
1200 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 45, NO. 10, OCTOBER 1997

On the Implementation of Minimum
Redundancy Prefix Codes

Alistair Moffat and Andrew Turpin

Abstract—Minimum redundancy coding (also known as Huff-
man coding) is one of the enduring techniques of data compres-
sion. Many efforts have been made to improve the efficiency
of minimum redundancy coding, the majority based on the use
of improved representations for explicit Huffman trees. In this
paper, we examine how minimum redundancy coding can be
implemented efficiently by divorcing coding from a code tree, with
emphasis on the situation whenn is large, perhaps on the order
of 106. We review techniques for devising minimum redundancy
codes, and consider in detail how encoding and decoding should
be accomplished. In particular, we describe a modified decoding
method that allows improved decoding speed, requiring just a
few machine operations per output symbol (rather than for each
decoded bit), and uses just a few hundred bytes of memory above
and beyond the space required to store an enumeration of the
source alphabet.

Index Terms—Canonical code, Huffman code, length-limited
code, minimum redundancy code, prefix code, text compression.

I. INTRODUCTION

GIVEN a source alphabet containing
symbols and an associated set of weights

a (binary) minimum redundancy code
is an assignment of codewords

such that is not a prefix of for (that is, the
set of codewords isprefix free), and such that
is minimized over all prefix-free codes.

Minimum redundancy coding (also known as Huffman
coding, after the author of one of the important algorithms
for devising minimum redundancy codes [1]) is one of the
enduring techniques of data compression [2]. It was used
in the venerable PACK compression program, authored by
Szymanski in 1978, and remains no less popular today [3],
[4].

Many subsequent authors have described improvements to
the basic methods for calculating and employing minimum
redundancy codes, and these are reviewed in this paper, with
emphasis on the situation when is large, perhaps on the
order of We then describe a modified decoding method
that allows improved decoding throughput, requiring just a few
machine operations per output symbol (rather than for each

Paper approved by E. Ayanoglu, the Editor for Communication Theory
and Coding Application of the IEEE Communications Society. Manuscript
received July 15, 1996. This work was supported by the Australian Research
Council and the Collaborative Information Technology Research Institute.
This paper was presented in part at the 1996 IEEE Data Compression
Conference, Snowbird, UT, April 1996.

The authors are with the Department of Computer Science, University of
Melbourne, Parkville, Victoria 3052, Australia.

Publisher Item Identifier S 0090-6778(97)07276-0.

Fig. 1. Structure for minimum redundancy coding.

decoded bit), and uses just a few hundred bytes of memory
above and beyond the space required to store an enumeration
of the source alphabet.

Our development proceeds as follows. In Section II, we
argue that, irrespective of the nature of the source alphabet,
minimum redundancy coding can be carried out assuming
that is represented by and with

In Section III, we review methods for calculating
codeword lengths. Section IV then shows how those codeword
lengths should be used to derive a minimum redundancy
code that has the numeric sequence property, and describes a
memory-compact method for decoding such canonical codes.
An improved method for decoding canonical codes is then pre-
sented in Section V, with empirical comparisons with existing
decoding methods reported in Section VI. Finally, Section VII
concludes our presentation.

II. M APPING THE SOURCE ALPHABET

One point that appears to be little appreciated in the litera-
ture is that there is no disadvantage incurred, and considerable
benefit to be gained, from mapping the source alphabet onto
integer symbol numbers such that
That is, we believe that both the encoder and the decoder of a
practical compression system for some source alphabet carry
out two distinct functions. In the encoder, source symbols
are first mapped onto ordinal symbol identifiers, and then those
symbol identifiers are coded onto an output bitstream. In the
decoder, the reverse actions are carried out: first, an ordinal
symbol identifier is decoded from the compressed bit stream,
and then that identifier is converted, using the inverse mapping,
into the correct source symbol The structure advocated is
illustrated in Fig. 1.

Table I lists some data that we will use as a running example
throughout this paper. It describes an alphabet of 11 symbols
and their weights, perhaps derived from a model representing

0090–6778/97$10.00 1997 IEEE

MOFFAT AND TURPIN: MINIMUM REDUNDANCY PREFIX CODES 1201

TABLE I
EXAMPLE ALPHABET AND CORRESPONDINGWEIGHTS

TABLE II
MAPPING TABLES: (a) FOR ENCODING, (b) FOR DECODING

(a)

(b)

some simple book. Note that the alphabet has quite deliberately
been chosen to be words rather than single letters; the use of
single letters implies a dense alphabet that can be used to index
a table, whereas in general, the alphabet will be sparse in some
universe, and direct indexing impossible.

