
Optimizing Pattern Matching

Fabrice Le Fessant, Luc MarangetINRIA Roquen
ourt, B.P. 105, 78153 Le Chesnay Cedex, Fran
e(Email: fFabri
e.Le fessant, Lu
.Marangetg�inria.fr)
ABSTRACTWe present improvements to the ba
ktra
king te
hnique ofpattern-mat
hing
ompilation. Several optimizations are in-trodu
ed, su
h as
ommutation of patterns, use of exhaus-tiveness information, and
ontrol
ow optimization throughthe use of labeled stati
 ex
eptions and
ontext information.These optimizations have been integrated in the Obje
tive-Caml
ompiler. They have shown good results in in
reasingthe speed of pattern-mat
hing intensive programs, withoutin
reasing �nal
ode size.
1. INTRODUCTIONPattern-mat
hing is a key feature of fun
tional languages.It allows to dis
riminate between the values of a deeplystru
tured type, binding subparts of the value to variablesat the same time. ML users now routinely rely on their
om-piler for su
h a task; they write
ompli
ated, nested, pat-terns. And indeed, transforming high-level pattern-mat
hinginto elementary tests is a
ompiler job. Moreover, be
auseit
onsiders the mat
hing as a whole and that it knows someintimate details of runtime issues su
h as the representationof values,
ompiler
ode is often better than human
ode,both as regards
ompa
tness and eÆ
ien
y.There are two approa
hes to pattern-mat
hing
ompila-tion, the underlying model being either de
ision trees [5℄ orba
ktra
king automata [1℄. Using de
ision trees, one pro-du
es a priori faster
ode (be
ause ea
h position in a termis tested at most on
e), while using ba
ktra
king automata,one produ
es a priori less
ode (be
ause patterns never get
opied, hen
e never get
ompiled more than on
e). The pri
epaid in ea
h
ase is losing the advantage given by the otherte
hnique.This paper mostly fo
uses on produ
ing faster
ode in theba
ktra
king framework. Examining the
ode generated bythe Obje
tive-Caml
ompiler [11℄, whi
h basi
ally used theAugustsson's original algorithm, on small frequently foundprograms, su
h as a list-merge fun
tion, or on large exam-ples [14℄, we found that the ba
ktra
king s
heme
ould still
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFP’01, September 3-5, 2001, Florence, Italy.
Copyright 2001 ACM 1-58113-415-0/01/0009 ...$5.00.

be improved.Our optimizations improve the produ
ed ba
ktra
king au-tomaton by grouping elementary tests more often, removinguseless tests and avoiding the blind ba
ktra
king behaviorof previous s
hemes. To do so, the
ompiler uses new in-formation and outputs a new
onstru
t. New informationin
lude in
ompatibility between patterns, exhaustiveness in-formation and
ontextual information at the time of ba
k-tra
king. As to the new
onstru
t, previous s
hemes used alone \exit"
onstru
t whose e�e
t is to jump to the nearesten
losing \trap-handler" ; we enri
h both exits and traps-handlers with labels, resulting in �ner
ontrol of exe
ution
ow.Our optimizations also apply to or-patterns, a
onvenientfeature to group
lauses with identi
al a
tions. Unsharingof a
tions is avoided by using our labelled exit
onstru
t. Asor-patterns may
ontain variables, the exit
onstru
t is alsoextended to take arguments.All our optimizations are now implemented in the latestversion of the Obje
tive-Caml
ompiler, whose language ofa

epted patterns has been extended by allowing variablesin or-patterns.The stru
ture of this arti
le is the following: we �rst in-trodu
e some theoreti
al basi
s on pattern-mat
hing in se
-tion 2 and des
ribe the
ompilation s
heme to ba
ktra
kingautomata in se
tion 3. Then, we brie
y introdu
e our op-timizations and or-pattern
ompilation in an intuitive wayin se
tions 4 and 5, while se
tion 6 is a formalization of our
omplete
ompilation s
heme. Finally, some experimentalresults are shown in se
tion 7, and a
omparison with otherapproa
hes is dis
ussed in se
tion 8.
2. BASICSIn this se
tion, we introdu
e some notations and de�ni-tions. Most of the material here is folklore, save, perhaps,or-patterns.
2.1 Patterns and ValuesML is a typed language, where new types of values
an beintrodu
ed using type de�nitions su
h as:type t = Nil | One of int | Cons of int * tThis de�nition introdu
es a type t, with three
onstru
torsthat build values of type t. These three
onstru
tors de�nethe
omplete signature of type t. Every
onstru
tor hasan arity, i.e. the number of arguments it takes. Here arityof Nil is zero, while the arities of One and Cons are oneand two respe
tively. A
onstru
tor of arity zero is
alled

