
acmqueue | september-october 2019 1

programming languages

C
ompilers are a necessary technology to turn
high-level, easier-to-write code into efficient
machine code for computers to execute. Their
sophistication at doing this is often overlooked.
You may spend a lot of time carefully considering

algorithms and fighting error messages but perhaps not
enough time looking at what compilers are capable of
doing.

This article introduces some compiler and code
generation concepts, and then shines a torch over a
few of the very impressive feats of transformation
your compilers are doing for you, with some practical
demonstrations of my favorite optimizations. I hope you’ll
gain an appreciation for what kinds of optimizations you
can expect your compiler to do for you, and how you might
explore the subject further. Most of all, you may learn
to love looking at the assembly output and may learn to
respect the quality of the engineering in your compilers.

The examples shown here are in C or C++, which are the
languages I’ve had the most experience with, but many of

A practical
journey

MATT GODBOLT

1 of 32 TEXT
ONLY

Optimizations in
C++ Compilers

acmqueue | september-october 2019 2

programming languages

these optimizations are also available in other compiled
languages. Indeed, the advent of front-end-agnostic
compiler toolkits such as LLVM3 means most of these
optimizations work in the exact same way in languages
such as Rust, Swift, and D.

ABOUT ME
I’ve always been fascinated by what compilers are capable
of. I spent a decade making video games where every CPU
cycle counted in the war to get more sprites, explosions, or
complicated scenes on the screen than our competitors.
Writing custom assembly, and reading the compiler output
to see what it was capable of, was par for the course.

Fast-forward five years and I was at a trading company,
having switched out sprites and polygons for fast
processing of financial data. Just as before, knowing what
the compiler was doing with code helped inform the way
we wrote the code.

Obviously, nicely written, testable code is extremely
important—especially if that code has the potential to
make thousands of financial transactions per second.
Being fastest is great, but not having bugs is even more
important.

In 2012, we were debating which of the new C++11
features could be adopted as part of the canon of
acceptable coding practices. When every nanosecond
counts, you want to be able to give advice to programmers
about how best to write their code without being
antagonistic to performance. While experimenting with
how code uses new features such as auto, lambdas, and
range-based for, I wrote a shell script to run the compiler

2 of 32

acmqueue | september-october 2019 3

programming languages

continuously and show its filtered output:

$ g++ /tmp/test.cc -O2 -c -S -o - -masm=intel \
 | c++filt \
 | grep -vE '\s+\.'

This proved so useful in answering all these “what if?”
questions that I went home that evening and created
Compiler Explorer.1

Over the years I’ve been constantly amazed by the
lengths to which compilers go in order to take our code
and turn it into a work of assembly code art. I encourage all
compiled language programmers to learn a little assembly
in order to appreciate what their compilers are doing for
them. Even if you can’t write it yourself, being able to read
it is a useful skill.

All the assembly code shown here is for 64-bit x86
processors, as that’s the CPU I’m most familiar with and
is one of the most common server architectures. Some of
the examples shown here are x86-specific, but in reality,
many types of optimizations apply similarly on other
architectures. Additionally, I cover only the GCC and Clang
compilers, but equally clever optimizations show up on
compilers from Microsoft Visual Studio and Intel.

OPTIMIZATION 101
This is far from a deep dive into compiler optimizations, but
some concepts used by compilers are useful to know.

Many optimizations fall under the umbrella of strength
reduction: taking expensive operations and transforming
them to use less expensive ones. A very simple example

3 of 32

acmqueue | september-october 2019 4

programming languages

of strength reduction would be taking a loop with a
multiplication involving the loop counter:

for (int i = 0; i < 100; ++i)
{
 func(i * 1234);
}

Even on today’s CPUs, multiplication is a little slower
than simpler arithmetic, so the compiler will rewrite that
loop to be something like:

Here, strength reduction took a loop involving
multiplication and turned it into a sequence of equivalent
operations using only addition.

There are many forms of strength reduction, more of
which show up in the practical examples given later.

Another key optimization is inlining, in which the
compiler replaces a call to a function with the body of that
function. This removes the overhead of the call and often
unlocks further optimizations, as the compiler can optimize
the combined code as a single unit. You will see plenty of
examples of this later.

Other optimization categories include:
3 �Constant folding. The compiler takes expressions whose

4 of 32

for (int iTimes1234 = 0; iTimes1234 < 100 * 1234; i += 1234)
{
 func(iTimes1234);
}

acmqueue | september-october 2019 5

programming languages

values can be calculated at compile time and replaces
them with the result of the calculation directly.

3 �Constant propagation. The compiler tracks the
provenance of values and takes advantage of knowing that
certain values are constant for all possible executions.

3 �Common subexpression elimination. Duplicated
calculations are rewritten to calculate once and
duplicate the result.

3 �Dead code removal. After many of the other
optimizations, there may be areas of the code that have
no effect on the output, and these can be removed. This
includes loads and stores whose values are unused, as
well as entire functions and expressions.