Table II shows the encoding and decoding mappings used
to convert the symbols into ordinal identifiers in increasing
probability order, and the mapping used by the decoder to
convert ordinal identifiers back to symbols. The mapping
is such that if for some and then The
encoding mapping can be stored in any convenient form: as
a sorted list of symbol identifiers as is implicitly suggested in
Table II(a), as a hash table, as a binary search tree, or using
a minimal perfect hash function. The exact structure used is
immaterial to the discussion we pursue here, the point to note
being that, during encoding, it allows compression tokens to be
converted to ordinal symbol identifiers. The decoding mapping
is simpler, as the index is an ordinal value in the range
which allows the mapping to be stored as an array indexed by
an ordinal identifier.

For example, the streamfat cat eat ratwould be represented
as “7, 9, 6, 10” by the encoder and transmitted as such;
and then, upon receipt of “7, 9, 6, 10,” the decoder would
reconstructfat cat eat rat through the use of the reverse
mapping.

Use of such a mapping does not expand the memory
requirements of either the encoder or the decoder. During
decoding, an enumeration of the source alphabet must be
stored for output, and storing the source alphabetsorted
using as a key rather than usingas the key costs no extra
memory. In the encoder, an efficient dictionary data structure
using as the search key needs to be employed to locate
symbols quickly, and storing in this structure costs no more
than storing the actual codeword. If is stored, we have
a codebook in the conventional sense, and storinginstead
yields, as we shall see below, the same functionality, but with
considerably more versatility.

The stored (as compared with the in-memory) representation
of the codebook can be even more compact. All that needs to

be recorded against each symbol is the length
of the corresponding codeword sincecan be inferred from
an approximate sorting process based uponrather than the
exact sorting process based upon That is, once has
been calculated using one of the methods described below,
the mappings might be reassigned based upon decreasing

values rather than increasing values, with the symbol
identifiers used as a secondary key. If the maximum
codeword length is then determined, the
cost of storing the values can be or fewer bits.
Since is typically very much less than this represents
a significant saving over the bits required to store

values explicitly. The actual values must, of course,
be recreated from the values before either the encoder or
decoder can operate in an efficient manner. Hankamer [5]
considers in detail methods for transmitting the codebook
component of a minimum redundancy representation for some
stream of data.

III. CALCULATING CODEWORD LENGTHS

Given the use of the encoder and decoder mappings, we
may now suppose (primarily for notational convenience) that
the source alphabet is given by

Before coding can proceed, codeword lengthsmust be
calculated. There is no need at this stage to finalize actual
codewords as the compression will be the same no matter
what prefix-free bit patterns are assigned as codewords, pro-
vided that they are of the same length as those in a minimum
redundancy prefix code. Below, we shall describe a mechanism
for assigning a set of codewords that allows a particularly
elegant encoding and decoding regime to be employed.

Huffman’s famous algorithm [1] can be employed to cal-
culate codeword lengths, and takes time and about

words of memory to process an symbol alphabet, not
assuming any particular ordering of the symbols. In this
method, an explicit code tree is constructed and codewords

are read off by labeling each edge in the tree with either a
“0” or a “1.” That is, is simply the depth in the Huffman
tree of the leaf corresponding to with

There are also more efficient methods. Based upon an
observation due to Van Leeuwen [6], Katajainen and Moffat
[7] have recently described an economical implementation of
Huffman’s method that, given as input a probability-sorted
list of symbol frequencies, generatesin situ the lengths of the
corresponding minimum redundancy codewords. This in-place
method requires time and additional space, and
operates quickly in practice. Compared to the use of Huffman’s
method, which does not require sorted probabilities, the Kata-
jainen and Moffat technique does require the preapplication
of a sorting algorithm, which takes time and so
dominates the code calculation phase. Nevertheless, the use
of a method like Quicksort to perform the ordering means
that the complete calculation, including sorting, can be done
faster than through Huffman’s algorithm, which must be
supported by a priority queue data structure such as a heap;
this is an additional benefit of the probability-sorted mapping
espoused above. Other efficient methods for calculating code-

1202 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 45, NO. 10, OCTOBER 1997

TABLE III
EXAMPLE ALPHABET AND CORRESPONDINGCODEWORD LENGTHS

TABLE IV
CODEWORDS FOREXAMPLE ALPHABET

word lengths on probability-sorted alphabets are also available
[8], and under certain circumstances, can operate extremely
quickly indeed. Continuing with the example, Table III shows
the codeword lengths that would be generated for the alphabet
of Table II; the table ordering is now that of the encoder
mapping table, and is the length (in bits) of the codeword
assigned to theth least frequent source symbol.

