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C
ompilers are a necessary technology to turn 
high-level, easier-to-write code into efficient 
machine code for computers to execute. Their 
sophistication at doing this is often overlooked. 
You may spend a lot of time carefully considering 

algorithms and fighting error messages but perhaps not 
enough time looking at what compilers are capable of 
doing.

This article introduces some compiler and code 
generation concepts, and then shines a torch over a 
few of the very impressive feats of transformation 
your compilers are doing for you, with some practical 
demonstrations of my favorite optimizations. I hope you’ll 
gain an appreciation for what kinds of optimizations you 
can expect your compiler to do for you, and how you might 
explore the subject further. Most of all, you may learn 
to love looking at the assembly output and may learn to 
respect the quality of the engineering in your compilers.

The examples shown here are in C or C++, which are the 
languages I’ve had the most experience with, but many of 
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these optimizations are also available in other compiled 
languages. Indeed, the advent of front-end-agnostic 
compiler toolkits such as LLVM3 means most of these 
optimizations work in the exact same way in languages 
such as Rust, Swift, and D.

ABOUT ME
I’ve always been fascinated by what compilers are capable 
of. I spent a decade making video games where every CPU 
cycle counted in the war to get more sprites, explosions, or 
complicated scenes on the screen than our competitors. 
Writing custom assembly, and reading the compiler output 
to see what it was capable of, was par for the course.

Fast-forward five years and I was at a trading company, 
having switched out sprites and polygons for fast 
processing of financial data. Just as before, knowing what 
the compiler was doing with code helped inform the way 
we wrote the code.

Obviously, nicely written, testable code is extremely 
important—especially if that code has the potential to 
make thousands of financial transactions per second. 
Being fastest is great, but not having bugs is even more 
important.

In 2012, we were debating which of the new C++11 
features could be adopted as part of the canon of 
acceptable coding practices. When every nanosecond 
counts, you want to be able to give advice to programmers 
about how best to write their code without being 
antagonistic to performance. While experimenting with 
how code uses new features such as auto, lambdas, and 
range-based for, I wrote a shell script to run the compiler 
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continuously and show its filtered output:

$ g++ /tmp/test.cc -O2 -c -S -o - -masm=intel \
    | c++filt \
    | grep -vE '\s+\.'

This proved so useful in answering all these “what if?” 
questions that I went home that evening and created 
Compiler Explorer.1

Over the years I’ve been constantly amazed by the 
lengths to which compilers go in order to take our code 
and turn it into a work of assembly code art. I encourage all 
compiled language programmers to learn a little assembly 
in order to appreciate what their compilers are doing for 
them. Even if you can’t write it yourself, being able to read 
it is a useful skill.

All the assembly code shown here is for 64-bit x86 
processors, as that’s the CPU I’m most familiar with and 
is one of the most common server architectures. Some of 
the examples shown here are x86-specific, but in reality, 
many types of optimizations apply similarly on other 
architectures. Additionally, I cover only the GCC and Clang 
compilers, but equally clever optimizations show up on 
compilers from Microsoft Visual Studio and Intel.

OPTIMIZATION 101
This is far from a deep dive into compiler optimizations, but 
some concepts used by compilers are useful to know.

Many optimizations fall under the umbrella of strength 
reduction: taking expensive operations and transforming 
them to use less expensive ones. A very simple example 
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of strength reduction would be taking a loop with a 
multiplication involving the loop counter:

for (int i = 0; i < 100; ++i)
{
    func(i * 1234);
}

Even on today’s CPUs, multiplication is a little slower 
than simpler arithmetic, so the compiler will rewrite that 
loop to be something like:

Here, strength reduction took a loop involving 
multiplication and turned it into a sequence of equivalent 
operations using only addition.

There are many forms of strength reduction, more of 
which show up in the practical examples given later.

Another key optimization is inlining, in which the 
compiler replaces a call to a function with the body of that 
function. This removes the overhead of the call and often 
unlocks further optimizations, as the compiler can optimize 
the combined code as a single unit. You will see plenty of 
examples of this later.

Other optimization categories include:
3 �Constant folding. The compiler takes expressions whose 
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values can be calculated at compile time and replaces 
them with the result of the calculation directly.

3 �Constant propagation. The compiler tracks the 
provenance of values and takes advantage of knowing that 
certain values are constant for all possible executions.

3 �Common subexpression elimination. Duplicated 
calculations are rewritten to calculate once and 
duplicate the result.

