1200 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 45, NO. 10, OCTOBER 1997

On the Implementation of Minimum
Redundancy Prefix Codes

Alistair Moffat and Andrew Turpin

Abstract—Minimum redundancy coding (also known as Huff- A ayrriscia in soires sphobat R .

man coding) is one of the enduring techniques of data compres- J-

sion. Many efforts have been made to improve the efficiency ; - ; -

of minimum redundancy coding, the majority based on the use Enaoder | | Do |

of improved representations for explicit Huffman trees. In this | Menpig T s S
paper, we examine how minimum redundancy coding can be ¥ & l.,,_||,- iciral syttt it s A nen
implemented efficiently by divorcing coding from a code tree, with : -
emphasis on the situation whem is large, perhaps on the order I Ganonicsl |

of 10°. We review techniques for devising minimum redundancy | Encoder J! R | Desode |

codes, and consider in detail how encoding and decoding should
be accomplished. In particular, we describe a modified decoding
method that allows improved decoding speed, requiring just a Fig. 1. Structure for minimum redundancy coding.
few machine operations per output symbol (rather than for each

decoded bit), and uses just a few hundred bytes of memory above

and beyond the space required to store an enumeration of the decoded bit), and uses just a few hundred bytes of memory
source alphabet. above and beyond the space required to store an enumeration
Index Terms—Canonical code, Huffman code, length-limited of the source alphabet.
code, minimum redundancy code, prefix code, text compression. Qur development proceeds as follows. In Section Il, we
argue that, irrespective of the nature of the source alphabet,
I. INTRODUCTION minimum redundancy coding can be carried out assuming
that S is represented byl,2,---,n] and withp; < py <
-+ < pp. In Section Ill, we review methods for calculating
codeword lengths. Section IV then shows how those codeword
lengths should be used to derive a minimum redundancy
code that has the numeric sequence property, and describes a
) : memory-compact method for decoding such canonical codes.
set of codewords iprefix freq, and such thatiL, pilcil animproved method for decoding canonical codes is then pre-
is minimized over all prefix-free codes. sented in Section V, with empirical comparisons with existing

Minimum redundancy coding (also _known as Huﬁma%lecoding methods reported in Section VI. Finally, Section VII
coding, after the author of one of the important algorith ncludes our presentation

for devising minimum redundancy codes [1]) is one of the
enduring techniques of data compression [2]. It was used
in the venerable PACK compression program, authored by
Szymanski in 1978, and remains no less popular today [3],0ne point that appears to be little appreciated in the litera-
[4]. ture is that there is no disadvantage incurred, and considerable
Many subsequent authors have described improvement&nefit to be gained, from mapping the source alphabet onto
the basic methods for calculating and employing minimuifteger symbol numbers. - -n such thap; < ps < --- < pp.
redundancy codes, and these are reviewed in this paper, witrat is, we believe that both the encoder and the decoder of a
emphasis on the situation whenis large, perhaps on thepractical compression system for some source alphabet carry
order of10¢. We then describe a modified decoding metho@ut two distinct functions. In the encoder, source symbgls
that allows improved decoding throughput, requiring just a fe@e first mapped onto ordinal symbol identifiers, and then those

machine operations per output symbol (rather than for eagyimbol identifiers are coded onto an output bitstream. In the
decoder, the reverse actions are carried out: first, an ordinal

Paper approved by E. Ayanoglu, the Editor for Communication Theogymbol identifier is decoded from the compressed bit stream,
and Coding Application of the IEEE Communications Society. Manuscrig§nd then that identifier is converted, using the inverse mapping,
received July 15, 1996. This work was supported by the Australian Researc .
Council and the Collaborative Information Technology Research Institut’@.t0 the correct source Symb@!- The structure advocated is

This paper was presented in part at the 1996 IEEE Data Compressilustrated in Fig. 1.

LA L el P

IVEN a source alphabef = [sq, s2,- -, s,] containing
Gn symbols and an associated set of weiglits =
[p1, D2, ,pn], @ (binary) minimum redundancy codé€' =
[c1, ¢, -+, cp] IS an assignment of codewords € {0,1}*
such thate; is not a prefix ofc; for ¢ # j (that is, the

Il. MAPPING THE SOURCE ALPHABET

Conference, Snowbird, UT, April 1996. _ ____Table | lists some data that we will use as a running example
The authors are with the Department of Computer Science, University (H‘ . .

Melbourne, Parkville, Victoria 3052, Australia. t roughput thls paper. It descn.bes an alphabet of 11 symbpls
Publisher Item Identifier S 0090-6778(97)07276-0. and their weights, perhaps derived from a model representing

0090-6778/97$10.000 1997 IEEE

MOFFAT AND TURPIN: MINIMUM REDUNDANCY PREFIX CODES 1201

TABLE | be recorded against each symbglis the lengthl; = |¢|
EXAMPLE ALPHABET AND CORRESPONDINGWEIGHTS of the corresponding codeword singecan be inferred from
i 1L 2 3 4 5 6 7 8 9 10 11 an approximate sorting process based ufjorather than the

exact sorting process based upgn That is, oncel; has
been calculated using one of the methods described below,
the mappings might be reassigned based upon decreasing
[; values rather than increasing values, with the symbol
TABLE II identifiers s; used as a secondary key. If the maximum