IV. CANONICAL CODING

The litmus test of the “usefulness” of a set of codeword
lengths is the Kraft inequality. If a set of lengthsis such that

is less than or equal to 1, then it is possible to
assign a set of codewords that has the prefix-free property. To
see this, suppose thatis the given list of codeword lengths,

is the length of a longest codeword, and that is the
number of codewords of length for Then the

st of the codewords of length should be the -bit
binary integer where

When (as is the case for minimum redundancy codes)
and the codeword lengths are nonincreasing (which is always
possible if the symbol probabilities are nondecreasing), the
th codeword can be calculated as the low-order bits of

Table IV lists the codewords assigned
for the example alphabet using this technique.

Observe the regular pattern—all codewords of a given
length are consecutive binary integers. This is known as the
numerical sequence property, and the full arrangement is a
canonical code[9]–[11]. The key advantage of this regular
organization of codewords is that it allows fast encoding
and decoding using just two-word lookup tables, one for
the arraybase described by (1), and a secondoffset array
that records the smallest ordinal symbol number (that is,
value) for each distinct codeword length. In particular, it is
not necessary for either the encoder or decoder to maintain
a codebook, nor any form of code tree. If the input alphabet
was not probability-sorted, then it would be necessary to fully
enumerate the codewords; hence, the claim above that the

TABLE V
ARRAYS baseAND offsetFOR CANONICAL CODING

encoder and decoder mapping tables are “free.” Note also that,
in general, as it is for the example of Table IV, the set of
codewords so obtained could not, in fact, be achieved by a
slavish labeling of edges in the tree constructed by Huffman’s
algorithm, and so in this restrictive sense, the methodology we
are advocating here uses codes that are no longer “Huffman,”
even though they are minimum redundancy. Huffman codes
are a proper subset of the set of codes that are minimum
redundancy, and in practice, we are interested in selecting a
member of the larger set.

The base and offset arrays for the example alphabet are
shown in Table V. For example, the integer value of the
first 3-bit codeword (that is,base[3]) is 3, and the symbol
corresponding to that codeword (that is,offset[3]) is the eighth
in the (sorted) alphabet. Given these two arrays, encoding
a symbol id is straightforward, and is shown as Algorithm
CANONICAL-ENCODE.

Algorithm CANONICAL-ENCODE

1) Determine the leastlength such thatoffset[length]
symbol id.

2) Setcode base[length] (symbol id offset[length]).
3) Output thelength least significant bits ofcode.

For example, to code the tokenfat, the mapping of
Table II(a) is used to convert to asymbol id of 7, which
is coded withlength 4, and thuscode 1 (7 3) 5,
yielding a resultant codeword of 0101. Step 1 of Algorithm
CANONICAL-ENCODE can be accomplished by either a
linear search or, if memory space is not of concern, via an
index that directly maps eachsymbol id to the corresponding
codeword length. Note that use of a linear search is not
asymptotically expensive, so the speedup achieved by the
use of a table of values is relatively small. Indeed, since
the number of iterations of a linear search is exactly the
number of bits output, the total cost of encoding (assuming
a standard random access machine model of computation) is

for both linear search and table lookup, where
is the number of bits produced, is the number of symbols

encoded, and is the cost of looking up a symbol in the
encoder mapping for an alphabet ofsymbols to determine the
corresponding value. If a balanced tree dictionary structure
is used to represent the source alphabet and symbols can be
compared in time, then and if can
be used to directly index an array of values (if the source
alphabet is dense integers over some known range or if a
perfect hash function is employed), then

Decoding a symbol from a stream of bits is only slightly
more difficult: it involves a linear search through the array
base, adding one bit at a time to a codewordcode, and then
accessing the corresponding symbol via a direct index into the

MOFFAT AND TURPIN: MINIMUM REDUNDANCY PREFIX CODES 1203

decoder mapping. The time taken is thus where
is the number of symbols processed,is the number of bits
in the compressed bit stream, and it is assumed that it takes

time to output a symbol.

Algorithm CANONICAL-DECODE

1) Setcode the next bit from the input stream, and
set length 1.

2) While code base[length] do

a) Setcode LeftShift(code, 1).
b) Insert the next bit from the input stream into the

least significant bit position ofcode.
c) Set length length + 1.

