularizing on trajectory length:
we replace every batch norm layer used in the conv net
in Figure 10 with a trajectory regularization layer. This
layer adds to the loss λ(current length/orig length), and

then scales the outgoing activations by λ, where λ is a pa-
rameter to be learnt. In implementation, we typically scale
the additional loss above with a constant (0.01) to reduce
magnitude in comparison to classification loss. Our results,
Figure 11 show that both trajectory regularization and batch
norm perform comparably, and considerably better than not
using batch norm. One advantage of using Trajectory Reg-
ularization is that we don’t require different computations
to be performed for train and test, enabling more efficient
implementation.
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Figure 11. We replace each batch norm layer of the CIFAR10
conv net with a trajectory regularization layer, described in Sec-
tion 3.3. During training trajectory length is easily calculated as
a piecewise linear trajectory between adjacent datapoints in the
minibatch. We see that trajectory regularization achieves the same
performance as batch norm, albeit with slightly more train time.
However, as trajectory regularization behaves the same during
train and test time, it is simpler and more efficient to implement.

4. Discussion
Characterizing the expressiveness of neural networks, and
understanding how expressiveness varies with parameters
of the architecture, has been a challenging problem due to
the difficulty in identifying meaningful notions of expres-
sivity and in linking their analysis to implications for these
networks in practice. In this paper we have presented an
interrelated set of expressivity measures; we have shown
tight exponential bounds on the growth of these measures
in the depth of the networks, and we have offered a uni-
fying view of the analysis through the notion of trajectory
length. Our analysis of trajectories provides insights for the
performance of trained networks as well, suggesting that
networks in practice may be more sensitive to small per-
turbations in weights at lower layers. We also used this to
explore the empirical success of batch norm, and developed
a new regularization method – trajectory regularization.

This work raises many interesting directions for future
work. At a general level, continuing the theme of ‘prin-
cipled deep understanding’, it would be interesting to link
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measures of expressivity to other properties of neural net-
work performance. There is also a natural connection be-
tween adversarial examples, (Goodfellow et al., 2014), and
trajectory length: adversarial perturbations are only a small
distance away in input space, but result in a large change in
classification (the output layer). Understanding how trajec-
tories between the original input and an adversarial pertur-
bation grow might provide insights into this phenomenon.
Another direction, partially explored in this paper, is regu-
larizing based on trajectory length. A very simple version
of this was presented, but further performance gains might
be achieved through more sophisticated use of this method.
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Appendix
Here we include the full proofs from sections in the paper.

A. Proofs and additional results from Section 2.1
Proof of Theorem 2

Proof. We show inductively that FA(x;W ) partitions the input space into convex polytopes via hyperplanes. Consider
the image of the input space under the first hidden layer. Each neuron v(1)i defines hyperplane(s) on the input space:
letting W (0)

i be the ith row of W (0), b(0)i the bias, we have the hyperplane W (0)
i x + bi = 0 for a ReLU and hyperplanes

W
(0)
i x + bi = ±1 for a hard-tanh. Considering all such hyperplanes over neurons in the first layer, we get a hyperplane

arrangement in the input space, each polytope corresponding to a specific activation pattern in the first hidden layer.

Now, assume we have partitioned our input space into convex polytopes with hyperplanes from layers ≤ d − 1. Consider
v
(d)
i and a specific polytope Ri. Then the activation pattern on layers ≤ d − 1 is constant on Ri, and so the input to v(d)i

on Ri is a linear function of the inputs
∑
j λjxj + b and some constant term, comprising of the bias and the output of

saturated units. Setting this expression to zero (for ReLUs) or to ±1 (for hard-tanh) again gives a hyperplane equation,
but this time, the equation is only valid in Ri (as we get a different linear function of the inputs in a different region.) So
the defined hyperplane(s) either partition Ri (if they intersect Ri) or the output pattern of v(d)i is also constant on Ri. The
theorem then follows.