3 �Loop invariant code movement. The compiler recognizes
that some expressions within a loop are constant for the
duration of that loop and moves them outside of the loop.
On top of this, the compiler is able to move a loop invariant
conditional check out of a loop, and then duplicate the loop
body twice: once if the condition is true, and once if it is
false. This can lead to further optimizations.

3 �Peephole optimizations. The compiler takes short
sequences of instructions and looks for local
optimizations between those instructions.

3 �Tail call removal. A recursive function that ends in a call
to itself can often be rewritten as a loop, reducing call
overhead and reducing the chance of stack overflow.
The golden rule for helping the compiler optimize is to

ensure it has as much information as possible to make the
right optimization decisions. One source of information

5 of 32

acmqueue | september-october 2019 6

programming languages

is your code: If the compiler can see more of your code,
it’s able to make better decisions. Another source of
information is the compiler flags you use: telling your
compiler the exact CPU architecture you’re targeting can
make a big difference. Of course, the more information a
compiler has, the longer it could take to run, so there’s a
balance to be struck here.

Let’s take a look at an example below, counting the
number of elements of a vector that pass some test
(compiled with GCC, optimization level 3, https://godbolt.
org/z/acm19_count1):

int count(const vector<int> &vec)
{
 int numPassed = 0;
 for (size_t i = 0; i < vec.size(); ++i)
 {
 if (testFunc(vec[i]))
 numPassed++;
 }
 return numPassed;
}

If the compiler has no information about testFunc, it
will generate an inner loop like the one on the next page:

6 of 32

https://godbolt.org/z/acm19_count1
https://godbolt.org/z/acm19_count1

acmqueue | september-october 2019 7

programming languages

To understand this code, it’s useful to know that
a std::vector<> contains some pointers: one to the
beginning of the data; one to the end of the data; and
one to the end of the storage currently allocated below.
The size of the vector is not directly stored, it’s implied
in the difference between the begin() and end()
pointers. Note that the calls to vector<>::size() and
vector<>::operator[] have been inlined completely.

template<typename T> struct _Vector_impl {
 T *_M_start;
 T *_M_finish;
 T *_M_end_of_storage;
};

In the assembly code, ebp points to the vector object,

7 of 32

.L4:
 mov edi, DWORD PTR [rdx+rbx*4] ; read rbx'th element of vec
 ; (inlined vector::operator [])
 call testFunc(int) ; call test function
 mov rdx, QWORD PTR [rbp+0] ; reread vector base pointer
 cmp al, 1 ; was the result of test true?
 mov rax, QWORD PTR [rbp+8] ; reread the vector end pointer
 sbb r12d, -1 ; add 1 if true, 0 if false
 inc rbx ; increment loop counter
 sub rax, rdx ; subtract end from begin...
 sar rax, 2 ; and divide by 4 to get size()
 ; (inlined vector::size())
 cmp rbx, rax ; does loop counter equal size()?
 jb .L4 ; loop if not

acmqueue | september-october 2019 8

programming languages

and the begin() and end() pointers are therefore QWORD
PTR [rbp+0] and QWORD PTR [rbp+8], respectively.

Another neat trick the compiler has done is to
remove any branching: you might reasonably expect
if (testFunc(...)) would turn into a comparison and
branch. Here the compiler does the comparison cmp al,
1, which sets the processor carry flag if testFunc()
returned false, otherwise it clears it. The sbb r12d, -1
instruction then subtracts -1 with borrow, the subtract
equivalent of carrying, which also uses the carry flag.
This has the desired side effect: If the carry is clear
(testFunc() returned true), it subtracts -1, which is the
same as adding 1. If the carry is set, it subtracts -1 + 1,
which has no effect on the value. Avoiding branches can
be advantageous in some cases if the branch isn’t easily
predictable by the processor.

It may seem surprising that the compiler reloads the
begin() and end() pointers each loop iteration, and indeed
it rederives size() each time too. However, the compiler
is forced to do so: it has no idea what testFunc()does
and must assume the worst. That is, it must assume that
calls to testFunc() may cause the vec to be modified.
The const reference here doesn’t allow any additional
optimizations for a couple of reasons: testFunc() may
have a non-const reference to vec (perhaps through a
global variable), or testFunc() might cast away const.

If, however, the compiler can see the body of
testFunc(), and from this know that it does not in fact
modify vec, the story is very different (https://godbolt.
org/z/acm19_count2):

8 of 32

https://godbolt.org/z/acm19_count2
https://godbolt.org/z/acm19_count2

acmqueue | september-october 2019 9

programming languages

In this case the compiler has realized that the vector’s
begin() and end() are constant during the operation of
the loop. As such it has been able to realize that the call
to size() is also a constant. Armed with this knowledge, it
hoists these constants out of the loop, and then rewrites
the index operation (vec[i]) to be a pointer walk, starting
at begin() and walking up one int at a time to end(). This
vastly simplifies the generated assembly.