3) Set

For example, if the incoming bit stream is
“01011000100101,”code takes the values 0, 1, 2, and
5, respectively, aslength is incremented through 1, 2, 3, and
4; and thesymbol id of 3 (5 1) 7 is generated by step 3,
indicating that the codeword 0101 representsfat, as required.
The decoder then restarts, and examines the remaining bit
stream “1000100101” in the same incremental manner.

The tight loops and highly localized memory reference
pattern of these processes mean that both CANONICAL-
ENCODE and CANONICAL-DECODE execute quickly; and
the need for just two -word arrays means that canonical
codes are ideally suited to large alphabets [4]. “Huffman”
decoding as a process involving the bit-by-bit traversal of
an explicit code tree is a convenient simplification when first
describing the method to students, but should not be employed
in practical compression applications, despite the advice con-
tained in a number of recent papers. For example, Hashemian
[12] articulates a “tree clustering algorithm to avoid high
sparsity of the tree,” and uses a canonical arrangement of
codewords to allow a more compact storage of an explicit
tree when, in fact, there is no need to store a tree at all.
Similarly, McIntyre and Wolff [13] describe “an extremely
efficient storage implementation of the Huffman tree shape,”
and Bassiouni and Mukherjee [14] develop an approach for
decoding -bit trees in an effort to speed up standard Huffman
tree coding. Tanaka [15] represents the tree structure by a two-
dimensional array which can be applied for the decoding of
Huffman codes, again unnecessarily. The only situation when
an explicit decode tree is required is when canonical codes
cannot be used. One such special case is alphabetic minimum
redundancy coding, when a probability-sorted alphabet may
not be assumed since the ordering of the codewords for the
symbols is important.

As described in CANONICAL-DECODE, the decoding
process does, however, manipulate individual bits, and this bit
shifting occupies a nontrivial fraction of the decoding time.
A number of authors have considered this problem, and have
devised interesting mechanisms for performing fast decoding
without individual bit manipulations. One such technique is
due to Chouekaet al. [16] (see also [17] for an apparently
independent description of some of the same ideas). In this
method, a finite-state machine is constructed that allows the

input to be processed in units ofbits, with different lookup
tables employed for each possible partial-code prefix unre-
solved from the previous -bit unit. The drawback of this
method is the memory space required since, for an alphabet of

symbols and -bit decoding tokens, the space required might
be as large as In the application considered below,

and or would be reasonable
choices, and the resultant need for a gigabyte or more of
memory is daunting. Chouekaet al. reduced the memory
space by allowing one symbol per token to be decoded in
a partially bit-by-bit manner, but the space required is still
at least Moreover, with a large alphabet, it is
highly likely that most symbols will span more than one 8-bit
byte, the most natural choice of token, and so this extension
is also of limited practicality. For word-based compression,
for example, the average code length is typically 10–12 bits.
Another advantage of the canonical method as described here
is that it sits well with typical current cache-based computer
architectures. The encoding and decoding loops span just a
few instructions, and for the most part, the data access pattern
is also highly localized, so fast loop execution is the result.

In the next section, we describe an alternative mechanism
that still performs bit-shifting operations, but on a per-symbol
basis rather than a per-bit basis. The result is improved
decompression throughput with little or no extra decode-time
memory requirements.

V. FAST DECODING

Suppose that an arraylj base is initialized to contain
“left-justified” bit strings rather than the right-justified values
assumed above for the arraybase. That is, suppose that
lj base[i] LeftShift(base[i],), where is some con-
venient integer not smaller than the lengthof a longest
codeword. Suppose also that a valueis maintained as a

-bit window into the compressed bit stream (we note that a
similar left-justified representation was used in the proposal of
Chouekaet al. [16], and that the buffer is also reminiscent of
the mechanism used during the decoding of arithmetic codes
[18]). Then the previous canonical decoding process described
in Algorithm CANONICAL-DECODE can be rewritten as
follows.

Algorithm ONE-SHIFT

1) Determine the leastlength such thatlj base[length]

2) Setsymbol id offset[length]
+ RightShift(lj base[length], length).

3) Set LeftShift(length), and insert the next
lengthbits from the input stream into the now vacant
length least significant bit positions of

4) Returnsymbol id.

Because the length of the next codeword is calculated
before any of the bits comprising the codeword are consumed,
each codeword can be extracted with just one pair of shift
operations, a considerable reduction in processing effort on
architectures that employ barrel shifters rather than serial
shifters.