This implies that any one dimensional trajectory x(t), that does not ‘double back’ on itself (i.e. reenter a polytope it has
previously passed through), will not repeat activation patterns. In particular, after seeing a transition (crossing a hyperplane
to a different region in input space) we will never return to the region we left. A simple example of such a trajectory is a
straight line:

Corollary 1. Transitions and Output Patterns in an Affine Trajectory For any affine one dimensional trajectory x(t) =
x0 + t(x1 − x0) input into a neural network FW , we partition R 3 t into intervals every time a neuron transitions. Every
interval has a unique network activation pattern on FW .

Generalizing from a one dimensional trajectory, we can ask how many regions are achieved over the entire input – i.e. how
many distinct activation patterns are seen? We first prove a bound on the number of regions formed by k hyperplanes in
Rm (in a purely elementary fashion, unlike the proof presented in (Stanley, 2011))

Theorem 5. Upper Bound on Regions in a Hyperplane Arrangement Suppose we have k hyperplanes in Rm - i.e. k
equations of form αix = βi. for αi ∈ Rm, βi ∈ R. Let the number of regions (connected open sets bounded on some sides
by the hyperplanes) be r(k,m). Then

r(k,m) ≤
m∑
i=0

(
k

i

)

Proof of Theorem 5

Proof. Let the hyperplane arrangement be denoted H, and let H ∈ H be one specific hyperplane. Then the number of
regions in H is precisely the number of regions in H − H plus the number of regions in H ∩ H . (This follows from the
fact that H subdivides into two regions exactly all of the regions inH ∩H , and does not affect any of the other regions.)

In particular, we have the recursive formula

r(k,m) = r(k − 1,m) + r(k − 1,m− 1)

We now induct on k + m to assert the claim. The base cases of r(1, 0) = r(0, 1) = 1 are trivial, and assuming the claim
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for ≤ k +m− 1 as the induction hypothesis, we have

r(k − 1,m) + r(k − 1,m− 1) ≤
m∑
i=0

(
k − 1

i

)
+

m−1∑
i=0

(
k − 1

i

)

≤
(
k − 1

0

)
+

d−1∑
i=0

(
k − 1

i

)
+

(
k − 1

i+ 1

)

≤
(
k

0

)
+

m−1∑
i=0

(
k

i+ 1

)
where the last equality follows by the well known identity(

a

b

)
+

(
a

b+ 1

)
=

(
a+ 1

b+ 1

)

This concludes the proof.

With this result, we can easily prove Theorem 1 as follows:

Proof of Theorem 1

Proof. First consider the ReLU case. Each neuron has one hyperplane associated with it, and so by Theorem 5, the first
hidden layer divides up the inputs space into r(k,m) regions, with r(k,m) ≤ O(km).

Now consider the second hidden layer. For every region in the first hidden layer, there is a different activation pattern in
the first layer, and so (as described in the proof of Theorem 2) a different hyperplane arrangement of k hyperplanes in an
m dimensional space, contributing at most r(k,m) regions.

In particular, the total number of regions in input space as a result of the first and second hidden layers is ≤ r(k,m) ∗
r(k,m) ≤ O(k2m). Continuing in this way for each of the n hidden layers gives the O(kmn) bound.

A very similar method works for hard tanh, but here each neuron produces two hyperplanes, resulting in a bound of
O((2k)mn).

B. Proofs and additional results from Section 2.2
Proof of Theorem 3

B.1. Notation and Preliminary Results

Difference of points on trajectory Given x(t) = x, x(t+ dt) = x+ δx in the trajectory, let δz(d) = z(d)(x+ δx)− z(d)(x)

Parallel and Perpendicular Components: Given vectors x, y, we can write y = y⊥ + y‖ where y⊥ is the component of y
perpendicular to x, and y‖ is the component parallel to x. (Strictly speaking, these components should also have a subscript
x, but we suppress it as the direction with respect to which parallel and perpendicular components are being taken will be
explicitly stated.)

This notation can also be used with a matrix W , see Lemma 1.

Before stating and proving the main theorem, we need a few preliminary results.

Lemma 1. Matrix Decomposition Let x, y ∈ Rk be fixed non-zero vectors, and let W be a (full rank) matrix. Then, we
can write

W = ‖W‖ + ‖W⊥ + ⊥W‖ + ⊥W⊥
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such that

‖W⊥x = 0 ⊥W⊥x = 0

yT⊥W‖ = 0 yT⊥W⊥ = 0

i.e. the row space of W is decomposed to perpendicular and parallel components with respect to x (subscript on right),
and the column space is decomposed to perpendicular and parallel components of y (superscript on left).