3 �Dead code removal. After many of the other 
optimizations, there may be areas of the code that have 
no effect on the output, and these can be removed. This 
includes loads and stores whose values are unused, as 
well as entire functions and expressions.

3 �Loop invariant code movement. The compiler recognizes 
that some expressions within a loop are constant for the 
duration of that loop and moves them outside of the loop. 
On top of this, the compiler is able to move a loop invariant 
conditional check out of a loop, and then duplicate the loop 
body twice: once if the condition is true, and once if it is 
false. This can lead to further optimizations.

3 �Peephole optimizations. The compiler takes short 
sequences of instructions and looks for local 
optimizations between those instructions.

3 �Tail call removal. A recursive function that ends in a call 
to itself can often be rewritten as a loop, reducing call 
overhead and reducing the chance of stack overflow.
The golden rule for helping the compiler optimize is to 

ensure it has as much information as possible to make the 
right optimization decisions. One source of information 
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is your code: If the compiler can see more of your code, 
it’s able to make better decisions. Another source of 
information is the compiler flags you use: telling your 
compiler the exact CPU architecture you’re targeting can 
make a big difference. Of course, the more information a 
compiler has, the longer it could take to run, so there’s a 
balance to be struck here.

Let’s take a look at an example below, counting the 
number of elements of a vector that pass some test 
(compiled with GCC, optimization level 3, https://godbolt.
org/z/acm19_count1):

int count(const vector<int> &vec)
{
    int numPassed = 0;
    for (size_t i = 0; i < vec.size(); ++i)
    {
        if (testFunc(vec[i])) 
            numPassed++;
    }
    return numPassed;
}

If the compiler has no information about testFunc, it 
will generate an inner loop like the one on the next page:
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To understand this code, it’s useful to know that 
a std::vector<> contains some pointers: one to the 
beginning of the data; one to the end of the data; and 
one to the end of the storage currently allocated below. 
The size of the vector is not directly stored, it’s implied 
in the difference between the begin() and end() 
pointers. Note that the calls to vector<>::size() and 
vector<>::operator[] have been inlined completely.

template<typename T> struct _Vector_impl {
  T *_M_start;
  T *_M_finish;
  T *_M_end_of_storage;
};

In the assembly code, ebp points to the vector object, 
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.L4:
  mov edi, DWORD PTR [rdx+rbx*4] ; read rbx'th element of vec
                                 ; (inlined vector::operator [])
  call testFunc(int)             ; call test function
  mov rdx, QWORD PTR [rbp+0]     ; reread vector base pointer
  cmp al, 1                      ; was the result of test true?
  mov rax, QWORD PTR [rbp+8]     ; reread the vector end pointer
  sbb r12d, -1                   ; add 1 if true, 0 if false
  inc rbx                        ; increment loop counter
  sub rax, rdx                   ; subtract end from begin...
  sar rax, 2                     ; and divide by 4 to get size()
                                 ; (inlined vector::size())
  cmp rbx, rax                   ; does loop counter equal size()?
  jb .L4                         ; loop if not
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and the begin() and end() pointers are therefore QWORD 
PTR [rbp+0] and QWORD PTR [rbp+8], respectively.

Another neat trick the compiler has done is to 
remove any branching: you might reasonably expect 
if (testFunc(...)) would turn into a comparison and 
branch. Here the compiler does the comparison cmp al, 
1, which sets the processor carry flag if testFunc() 
returned false, otherwise it clears it. The sbb r12d, -1 
instruction then subtracts -1 with borrow, the subtract 
equivalent of carrying, which also uses the carry flag. 
This has the desired side effect: If the carry is clear 
(testFunc() returned true), it subtracts -1, which is the 
same as adding 1. If the carry is set, it subtracts -1 + 1, 
which has no effect on the value. Avoiding branches can 
be advantageous in some cases if the branch isn’t easily 
predictable by the processor.

It may seem surprising that the compiler reloads the 
begin() and end() pointers each loop iteration, and indeed 
it rederives size() each time too. However, the compiler 
is forced to do so: it has no idea what testFunc()does 
and must assume the worst. That is, it must assume that 
calls to testFunc() may cause the vec to be modified. 
The const reference here doesn’t allow any additional 
optimizations for a couple of reasons: testFunc() may 
have a non-const reference to vec (perhaps through a 
global variable), or testFunc() might cast away const.