MAPPING TABLES: (a) FOR ENCODING, (b) FOR DECODING codeword lengthL, = max;<;<,{; is then determined, the
cost of storing the-; values can be:[log, L] or fewer bits.
Since L is typically very much less than, this represents

a significant saving over thelogn bits required to store

s; | bat cat cal fal hal mal oal pal ral sal wal

pi{ 8 21 8 9 23 3 10 7 21 5 6

s; | bat cat eat fat hat mat oat pat rat sat wat

Ty 5 9 6 7 11 1 8 1 10 2 3

(@ r; values explicitly. The actuat; values must, of course,

be recreated from th&é values before either the encoder or
n| 12 3 4 5 6 7 8 9 10 1 decoder can operate in an efficient manner. Hankamer [5]
s; | mat sat vat pat bat eat fat oat cat rat hat considers in detail methods for transmitting the codebook

®) component of a minimum redundancy representation for some
stream of data.
some simple book. Note that the alphabet has quite deliberately
been chosen to be words rather than single letters; the use of
single letters implies a dense alphabet that can be used to inde@iven the use of the encoder and decoder mappings, we
a table, whereas in general, the alphabet will be sparse in somay now suppose (primarily for notational convenience) that
universe, and direct indexing impossible. the source alphabet is given y=[1,2,---,n].
Table 1l shows the encoding and decoding mappings usedefore coding can proceed, codeword lengthsnust be
to convert the symbols into ordinal identifiers in increasingalculated. There is no need at this stage to finalize actual
probability order, and the mapping used by the decoder ¢odewordsc; as the compression will be the same no matter
convert ordinal identifiers back to symbols. The mapping what prefix-free bit patterns are assigned as codewords, pro-
is such that ifr; <r; for somei and j, thenp; < p;. The vided that they are of the same length as those in a minimum
encoding mapping can be stored in any convenient form: mslundancy prefix code. Below, we shall describe a mechanism
a sorted list of symbol identifiers as is implicitly suggested ifor assigning a set of codewords that allows a particularly
Table li(a), as a hash table, as a binary search tree, or uséhggant encoding and decoding regime to be employed.
a minimal perfect hash function. The exact structure used isHuffman’s famous algorithm [1] can be employed to cal-
immaterial to the discussion we pursue here, the point to natglate codeword lengths, and tak@ér logn) time and about
being that, during encoding, it allows compression tokens to Be words of memory to process an symbol alphabet, not
converted to ordinal symbol identifiers. The decoding mappiregsuming any particular ordering of the symbols. In this
is simpler, as the index is an ordinal value in the rabhge-n method, an explicit code tree is constructed and codewords
which allows the mapping to be stored as an array indexed fyare read off by labeling each edge in the tree with either a
an ordinal identifier. “0” or a “1.” That is, [; is simply the depth in the Huffman
For example, the streafat cat eat ratwould be represented tree of the leaf corresponding & with p; < ps < --- < p,.
as “7, 9, 6, 10" by the encoder and transmitted as such;There are also more efficient methods. Based upon an
and then, upon receipt of “7, 9, 6, 10,” the decoder woulobservation due to Van Leeuwen [6], Katajainen and Moffat
reconstructfat cat eat ratthrough the use of the reverse7] have recently described an economical implementation of
mapping. Huffman’s method that, given as input a probability-sorted
Use of such a mapping does not expand the memdrist of symbol frequencies, generatessitu the lengths of the
requirements of either the encoder or the decoder. Duringrresponding minimum redundancy codewords. This in-place
decoding, an enumeration of the source alphabet must rhethod requires)(n) time andO(1) additional space, and
stored for output, and storing the source alphafietorted operates quickly in practice. Compared to the use of Huffman'’s
usingr; as a key rather than usiricas the key costs no extramethod, which does not require sorted probabilities, the Kata-
memory. In the encoder, an efficient dictionary data structuj@nen and Moffat technique does require the preapplication
using s; as the search key needs to be employed to locaifa sorting algorithm, which take®(nlogn) time and so
symbols quickly, and storing; in this structure costs no moredominates the code calculation phase. Nevertheless, the use
than storinge;, the actual codeword. If; is stored, we have of a method like Quicksort to perform the ordering means
a codebook in the conventional sense, and storinmstead that the complete calculation, including sorting, can be done
yields, as we shall see below, the same functionality, but witaster than through Huffman’s algorithm, which must be
considerably more versatility. supported by a priority queue data structure such as a heap;
The stored (as compared with the in-memory) representatitnis is an additional benefit of the probability-sorted mapping
of the codebook can be even more compact. All that needsetspoused above. Other efficient methods for calculating code-

IIl. CALCULATING CODEWORD LENGTHS

1202 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 45, NO. 10, OCTOBER 1997