1204 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 45, NO. 10, OCTOBER 1997

TABLE VI
ARRAY lj base, ASSUMING w = 5

Table VI shows the values oflj basestored for the example
alphabet, first as bit strings and then as decimal integers. In
the table, it is assumed that In practice, would be
chosen either as the next multiple of eight not less than
or as the machine word size. Note that some initial entries in
lj basemight be and require bits to represent, a
problem if is set to the word size for the architecture being
used, but that this need can be circumvented by altering the
first step of the algorithm so that it only considerslengthsthat
are legitimate code lengths.

Further savings are possible in step 1 of this process. By
incrementinglengthone bit at a time, Algorithm ONE-SHIFT
is, in effect, performing a linear search through the arraybase,
an array which, in fact, contains a sorted list of integers, and
thus allows the use of binary search instead. For typical large
alphabets (with an average codeword length of, say, 10 bits)
and binary search might halve the average number
of values oflj baseexamined, at the cost of a more complex
looping structure.

However, binary search is no less “blind” than linear search,
and supposes that each entry inlj base is equally likely
to be the target of the search. In fact, the exact frequency
distribution of access to the various entries inlj base is
known once the code that it serves has been constructed,
and so an optimal search structure based on that distribution
can be calculated, and should further reduce the number of
inspections oflj basevalues. To implement this approach, the
encoder must first determine the code lengths for each symbol
and calculate the total number (over all symbols encoded) of
codewords emitted of length for A minimum
redundancy alphabetic prefix code (or optimal binary search
tree) can then be constructed for the distribution given by
these access frequencies. Finally, tables describing the optimal
search can either be stored explicitly with the encoded output,
or the encoder can directly generate program code that, when
compiled, forms the kernel of the decoder. In the latter case,
the decoder is not fully instantiated, and cannot be compiled
until after the encoder is executed; this is the approach we
adopted in our experiments. To illustrate the way these hard-
codedlj basevalues are embedded into the searching phase
of Algorithm ONE-SHIFT, Fig. 2 shows part of the program
generated for the test data described in the next section, using

The constants in the if statements are, of course, the
lj basevalues, and the sequence of cascading tests controls
the flow of the search. Note howlength 8 is determined
after just two comparisons, whilelength 26 requires nine
accesses to the in-linelj basevalues. Binary search for this
particular data set would require either four or fivelj base
accesses, and linear search between 1 and 21 (assuming that
the linear search starts atlj base[5], where 5 is the shortest

TABLE VII
ARRAY start, ASSUMING x = 2 AND x = 3

codeword length). Linear and binary search strategies can also
be partially evaluated in this way; and, for example, the linear-
search decoder for the same test data results in a nested set of
21 cascading if statements.

While elegant from an algorithmic point of view, the use
of an optimal search means that the decoding process must
either be table driven with an extra level of indirection at
each comparison or, as in our experiments, “hard coded” for a
particular probability distribution. An alternative method is to
retain the linear search, but use a short prefix ofto indicate
an initial value oflengthat which the search should commence.
Suppose that is the integer value of the most significant
bits of that is, RightShift and thatstart
is a table of entries, withstart recording the smallest
value such that either is a legitimate prefix of an-bit
codeword, or there is an-bit codeword that is a prefix of

That is, start is the least value for which
RightShift base Table VII lists values for the
arraystart for both and for the example alphabet.

Given a precalculatedstart array for some value the first
step of the decoding process can then be accomplished by the
following.

Algorithm TABLE-LOOKUP

1) (Replacing step 1 of Algorithm ONE-SHIFT):

a) Set RightShift

b) Set length start

c) If length then
While base[length] do

Set length length + 1.

Note the if statement at step 1c. Codewords ofor fewer
bits must give rise to values that uniquely determine the
codeword length, and this is exploited to minimize the effort
involved in searching thelj basetable. Indeed, the test used
in Algorithm TABLE-LOOKUP is somewhat pessimistic since
there may be further entries in thestart array that also exactly
determine the corresponding codeword length. For example,
with the entry for determines correctly that
length must be 3, and when the entry for is
final.

As an example, consider again the example bit stream
“01011000100101.” If then andstart

The while loop is entered, but only one increment on
length (and two lj base comparisons) is required (because
lj base is greater than before
the correct value oflength 4 is determined. If then

and length is correctly initialized to 4 at step 1b.
From this example, it can be seen that ifis moderately large,
the linear search fromstart will usually terminate having

MOFFAT AND TURPIN: MINIMUM REDUNDANCY PREFIX CODES 1205

Fig. 2. Optimal search strategy for WSJ words.

examined only a small number of values oflj base. Moreover,
it is the symbols with short codes—that is, the most frequent
symbols—for whichstart provides the most accurate length
indication; in many cases, the if statement at step 1c will avoid
the need for any examination oflj baseat all.