If, however, the compiler can see the body of 
testFunc(), and from this know that it does not in fact 
modify vec, the story is very different (https://godbolt.
org/z/acm19_count2):
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In this case the compiler has realized that the vector’s 
begin() and end() are constant during the operation of 
the loop. As such it has been able to realize that the call 
to size() is also a constant. Armed with this knowledge, it 
hoists these constants out of the loop, and then rewrites 
the index operation (vec[i]) to be a pointer walk, starting 
at begin() and walking up one int at a time to end(). This 
vastly simplifies the generated assembly.

In this example I gave the compiler a body to 
testFunc() but marked it as non-inlineable (a GNU 
extension) to demonstrate this optimization in isolation. 
In a more realistic codebase, the compiler could inline 
testFunc() if it believed it beneficial.

Another way to enable this optimization without 
exposing the body of the function to the compiler is to 
mark it as [[gnu::pure]] (another language extension). 
This promises the compiler that the function is pure—
entirely a function of its arguments with no side effects.

Interestingly, using range-for in the initial example 
yields optimal assembly, even without knowing that 
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.L6:
  mov edi, DWORD PTR [rdx]  ; read next value
  call testFunc(int)        ; call testFunc with it
  cmp al, 1                 ; check return code
  sbb r8d, -1               ; add 1 if true, 0 otherwise
  add rdx, 4                ; move to next element
  cmp rcx, rdx              ; have we hit the end?
  jne .L6                   ; loop if not
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testFunc() doesn’t modify vec (https://godbolt. 
org/z/acm19_count3). This is because range-for is defined 
as a source code transformation that puts begin() and 
end() into local variables:

for (auto val : vec)
{
    if (testFunc(val)) 
        numPassed++;
}

is interpreted as:

{
    auto __begin = begin(vec);
    auto __end == end(vec);
    for (auto __it = __begin; __it != __end; ++__it)
    {
        if (testFunc(*__it)) 
            numPassed++;
    }
}

All things considered, if you need to use a “raw” loop, the 
modern range-for style is preferred: it’s optimal even if 
the compiler can’t see the body of called functions, and it is 
clearer to the reader. Arguably better still is to use the STL’s 
count_if function to do all the work for you: the compiler still 
generates optimal code (https://godbolt.org/z/acm19_count4).
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In the traditional single-translation-unit-at-a-time 
compilation model, function bodies are often hidden from 
call sites, as the compiler has seen only their declaration. 
LTO (link time optimization; also known as LTCG, for link 
time code generation) can be used to allow the compiler 
to see across translation unit boundaries. In LTO, individual 
translation units are compiled to an intermediate form 
instead of machine code. During the link process—when 
the entire program (or dynamic linked library) is visible—
machine code is generated. The compiler can take 
advantage of this to inline across translation units, or 
at least use information about the side effects of called 
functions to optimize.

Enabling LTO for optimized builds can be a good win in 
general, as the compiler can see your whole program. I 
now rely on LTO to let me move more function bodies out 
of headers to reduce coupling, compile time, and build 
dependencies for debug builds and tests, while still giving 
me the performance I need in final builds.

Despite being a relatively established technology (I used 
LTCG in the early 2000s on the original Xbox), I’ve been 
surprised how few projects use LTO. In part this may be 
because programmers unintentionally rely on undefined 
behavior that becomes apparent only when the compiler 
gets more visibility: I know I’ve been guilty of this.

FAVORITE OPTIMIZATION EXAMPLES
Over the years I’ve collected a number of interesting 
real-world optimizations, both from first-hand experience 
optimizing my own code and from helping others 
understand their code on Compiler Explorer. Here are 
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some of my favorite examples of how clever the compiler 
can be.

Integer division by a constant
It may be surprising to learn that—until very recently—
about the most expensive thing you could do on a modern 
CPU is an integer divide. Division is more than 50 times 
more expensive than addition and more than 10 times more 
expensive than multiplication. (This was true until Intel’s 
release of the Cannon Lake microarchitecture, where the 
maximum latency of a 64-bit divide was reduced from 96 
cycles to 18.6 This is only around 20 times slower than an 
addition, and 5 times more expensive than multiplication.)

Thankfully, compiler authors have some strength 
reduction tricks up their sleeves when it comes to division 
by a constant. I’m sure we’ve all realized that division by a 
power of two can often be replaced by a logical shift right—
rest assured the compiler will do this for you. I would 
advise not writing a >> in your code to do division; let the 
compiler work it out for you. It’s clearer, and the compiler 
also knows how to account properly for signed values: 
integer division truncates toward zero, and shifting down 
by itself truncates toward negative infinity.

