
1

Optimization of Generalized Unary Coding

Rakshitha Ravula

Abstract In this paper, an optimum version of the recently advanced generalized unary coding

[9] is proposed. In this method, the block of 1’s that identifies the number is allowed to be

broken up which extends the count. The result is established by a theorem. The number count

is now n(n-k-1) +1 rather than the previously described (n-k)2-1.

1. Introduction

Unary coding is found in the representation of information in biological systems as in the

keeping of time in birdsong [1],[2]. It has also been used applications not only to computer

arithmetic [3], neural network training [4], [5] and other coding applications (e.g. [6]). The

history of unary coding goes back to the beginning of writing [7],[8].

The main shortcoming of the unary code is its relative inefficiency in representing number

count. Recently, a generalized version of the standard unary code was proposed [9] in which

instead of a count of n numbers using a n-bit code, the counting was extended to (n-k)2-1,

where the number is represented by a string k 1s in the block. In this paper, we present a

variant of this generalized coding scheme which extends the count to n(n-k-1) +1.

2. Generalizations of unary coding

The generalization of unary coding [9] may be done in a variety of manner depending on how

the 1s are used in relation to the 0s.

I. Increasing k

Increase k until k=n, where n is the size of the block. Table 1 presents the example of n=4 and

the resulting count:

Table 1. Increasing k

n Code

0 0000

1 0001

2 0010

3 0100

4 1000

5 0011

6 0110

7 1100

8 0111

9 1110

2

10 1111

The total count for n bits is 0 to n(n+1)/2. Here n=4, total count is from 0 to 10. The first cycle

will count to n, the second to n−1, and so on. The total, therefore, is n + (n − 1) + (n − 2)+・ ・

・+(n − n + 1) = n2 − (1 + 2 + 3+・ ・ ・+n − 1) =n(n + 1) − n(n + 1)/2 = n(n + 1)/2.

II. Fixed k

Here k is fixed and after the k+1 digits, the extra digits are marked by a 1 that is separated from

the basic set of k 1s. The separation is first 1 unit, and then it is successively increased. Table 2

illustrates this for n=7 and k=3.

Table 2. Fixed k

n Code

0 0000000

1 0000111

2 0001110

3 0011100

4 0111000

5 1110000

6 0010111

7 0101110

8 1011100

9 0111001

10 1110010

11 0100111

12 1001110

13 0011101

14 0111010

15 1110100

In the fixed k method for n bits where the additional cycles are marked by a distance of 1 and

more in succession, the total count is 0 through (n-k)2-1. The count is n − k+1 in the first cycle

and each of the subsequent cycles. The total number of cycles possible is n − k − 1. Therefore,

the total count is (n − k + 1)(n − k − 1) = (n − k)2 − 1.

Here for n=7, k=3 total count is from 0 to 0 to 15.

3. Proposed Method

Here k is fixed and for every value of s a bit is moved towards left. n is the total number of bits

including k 1’s. For every cycle i.e. after every (s-1) digits starting from s=2, a 1 is appended to n

3

and this is separated from the basic k 1’s by a zero. For additional cycles the number of zeros

between the appended 1 and basic set k 1’s is increased by 1.

Here is an example for n=8, k=3

Table 3: Fixed K moving 1 bit at a time

n Code

0 00000000

1 00000111

2 00001110

3 00011100

4 00111000

5 01110000

6 11100000

7 11000001

8 10000011

9 00010111

10 00101110

11 01011100

12 10111000

13 01110001

14 11100010

15 11000101

16 10001011

17 00100111

18 01001110

19 10011100

20 00111001

21 01110010

22 11100100

23 11001001

24 10010011

25 01000111

26 10001110

27 00011101

28 00111010

29 01110100

30 11101000

31 11010001

32 10100011

33 10000111

4

Theorem: In fixed k method moving 1 bit each time for n bits, the total count is 0 through n(n-k-

1) +1.

Proof: There are k 1s in the n bit long sequence and hence there are (n-k) 0s. The unique

sequences that are formed without considering the shifts are (n-k-1). Therefore, the total count

in this process will be n(n-k-1) because each of these can be shifted n times. The last count will

be the termination of the process. Hence, total count is from 0 to n(n-k-1)+1.

4. Algorithm for Coding and Decoding

We now present methods for coding and decoding of the proposed scheme.