Proof. Let V,U be rotations such that V x = (||x|| , 0..., 0)T and Uy = (||y|| , 0...0)T . Now let W̃ = UWV T , and let
W̃ = ‖W̃‖ + ‖W̃⊥ + ⊥W̃‖ + ⊥W̃⊥, with ‖W̃‖ having non-zero term exactly W̃11, ‖W̃⊥ having non-zero entries exactly
W̃1i for 2 ≤ i ≤ k. Finally, we let ⊥W̃‖ have non-zero entries exactly W̃i1, with 2 ≤ i ≤ k and ⊥W̃⊥ have the remaining
entries non-zero.

If we define x̃ = V x and ỹ = Uy, then we see that

‖W̃⊥x̃ = 0 ⊥W̃⊥x̃ = 0

ỹT⊥W̃‖ = 0 ỹT⊥W̃⊥ = 0

as x̃, ỹ have only one non-zero term, which does not correspond to a non-zero term in the components of W̃ in the equations.

Then, defining ‖W‖ = UT ‖W̃‖V , and the other components analogously, we get equations of the form

‖W⊥x = UT ‖W̃⊥V x = UT ‖W̃⊥x̃ = 0

Observation 1. Given W,x as before, and considering W‖, W⊥ with respect to x (wlog a unit vector) we can express
them directly in terms of W as follows: Letting W (i) be the ith row of W , we have

W‖ =

((W (0))T · x)x
...

((W (k))T · x)x


i.e. the projection of each row in the direction of x. And of course

W⊥ = W −W‖

The motivation to consider such a decomposition of W is for the resulting independence between different components, as
shown in the following lemma.

Lemma 2. Independence of Projections Let x be a given vector (wlog of unit norm.) If W is a random matrix with
Wij ∼ N (0, σ2), then W‖ and W⊥ with respect to x are independent random variables.

Proof. There are two possible proof methods:

(a) We use the rotational invariance of random Gaussian matrices, i.e. if W is a Gaussian matrix, iid entries N (0, σ2),
and R is a rotation, then RW is also iid Gaussian, entries N (0, σ2). (This follows easily from affine transformation
rules for multivariate Gaussians.)

Let V be a rotation as in Lemma 1. Then W̃ = WV T is also iid Gaussian, and furthermore, W̃‖ and W̃⊥ partition
the entries of W̃ , so are evidently independent. But then W‖ = W̃‖V

T and W⊥ = W̃⊥V
T are also independent.

(b) From the observation note that W‖ and W⊥ have a centered multivariate joint Gaussian distribution (both consist of
linear combinations of the entries Wij in W .) So it suffices to show that W‖ and W⊥ have covariance 0. Because
both are centered Gaussians, this is equivalent to showing E(< W‖,W⊥ >) = 0. We have that

E(< W‖,W⊥ >) = E(W‖W
T
⊥ ) = E(W‖W

T )− E(W‖W
T
‖ )
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As any two rows of W are independent, we see from the observation that E(W‖W
T ) is a diagonal matrix, with the

ith diagonal entry just ((W (0))T · x)2. But similarly, E(W‖W
T
‖ ) is also a diagonal matrix, with the same diagonal

entries - so the claim follows.

In the following two lemmas, we use the rotational invariance of Gaussians as well as the chi distribution to prove results
about the expected norm of a random Gaussian vector.

Lemma 3. Norm of a Gaussian vector Let X ∈ Rk be a random Gaussian vector, with Xi iid, ∼ N (0, σ2). Then

E [||X||] = σ
√

2
Γ((k + 1)/2)

Γ(k/2)

Proof. We use the fact that if Y is a random Gaussian, and Yi ∼ N (0, 1) then ||Y || follows a chi distribution. This means
that E(||X/σ||) =

√
2Γ((k + 1)/2)/Γ(k/2), the mean of a chi distribution with k degrees of freedom, and the result

follows by noting that the expectation in the lemma is σ multiplied by the above expectation.