However, what if you’re dividing by a non-power-of-two 
value? Are you out of luck?

unsigned divideByThree(unsigned x)
{
    return x / 3;
}
Luckily the compiler has your back again. This code gets 
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compiled to (https://godbolt.org/z/acm19_div3):

divideByThree(unsigned int):
  mov eax, edi          ; eax = edi
  mov edi, 2863311531   ; edi = 0xaaaaaaab
  imul rax, rdi         ; rax = rax * 0xaaaaaaab
  shr rax, 33           ; rax >>= 33
  ret

Not a divide instruction in sight. Just a shift, and a 
multiply by a strange large constant: the 32-bit unsigned 
input value is multiplied by 0xaaaaaaab, and the resulting 
64-bit value is shifted down by 33 bits. The compiler has 
replaced division with a cheaper multiplication by the 
reciprocal, in fixed point. The fixed point in this case is at 
bit 33, and the constant is one-third expressed in these 
terms (it’s actually 0.33333333337213844). The compiler 
has an algorithm for determining appropriate fixed points 
and constants to achieve the division while preserving the 
same rounding as an actual division operation with the 
same precision over the range of the inputs. Sometimes 
this requires a number of extra operations—for example, in 
dividing by 1023 (https://godbolt.org/z/acm19_div1023):
divideBy1023(unsigned int):
  mov eax, edi
  imul rax, rax, 4198405
  shr rax, 32
  sub edi, eax
  shr edi
  add eax, edi
  shr eax, 9
  ret
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The algorithm is well known and documented extensively 
in the excellent book, “Hacker’s Delight”.8

In short, you can rely on the compiler to do a great job of 
optimizing division by a compile-time-known constant.

You might be thinking: why is this such an important 
optimization? How often does one actually perform integer 
division, anyway? The issue is not so much with division itself 
as with the related modulus operation, which is often used in 
hash-map implementations as the operation to bring a hash 
value into the range of the number of hash buckets.

Knowing what the compiler can do here can lead to 
interesting hash-map implementations. One approach is 
to use a fixed number of buckets to allow the compiler to 
generate the perfect modulus operation without using the 
expensive divide instruction.

Most hash maps support rehashing to a different 
number of buckets. Naively this would lead to a modulus 
with a number known only at runtime, forcing the compiler 
to emit a slow divide instruction. Indeed, this is what the 
GCC libstdc++ library implementation of std::unordered_
map does.

Clang’s libc++ goes a little further: it checks if the 
number of buckets is a power of two, and if so skips the 
divide instruction in favor of a logical AND. Having a power-
of-two bucket count is alluring as it makes the modulus 
operation fast, but in order to avoid excessive collisions 
it relies on having a good hash function. A prime-number 
bucket count gives decent collision resistance even for 
simplistic hash functions.

Some libraries such as boost::multi_index go a step 
further: instead of storing the actual number of buckets, 
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they use a fixed number of prime-sized bucket counts.

size_t reduce(size_t hash, int bucketCountIndex) {
    switch (tableSizeIndex)
    {
        case 0: return hash % 7;
        case 1: return hash % 17;
        case 2: return hash % 37;
        // and so on...
    }
}

That way, for all possible hash-table sizes the compiler 
generates the perfect modulus code, and the only extra 
cost is to dispatch to the correct piece of code in the 
switch statement.

GCC 9 has a neat trick for checking for divisibility by a 
non-power-of-two (https://godbolt.org/z/acm19_multof3):

bool divisibleBy3(unsigned x)
{           
    return x % 3 == 0;
}

This compiles to:
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divisibleBy3(unsigned int):
  imul edi, edi, -1431655765     ; edi = edi * 0xaaaaaaab
  cmp edi, 1431655765           ; compare with 0x55555555
  setbe al                     ; return 1 if edi <= 0x55555555
  ret

https://godbolt.org/z/acm19_multof3
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This apparent witchcraft is explained very well by Daniel 
Lemire in his blog.2 As an aside, it’s possible to do these 
kinds of integer division tricks at runtime too. If you need 
to divide many numbers by the same value, you can use a 
library such as libdivide.5

Counting set bits
How often have you wondered, How many set bits are in 
this integer? Probably not all that often. But it turns out 
this simple operation is surprisingly useful in a number 
of cases. For example, calculating the Hamming distance 
between two bitsets, dealing with packed representations 
of sparse matrices, or handling the results of vector 
operations.