In this example I gave the compiler a body to
testFunc() but marked it as non-inlineable (a GNU
extension) to demonstrate this optimization in isolation.
In a more realistic codebase, the compiler could inline
testFunc() if it believed it beneficial.

Another way to enable this optimization without
exposing the body of the function to the compiler is to
mark it as [[gnu::pure]] (another language extension).
This promises the compiler that the function is pure—
entirely a function of its arguments with no side effects.

Interestingly, using range-for in the initial example
yields optimal assembly, even without knowing that

9 of 32

.L6:
 mov edi, DWORD PTR [rdx] ; read next value
 call testFunc(int) ; call testFunc with it
 cmp al, 1 ; check return code
 sbb r8d, -1 ; add 1 if true, 0 otherwise
 add rdx, 4 ; move to next element
 cmp rcx, rdx ; have we hit the end?
 jne .L6 ; loop if not

acmqueue | september-october 2019 10

programming languages

testFunc() doesn’t modify vec (https://godbolt.
org/z/acm19_count3). This is because range-for is defined
as a source code transformation that puts begin() and
end() into local variables:

for (auto val : vec)
{
 if (testFunc(val))
 numPassed++;
}

is interpreted as:

{
 auto __begin = begin(vec);
 auto __end == end(vec);
 for (auto __it = __begin; __it != __end; ++__it)
 {
 if (testFunc(*__it))
 numPassed++;
 }
}

All things considered, if you need to use a “raw” loop, the
modern range-for style is preferred: it’s optimal even if
the compiler can’t see the body of called functions, and it is
clearer to the reader. Arguably better still is to use the STL’s
count_if function to do all the work for you: the compiler still
generates optimal code (https://godbolt.org/z/acm19_count4).

10 of 32

https://godbolt.org/z/acm19_count2
https://godbolt.org/z/acm19_count2
https://godbolt.org/z/acm19_count4

acmqueue | september-october 2019 11

programming languages

In the traditional single-translation-unit-at-a-time
compilation model, function bodies are often hidden from
call sites, as the compiler has seen only their declaration.
LTO (link time optimization; also known as LTCG, for link
time code generation) can be used to allow the compiler
to see across translation unit boundaries. In LTO, individual
translation units are compiled to an intermediate form
instead of machine code. During the link process—when
the entire program (or dynamic linked library) is visible—
machine code is generated. The compiler can take
advantage of this to inline across translation units, or
at least use information about the side effects of called
functions to optimize.

Enabling LTO for optimized builds can be a good win in
general, as the compiler can see your whole program. I
now rely on LTO to let me move more function bodies out
of headers to reduce coupling, compile time, and build
dependencies for debug builds and tests, while still giving
me the performance I need in final builds.

Despite being a relatively established technology (I used
LTCG in the early 2000s on the original Xbox), I’ve been
surprised how few projects use LTO. In part this may be
because programmers unintentionally rely on undefined
behavior that becomes apparent only when the compiler
gets more visibility: I know I’ve been guilty of this.

FAVORITE OPTIMIZATION EXAMPLES
Over the years I’ve collected a number of interesting
real-world optimizations, both from first-hand experience
optimizing my own code and from helping others
understand their code on Compiler Explorer. Here are

11 of 32

acmqueue | september-october 2019 12

programming languages

some of my favorite examples of how clever the compiler
can be.

Integer division by a constant
It may be surprising to learn that—until very recently—
about the most expensive thing you could do on a modern
CPU is an integer divide. Division is more than 50 times
more expensive than addition and more than 10 times more
expensive than multiplication. (This was true until Intel’s
release of the Cannon Lake microarchitecture, where the
maximum latency of a 64-bit divide was reduced from 96
cycles to 18.6 This is only around 20 times slower than an
addition, and 5 times more expensive than multiplication.)

Thankfully, compiler authors have some strength
reduction tricks up their sleeves when it comes to division
by a constant. I’m sure we’ve all realized that division by a
power of two can often be replaced by a logical shift right—
rest assured the compiler will do this for you. I would
advise not writing a >> in your code to do division; let the
compiler work it out for you. It’s clearer, and the compiler
also knows how to account properly for signed values:
integer division truncates toward zero, and shifting down
by itself truncates toward negative infinity.

However, what if you’re dividing by a non-power-of-two
value? Are you out of luck?

unsigned divideByThree(unsigned x)
{
 return x / 3;
}
Luckily the compiler has your back again. This code gets

12 of 32

acmqueue | september-october 2019 13

programming languages

compiled to (https://godbolt.org/z/acm19_div3):

divideByThree(unsigned int):
 mov eax, edi ; eax = edi
 mov edi, 2863311531 ; edi = 0xaaaaaaab
 imul rax, rdi ; rax = rax * 0xaaaaaaab
 shr rax, 33 ; rax >>= 33
 ret