We will find it useful to bound ratios of the Gamma function (as appear in Lemma 3) and so introduce the following
inequality, from (Kershaw, 1983) that provides an extension of Gautschi’s Inequality.

Theorem 6. An Extension of Gautschi’s Inequality For 0 < s < 1, we have

(
x+

s

2

)1−s
≤ Γ(x+ 1)

Γ(x+ s)
≤

(
x− 1

2
+

(
s+

1

4

) 1
2

)1−s

We now show:

Lemma 4. Norm of Projections Let W be a k by k random Gaussian matrix with iid entries ∼ N (0, σ2), and x, y two
given vectors. Partition W into components as in Lemma 1 and let x⊥ be a nonzero vector perpendicular to x. Then

(a)

E
[∣∣∣∣⊥W⊥x⊥∣∣∣∣] = ||x⊥||σ

√
2

Γ(k/2)

Γ((k − 1)/2
≥ ||x⊥||σ

√
2

(
k

2
− 3

4

)1/2

(b) If 1A is an identity matrix with non-zeros diagonal entry i iff i ∈ A ⊂ [k], and |A| > 2, then

E
[∣∣∣∣1A⊥W⊥x⊥∣∣∣∣] ≥ ||x⊥||σ√2

Γ(|A|/2)

Γ((|A| − 1)/2)
≥ ||x⊥||σ

√
2

(
|A|
2
− 3

4

)1/2

Proof. (a) Let U, V, W̃ be as in Lemma 1. As U, V are rotations, W̃ is also iid Gaussian. Furthermore for any fixed W ,
with ã = V a, by taking inner products, and square-rooting, we see that

∣∣∣∣∣∣W̃ ã
∣∣∣∣∣∣ = ||Wa||. So in particular

E
[∣∣∣∣⊥W⊥x⊥∣∣∣∣] = E

[∣∣∣∣∣∣⊥W̃⊥x̃⊥∣∣∣∣∣∣]
But from the definition of non-zero entries of ⊥W̃⊥, and the form of x̃⊥ (a zero entry in the first coordinate), it follows
that ⊥W̃⊥x̃⊥ has exactly k−1 non zero entries, each a centered Gaussian with variance (k−1)σ2 ||x⊥||2. By Lemma
3, the expected norm is as in the statement. We then apply Theorem 6 to get the lower bound.

(b) First note we can view 1A
⊥W⊥ = ⊥1AW⊥. (Projecting down to a random (as W is random) subspace of fixed size

|A| = m and then making perpendicular commutes with making perpendicular and then projecting everything down
to the subspace.)

So we can viewW as a randomm by k matrix, and for x, y as in Lemma 1 (with y projected down ontom dimensions),
we can again define U, V as k by k and m by m rotation matrices respectively, and W̃ = UWV T , with analogous
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properties to Lemma 1. Now we can finish as in part (a), except that ⊥W̃⊥x̃ may have only m− 1 entries, (depending
on whether y is annihilated by projecting down by1A) each of variance (k − 1)σ2 ||x⊥||2.

Lemma 5. Norm and Translation Let X be a centered multivariate Gaussian, with diagonal covariance matrix, and µ a
constant vector.

E(||X − µ||) ≥ E(||X||)

Proof. The inequality can be seen intuitively geometrically: as X has diagonal covariance matrix, the contours of the pdf
of ||X|| are circular centered at 0, decreasing radially. However, the contours of the pdf of ||X − µ|| are shifted to be
centered around ||µ||, and so shifting back µ to 0 reduces the norm.

A more formal proof can be seen as follows: let the pdf of X be fX(·). Then we wish to show∫
x

||x− µ|| fX(x)dx ≥
∫
x

||x|| fX(x)dx

Now we can pair points x,−x, using the fact that fX(x) = fX(−x) and the triangle inequality on the integrand to get∫
|x|

(||x− µ||+ ||−x− µ||) fX(x)dx ≥
∫
|x|
||2x|| fX(x)dx =

∫
|x|

(||x||+ ||−x||) fX(x)dx

B.2. Proof of Theorem

We use v(d)i to denote the ith neuron in hidden layer d. We also let x = z(0) be an input, h(d) be the hidden representation
at layer d, and φ the non-linearity. The weights and bias are called W (d) and b(d) respectively. So we have the relations

h(d) = W (d)z(d) + b(d), z(d+1) = φ(h(d)). (1)

Proof. We first prove the zero bias case. To do so, it is sufficient to prove that

E
[∣∣∣∣∣∣δz(d+1)(t)

∣∣∣∣∣∣] ≥ O
( √

σk√
σ + k

)d+1
∣∣∣∣∣∣δz(0)(t)∣∣∣∣∣∣ (**)

as integrating over t gives us the statement of the theorem.