You might write a function to count the bits as follows:

int countSetBits(unsigned a)
{
    int count = 0;
    while (a != 0)
    {
        count++;
        a &= (a - 1); // clears the bottom set bit
    }
    return count;
}

Of note is the bit manipulation “trick” a &= (a - 1);, 
which clears the bottom-most set bit. It’s a fun one to 
prove to yourself how it works on paper. Give it a go.

When targeting the Haswell microarchitecture, GCC 8.2 
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compiles this code to the assembly in (https://godbolt.org/z/
acm19_bits):

countSetBits(unsigned int):
  xor eax, eax      ; count = 0
  test edi, edi     ; is a == 0?
  je .L4            ; if so, return
.L3:
  inc eax           ; count ++
  blsr edi, edi     ; a &= (a - 1);
  jne .L3           ; jump back to L3 if a != 0
  ret   
.L4:
  Ret

Note how GCC has cleverly found the BLSR bit-
manipulation instruction to pick off the bottom set bit. 
Neat, right? But not as clever as Clang 7.0:

This operation is common enough that there’s an 
instruction on most CPU architectures to do it in one go: 
POPCNT (population count). Clang is clever enough to take a 
whole loop in C++ and reduce it to a single instruction. This 
is a great example of good instruction selection: Clang’s 
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countSetBits(unsigned int):
  popcnt eax, edi     ; count = number of set bits in a
  ret

https://godbolt.org/z/acm19_bits
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code generator recognizes this pattern and is able to 
choose the perfect instruction.

I was actually being a little unfair here: GCC 9 also 
implements this, and in fact shows a slight difference:

At first glance this appears to be suboptimal: why on 
earth would you write a zero value, only to overwrite 
it immediately with the result of the “population count” 
instruction popcnt?

A little research brings up Intel CPU erratum SKL029: 
“POPCNT Instruction May Take Longer to Execute Than 
Expected”—there’s a CPU bug! Although the popcnt 
instruction completely overwrites the output register 
eax, it is incorrectly tagged as depending on the prior 
value of eax. This limits the CPU’s ability to schedule the 
instruction until any prior instructions writing to eax have 
completed—even though they have no impact.

GCC’s approach here is to break the dependency on 
eax: the CPU recognizes xor eax, eax as a dependency-
breaking idiom. No prior instruction can influence eax after 
xor eax, eax, and the popcnt can run as soon as its input 
operand edi is available.

This affects only Intel CPUs and seems to be fixed in the 
Cannon Lake microarchitecture, although GCC still emits 
XOR when targeting it.

countSetBits(unsigned int):
  xor eax, eax          ; count = 0
  popcnt eax, edi       ; count = number of set bits in a
  ret
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Chained conditionals
Maybe you’ve never needed to count the number of set 
bits in an integer, but you’ve probably written code like this 
before:

bool isWhitespace(char c)
{
    return c == ' '
      || c == '\r'
      || c == '\n'
      || c == '\t';
}

Instinctively, I thought the code generation would be full 
of compares and branches, but both Clang and GCC use 
a clever trick to make this code pretty efficient. Below is 
GCC 9.1’s output (https://godbolt.org/z/acm19_conds):

isWhitespace(char):
  xor eax, eax              ; result = false
  cmp dil, 32               ; is c > 32
  ja .L4                    ; if so, exit with false
  movabs rax, 4294977024    ; rax = 0x100002600
  shrx rax, rax, rdi        ; rax >>= c
  and eax, 1                ; result = rax & 1
.L4:
  ret

The compilers turn this sequence of comparisons into 
a lookup table. The magic value loaded into rax is a 33-bit 
lookup table, with a one-bit in the locations where you 
would return true (indices 32, 13, 10, and 9 for ' ', \r, \n, 
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and \t, respectively). The shift and & then pick out the 
cth bit and return it. Clang generates slightly different 
but broadly equivalent code. This is another example of 
strength reduction.

I was pleasantly surprised to see this kind of 
optimization. This is definitely the kind of thing that—prior 
to investigating in Compiler Explorer—I would have written 
manually assuming I knew better than the compiler.

One unfortunate thing I did notice while experimenting 
is—for GCC, at least—the order of the comparisons can 
affect the compiler’s ability to make this optimization. If you 
switch the order of the comparison of the \r and \n, GCC 
generates the code below.