Not a divide instruction in sight. Just a shift, and a
multiply by a strange large constant: the 32-bit unsigned
input value is multiplied by 0xaaaaaaab, and the resulting
64-bit value is shifted down by 33 bits. The compiler has
replaced division with a cheaper multiplication by the
reciprocal, in fixed point. The fixed point in this case is at
bit 33, and the constant is one-third expressed in these
terms (it’s actually 0.33333333337213844). The compiler
has an algorithm for determining appropriate fixed points
and constants to achieve the division while preserving the
same rounding as an actual division operation with the
same precision over the range of the inputs. Sometimes
this requires a number of extra operations—for example, in
dividing by 1023 (https://godbolt.org/z/acm19_div1023):
divideBy1023(unsigned int):
 mov eax, edi
 imul rax, rax, 4198405
 shr rax, 32
 sub edi, eax
 shr edi
 add eax, edi
 shr eax, 9
 ret

13 of 32

https://godbolt.org/z/acm19_div3
https://godbolt.org/z/acm19_div1023

acmqueue | september-october 2019 14

programming languages

The algorithm is well known and documented extensively
in the excellent book, “Hacker’s Delight”.8

In short, you can rely on the compiler to do a great job of
optimizing division by a compile-time-known constant.

You might be thinking: why is this such an important
optimization? How often does one actually perform integer
division, anyway? The issue is not so much with division itself
as with the related modulus operation, which is often used in
hash-map implementations as the operation to bring a hash
value into the range of the number of hash buckets.

Knowing what the compiler can do here can lead to
interesting hash-map implementations. One approach is
to use a fixed number of buckets to allow the compiler to
generate the perfect modulus operation without using the
expensive divide instruction.

Most hash maps support rehashing to a different
number of buckets. Naively this would lead to a modulus
with a number known only at runtime, forcing the compiler
to emit a slow divide instruction. Indeed, this is what the
GCC libstdc++ library implementation of std::unordered_
map does.

Clang’s libc++ goes a little further: it checks if the
number of buckets is a power of two, and if so skips the
divide instruction in favor of a logical AND. Having a power-
of-two bucket count is alluring as it makes the modulus
operation fast, but in order to avoid excessive collisions
it relies on having a good hash function. A prime-number
bucket count gives decent collision resistance even for
simplistic hash functions.

Some libraries such as boost::multi_index go a step
further: instead of storing the actual number of buckets,

14 of 32

acmqueue | september-october 2019 15

programming languages

they use a fixed number of prime-sized bucket counts.

size_t reduce(size_t hash, int bucketCountIndex) {
 switch (tableSizeIndex)
 {
 case 0: return hash % 7;
 case 1: return hash % 17;
 case 2: return hash % 37;
 // and so on...
 }
}

That way, for all possible hash-table sizes the compiler
generates the perfect modulus code, and the only extra
cost is to dispatch to the correct piece of code in the
switch statement.

GCC 9 has a neat trick for checking for divisibility by a
non-power-of-two (https://godbolt.org/z/acm19_multof3):

bool divisibleBy3(unsigned x)
{
 return x % 3 == 0;
}

This compiles to:

15 of 32

divisibleBy3(unsigned int):
 imul edi, edi, -1431655765 ; edi = edi * 0xaaaaaaab
 cmp edi, 1431655765 ; compare with 0x55555555
 setbe al ; return 1 if edi <= 0x55555555
 ret

https://godbolt.org/z/acm19_multof3

acmqueue | september-october 2019 16

programming languages

This apparent witchcraft is explained very well by Daniel
Lemire in his blog.2 As an aside, it’s possible to do these
kinds of integer division tricks at runtime too. If you need
to divide many numbers by the same value, you can use a
library such as libdivide.5

Counting set bits
How often have you wondered, How many set bits are in
this integer? Probably not all that often. But it turns out
this simple operation is surprisingly useful in a number
of cases. For example, calculating the Hamming distance
between two bitsets, dealing with packed representations
of sparse matrices, or handling the results of vector
operations.

You might write a function to count the bits as follows:

int countSetBits(unsigned a)
{
 int count = 0;
 while (a != 0)
 {
 count++;
 a &= (a - 1); // clears the bottom set bit
 }
 return count;
}

Of note is the bit manipulation “trick” a &= (a - 1);,
which clears the bottom-most set bit. It’s a fun one to
prove to yourself how it works on paper. Give it a go.

When targeting the Haswell microarchitecture, GCC 8.2

16 of 32

acmqueue | september-october 2019 17

programming languages

compiles this code to the assembly in (https://godbolt.org/z/
acm19_bits):

countSetBits(unsigned int):
 xor eax, eax ; count = 0
 test edi, edi ; is a == 0?
 je .L4 ; if so, return
.L3:
 inc eax ; count ++
 blsr edi, edi ; a &= (a - 1);
 jne .L3 ; jump back to L3 if a != 0
 ret
.L4:
 Ret

Note how GCC has cleverly found the BLSR bit-
manipulation instruction to pick off the bottom set bit.
Neat, right? But not as clever as Clang 7.0:

This operation is common enough that there’s an
instruction on most CPU architectures to do it in one go:
POPCNT (population count). Clang is clever enough to take a
whole loop in C++ and reduce it to a single instruction. This
is a great example of good instruction selection: Clang’s

17 of 32

countSetBits(unsigned int):
 popcnt eax, edi ; count = number of set bits in a
 ret

https://godbolt.org/z/acm19_bits
https://godbolt.org/z/acm19_bits

acmqueue | september-october 2019 18

programming languages

code generator recognizes this pattern and is able to
choose the perfect instruction.