For ease of notation, we will suppress the t in z(d)(t).

We first write
W (d) = W

(d)
⊥ +W

(d)
‖

where the division is done with respect to z(d). Note that this means h(d+1) = W
(d)
‖ z(d) as the other component annihilates

(maps to 0) z(d).

We can also define A
W

(d)

‖
= {i : i ∈ [k], |h(d+1)

i | < 1} i.e. the set of indices for which the hidden representation is not

saturated. Letting Wi denote the ith row of matrix W , we now claim that:

EW (d)

[∣∣∣∣∣∣δz(d+1)
∣∣∣∣∣∣] = E

W
(d)

‖
E
W

(d)
⊥


 ∑
i∈A

W
(d)
‖

((W
(d)
⊥ )iδz

(d) + (W
(d)
‖ )iδz

(d))2


1/2
 (*)

Indeed, by Lemma 2 we first split the expectation over W (d) into a tower of expectations over the two independent parts
of W to get

EW (d)

[∣∣∣∣∣∣δz(d+1)
∣∣∣∣∣∣] = E

W
(d)

‖
E
W

(d)
⊥

[∣∣∣∣∣∣φ(W (d)δz(d))
∣∣∣∣∣∣]
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But conditioning on W
(d)
‖ in the inner expectation gives us h(d+1) and A

W
(d)

‖
, allowing us to replace the norm over

φ(W (d)δz(d)) with the sum in the term on the right hand side of the claim.

Till now, we have mostly focused on partitioning the matrix W (d). But we can also set δz(d) = δz
(d)
‖ + δz

(d)
⊥ where the

perpendicular and parallel are with respect to z(d). In fact, to get the expression in (**), we derive a recurrence as below:

EW (d)

[∣∣∣∣∣∣δz(d+1)
⊥

∣∣∣∣∣∣] ≥ O( √
σk√
σ + k

)
EW (d)

[∣∣∣∣∣∣δz(d)⊥ ∣∣∣∣∣∣]

To get this, we first need to define z̃(d+1) = 1A
W

(d)
‖

h(d+1) - the latent vector h(d+1) with all saturated units zeroed out.

We then split the column space of W (d) = ⊥W (d) + ‖W (d), where the split is with respect to z̃(d+1). Letting δz(d+1)
⊥ be

the part perpendicular to z(d+1), and A the set of units that are unsaturated, we have an important relation:

Claim ∣∣∣∣∣∣δz(d+1)
⊥

∣∣∣∣∣∣ ≥ ∣∣∣∣∣∣⊥W (d)δz(d)1A

∣∣∣∣∣∣
(where the indicator in the right hand side zeros out coordinates not in the active set.)

To see this, first note, by definition,

δz
(d+1)
⊥ = W (d)δz(d) · 1A − 〈W (d)δz(d) · 1A, ẑ(d+1)〉ẑ(d+1) (1)

where the ·̂ indicates a unit vector.

Similarly
⊥W (d)δz(d) = W (d)δz(d) − 〈W (d)δz(d), ˆ̃z(d+1)〉ˆ̃z(d+1) (2)

Now note that for any index i ∈ A, the right hand sides of (1) and (2) are identical, and so the vectors on the left hand side
agree for all i ∈ A. In particular,

δz
(d+1)
⊥ · 1A = ⊥W (d)δz(d) · 1A

Now the claim follows easily by noting that
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Returning to (*), we split δz(d) = δz

(d)
⊥ + δz

(d)
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We would like a recurrence in terms of only perpendicular components however, so we first drop the ‖W (d)
⊥ , ‖W

(d)
‖ (which

can be done without decreasing the norm as they are perpendicular to the remaining terms) and using the above claim, have
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But in the inner expectation, the term ⊥W (d)
‖ δz