There’s a pretty neat trick with the and to combine the 
comparison of \r and \t, but this seems worse than the 
code generated before. That said, a simplistic benchmark on 
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isWhitespace(char):
  cmp dil, 32   ; is c == 32?
  sete al       ; al = 1 if so, else 0
  cmp dil, 10   ; is c == 10?
  sete dl       ; dl = 1 if so, else 0
  or al, dl     ; al |= dl
  jne .L3       ; if al is non-zero return it (c was ` ` or \̀ǹ )
  and edi, -5   ; clear bit 2 (the only bit that differs between
                ;              \̀r̀  and \̀t̀ )
  cmp dil, 9    ; compare with \̀t̀
  sete al       ; dl = 1 if so, else 0
.L3:
  ret

http://quick-bench.com/0TbNkJr6KkEXyy6ixHn3ObBEi4w
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Quick Bench suggests the compare-based version might be 
a tiny bit faster in a predictable tight loop. Who ever said 
this was simple, eh?

Summation
Sometimes you need to add a bunch of things up. Compilers 
are extremely good at taking advantage of the vectorized 
instructions available in most CPUs these days, so even a 
pretty straightforward piece of code such as
int sumSquared(const vector<int> &v)
{
    int res = 0;
    for (auto i : v)
    {
        res += i * i;
    }
    return res;
}

gets turned into code whose core loop looks like below 
(https://godbolt.org/z/acm19_sum):
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.loop:
  vmovdqu ymm2, YMMWORD PTR [rax]   ; read 32 bytes into ymm2
  add rax, 32                       ; advance to the next element
  vpmulld ymm0, ymm2, ymm2          ; square ymm2, treating as 
                                    ;   8 32-bit values
  vpaddd ymm1, ymm1, ymm0           ; add to sub-totals
  cmp rax, rdx                      ; have we reached the end?
  jne .loop                         ; if not, keep looping

http://quick-bench.com/0TbNkJr6KkEXyy6ixHn3ObBEi4w
https://godbolt.org/z/acm19_sum
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The compiler has been able to process eight values per 
instruction, by separating the total into eight separate 
subtotals for each one. At the end it sums across those 
subtotals to make the final total. It’s as if the code was 
rewritten for you to look more like:

Simply place the compiler’s optimization level at a high 
enough setting and pick an appropriate CPU architecture 
to target, and vectorization kicks in. Fantastic!

This does rely on the fact that separating the totals 
into individual subtotals and then summing at the end is 
equivalent to adding them in the order the program specified. 
For integers, this is trivially true; but for floating-point data 
types this is not the case. Floating point operations are not 
associative: (a+b)+c is not the same as a+(b+c), as—among 
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int res_[] = {0,0,0,0,0,0,0,0};
for (; index < v.size(); index += 8)
{
    // This can be performed by parallel instructions without
    // an actual loop. The following boils down to a couple
    // of vector instructions:
    for (size_t j = 0; j < 8; ++j)
    { 
        auto val = v[index + j];
        res_[j] += val * val;
    }
}
res = res_[0] + res_[1] 
    + res_[2] + res_[3]
    + res_[4] + res_[5]
    + res_[6] + res_[7];
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other things—the precision of the result of an addition 
depends on the relative magnitude of the two inputs.

This means, unfortunately, that changing the 
vector<int> to be a vector<float> doesn’t result in the 
code you would ideally want. The compiler could use some 
vector operations (it can square eight values at once), but it 
is forced to sum across those values serially below (https://
godbolt.org/z/acm19_sumf):
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.loop:
  vmovups ymm4, YMMWORD PTR [rax]   ; read 32 bytes into ymm4
  add rax, 32                       ; advance
  vmulps ymm1, ymm4, ymm4           ; square 8 floats
                                    ; (the one parallel operation)
  vaddss xmm0, xmm0, xmm1           ; accumulate the first value
  vshufps xmm3, xmm1, xmm1, 85      ; shuffle things around
                                    ; (permutes the 8 floats
                                    ;  within the register)
  vshufps xmm2, xmm1, xmm1, 255     ; ...
  vaddss xmm0, xmm0, xmm3           ; accumulate the second value
  vunpckhps xmm3, xmm1, xmm1        ; more shuffling
  vextractf128 xmm1, ymm1, 0x1      ; ...
  vaddss xmm0, xmm0, xmm3           ; accumulate third...
  vaddss xmm0, xmm0, xmm2           ; and fourth value
  vshufps xmm2, xmm1, xmm1, 85      ; shuffling
  vaddss xmm0, xmm0, xmm1           ; accumulate fifth
  vaddss xmm0, xmm0, xmm2           ; and sixth
  vunpckhps xmm2, xmm1, xmm1        ; shuffle some more...
  vshufps xmm1, xmm1, xmm1, 255     ; ...
  vaddss xmm0, xmm0, xmm2           ; accumulate the seventh
  vaddss xmm0, xmm0, xmm1           ; and final value
  cmp rax, rcx                      ; are we done?
  jne .loop                         ; if not, keep going