TABLE Il TABLE V
ExamMPLE ALPHABET AND CORRESPONDINGCODEWORD LENGTHS ARRAYS baseanD offsetFor CANONICAL CODING
i1 23 456 7 8 9 10 11 ¢ 1 2 3 45
P |3 5 6 7 & 8 9 10 21 21 23 base[f] | 2 3 3 1 0
L |5 5 4 4 4 4 4 3 3 3 2 offsetff) |12 11 8 3 1
TABLE IV encoder and decoder mapping tables are “free.” Note also that,
CODEWORDS FOREXAMPLE ALPHABET in general, as it is for the example of Table IV, the set of
i 1 9 3 4 5 6 - s g 10 11 codewords so obtained could not, in fact, be achieved by a

slavish labeling of edges in the tree constructed by Huffman’s
algorithm, and so in this restrictive sense, the methodology we
are advocating here uses codes that are no longer “Huffman,”
even though they are minimum redundancy. Huffman codes
are a proper subset of the set of codes that are minimum
word lengths on probability-sorted alphabets are also availabéslundancy, and in practice, we are interested in selecting a
[8], and under certain circumstances, can operate extremglgmber of the larger set.

quickly indeed. Continuing with the example, Table Il shows The base and offset arrays for the example alphabet are
the codeword lengths that would be generated for the alphabeewn in Table V. For example, the integer value of the
of Table Il; the table ordering is now that of the encoddirst 3-bit codeword (that ishbas¢3]) is 3, and the symbol
mapping table, and; is the length (in bits) of the codewordcorresponding to that codeword (thatdagfse{3]) is the eighth

I; 5 5 4 4 4 4 4 3 3 3 2
00000 00001 0001 OO010 0011 0100 0101 011 100 101 11

ci

assigned to théth least frequent source symbol. in the (sorted) alphabet. Given these two arrays, encoding
a symbolid is straightforward, and is shown as Algorithm
IV. CANONICAL CODING CANONICAL-ENCODE.

The litmus test of the “usefulness” of a set of codeword Algorithm CANONICAL-ENCODE
lengths is the Kraft inequality. If a set of lengthds such that 1) Determine the leasiength such thatoffseflengt <
K =31, 27% is less than or equal to 1, then it is possible to symbolid.
assign a set of codewords that has the prefix-free property. Tg) Setcode— basdlength + (symbolid — offseflengtH).

see this, suppose thatis the given list of codeword lengths, 3) Output thelengthleast significant bits otode
L is the length of a longest codeword, and that is the

number of codewords of length for 1 < ¢ < L. Then the _ FOr example, to code the tokefat, the mapping of

j + 1st of them, codewords of lengtl should be thef-bit TaPle 11(@) is used to convert to symbolid of 7, which
binary integerj + basc[¢], where is coded withlength= 4, and thusode= 1 + (7 — 3) = 5,

yielding a resultant codeword of 0101. Step 1 of Algorithm
L Lk CANONICAL-ENCODE can be accomplished by either a
_ (Zk:é-i—lmk -2)
base[f] = (1) linear search or, if memory space is not of concern, via an
¢ index that directly maps eagdymbolid to the corresponding
2 codeword length. Note that use of a linear search is not
When K =1 (as is the case for minimum redundancy codes)symptotically expensive, so the speedup achieved by the
and the codeword lengths are nonincreasing (which is alwayse of a table of; values is relatively small. Indeed, since
possible if the symbol probabilities are nondecreasing), tttlee number of iterations of a linear search is exactly the
ith codeworde; can be calculated as thig low-order bits of number of bits output, the total cost of encoding (assuming
(Ej;ll 2L=liy/2L=t Table IV lists the codewords assignedh standard random access machine model of computation) is
for the example alphabet using this technique. O(b+m- f(n)) for both linear search and table lookup, where
Observe the regular pattern—all codewords of a givénis the number of bits produced; is the number of symbols
length are consecutive binary integers. This is known as thecoded, ang(n) is the cost of looking up a symbe} in the
numerical sequence propertand the full arrangement is aencoder mapping for an alphabetof§ymbols to determine the
canonical code[9]-[11]. The key advantage of this regularcorresponding:; value. If a balanced tree dictionary structure
organization of codewords is that it allows fast encodinig used to represent the source alphabet and symbols can be
and decoding using just twé-word lookup tables, one for compared inO(1) time, thenf(n) = O(logn), and if s; can
the arraybase described by (1), and a secomdfsetarray be used to directly index an array of values (if the source
that records the smallest ordinal symbol number (thatis, alphabetS is dense integers over some known range or if a
value) for each distinct codeword length. In particular, it iperfect hash function is employed), th¢n) = O(1).
not necessary for either the encoder or decoder to maintairDecoding a symbol from a stream of bits is only slightly
a codebook, nor any form of code tree. If the input alphabetore difficult: it involves a linear search through the array
was not probability-sorted, then it would be necessary to fulyase adding one bit at a time to a codewardde and then
enumerate the codewords; hence, the claim above that #Hveessing the corresponding symbol via a direct index into the