If is chosen to be the length of the longest codeword,
thenstart becomes an array of entries that deterministically
records the length of the next codeword stored inThis
technique for decoding is apparently part of the “folklore”
of computing; for example, Hashemian [12] supposes, as his
starting point, that the decoder for a code of maximum length

bits will require words of memory, and then seeks to
reduce the space. While fast (no searching of any kind is
involved), the use of a table of size is potentially extremely
wasteful of memory space. For example, if there is a 1-bit
codeword in the code, then half of the table entries will contain
the same value. Hashemian [12] reduces the memory space by
using bits at a time to index a set of tables each of
entries; each entry then indicates either that a codeword has
been completed, or the address of a subsidiary table that should
be indexed using the nextbits of the input stream. Compared
to the -entry approach this-bit at a time technique reduces
the storage space at the expense of slower decoding speed.
In suggesting here that and that a single table be used,
we anticipate the best of both of these worlds—on average,
only a small amount of searching is incurred, so decoding is
still very fast; yet only a small amount of auxiliary memory is
required. Below, we give experimental results that show that
use of (that is, astart array of 256 entries) gives fast

decompression with an alphabet for which and

VI. EMPIRICAL EVALUATION

To test the methods described here, we embedded them
into existing software for undertaking word-based zero-order
compression on large document collections [4]. One typical
collection we have been working with is WSJ, about 510
Mbytes of English text drawn from several years of the
Wall Street Journal, part of the largeTRECcorpus [19]. The
word-based model emits codes for words and nonwords in
a strictly alternating manner, and so gives access to two
distinct sets of symbols: an alphabet of words, which is large

and has a high self-entropy (11.2 bits/symbol
and and an alphabet of nonwords, which has a
smaller alphabet and a low self-entropy (2.5
bits/symbol, again with In each case, there are
approximately symbols to be coded. We thus
ran three experiments—coding only the words of WSJ, coding
only the nonwords, and coding both words and nonwords to
achieve full lossless compression.

In terms of compression effectiveness, the full lossless
word-based model reduces WSJ to 28.5% of the original
size, including the lexicons of words and nonwords. As a
comparative benchmark, the well-known Gzip compression
program [3], when applied to the same collection, compresses
it to 36.8%, and in the same test harness, decodes at a rate
of 110.6 Mbytes/min. The Gzip program uses canonical codes

1206 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 45, NO. 10, OCTOBER 1997

TABLE VIII
DECODING RATE ON WSJ, MBYTES/MIN

to represent the pointers, matches, and literals of an LZ77
compression process [20], and makes use of a set of cascading
lookup tables to manage a relatively small alphabet. (The
drawback of Gzip in our text database application [4] is, of
course, that it is impossible to provide random access into the
text using the Gzip sliding window model.)

Table VIII shows the speed obtained by the various methods
on Sparc 10 Model 512 hardware, an 80 MIP workstation.1 The
optimal search decoder used to generate the speed figures in
the table uses hard-coded constants similar to those shown in
Fig. 2. All other methods used loops and explicit references
to baseand lj basewhen decoding.

As expected, throughput generally improves as the search
method becomes more refined, with the fastest times usually
being those of the TABLE-LOOKUP approach. Note, how-
ever, that the linear search is faster than is a binary search; this
is because of smaller loop overheads and, for the nonwords, the
low entropy. Finally, note that much of the speed advantage of
the optimal search method arises because the numeric values
involved are hard coded into the program, and all of the array
lookups in lj baseare eliminated. Indeed, binary and linear
search can be similarly hard coded, and give performance
nearly as good as the optimal search; in the case of hard-coded
searches, there is, of course, no difference in “loop” overheads
among the three methods, and the number of comparisons
performed is a good indicator of throughput.

Table IX shows the average number ofcode versusbase
(or lj base) comparisons performed per symbol in each ex-
periment. Note how the TABLE-LOOKUP method takes well
under one inspection per symbol on average, as a large fraction
of the codewords have their length calculated deterministically
from the -bit prefix. Note also that the binary search
requires more probes into than linear search for
the low-entropy nonwords distribution. Another interesting
observation is that the number of probes for the binary
and optimal search techniques for the words distribution are
similar, and so hard coding both methods will lead to similar
speedups.