I was actually being a little unfair here: GCC 9 also
implements this, and in fact shows a slight difference:

At first glance this appears to be suboptimal: why on
earth would you write a zero value, only to overwrite
it immediately with the result of the “population count”
instruction popcnt?

A little research brings up Intel CPU erratum SKL029:
“POPCNT Instruction May Take Longer to Execute Than
Expected”—there’s a CPU bug! Although the popcnt
instruction completely overwrites the output register
eax, it is incorrectly tagged as depending on the prior
value of eax. This limits the CPU’s ability to schedule the
instruction until any prior instructions writing to eax have
completed—even though they have no impact.

GCC’s approach here is to break the dependency on
eax: the CPU recognizes xor eax, eax as a dependency-
breaking idiom. No prior instruction can influence eax after
xor eax, eax, and the popcnt can run as soon as its input
operand edi is available.

This affects only Intel CPUs and seems to be fixed in the
Cannon Lake microarchitecture, although GCC still emits
XOR when targeting it.

countSetBits(unsigned int):
 xor eax, eax ; count = 0
 popcnt eax, edi ; count = number of set bits in a
 ret

18 of 32

acmqueue | september-october 2019 19

programming languages

Chained conditionals
Maybe you’ve never needed to count the number of set
bits in an integer, but you’ve probably written code like this
before:

bool isWhitespace(char c)
{
 return c == ' '
 || c == '\r'
 || c == '\n'
 || c == '\t';
}

Instinctively, I thought the code generation would be full
of compares and branches, but both Clang and GCC use
a clever trick to make this code pretty efficient. Below is
GCC 9.1’s output (https://godbolt.org/z/acm19_conds):

isWhitespace(char):
 xor eax, eax ; result = false
 cmp dil, 32 ; is c > 32
 ja .L4 ; if so, exit with false
 movabs rax, 4294977024 ; rax = 0x100002600
 shrx rax, rax, rdi ; rax >>= c
 and eax, 1 ; result = rax & 1
.L4:
 ret

The compilers turn this sequence of comparisons into
a lookup table. The magic value loaded into rax is a 33-bit
lookup table, with a one-bit in the locations where you
would return true (indices 32, 13, 10, and 9 for ' ', \r, \n,

19 of 32

https://godbolt.org/z/acm19_conds

acmqueue | september-october 2019 20

programming languages

and \t, respectively). The shift and & then pick out the
cth bit and return it. Clang generates slightly different
but broadly equivalent code. This is another example of
strength reduction.

I was pleasantly surprised to see this kind of
optimization. This is definitely the kind of thing that—prior
to investigating in Compiler Explorer—I would have written
manually assuming I knew better than the compiler.

One unfortunate thing I did notice while experimenting
is—for GCC, at least—the order of the comparisons can
affect the compiler’s ability to make this optimization. If you
switch the order of the comparison of the \r and \n, GCC
generates the code below.

There’s a pretty neat trick with the and to combine the
comparison of \r and \t, but this seems worse than the
code generated before. That said, a simplistic benchmark on

20 of 32

isWhitespace(char):
 cmp dil, 32 ; is c == 32?
 sete al ; al = 1 if so, else 0
 cmp dil, 10 ; is c == 10?
 sete dl ; dl = 1 if so, else 0
 or al, dl ; al |= dl
 jne .L3 ; if al is non-zero return it (c was ` ` or \̀ǹ)
 and edi, -5 ; clear bit 2 (the only bit that differs between
 ; \̀r̀ and \̀t̀)
 cmp dil, 9 ; compare with \̀t̀
 sete al ; dl = 1 if so, else 0
.L3:
 ret

http://quick-bench.com/0TbNkJr6KkEXyy6ixHn3ObBEi4w

acmqueue | september-october 2019 21

programming languages

Quick Bench suggests the compare-based version might be
a tiny bit faster in a predictable tight loop. Who ever said
this was simple, eh?

Summation
Sometimes you need to add a bunch of things up. Compilers
are extremely good at taking advantage of the vectorized
instructions available in most CPUs these days, so even a
pretty straightforward piece of code such as
int sumSquared(const vector<int> &v)
{
 int res = 0;
 for (auto i : v)
 {
 res += i * i;
 }
 return res;
}

gets turned into code whose core loop looks like below
(https://godbolt.org/z/acm19_sum):

21 of 32

.loop:
 vmovdqu ymm2, YMMWORD PTR [rax] ; read 32 bytes into ymm2
 add rax, 32 ; advance to the next element
 vpmulld ymm0, ymm2, ymm2 ; square ymm2, treating as
 ; 8 32-bit values
 vpaddd ymm1, ymm1, ymm0 ; add to sub-totals
 cmp rax, rdx ; have we reached the end?
 jne .loop ; if not, keep looping

http://quick-bench.com/0TbNkJr6KkEXyy6ixHn3ObBEi4w
https://godbolt.org/z/acm19_sum

acmqueue | september-october 2019 22

programming languages

The compiler has been able to process eight values per
instruction, by separating the total into eight separate
subtotals for each one. At the end it sums across those
subtotals to make the final total. It’s as if the code was
rewritten for you to look more like:

Simply place the compiler’s optimization level at a high
enough setting and pick an appropriate CPU architecture
to target, and vectorization kicks in. Fantastic!