MOFFAT AND TURPIN: MINIMUM REDUNDANCY PREFIX CODES 1203

decoder mapping. The time taken is thd&n + b), wherem input to be processed in units &fbits, with different lookup
is the number of symbols processéds the number of bits tables employed for each possible partial-code prefix unre-
in the compressed bit stream, and it is assumed that it taleedved from the previoug-bit unit. The drawback of this
O(1) time to output a symbol. method is the memory space required since, for an alphabet of
Algorithm CANONICAL-DECODE n symbols and:-bit (;Ieecoding token_s, the space required might
) . be as large a®)(n2"). In the application considered below,
1) Setcode < the next bit from the input stream, and,, .. 990000 andk = 8 or £ — 16 would be reasonable
setlength — 1. choices, and the resultant need for a gigabyte or more of
2) While code < basglengtt] do memory is daunting. Chouekat al. reduced the memory

a) Setcode — LeftShiffcode 1). space by allowing one symbol per token to be decoded in
b) Insert the next bit from the input stream into the partially bit-by-bit manner, but the space required is still
least significant bit position ofode at leastO(nlogn). Moreover, with a large alphabet, it is
c) Setlength— length+ 1. highly likely that most symbols will span more than one 8-bit
3) Set byte, the most natural choice of token, and so this extension

is also of limited practicality. For word-based compression,
for example, the average code length is typically 10-12 bits.

For example, if the incoming bit stream isAnother advantage of the canonical method as described here
“01011000100101,”code takes the values 0, 1, 2, andsS that it sits well with typical current cache-based computer
5, respectively, agengthis incremented through 1, 2, 3, and@rchitectures. The encoding and decoding loops span just a
4; and thesymbolid of 3+ (5 — 1) = 7 is generated by step 3,few instructions, and for the most part, the data access pattern
indicaﬂng that the codeword 0101 represd]aj[s as required_ is also highly localized, so fast |OOp execution is the result.
The decoder then restarts, and examines the remaining b|tn the next section, we describe an alternative mechanism
stream “1000100101” in the same incremental manner. that still performs bit-shifting operations, but on a per-symbol

The tight loops and highly localized memory referencBasis rather than a per-bit basis. The result is improved
pattern of these processes mean that both CANONICAgecompression throughput with little or no extra decode-time
ENCODE and CANONICAL-DECODE execute quickly; andmemory requirements.
the need for just twal-word arrays means that canonical
codes are ideally suited to large alphabets [4]. “Huffman”
decoding as a process involving the bit-by-bit traversal of
an explicit code tree is a convenient simplification when first Suppose that an arralj_base is initialized to contain
describing the method to students, but should not be employé&ft-justified” bit strings rather than the right-justified values
in practical compression applications, despite the advice c@$sumed above for the arrdyase That is, suppose that
tained in a number of recent papers. For example, Hashemliapas¢i] = LeftShif(basgi], w — ¢), wherew is some con-
[12] articulates a “tree clustering algorithm to avoid higlyenient integer not smaller than the lengthof a longest
sparsity of the tree,” and uses a canonical arrangementCgdeword. Suppose also that a valieis maintained as a
codewords to allow a more compact storage of an expligitbit window into the compressed bit stream (we note that a
tree when, in fact, there is no need to store a tree at d@imilar left-justified representation was used in the proposal of
Similarly, Mcintyre and Wolff [13] describe “an extreme|yChOU€k%t al.[16], and that the buffeV” is also reminiscent of
efficient storage implementation of the Huffman tree shapéfte mechanism used during the decoding of arithmetic codes
and Bassiouni and Mukherjee [14] develop an approach fd8]). Then the previous canonical decoding process described
decodingk-bit trees in an effort to speed up standard Huffmalft Algorithm CANONICAL-DECODE can be rewritten as
tree coding. Tanaka [15] represents the tree structure by a tf@Jlows.
dimensional array which can be qpplied for the_dec_oding OfAIgorithm ONE-SHIFT
Huffman codes, again unnecessarily. The only situation when
an explicit decode tree is required is when canonical codes
cannot be used. One such special case is alphabetic minimum
redundancy coding, when a probability-sorted alphabet may
not be assumed since the ordering of the codewords for the
symbols is important.

As described in CANONICAL-DECODE, the decoding
process does, however, manipulate individual bits, and this bit
shifting occupies a nontrivial fraction of the decoding time.
A number of authors have considered this problem, and haveBecause the length of the next codeword is calculated
devised interesting mechanisms for performing fast decodibgfore any of the bits comprising the codeword are consumed,
without individual bit manipulations. One such technique isach codeword can be extracted with just one pair of shift
due to Chouekeet al. [16] (see also [17] for an apparentlyoperations, a considerable reduction in processing effort on
independent description of some of the same ideas). In thichitectures that employ barrel shifters rather than serial
method, a finite-state machine is constructed that allows thleifters.

symbol_id — offset[length] + (code — base[length]).

V. FAST DECODING

1) Determine the leadength such thatlj_baséglength
< W

2) Setsymbolid « offseflengti
+ RightShiftV — lj_basdlengti, w — length.

3) SetV «— LeftShiffV, length, and insert the next
lengthbits from the input stream into the now vacant
lengthleast significant bit positions of.

4) Returnsymbolid.