Thus far, we have concentrated on the benefits of canonical
coding for large alphabets. We also compared the TABLE-
LOOKUP decoder with previously described methods using
as a test harness a zero-order character-based model. The

1Note that the speeds for method CANONICAL-DECODE are already
faster than those previously reported for this hardware [4], [21], [22]; this is
because of the use of a 32-bit input token in the compressed bit stream rather
than an 8-bit input token. This change was common to all of the methods
listed.

TABLE IX
AVERAGE NUMBER OF ACCESSES TObaseOR lj basePER SYMBOL

Fig. 3. Resource use during decoding with a character-based zero-order
model (n = 96; L = 22); assuming a probability-sorted alphabet.

change of model allows the methods of other authors to be
run in reasonable amounts of space, which would not have
been possible with a word-based model. For the same test file,
we had distinct symbols, a maximum code length
of and an entropy of 4.91 bits/symbol. Decoding
throughput and memory requirements are reported in Fig. 3.

The finite-state machine of Chouekaet al. [16] is repre-
sented in Fig. 3 by the two points marked “CKP.” In this
method, larger values of increase throughput, but at the
expense of large tracts of memory—over 250 Kbytes, for

More to the point, both the and
implementations were outperformed in terms of both speed
and space by Algorithm TABLE-LOOKUP. The “Huffman
tree” data point in Fig. 3 describes the resources required for
traditional bit-by-bit traversal of a code tree to decode the
source, while the point marked “Hashemian” shows the use
of the tree/table method of Hashemian [12] using
Both of these tree-based approaches are outperformed by
Algorithm CANONICAL-DECODE, the starting point of our
development.

VII. SUMMARY

We have detailed the full sequence of operations needed
to undertake minimum redundancy coding. We believe that
the key to fast and compact encoders and decoders is to
divorce the codewords from the source alphabet by using
a mapping that allows the use of ordinal symbol identifiers
and a canonical assignment of codewords. In particular, we

MOFFAT AND TURPIN: MINIMUM REDUNDANCY PREFIX CODES 1207

observe that explicitly tree-based decoding is an anachronism
and usually best avoided, despite the attention such methods
have received in textbooks, in the research literature, and in
postings to the various network news groups.

We have also shown how the speed of canonical decoding
can be improved through the use of a left-justified table ofbase
values and an auxiliary arraystart to reduce the time spent
searching. In combination, these two improvements allow
decoding speed to be improved by approximately 50%, and
the improved decoder outperforms all of the other proposed
methods we are aware of.

One final point that warrants further discussion is the
requirement in Algorithm TABLE-LOOKUP that the length
of a longest codeword, be less than some convenient unit
of memory. For example, on many computers, is the
largest sensible unit of storage. To guard against pathological
codes, length-limited minimum redundancy codes should be
used. In collaboration with Katajainen, we have shown else-
where [23] that length-limited codes can be constructed in
only slightly more time and space than conventional mini-
mum redundancy codes. Moreover, once codeword lengths are
calculated, encoding and decoding using length-limited codes
can be handled in exactly the same manner as are encoding
and decoding using unrestricted codes—that is, through the
use of the mechanisms described in this paper. We thus
argue thatall minimum redundancy codes can and should be
calculated to meet a length limit appropriate for the computer
system being used; a length limit is essential if the speed
of any implementation in hardware or software is not to be
compromised by the need to guarantee the integrity of the
decoded data.

REFERENCES

[1] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,”Proc. IRE, vol. 40, pp. 1098–1101, Sept. 1952.

[2] D. A. Lelewer and D. S. Hirschberg, “Data compression,”Comput.
Surveys, vol. 19, pp. 261–296, Sept. 1987.

[3] J. L. Gailly, “Gzip program and documentation,” 1993; available by
anonymous ftp from prep.ai.mit.edu:/pub/gnu/gzip-*.tar.

[4] J. Zobel and A. Moffat, “Adding compression to a full-text retrieval
system,”Softw.—Pract. Exp., vol. 25, pp. 891–903, Aug. 1995.

[5] M. Hankamer, “A modified Huffman procedure with reduced memory
requirements,”IEEE Trans. Commun., vol. 27, pp. 930–932, June 1979.

[6] J. van Leeuwen, “On the construction of Huffman trees,” inProc. 3rd Int.
Colloquium Automata, Languages, and Programming, Edinburgh Univ.,
Scotland, July 1976, pp. 382–410.