https://godbolt.org/z/acm19_sumf
https://godbolt.org/z/acm19_sumf


acmqueue | september-october 2019   24

programming languages

This is unfortunate, and there’s not an easy way around 
it. If you’re absolutely sure the order of addition is not 
important in your case, you can give GCC the dangerous 
(but amusingly named) -funsafe-math-optimizations 
flag. This lets it generate this beautiful inner loop below 
(https://godbolt.org/z/acm19_sumf_unsafe):

Amazing stuff: processing eight floats at a time, using a 
single instruction to accumulate and square. The drawback 
is potentially unbounded precision loss. Additionally, 
GCC doesn’t allow you to turn this feature on for just the 
functions you need it for—it’s a per-compilation unit flag. 
Clang at least lets you control it in the source code with 
#pragma Clang fp contract.

While playing around with these kinds of optimizations, 
I discovered that compilers have even more tricks up their 
sleeves:
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.loop:
  vmovups ymm2, YMMWORD PTR [rax]   ; read 8 floats
  add rax, 32                       ; advance
  vfmadd231ps ymm0, ymm2, ymm2      ; for the 8 floats:
                                    ;   ymm0 += ymm2 * ymm2
  cmp rax, rcx                      ; are we done?
  jne .loop                         ; if not, keep going

https://godbolt.org/z/acm19_sumf_unsafe
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int sumToX(int x)
{
    int result = 0;
    for (int i = 0; i < x; ++i)
    {
        result += i;
    }
    return result;
}

GCC generates fairly straightforward code for this, 
and with appropriate compiler settings will use vector 
operations as above. Clang, however, generates this code 
(https://godbolt.org/z/acm19_sum_up):

sumToX(int): # @sumToX(int)
  test edi, edi             ; test x
  jle .zeroOrBelow          ; skip if x <= 0
  lea eax, [rdi - 1]        ; eax = x - 1
  lea ecx, [rdi - 2]        ; ecx = x - 2
  imul rcx, rax             ; rcx = ecx * eax
  shr rcx                   ; rcx >>= 1
  lea eax, [rcx + rdi]      ; eax = rcx + x
  add eax, -1               ; return eax - 1
  ret                       
.zeroOrBelow:
  xor eax, eax              ; answer is zero
  ret
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First, note there’s no loop at all. Working through the 
generated code, you see that Clang returns:

It has replaced the iteration of a loop with a closed-form 
general solution of the sum. The solution differs from what 
I would naively write myself:

  

This is presumably a result of the general algorithm Clang 
uses.

Further experimentation shows that Clang is clever 
enough to optimize many of these types of loops. Both 
Clang and GCC track loop variables in a way that allows 
this kind of optimization, but only Clang chooses to 
generate the closed-form version. It’s not always less 
work: for small values of x the overhead of the closed-
form solution might be more than just looping. Krister 
Walfridsson goes into great detail about how this is 
achieved in a blog post.7

It’s also worth noting that in order to do this 
optimization, the compiler may rely on signed integer 
overflow being undefined behavior. As such, it can assume 
that your code cannot pass a value of x that would 
overflow the result (65536, in this case). If Clang can’t make 
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that assumption, it is sometimes unable to find a closed-
form solution (https://godbolt.org/z/acm19_sum_fail).

Devirtualization
Although it seems to have fallen out of favor a little, 
traditional virtual-function-based polymorphism has 
its place. Whether it’s to allow for genuine polymorphic 
behavior, or add a “seam” for testability, or allow for future 
extensibility, polymorphism through virtual functions can 
be a convenient choice.

As we know, though, virtual functions are slow. Or 
are they? Let’s see how they affect the sum-of-squares 
example from earlier—something like below.

struct Transform
{
    int operator()(int x) const { return x * x; }
};

int sumTransformed(const vector<int> &v,
                   const Transform &transform)
{
    int res = 0;
    for (auto i : v)
    {
        res += transform(i);
    }
    return res;
}
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Of course, this isn’t polymorphic yet. A quick run through 
the compiler shows  the same highly vectorized assembly 
(https://godbolt.org/z/acm19_poly1).