1204 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 45, NO. 10, OCTOBER 1997

TABLE VI TABLE VII
ARRAY lj_base AssumING w = 5 ARRAY start, ASSUMING x = 2 AND « = 3
14 1 2 3 4 5 Vz 01 2 3 4 5 6 7
{j_base[€] (binary) | 100000 11000 01100 00010 00000 startVg], 2 =214 3 3 2
lj_base[€] (decimal) 32 24 12 2 0 start{Vp], c=314 4 4 3 3 3 2 2

Table VI shows the values ¢f basestored for the example codeword length). Linear and binary search strategies can also
alphabet, first as bit strings and then as decimal integers.pa partially evaluated in this way; and, for example, the linear-

the table, it is assumed that = 5. In practice,.ww would be search decoder for the same test data results in a nested set of
chosen either as the next multiple of eight not less than 21 cascading if statements.

or as the machine word size. Note that some initial entries inwhile elegant from an algorithmic point of view, the use
lj_basemight be2* and requirew + 1 bits to represent, a of an optimal search means that the decoding process must
problem ifw is set to the word size for the architecture beingither be table driven with an extra level of indirection at
used, but that this need can be circumvented by altering #g&ch comparison or, as in our experiments, “hard coded” for a
first step of the algorithm so that it only considégagthsthat particular probability distribution. An alternative method is to
are legitimate code lengths. retain the linear search, but use a short prefi¥’db indicate
Further savings are possible in step 1 of this process. BM initial value oflengthat which the search should commence.
incrementingengthone bit at a time, Algorithm ONE-SHIFT Suppose that/, is the integer value of the most significant
is, in effect, performing a linear search through the abage bits of V, that is, V, = RightShiftV,w — z), and thatstart
an array which, in fact, contains a sorted list of integers, angla table of2* entries, withstar{V,] recording the smallest
thus allows the use of binary search instead. For typical larg&lue ¢ such that eitheV,, is a legitimate prefix of art-bit
alphabets (with an average codeword length of, say, 10 bitgg)deword, or there is af-bit codeword that is a prefix of
and L = 32, binary search might halve the average number,. That is, starfV,] is the least value/ for which V, >
of values oflj _baseexamined, at the cost of a more comple;RightShif(zj_ basé/],w — z). Table VI lists values for the
looping structure. arraystartfor bothz = 2 andz = 3 for the example alphabet.
However, binary search is no less “blind” than linear search, Given a precalculategtart array for some Value;7 the first
and supposes that each entry linbase is equally likely step of the decoding process can then be accomplished by the
to be the target of the search. In fact, the exact frequenylowing.
distribution of access to the various entries ljnbase is i
known once the code that it serves has been constructedf“lgomhm TABLE-LOOKUP
and so an optimal search structure based on that distributiod) (Replacing step 1 of Algorithm ONE-SHIFT):
can be calculated, and should further reduce the number of a) SetV, — RightShiftV,w —).
inspections ofj_basevalues. To implement this approach, the b) Setlength — starfV,].
encoder must first determine the code lengths for each symbol
and calculate the total number (over all symbols encoded) of
codewords emitted of length for 1 < ¢ < L. A minimum
redundancy alphabetic prefix code (or optimal binary search
tree) can then be constructed for the distribution given by Note the if statement at step 1c. Codewords:afr fewer
these access frequencies. Finally, tables describing the optitmiéd must give rise td/, values that uniquely determine the
search can either be stored explicitly with the encoded outpatdeword length, and this is exploited to minimize the effort
or the encoder can directly generate program code that, whewolved in searching th§_basetable. Indeed, the test used
compiled, forms the kernel of the decoder. In the latter cadn,Algorithm TABLE-LOOKUP is somewhat pessimistic since
the decoder is not fully instantiated, and cannot be compiléitere may be further entries in tiséart array that also exactly
until after the encoder is executed; this is the approach determine the corresponding codeword length. For example,
adopted in our experiments. To illustrate the way these hamith = 2, the entry forV, = 2 determines correctly that
codedlj_basevalues are embedded into the searching phalemgth must be 3, and wher = 3, the entry forV, = 1 is
of Algorithm ONE-SHIFT, Fig. 2 shows part of the progranfinal.
generated for the test data described in the next section, usinds an example, consider again the example bit stream
w = 32. The constants in the if statements are, of course, tf@1011000100101.” Ifr = 2, thenV, = 01, andstar{V,] =
lj_basevalues, and the sequence of cascading tests contrdlsThe while loop is entered, but only one increment on
the flow of the search. Note holength = 8 is determined length (and two lj_base comparisons) is required (because
after just two comparisons, whilkength= 26 requires nine lj_basd3] = 12, is greater tharl’ = 01011, = 11;¢) before
accesses to the in-ling_basevalues. Binary search for thisthe correct value ofength= 4 is determined. Ift = 3, then
particular data set would require either four or fifebase V, = 010, andlengthis correctly initialized to 4 at step 1b.
accesses, and linear search between 1 and 21 (assumingRhan this example, it can be seen that ifs moderately large,
the linear search starts kt basg5], where 5 is the shortest the linear search frorstart{V,.] will usually terminate having

c) If length > z then
While [j_basglengti > V do
Setlength < length + 1.