This does rely on the fact that separating the totals
into individual subtotals and then summing at the end is
equivalent to adding them in the order the program specified.
For integers, this is trivially true; but for floating-point data
types this is not the case. Floating point operations are not
associative: (a+b)+c is not the same as a+(b+c), as—among

22 of 32

int res_[] = {0,0,0,0,0,0,0,0};
for (; index < v.size(); index += 8)
{
 // This can be performed by parallel instructions without
 // an actual loop. The following boils down to a couple
 // of vector instructions:
 for (size_t j = 0; j < 8; ++j)
 {
 auto val = v[index + j];
 res_[j] += val * val;
 }
}
res = res_[0] + res_[1]
 + res_[2] + res_[3]
 + res_[4] + res_[5]
 + res_[6] + res_[7];

acmqueue | september-october 2019 23

programming languages

other things—the precision of the result of an addition
depends on the relative magnitude of the two inputs.

This means, unfortunately, that changing the
vector<int> to be a vector<float> doesn’t result in the
code you would ideally want. The compiler could use some
vector operations (it can square eight values at once), but it
is forced to sum across those values serially below (https://
godbolt.org/z/acm19_sumf):

23 of 32

.loop:
 vmovups ymm4, YMMWORD PTR [rax] ; read 32 bytes into ymm4
 add rax, 32 ; advance
 vmulps ymm1, ymm4, ymm4 ; square 8 floats
 ; (the one parallel operation)
 vaddss xmm0, xmm0, xmm1 ; accumulate the first value
 vshufps xmm3, xmm1, xmm1, 85 ; shuffle things around
 ; (permutes the 8 floats
 ; within the register)
 vshufps xmm2, xmm1, xmm1, 255 ; ...
 vaddss xmm0, xmm0, xmm3 ; accumulate the second value
 vunpckhps xmm3, xmm1, xmm1 ; more shuffling
 vextractf128 xmm1, ymm1, 0x1 ; ...
 vaddss xmm0, xmm0, xmm3 ; accumulate third...
 vaddss xmm0, xmm0, xmm2 ; and fourth value
 vshufps xmm2, xmm1, xmm1, 85 ; shuffling
 vaddss xmm0, xmm0, xmm1 ; accumulate fifth
 vaddss xmm0, xmm0, xmm2 ; and sixth
 vunpckhps xmm2, xmm1, xmm1 ; shuffle some more...
 vshufps xmm1, xmm1, xmm1, 255 ; ...
 vaddss xmm0, xmm0, xmm2 ; accumulate the seventh
 vaddss xmm0, xmm0, xmm1 ; and final value
 cmp rax, rcx ; are we done?
 jne .loop ; if not, keep going

https://godbolt.org/z/acm19_sumf
https://godbolt.org/z/acm19_sumf

acmqueue | september-october 2019 24

programming languages

This is unfortunate, and there’s not an easy way around
it. If you’re absolutely sure the order of addition is not
important in your case, you can give GCC the dangerous
(but amusingly named) -funsafe-math-optimizations
flag. This lets it generate this beautiful inner loop below
(https://godbolt.org/z/acm19_sumf_unsafe):

Amazing stuff: processing eight floats at a time, using a
single instruction to accumulate and square. The drawback
is potentially unbounded precision loss. Additionally,
GCC doesn’t allow you to turn this feature on for just the
functions you need it for—it’s a per-compilation unit flag.
Clang at least lets you control it in the source code with
#pragma Clang fp contract.

While playing around with these kinds of optimizations,
I discovered that compilers have even more tricks up their
sleeves:

24 of 32

.loop:
 vmovups ymm2, YMMWORD PTR [rax] ; read 8 floats
 add rax, 32 ; advance
 vfmadd231ps ymm0, ymm2, ymm2 ; for the 8 floats:
 ; ymm0 += ymm2 * ymm2
 cmp rax, rcx ; are we done?
 jne .loop ; if not, keep going

https://godbolt.org/z/acm19_sumf_unsafe

acmqueue | september-october 2019 25

programming languages

int sumToX(int x)
{
 int result = 0;
 for (int i = 0; i < x; ++i)
 {
 result += i;
 }
 return result;
}