Coding:

i. Inputs given n, k. Calculate n-1

ii. For s=0, n=00000000 (always). For n=1, append basic set of k 1’s to the right.

iii. Shift each bit left for every increase in s value. This cycle repeats for every (n-1) times.

iv. After s= 2n+1, the number of 0’s between the appended 1 and basic set of k 1’s is

incremented.

v. This process continues till the final count is n(n-k-1) +1.

Decoding:

i. Calculate n, k.

ii. P denotes the multiple of n. P= {1, …. , (n- k)}.

iii. For every s=Pn+1, the number of 0’s between the appended 1 and basic set of k 1’s is

incremented.

Here consider an example n=8, k=4. To calculate 13:

i. Find 1,9, 17,25

ii. 13 lies between 9 and 17.

iii. 13-9=4, so move first 4 bits to right and keep the rest of the bits as it is.

5. Analysis of different cases with fixed k: k=3, n=8, n1=1

We now present results on the distance between different codewords which could be relevant

in error situations. The distance function varies in a zig-zag manner for both the previous

scheme as well as the new scheme proposed by us as shown by Figure 1.

5

Fig 1. Fixed k, on X axis: N2; on Y-axis: Distance between n1 and n2

From the graph we observe the proposed scheme in this paper is more efficient as it has higher

count than the previous method. The count in the first method is (n-k)2-1 and the count in the

second method is n(n-k-1)+1. For fixed k=3 and varying values of n the variation in the count is

represented clearly in the graph below:

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30D
is

ta
n

ce
 b

e
tw

e
e

n
 n

1
 a

n
d

 n
2

n2

Distance between n1 and n2 in
Fixed k method

0

2

4

6

8

0 5 10 15 20 25 30 35

D
is

ta
n

ce
 b

et
w

ee
n

 n
1

 a
n

d
 n

2

n2

Distance between n1 and n2 when 1 bit
is shifted at a time

6

Fig 2: Graphical representation of count for varying n values and fixed k

6. Conclusions

An optimum version of the recently advanced generalized unary coding is proposed which

extends the capacity to count beyond the result of the previous method. In this method, the

block of 1’s that identifies the number is allowed to be broken up which extends the count. The

result is established by a theorem. The number count is increased to n(n-k-1) +1 rather than the

previously described (n-k)2-1.

References

1. I.R. Fiete, R.H. Hahnloser, M.S. Fee, and H.S. Seung. Temporal sparseness of the premotor drive is

important for rapid learning in a neural network model of birdsong. J Neurophysiol. 92(4): 2274–

2282, 2004.

2. I.R. Fiete and H.S. Seung, Neural network models of birdsong production, learning, and coding. New

Encyclopedia of Neuroscience. Eds. L. Squire, T. Albright, F. Bloom, F. Gage, and N. Spitzer. Elsevier,

2007.

3. S.W. Golomb, Run-length encodings. IEEE Transactions on Information Theory, IT--12(3): 399--401,
1966.

4. K.-W. Tang and S. Kak, A new corner classification approach to neural network training. Circuits,

Systems, and Signal Processing 17: 459-469, 1998.

5. S. Kak, The three languages of the brain: quantum, reorganizational, and associative. In Learning as

Self- Organization, K. Pribram and J. King (editors). Lawrence Erlbaum Associates, Mahwah, NJ, 185-

219, 1996.

S. Kak, Quantum information and entropy. Int. Journal of Theoretical Physics 46: 860-876, 2007.

6. I.M. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes: Compressing and Indexing Documents

and Images. Morgan Kauffman, 1999.

0

1000

2000

3000

0 10 20 30 40 50 60

C
o

u
n

t

n2

Graphical representation of N(Count)
for varying n values and fixed k

N1: Count for Fixed k

N2: Count for fixed k, moving 1 bit at a time

7

7. S. Kak, A frequency analysis of the Indus script. Cryptologia 12: 129-143, 1988.
S. Kak, Indus and Brahmi: Further connections. Cryptologia 14: 169-183, 1990.
S. Kak, History of Physical and Chemical Thought in India.
https://subhask.okstate.edu/sites/default/files/HistoryPhysicalChemicalThought.pdf

8. G. Ifrah, The Universal History of Numbers. John Wiley, 2000.

9. S. Kak, Generalized unary coding. Circuits, Systems and Signal Processing 36: 1419-1426, 2016.

https://subhask.okstate.edu/sites/default/files/HistoryPhysicalChemicalThought.pdf