MOFFAT AND TURPIN: MINIMUM REDUNDANCY PREFIX CODES

1205

if (V < 3003121664) else
if (V < 1167589376) length = 16;
if (V < 614858752) else
if (V < 289472512) if (V < 844890112)
if (V < 129843200) length = 15;
if (V < 57090048) else
if (V < 23427072) length = 14;
if (V < 13480448) else

if (V < 6151552)

if (V < 1948254208)

length = 26; if (V < 1529872384)
else length = 13;
length = 25; else
else length = 12;
length = 24; else
else if (V < 2353004544)
if (V < 37664768) length = 11;
length = 23; else
else if (V < 2625634304)
length = 22; length = 10;
else else
if (V < 86544384) length = 9;
length = 21; else
else if (V < 3456106496)
length = 20; length = 8;
else else
if (V < 195592192) if (V < 3892314112)
length = 19; if (V < 3690987520)
else length = 7;
length = 18; else
else length = 6;
if (V < 421265408) else
length = 17; length = 5;

Fig. 2. Optimal search strategy for WSJ words.

examined only a small number of valuesljobbase Moreover, decompression with an alphabet for whigh~ 290000 and
it is the symbols with short codes—that is, the most frequeht = 26.

symbols—for whichstart provides the most accurate length

indication; in many cases, the if statement at step 1c will avoid

the need for any examination ¢f baseat all. VI. EMPIRICAL EVALUATION

If = is chosen to bd., the length of the longest codeword, To test the methods described here, we embedded them
thenstartbecomes an array @& entries that deterministically into existing software for undertaking word-based zero-order
records the length of the next codeword storedVinThis compression on large document collections [4]. One typical
technique for decoding is apparently part of the “folklorecollection we have been working with is WSJ, about 510
of computing; for example, Hashemian [12] supposes, as INfbytes of English text drawn from several years of the
starting point, that the decoder for a code of maximum leng{all Street Journalpart of the largeTREC corpus [19]. The
L bits will require 2 words of memory, and then seeks tqyord-based model emits codes for words and nonwords in
reduce the space. While fast (no searching of any kind asstrictly alternating manner, and so gives access to two
involved), the use of a table of si2& is potentially extremely distinct sets of symbols: an alphabet of words, which is large
wasteful of memory space. For example, if there is a 1-kit ~ 290000) and has a high self-entropy (11.2 bits/symbol
codeword in the code, then half of the table entries will containd L = 26); and an alphabet of nonwords, which has a
the same value. Hashemian [12] reduces the memory spacehaller alphabetn ~ 8900) and a low self-entropy (2.5
using k bits at a time to index a set of tables each26f bits/symbol, again withL = 26). In each case, there are
entries; each entry then indicates either that a codeword kgsproximatelym = 87000000 symbols to be coded. We thus
been completed, or the address of a subsidiary table that shauld three experiments—coding only the words of WSJ, coding
be indexed using the nektbits of the input stream. Comparedonly the nonwords, and coding both words and nonwords to
to the2L-entry approach this-bit at a time technique reducesachieve full lossless compression.
the storage space at the expense of slower decoding speeth terms of compression effectiveness, the full lossless
In suggesting here that< L and that a single table be usedword-based model reduces WSJ to 28.5% of the original
we anticipate the best of both of these worlds—on averagsze, including the lexicons of words and nonwords. As a
only a small amount of searching is incurred, so decoding égemparative benchmark, the well-known Gzip compression
still very fast; yet only a small amount of auxiliary memory igorogram [3], when applied to the same collection, compresses
required. Below, we give experimental results that show thiatto 36.8%, and in the same test harness, decodes at a rate
use ofz = 8 (that is, astart array of 256 entries) gives fastof 110.6 Mbytes/min. The Gzip program uses canonical codes

1206 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 45, NO. 10, OCTOBER 1997

TABLE VIl TABLE IX
DecobpING RATE oN WSJ, MBYTES/MIN AVERAGE NUMBER OF ACCESSES TobaseoRr /j_basePerR SymoL
Method Words Non-words Both Method Words Non-words Both
CANONICAL-DECODE 74.9 62.3 76.7 CANONICAL-DECODE 11.22 2.46 6.91
(QNE-SHIFT, linear search 102.8 64.9 95.2 ONE-SHIFT, linear search 11.22 2.46 6.91
ONE-SHIFT, binary search | 102.4 46.8 85.9 ONE-SHIFT, binary search 4.79 4.95 4.87
ONE-SHIFT, optimal scarch | 118.6 65.2 106.3 ONE-SHIFT, optimal search | 4.12 1.95 3.03
TABLE-LOOKUP, z = § 124.8 62.6 1114 TABLE-LOOKUP, z =8 0.73 0.03 0.38

to represent the pointers, matches, and literals of an LZ77 %%

compression process [20], and makes use of a set of cascading CKP, k=8 @
lookup tables to manage a relatively small alphabet. (The 5p000 -
drawback of Gzip in our text database application [4] is, ofg
course, that it is impossible to provide random access into th?i

. . . . CKP, k=4 ®
text using the Gzip sliding window model.) g 100007
Table VIII shows the speed obtained by the various methodg Huffman tree
. ®
on Sparc 10 Model 512 hardware, an 80 MIP workstatifbhe = 1000 Hashemian, ked ® Table-Lookup &
optimal search decoder used to generate the speed figures in
the table uses hard-coded constants similar to those shown in Canonical ® One-Shift @
Fig. 2. All other methods used loops and explicit references 1 , , , , , , , . ,
to baseand lj_basewhen decoding. o2 % 4 50 & 70 & 90 100