Now adding the virtual keyword in front of the 
int operator() should result in a much slower 
implementation, filled with indirect calls, right? Well, 
sort of (https://godbolt.org/z/acm19_poly2). There’s a lot 
more going on than before, but at the core of the loop is 
something perhaps surprising.

  
What’s happened here is GCC has made a bet. Given 

that it has seen only one implementation of the Transform 
class, it is likely going to be that one implementation that 
is used. Instead of blindly indirecting through the virtual 
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; rdx points to the vtable
.L8:
  mov rax, QWORD PTR [rdx]  ; read the virtual function pointer
  mov esi, DWORD PTR [rbx]  ; read the next int element
  ; compare the function pointer with the address of the only
  ; known implementation...
  cmp rax, Transform::operator()(int) const
  jne .L5                   ; if it’s not the only known impl, 
                            ; then jump off to a more complex case
  imul esi, esi             ; square the number
  add rbx, 4                ; move to next
  add r12d, esi             ; accumulate the square
  cmp rbp, rbx              ; finished?
  jne .L8                   ; if not, loop

https://godbolt.org/z/acm19_poly1
https://godbolt.org/z/acm19_poly2
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function pointer, it has taken the slight hit of comparing 
the pointer against the only known implementation. If it 
matches, then the compiler knows what to do: it inlines 
the body of the Transform::operator() and squares it in 
place.

That’s right: the compiler has inlined a virtual call. This 
is amazing, and was a huge surprise when I first discovered 
this. This optimization is called speculative devirtualization 
and is the source of continued research and improvement 
by compiler writers. Compilers are capable of 
devirtualizing at LTO time too, allowing for whole-program 
determination of possible function implementations.

The compiler has missed a trick, however. Note that at 
the top of the loop it reloads the virtual function pointer 
from the vtable every time. If the compiler were able 
to notice that this value remains constant if the called 
function doesn’t change the dynamic type of Transform, 
this check could be hoisted out of the loop, and then there 
would be no dynamic checks in the loop at all. The compiler 
could use loop-invariant code motion to hoist the vtable 
check out of the loop. At this point the other optimizations 
could kick in, and the whole code could be replaced with 
the vectorized loop from earlier in the case of the vtable 
check passing.

You would be forgiven for thinking that the dynamic 
type of the object couldn’t possibly change, but it’s actually 
allowed by the standard: an object can placement new 
over itself so long as it returns to its original type by the 
time it’s destructed. I recommend that you never do this, 
though. Clang has an option to promise you never do such 
horrible things in your code: -fstrict-vtable-pointers.
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Of the compilers I use, GCC is the only one that does 
this as a matter of course, but Clang is overhauling its type 
system to leverage this kind of optimization more.4

C++11 added the final specifier to allow classes and 
virtual methods to be marked as not being further 
overridden. This gives the compiler more information 
about which methods may profit from such optimizations, 
and in some cases may even allow the compiler to avoid a 
virtual call completely (https://godbolt.org/z/acm19_poly3). 
Even without the final keyword, sometimes the analysis 
phase is able to prove that a particular concrete class 
is being used (https://godbolt.org/z/acm19_poly4). Such 

static devirtualization can 
yield significant performance 
improvements.

CONCLUSION
Hopefully, after reading this 
article, you’ll appreciate the 
lengths to which the compiler 
goes to ensure efficient 
code generation. I hope that 
some of these optimizations 
are a pleasant surprise and 
will factor in your decisions 
to write clear, intention-
revealing code and leave it to 
the compiler to do the right 
thing. I’ve reinforced the idea 
that the more information 

the compiler has, the better job it can do. This includes 
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allowing the compiler to see more of your code at once, 
as well as giving the compiler the right information about 
the CPU architecture you’re targeting. There’s a tradeoff 
to be made in giving the compiler more information: it can 
make compilation slower. Technologies such as link time 
optimization can give you the best of both worlds.

Optimizations in compilers continue to improve, and 
upcoming improvements in indirect calls and virtual 
function dispatch might soon lead to even faster 
polymorphism. I’m excited about the future of compiler 
optimizations. Go take a look at your compiler’s output.

Thanks
The author would like to extend his thanks to Matt Hellige, 
Robert Douglas, and Samy Al Bahra, who gave feedback on 
drafts of this article.
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