(d)
‖ is just a constant, as we are conditioning on W (d)

‖ . So using Lemma 5
we have
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We can then apply Lemma 4 to get
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The outer expectation on the right hand side only affects the term in the expectation through the size of the active set of
units. For ReLUs, p = P(h

(d+1)
i > 0) and for hard tanh, we have p = P(|h(d+1)

i | < 1), and noting that we get a non-zero
norm only if |A

W
(d)

‖
| ≥ 2 (else we cannot project down a dimension), and for |A
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we get
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We use the fact that we have the probability mass function for an (k, p) binomial random variable to bound the
√
j term:
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But by using Jensen’s inequality with 1/
√
x, we get
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where the last equality follows by recognising the expectation of a binomial(k−1, p) random variable. So putting together,
we get
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From here, we must analyse the hard tanh and ReLU cases separately. First considering the hard tanh case:

To lower bound p, we first note that as h(d+1)
i is a normal random variable with variance ≤ σ2, if A ∼ N (0, σ2)

P(|h(d+1)
i | < 1) ≥ P(|A| < 1) ≥ 1

σ
√

2π
(b)
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where the last inequality holds for σ ≥ 1 and follows by Taylor expanding e−x
2/2 around 0. Similarly, we can also show

that p ≤ 1
σ .

So this becomes
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Finally, we can compose this, to get

E
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c · ||δx(t)|| (c)

with the constant c being the ratio of ||δx(t)⊥|| to ||δx(t)||. So if our trajectory direction is almost orthogonal to x(t)
(which will be the case for e.g. random circular arcs, c can be seen to be ≈ 1 by splitting into components as in Lemma 1,
and using Lemmas 3, 4.)

The ReLU case (with no bias) is even easier. Noting that for random weights, p = 1/2, and plugging in to equation (a), we
get
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But the expression on the right hand side has exactly the asymptotic form O(σ
√
k/
√
k + 1), and we finish as in (c).

Result for non-zero bias In fact, we can easily extend the above result to the case of non-zero bias. The insight is to
note that because δz(d+1) involves taking a difference between z(d+1)(t + dt) and z(d+1)(t), the bias term does not enter
at all into the expression for δz(d+1). So the computations above hold, and equation (a) becomes
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For ReLUs, we require h(d+1)
i = w
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i z

(d)
i + b

(d+1)
i > 0 where the bias and weight are drawn from N (0, σ2

b ) and
N (0, σ2

w) respectively. But with p ≥ 1/4, this holds as the signs for w, b are purely random. Substituting in and working
through results in the same asymptotic behavior as without bias.

For hard tanh, not that as h(d+1)
i is a normal random variable with variance ≤ σ2
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This gives Theorem 3
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Figure 12. The figure above shows trajectory growth with different initialization scales as a trajectory is propagated through a fully
connected network for MNIST, with Relu activations. Note that as described by the bound in Theorem 3 we see that trajectory growth
is 1) exponential in depth 2) increases with initialization scale and width, 3) increases faster with scale over width, as expected from σw

compared to
√
k/(k + 1) in the Theorem.

Statement and Proof of Upper Bound for Trajectory Growth for Hard Tanh Replace hard-tanh with a linear
coordinate-wise identity map, h(d+1)

i = (W (d)z(d))i + bi. This provides an upper bound on the norm. We also then
recover a chi distribution with k terms, each with standard deviation σw

k
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where the second step follows from (Laforgia and Natalini, 2013), and holds for k > 1.

Proof of Theorem 4

Proof. For σb = 0:

For hidden layer d < n, consider neuron v(d)1 . This has as input
∑k
i=1W

(d−1)
i1 z

(d−1)
i . As we are in the large σ case,

we assume that |z(d−1)i | = 1. Furthermore, as signs for z(d−1)i and W (d−1)
i1 are both completely random, we can also

assume wlog that z(d−1)i = 1. For a particular input, we can define v(d)1 as sensitive to v(d−1)i if v(d−1)i transitioning (to
wlog −1) will induce a transition in node v(d)1 . A sufficient condition for this to happen is if |Wi1| ≥ |

∑
j 6=iWj1|. But

X = Wi1 ∼ N (0, σ2/k) and
∑
j 6=iWj1 = Y ′ ∼ N (0, (k− 1)σ2/k). So we want to compute P(|X| > |Y ′|). For ease of

computation, we instead look at P(|X| > |Y |), where Y ∼ N (0, σ2).