GCC generates fairly straightforward code for this,
and with appropriate compiler settings will use vector
operations as above. Clang, however, generates this code
(https://godbolt.org/z/acm19_sum_up):

sumToX(int): # @sumToX(int)
 test edi, edi ; test x
 jle .zeroOrBelow ; skip if x <= 0
 lea eax, [rdi - 1] ; eax = x - 1
 lea ecx, [rdi - 2] ; ecx = x - 2
 imul rcx, rax ; rcx = ecx * eax
 shr rcx ; rcx >>= 1
 lea eax, [rcx + rdi] ; eax = rcx + x
 add eax, -1 ; return eax - 1
 ret
.zeroOrBelow:
 xor eax, eax ; answer is zero
 ret

25 of 32

https://godbolt.org/z/acm19_sum_up

acmqueue | september-october 2019 26

programming languages

First, note there’s no loop at all. Working through the
generated code, you see that Clang returns:

It has replaced the iteration of a loop with a closed-form
general solution of the sum. The solution differs from what
I would naively write myself:

This is presumably a result of the general algorithm Clang
uses.

Further experimentation shows that Clang is clever
enough to optimize many of these types of loops. Both
Clang and GCC track loop variables in a way that allows
this kind of optimization, but only Clang chooses to
generate the closed-form version. It’s not always less
work: for small values of x the overhead of the closed-
form solution might be more than just looping. Krister
Walfridsson goes into great detail about how this is
achieved in a blog post.7

It’s also worth noting that in order to do this
optimization, the compiler may rely on signed integer
overflow being undefined behavior. As such, it can assume
that your code cannot pass a value of x that would
overflow the result (65536, in this case). If Clang can’t make

26 of 32

acmqueue | september-october 2019 27

programming languages

that assumption, it is sometimes unable to find a closed-
form solution (https://godbolt.org/z/acm19_sum_fail).

Devirtualization
Although it seems to have fallen out of favor a little,
traditional virtual-function-based polymorphism has
its place. Whether it’s to allow for genuine polymorphic
behavior, or add a “seam” for testability, or allow for future
extensibility, polymorphism through virtual functions can
be a convenient choice.

As we know, though, virtual functions are slow. Or
are they? Let’s see how they affect the sum-of-squares
example from earlier—something like below.

struct Transform
{
 int operator()(int x) const { return x * x; }
};

int sumTransformed(const vector<int> &v,
 const Transform &transform)
{
 int res = 0;
 for (auto i : v)
 {
 res += transform(i);
 }
 return res;
}

27 of 32

https://godbolt.org/z/acm19_sum_fail

acmqueue | september-october 2019 28

programming languages

Of course, this isn’t polymorphic yet. A quick run through
the compiler shows the same highly vectorized assembly
(https://godbolt.org/z/acm19_poly1).

Now adding the virtual keyword in front of the
int operator() should result in a much slower
implementation, filled with indirect calls, right? Well,
sort of (https://godbolt.org/z/acm19_poly2). There’s a lot
more going on than before, but at the core of the loop is
something perhaps surprising.

What’s happened here is GCC has made a bet. Given

that it has seen only one implementation of the Transform
class, it is likely going to be that one implementation that
is used. Instead of blindly indirecting through the virtual

28 of 32

; rdx points to the vtable
.L8:
 mov rax, QWORD PTR [rdx] ; read the virtual function pointer
 mov esi, DWORD PTR [rbx] ; read the next int element
 ; compare the function pointer with the address of the only
 ; known implementation...
 cmp rax, Transform::operator()(int) const
 jne .L5 ; if it’s not the only known impl,
 ; then jump off to a more complex case
 imul esi, esi ; square the number
 add rbx, 4 ; move to next
 add r12d, esi ; accumulate the square
 cmp rbp, rbx ; finished?
 jne .L8 ; if not, loop

https://godbolt.org/z/acm19_poly1
https://godbolt.org/z/acm19_poly2

acmqueue | september-october 2019 29

programming languages

function pointer, it has taken the slight hit of comparing
the pointer against the only known implementation. If it
matches, then the compiler knows what to do: it inlines
the body of the Transform::operator() and squares it in
place.

That’s right: the compiler has inlined a virtual call. This
is amazing, and was a huge surprise when I first discovered
this. This optimization is called speculative devirtualization
and is the source of continued research and improvement
by compiler writers. Compilers are capable of
devirtualizing at LTO time too, allowing for whole-program
determination of possible function implementations.

The compiler has missed a trick, however. Note that at
the top of the loop it reloads the virtual function pointer
from the vtable every time. If the compiler were able
to notice that this value remains constant if the called
function doesn’t change the dynamic type of Transform,
this check could be hoisted out of the loop, and then there
would be no dynamic checks in the loop at all. The compiler
could use loop-invariant code motion to hoist the vtable
check out of the loop. At this point the other optimizations
could kick in, and the whole code could be replaced with
the vectorized loop from earlier in the case of the vtable
check passing.

You would be forgiven for thinking that the dynamic
type of the object couldn’t possibly change, but it’s actually
allowed by the standard: an object can placement new
over itself so long as it returns to its original type by the
time it’s destructed. I recommend that you never do this,
though. Clang has an option to promise you never do such
horrible things in your code: -fstrict-vtable-pointers.