As expected, throughput generally improves as the search Decode speed (Mb/min)

method becomes more refined, with the fastest times usually. 3. Resource use during decoding with a character-based zero-order
being those of the TABLE-LOOKUP approach. Note, howmodel (n = 96, L = 22), assuming a probability-sorted alphabet.
ever, that the linear search is faster than is a binary search; this
is because of smaller loop overheads and, for the nonwords, the
low entropy. Finally, note that much of the speed advantageciiange of model allows the methods of other authors to be
the optimal search method arises because the numeric valugs in reasonable amounts of space, which would not have
involved are hard coded into the program, and all of the arr@égen possible with a word-based model. For the same test file,
lookups inlj_baseare eliminated. Indeed, binary and lineatve hadn = 96 distinct symbols, a maximum code length
search can be similarly hard coded, and give performanske L = 22, and an entropy of 4.91 bits/symbol. Decoding
nearly as good as the optimal search; in the case of hard-cotlm@dughput and memory requirements are reported in Fig. 3.
searches, there is, of course, no difference in “loop” overheadsThe finite-state machine of Chouele al. [16] is repre-
among the three methods, and the number of comparisaested in Fig. 3 by the two points marked “CKP.” In this
performed is a good indicator of throughput. method, larger values of increase throughput, but at the
Table IX shows the average number aide versusbase expense of large tracts of memory—over 250 Kbytes, for
(or li_basg comparisons performed per symbol in each e = 8. More to the point, both thés = 4 and &k = 8
periment. Note how the TABLE-LOOKUP method takes welimplementations were outperformed in terms of both speed
under one inspection per symbol on average, as a large fractinl space by Algorithm TABLE-LOOKUP. The “Huffman
of the codewords have their length calculated deterministicathee” data point in Fig. 3 describes the resources required for
from the = 8-bit prefix. Note also that the binary searchraditional bit-by-bit traversal of a code tree to decode the
requires more probes intdj_base than linear search for source, while the point marked “Hashemian” shows the use
the low-entropy nonwords distribution. Another interestingf the tree/table method of Hashemian [12] usihg= 4.
observation is that the number of probes for the binaBoth of these tree-based approaches are outperformed by
and optimal search techniques for the words distribution aségorithm CANONICAL-DECODE, the starting point of our
similar, and so hard coding both methods will lead to similatevelopment.
speedups.
Thus far, we have concentrated on the benefits of canonical
coding for large alphabets. We also compared the TABLE- VIl. SUMMARY
LOOKUP decoder with previously described methods usingW

tost h q h tor-based del. TR e have detailed the full sequence of operations needed
as a test hamess a zero-order character-based model. t-B findertake minimum redundancy coding. We believe that

INote that the speeds for method CANONICAL-DECODE are alreadihe key to fast and compact encoders and decoders is to
faster than those preViOUSIy reported for this hardware [4], [21], [22], this ?Ivorce the codewords from the source alphabet by USIng
because of the use of a 32-bit input token in the compressed bit stream rather . . . -
than an 8-bit input token. This change was common to all of the methofls MappIng that allows the use of ordinal Symbo' identifiers
listed. and a canonical assignment of codewords. In particular, we

MOFFAT AND TURPIN: MINIMUM REDUNDANCY PREFIX CODES 1207

observe that explicitly tree-based decoding is an anachronigrm) D. S. Hirschberg and D. A. Lelewer, “Efficient decoding of prefix

and usually best avoided, despite the attention such methods codes,”Commun. ACMvol. 33, pp. 449-459, Apr. 1990.
[12] R. Hashemian, “High speed search and memory efficient Huffman

have received in textbooks, in the research literature, and™in" o ing »|EEE Trans. Communvol. 43, pp. 2576-2581, Oct. 1995,
postings to the various network news groups. [13] D. R. McIntyre and F. G. Wolff, “An efficient implementation of
We have also shown how the Speed of canonical decoding Huffman decode tablesCongressus Numerantiymol. 91, pp. 79-92,
: i 1992,
can be improved thr.QUQh the use of a left-justified _tablbas‘e 14] M. A. Bassiouni and A. Mukherjee, “Efficient decoding of compressed
values and an auxiliary arrastart to reduce the time spent data,”J. Amer. Soc. Inform. Sgivol. 46, pp. 1-8, Jan. 1995.
searching. In combination, these two improvements allol#5] H. Tanaka, “Data structure of the Huffman codes and its application

; ; ; to efficient encoding and decodingEEE Trans. Inform. Theoryvol.
0
decoding speed to be improved by approximately 50%, and IT-33, pp. 154-156, Jan. 1987.

the improved decoder outperforms all of the other proposeg] v. choueka, S. T. Klein, and Y. Perl, “Efficient variants of Huffman

methods we are aware of. codes in high level languages,” Proc. 8th ACM=SIGIR Conf. Inform.
: ; i ; i Retrieval Montreal, Canada, June 1985, pp. 122-130, ACM, NY.
Or.]e final .pomt t.hat warrants further discussion is thﬁ?] A. Sieminski, “Fast decoding of the Huffman codeform. Processing
requirement in Algorithm TABLE-LOOKUP that, the length Lett, vol. 26, pp. 237-241, May 1988.
of a longest codeword, be less than some convenient unit [18] A. Moffat, R. M. Neal, and I. H. Witten, “Arithmetic coding revisited,”
of memory. For example, on many computets= 32 is the ACM Trans. Inform. Systto be published. Preliminary version Rroc.