But this is the same as computing P(|X|/|Y | > 1) = P(X/Y < −1) + P(X/Y > 1). But the ratio of two centered
independent normals with variances σ2

1 , σ
2
2 follows a Cauchy distribution, with parameter σ1/σ2, which in this case is

1/
√
k. Substituting this in to the cdf of the Cauchy distribution, we get that

P
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)
= 1− 2
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arctan(

√
k)



On the Expressive Power of Deep Neural Networks

(a)

0 2 4 6 8 10 12
Depth

100

101

102

103

104

105

T
ra

je
ct

o
ry

 L
e
n
g
th

Trajectory Length, k=32

σ 2
w =0.5

σ 2
w =1

σ 2
w =4

σ 2
w =16

σ 2
w =64

(b)

0 2 4 6 8 10 12
Depth

100

101

102

T
ra

je
ct

o
ry

 L
e
n
g
th

Trajectory Length, σ 2
w =4

k=1

k=4

k=16

k=64

k=256

(c)

0 100 200 300 400 500 600
Width

2

0

2

4

6

8

10

12

||δ
x
d

+
1
||

||δ
x
d
||

Perturbation Growth

σ 2
w =1

σ 2
w =16

σ 2
w =64

(d)

0 50 100 150 200 250 300

σ 2
w

5

0

5

10

15

20

||δ
x
d

+
1
||

||δ
x
d
||

Perturbation Growth

k=2

k=32

k=512

Figure 13. The exponential growth of trajectory length with depth, in a random deep network with hard-tanh nonlinearities. A circular
trajectory is chosen between two random vectors. The image of that trajectory is taken at each layer of the network, and its length
measured. (a,b) The trajectory length vs. layer, in terms of the network width k and weight variance σ2

w, both of which determine its
growth rate. (c,d) The average ratio of a trajectory’s length in layer d+1 relative to its length in layer d. The solid line shows simulated
data, while the dashed lines show upper and lower bounds (Theorem 3). Growth rate is a function of layer width k, and weight variance
σ2
w.
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Finally, using the identity arctan(x)+arctan(1/x) and the Laurent series for arctan(1/x), we can evaluate the right hand
side to be O(1/

√
k). In particular

P
(
|X|
|Y |

> 1

)
≥ O

(
1√
k

)
(c)

This means that in expectation, any neuron in layer d will be sensitive to the transitions of
√
k neurons in the layer below.

Using this, and the fact the while v(d−1)i might flip very quickly from say −1 to 1, the gradation in the transition ensures
that neurons in layer d sensitive to v(d−1)i will transition at distinct times, we get the desired growth rate in expectation as
follows:

Let T (d) be a random variable denoting the number of transitions in layer d. And let T (d)
i be a random variable denoting the

number of transitions of neuron i in layer d. Note that by linearity of expectation and symmetry, E
[
T (d)

]
=
∑
i E
[
T

(d)
i

]
=

kE
[
T

(d)
1

]
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]
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i 1(1,i)T

(d)
i

]
= kE

[
1(1,1)T
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]
where 1(1,i) is the indicator function of neuron 1 in layer d+ 1

being sensitive to neuron i in layer d.

But by the independence of these two events, E
[
1(1,1)T

(d)
1

]
= E

[
1(1,1)

]
· E
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]
. But the firt time on the right hand

side is O(1/
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k) by (c), so putting it all together, E
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kE
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.

Written in terms of the entire layer, we have E
[
T (d+1)

]
≥
√
kE
[
T (d)

]
as desired.

For σb > 0:

We replace
√
k with

√
k(1 + σ2

b/σ
2
w), by noting that Y ∼ N (0, σ2

w + σ2
b ). This results in a growth rate of form

O(
√
k/
√

1 +
σ2
b

σ2
w

).