[7] J. Katajainen and A. Moffat, “In-place calculation of minimum-
redundancy codes,” submitted. Preliminary version inProc.
1995 Workshop Algorithms and Data Structures, Kingston, Ont.,
Canada, Aug. 1995, pp. 393–402. Source code avaliable from
http://www.cs.mu.oz.au/˜alistair/inplace.c, Feb. 1997.

[8] A. Moffat and A. Turpin, “Efficient construction of minimum-
redundancy codes for large alphabets,”IEEE Trans. Inform. Theory,
to be published. Preliminary version inProc. IEEE Data Compression
Conf., Snowbird, UT, Mar. 1995, pp. 192–201.

[9] E. S. Schwartz and B. Kallick, “Generating a canonical prefix encoding,”
Commun. ACM, vol. 7, pp. 166–169, Mar. 1964.

[10] J. B. Connell, “A Huffman-Shannon-Fano code,”Proc. IEEE, vol. 61,
pp. 1046–1047, July 1973.

[11] D. S. Hirschberg and D. A. Lelewer, “Efficient decoding of prefix
codes,”Commun. ACM, vol. 33, pp. 449–459, Apr. 1990.

[12] R. Hashemian, “High speed search and memory efficient Huffman
coding,” IEEE Trans. Commun., vol. 43, pp. 2576–2581, Oct. 1995.

[13] D. R. McIntyre and F. G. Wolff, “An efficient implementation of
Huffman decode tables,”Congressus Numerantium, vol. 91, pp. 79–92,
1992.

[14] M. A. Bassiouni and A. Mukherjee, “Efficient decoding of compressed
data,” J. Amer. Soc. Inform. Sci., vol. 46, pp. 1–8, Jan. 1995.

[15] H. Tanaka, “Data structure of the Huffman codes and its application
to efficient encoding and decoding,”IEEE Trans. Inform. Theory, vol.
IT-33, pp. 154–156, Jan. 1987.

[16] Y. Choueka, S. T. Klein, and Y. Perl, “Efficient variants of Huffman
codes in high level languages,” inProc. 8th ACM–SIGIR Conf. Inform.
Retrieval, Montreal, Canada, June 1985, pp. 122–130, ACM, NY.

[17] A. Sieminski, “Fast decoding of the Huffman codes,”Inform. Processing
Lett., vol. 26, pp. 237–241, May 1988.

[18] A. Moffat, R. M. Neal, and I. H. Witten, “Arithmetic coding revisited,”
ACM Trans. Inform. Syst., to be published. Preliminary version inProc.
IEEE Data Compression Conf., Snowbird, UT, Mar. 1995, pp. 202–211.
Source software available from ftp://munnari.oz.au/pub/arithcoder.

[19] D. Harman, “Overview of the second text retrieval conference (TREC-
2),” Inform. Processing Manage., vol. 31, pp. 271–289, May 1995.

[20] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Inform. Theory, vol. IT-23, no. 3, pp.
337–343, 1977.

[21] I. H. Witten, A. Moffat, and T. C. Bell,Managing Gigabytes: Compress-
ing and Indexing Documents and Images. New York: Van Nostrand
Reinhold, 1994.

[22] A. Moffat, J. Zobel, and N. Sharman, “Text compression for dynamic
document databases,”IEEE Trans. Knowledge Data Eng., vol. 9, pp.
302–313, Mar. 1997.

[23] J. Katajainen, A. Moffat, and A. Turpin, “A fast and space-economical
algorithm for length-limited coding,” inProc. Int. Symp. Algorithms and
Computation, J. Staples, P. Eades, N. Katoh, and A. Moffat, Eds., Cairns,
Australia, Dec. 1995, pp. 12–21, Springer-Verlag, LNCS 1004.

Alistair Moffat received the Ph.D. degree from the
University of Canterbury, New Zealand, in 1986.

Since then, he has been a member of the academic
staff at the University of Melbourne, Australia,
and is currently an Associate Professor. His re-
search interests include text and image compression,
techniques for indexing and accessing large text
databases, and algorithms for sorting and searching.
He is a coauthor of the 1994 book,Managing
Gigabytes: Compressing and Indexing Documents
and Images, and has written more than 70 refereed

papers.
Dr. Moffat is a member of the ACM and of the IEEE Computer Society.

Andrew Turpin is a research student at the Uni-
versity of Melbourne, and is currently complet-
ing the Ph.D. degree, investigating efficient mech-
anisms for calculating and employing minimum
redundancy codes and length-limited minimum re-
dundancy codes.