| t ibl it of st T d inst pathological IEEE Data Compression ConfSnowbird, UT, Mar. 1995, pp. 202-211.
argest sensible unit or storage. 10 guard against pathological g, e software available from ftp://munnari.oz.au/pub/ardter.

codes, length-limited minimum redundancy codes should @] D. Harman, “Overview of the second text retrieval conference (TREC-
used. In collaboration with Katajainen, we have shown elsg- 2)." Inform. Processing Managevol. 31, pp. 271-289, May 1995.

L 20] J. Ziv and A. Lempel, “A universal algorithm for sequential data
where [23] that length-limited codes can be constructed i compression,”IEEE Trans. Inform. Theoryvol. IT-23, no. 3, pp.

only slightly more time and space than conventional mini- 337-343, 1977.
mum redundancy codes. Moreover, once codeword lengths Efé |- H. Witten, A. Moffat, and T. C. BellManaging Gigabytes: Compress-

calculated, encoding and decoding using length-limited codes 'F?gir?h”(g d'”(igg'zg Documents and Imagediew York: Van Nostrand

can be handled in exactly the same manner as are encoding A. Moffat, J. Zobel, and N. Sharman, “Text compression for dynamic
and decoding using unrestricted codes—that is, through the document databaseslEEE Trans. Knowledge Data Engvol. 9, pp.

P H P ; 302-313, Mar. 1997.
use of the mechanisms described in this paper. We th[li§] J. Katajainen, A. Moffat, and A. Turpin, “A fast and space-economical

argue thatll minimum redundancy codes can and should be ™ 4igorithm for length-limited coding,” ifProc. Int. Symp. Algorithms and
calculated to meet a length limit appropriate for the computer ComputationJ. Staples, P. Eades, N. Katoh, and A. Moffat, Eds., Cairns,
system being used; a length limit is essential if the speed Australia, Dec. 1995, pp. 12-21, Springer-Verlag, LNCS 1004.

of any implementation in hardware or software is not to be

compromised by the need to guarantee the integrity of the

decoded data. Alistair Moffat received the Ph.D. degree from the
University of Canterbury, New Zealand, in 1986.
Since then, he has been a member of the academic
staff at the University of Melbourne, Australia,
and is currently an Associate Professor. His re-
search interests include text and image compression,
techniques for indexing and accessing large text
databases, and algorithms for sorting and searching.
He is a coauthor of the 1994 booljanaging
Gigabytes: Compressing and Indexing Documents
and Imagesand has written more than 70 refereed

REFERENCES

[1] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,”Proc. IRE vol. 40, pp. 1098-1101, Sept. 1952.
[2] D. A. Lelewer and D. S. Hirschberg, “Data compressio@dmput.
Surveysvol. 19, pp. 261-296, Sept. 1987.
[3] J. L. Gallly, “Gzip program and documentation,” 1993; available by
anonymous ftp from prep.ai.mit.edu:/pub/gnu/gzip-*.tar.
[4] J. Zobel and A. Moffat, “Adding compression to a full-text retrievalpapers.
system,”Softw.—Pract. Expvol. 25, pp. 891-903, Aug. 1995. Dr. Moffat is a member of the ACM and of the IEEE Computer Society.
[5] M. Hankamer, “A modified Huffman procedure with reduced memory
requirements,IEEE Trans. Communvol. 27, pp. 930-932, June 1979.
[6] J.van Leeuwen, “On the construction of Huffman treesPinc. 3rd Int.
Colloquium Automata, Languages, and Programmigdinburgh Univ.,
Scotland, July 1976, pp. 382-410.
[7] J. Katajainen and A. Moffat, “In-place calculation of minimum-

redundancy codes,” submitted. Preliminary version iproc. Andrew Turpin is a research student at the Uni-
1995 Workshop Algorithms and Data Structyreingston, Ont., versity of Melbourne, and is currently complet-
Canada, Aug. 1995, pp. 393-402. Source code avaliable frc ing the Ph.D. degree, investigating efficient mech-
http://www.cs.mu.oz.au/"alistair/inplace.c, Feb. 1997. o AR anisms for calculating and employing minimum

[8] A. Moffat and A. Turpin, “Efficient construction of minimum- e redundancy codes and length-limited minimum re-
redundancy codes for large alphabetffEE Trans. Inform. Theory . dundancy codes.

to be published. Preliminary version iProc. IEEE Data Compression

Conf, Snowbird, UT, Mar. 1995, pp. 192-201.
[9] E.S. Schwartz and B. Kallick, “Generating a canonical prefix encoding

Commun. ACMvol. 7, pp. 166-169, Mar. 1964. ‘ .
[10] J. B. Connell, “A Huffman-Shannon-Fano cod&foc. IEEE vol. 61,

pp. 1046-1047, July 1973.