29 of 32

acmqueue | september-october 2019 30

programming languages

Of the compilers I use, GCC is the only one that does
this as a matter of course, but Clang is overhauling its type
system to leverage this kind of optimization more.4

C++11 added the final specifier to allow classes and
virtual methods to be marked as not being further
overridden. This gives the compiler more information
about which methods may profit from such optimizations,
and in some cases may even allow the compiler to avoid a
virtual call completely (https://godbolt.org/z/acm19_poly3).
Even without the final keyword, sometimes the analysis
phase is able to prove that a particular concrete class
is being used (https://godbolt.org/z/acm19_poly4). Such

static devirtualization can
yield significant performance
improvements.

CONCLUSION
Hopefully, after reading this
article, you’ll appreciate the
lengths to which the compiler
goes to ensure efficient
code generation. I hope that
some of these optimizations
are a pleasant surprise and
will factor in your decisions
to write clear, intention-
revealing code and leave it to
the compiler to do the right
thing. I’ve reinforced the idea
that the more information

the compiler has, the better job it can do. This includes

30 of 32

Related articles

3 C Is Not a Low-level Language
Your computer is not a fast PDP-11.
David Chisnall
https://queue.acm.org/detail.cfm?id=3212479

3 Uninitialized Reads
Understanding the proposed revisions
to the C language
Robert C. Seacord
https://queue.acm.org/detail.cfm?id=3041020

3 You Don’t Know Jack about Shared
Variables or Memory Models
Data races are evil.
Hans-J. Boehm, Sarita V. Adve
https://queue.acm.org/detail.cfm?id=2088916

https://godbolt.org/z/acm19_poly3
https://godbolt.org/z/acm19_poly4
https://queue.acm.org/detail.cfm?id=2088916

acmqueue | september-october 2019 31

programming languages

allowing the compiler to see more of your code at once,
as well as giving the compiler the right information about
the CPU architecture you’re targeting. There’s a tradeoff
to be made in giving the compiler more information: it can
make compilation slower. Technologies such as link time
optimization can give you the best of both worlds.

Optimizations in compilers continue to improve, and
upcoming improvements in indirect calls and virtual
function dispatch might soon lead to even faster
polymorphism. I’m excited about the future of compiler
optimizations. Go take a look at your compiler’s output.

Thanks
The author would like to extend his thanks to Matt Hellige,
Robert Douglas, and Samy Al Bahra, who gave feedback on
drafts of this article.

References
1. �Godbolt, M. 2012. Compiler explorer; https://godbolt.org/.
2. �Lemire, D. 2019. Faster remainders when the divisor is a

constant: beating compilers and libdivide. https://lemire.
me/blog/2019/02/08/faster-remainders-when-the-
divisor-is-a-constant-beating-compilers-and-libdivide/.

3. �LLVM. 2003. The LLVM compiler infrastructure.; https://
llvm.org.

4. �Padlewski, P. 2018. RFC: Devirtualization v2. LLVM; http://
lists.llvm.org/pipermail/llvm-dev/2018-March/121931.html.

5. �ridiculous_fish. 2010. Libdivide; https://libdivide.com/.
6. �Uops. Uops.info Instruction Latency Tables; https://uops.

info/table.html.
7. �Walfridsson, K. 2019. How LLVM optimizes power sums;

31 of 32

http://shoeelfsoftware.com/
https://twitter.com/0xf390
https://godbolt.org/
https://lemire.me/blog/2019/02/08/faster-remainders-when-the-divisor-is-a-constant-beating-compilers-and-libdivide/
https://lemire.me/blog/2019/02/08/faster-remainders-when-the-divisor-is-a-constant-beating-compilers-and-libdivide/
https://lemire.me/blog/2019/02/08/faster-remainders-when-the-divisor-is-a-constant-beating-compilers-and-libdivide/
https://llvm.org
https://llvm.org
https://libdivide.com/
https://uops.info/table.html
https://uops.info/table.html

acmqueue | september-october 2019 32

programming languages

https://kristerw.blogspot.com/2019/04/how-llvm-
optimizes-geometric-sums.html.

8. �Warren, H. S. 2012. Hacker’s Delight. 2nd edition.
Addison-Wesley Professional.

Matt Godbolt is the creator of the Compiler Explorer website.
He is passionate about writing efficient code. He currently
works at Aquatic Capital, and has worked on low-latency
trading systems, on mobile apps at Google, run his own C++
tools company and spent more than a decade making console
games. When he’s not hacking on Compiler Explorer, Matt
enjoys writing emulators for old 8-bit computer hardware.
Copyright © 2019 held by owner/author. Publication rights licensed to ACM.

32 of 32

https://kristerw.blogspot.com/2019/04/how-llvm-optimizes-geometric-sums.html
https://kristerw.blogspot.com/2019/04/how-llvm-optimizes-geometric-sums.html
http://www.aquatic.com