B.3. Dichotomies: a natural dual

Our measures of expressivity have mostly concentrated on sweeping the input along a trajectory x(t) and taking measures
of FA(x(t);W ). Instead, we can also sweep the weights W along a trajectory W (t), and look at the consequences (e.g.
binary labels – i.e. dichotomies), say for a fixed set of inputs x1, ..., xs.

In fact, after random initialization, sweeping the first layer weights is statistically very similar to sweeping the input along
a trajectory x(t). In particular, letting W ′ denote the first layer weights, for a particular input x0, x0W ′ is a vector, each
coordinate is iid, ∼ N (0, ||x0||2σ2

w). Extending this observation, we see that (providing norms are chosen appropriately),
x0W

′ cos(t) +x1W
′ sin(t) (fixed x0, x1,W ) has the same distribution as x0W ′0 cos(t) +x0W

′
1 sin(t) (fixed x0,W ′0,W

′
1).

So we expect that there will be similarities between results for sweeping weights and for sweeping input trajectories, which
we explore through some synthetic experiments, primarily for hard tanh, in Figures 15, 16. We find that the proportionality
of transitions to trajectory length extends to dichotomies, as do results on the expressive power afforded by remaining
depth.

For non-random inputs and non-random functions, this is a well known question upper bounded by the Sauer-Shelah lemma
(Sauer, 1972). We discuss this further in Appendix ??. In the random setting, the statistical duality of weight sweeping
and input sweeping suggests a direct proportion to transitions and trajectory length for a fixed input. Furthermore, if the
xi ∈ S are sufficiently uncorrelated (e.g. random) class label transitions should occur independently for each xi Indeed,
we show this in Figure 14.

C. Addtional Experiments from Section 3
Here we include additional experiments from Section 3
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Figure 14. We sweep the weights W of a layer through a trajectory W (t) and count the number of labellings over a set of datapoints.
When W is the first layer, this is statistically identical to sweeping the input through x(t) (see Appendix). Thus, similar results are
observed, with exponential increase with the depth of an architecture, and much slower increase with width. Here we plot the number
of classification dichotomies over s = 15 input vectors achieved by sweeping the first layer weights in a hard-tanh network along a
one-dimensional great circle trajectory. We show this (a) as a function of depth for several widths, and (b) as a function of width for
several depths. All networks were generated with weight variance σ2

w = 8, and bias variance σ2
b = 0.
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Figure 15. Expressive power depends only on remaining network depth. Here we plot the number of dichotomies achieved by sweeping
the weights in different network layers through a 1-dimensional great circle trajectory, as a function of the remaining network depth.
The number of achievable dichotomies does not depend on the total network depth, only on the number of layers above the layer swept.
All networks had width k = 128, weight variance σ2

w = 8, number of datapoints s = 15, and hard-tanh nonlinearities. The blue dashed
line indicates all 2s possible dichotomies for this random dataset.
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Figure 16. Here we plot the number of unique dichotomies that have been observed as a function of the number of transitions the
network has undergone. Each datapoint corresponds to the number of transitions and dichotomies for a hard-tanh network of a different
depth, with the weights in the first layer undergoing interpolation along a great circle trajectory W (0)(t). We compare these plots to a
random walk simulation, where at each transition a single class label is flipped uniformly at random. Dichotomies are measured over
a dataset consisting of s = 15 random samples, and all networks had weight variance σ2

w = 16. The blue dashed line indicates all 2s

possible dichotomies.
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Figure 17. We repeat a similar experiment in Figure 7 with a fully connected network on CIFAR-10, and mostly observe that training
lower layers again leads to better performance, although, as expected, overall performance is impacted by training only a single layer.
The networks had width k = 200, weight variance σ2

w = 1, and hard-tanh nonlinearities. We again only train from the second hidden
layer on so that the number of parameters remains fixed. The theory only applies to training error (the ability to fit a function), and
generalisation accuracy remains low in this very constrained setting.
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Figure 18. Training increases the trajectory length for smaller initialization values of σw. This experiment plots the growth of trajectory
length as a circular interpolation between two MNIST datapoints is propagated through the network, at different train steps. Red indicates
the start of training, with purple the end of training. We see that the training process increases trajectory length, likely to increase the
expressivity of the input-output map to enable greater accuracy.