a
onstant
onstru
tor, while other
onstru
tors are non-
onstant
onstru
tors.Most native data types in ML { su
h as integers, re
ords,arrays, tuples {
an be seen as parti
ular instan
es of su
htype de�nitions. For example, in the following we will
on-sider lists (nil being the
onstant
onstru
tor [℄ and
onsthe in�x
onstru
tor ::), and tuples (the type of n-tuplesde�nes one
onstru
tor of arity n, pairs being written withthe in�x
onstru
tor \,"). For our purpose, integers are
onstant
onstru
tors, and the signature of the integer typeis in�nite.More formally, patterns and values are de�ned as follows:p ::= Patternswild
ardx variable
(p1; p2; : : : ; pa)
onstru
tor pattern(p1 j p2) or-patternv ::= Values
(v1; v2; : : : ; va)
onstru
tor valueIn the following, we freely repla
e variables by wild-
ards \ "when their names are irrelevant. While des
ribing
ompila-tion,
onvenient tools are ve
tors of values (~v = (v1 v2 : : : vn)and ~vn$m = (vn:::vm)), ve
tors of patterns (~p = (p1 p2 : : : pn)and ~pn$m = (pn:::pm)) and matri
es of patterns (P = (pij)).In this paper, we present pattern-mat
hing
ompilation asa transformation on an intermediate
ode in the
ompiler,
alled lambda-
ode. Here, another useful obje
t is the
lausematrix (P ! L):(P ! L) = 0BBB� p11 p12 � � � p1n ! l1p21 p22 � � � p2n ! l2...pm1 pm2 � � � pmn ! lm 1CCCAA
lause matrix asso
iates rows of patterns (pi1 pi2 : : : pin) tolambda-
ode a
tions li.
2.2 Pattern Matching in MLA pattern
an be seen as representing a set of values shar-ing a
ommon pre�x.Definition 1 (Instan
e). Let p be a pattern and v bea value belonging to a
ommon type. The value v is aninstan
e of the pattern p or p mat
hes v, written p � vwhen one of the following rules apply:� vx � v(p1 j p2) � v i� p1 � v or p2 � v
(p1; : : : ; pa) �
(v1; : : : ; va) i� (p1 : : : pa) � (v1 : : : va)(p1 : : : pa) � (v1 : : : va) i� pi � vi; 8i 2 [1::a℄Seeing a pattern as the set of its instan
es, it is
lear thator-patterns express set union.In ML, patterns are a binding
onstru
t, more spe
i�
ally,a su

essful mat
h p � v, binds the variables of p to somesub-terms of v. Su
h bindings
an be
omputed while
he
k-ing that p mat
hes v, provided that the following set V(p)

of variables de�ned by p is well-de�ned:V() = ;V(x) = fxgV(
(p1; : : : ; pa)) = V(p1 : : : pa)V(p1 : : : pa) = V(p1) [: : : [V(pa)if for all i 6= j;V(pi) \ V(pj) = ;V(p1 j p2) = V(p1); if V(p1) = V(p2)The �rst \if"
ondition above is the linearity of patterns.The se
ond
ondition is spe
i�
 to or-patterns, it meansthat mat
hing by either side of the or-pattern binds thesame variables (additionally, homonymous variables shouldpossess the same type).We then de�ne the now dominant, textual priority s
hemeto disambiguate the
ase when several rows in a matrixmat
h:Definition 2 (Mat
hing predi
ate). Let P be a pat-tern matrix and ~v = (v1 : : : vn) be a value ve
tor. The valuev mat
hes line number i in P , if and only if the followingtwo
onditions are satis�ed:� (pi1 : : : pin) � (v1 : : : vn)� 8j < i; (pj1 : : : pjn) 6� (v1 : : : vn)We will not give a full semanti
s for evaluating pattern-mat
hing expressions, and more generally lambda-
ode. In-tuitively, given a
lause matrix P ! L and a value ve
-tor ~v su
h that line number i in P mat
hes ~v, evaluatingthe mat
hing of ~v by P ! L in some environment � is eval-uating li in � extended by the bindings introdu
ed whilemat
hing ~v by (pi1 : : : pin). If ~v is not mat
hed by any line inP , we say that the pattern-mat
hing P fails. If no su
h ~vexists, then the pattern-mat
hing is said exhaustive.Like pattern ve
tors, pattern matri
es represent sets ofvalue ve
tors. More spe
i�
ally, when some line in P mat
hes~v we simply say that P mat
hes ~v. This looks obvious, butrepresenting sets using matri
es is at the
ore of our opti-mizations. One easily
he
ks that the instan
es of P arethe union of the instan
es of the lines of P . That is, when
onsidering a matrix globally, the se
ond
ondition in de�-nition 2 above is irrelevant. More important, row order isalso irrelevant.Finally, the instan
e relation indu
es relations on the pat-terns themselves.Definition 3 (Relations on patterns). We de�ne thefollowing three relations:1. Pattern p is less pre
ise then pattern q, written p � q,when all instan
es of q are instan
es of p.2. Pattern p and q are equivalent, written p � q, when theirinstan
es are the same.3. Patterns p and q are
ompatible when p and q share a
ommon instan
e.Here some remarks are to be made. Be
ause of typing,
he
king the pre
ision relation is neither obvious nor
heap.More pre
isely, there is no simple way to de
ide whetherp � holds or not. For instan
e, ([℄| ::) � holds, while(Nil|One) � does not. Or-patterns are not responsi-ble for this
ompli
ation, sin
e we also have (,) � .In su
h
ases one should \expand" p and
onsider, whether

signatures are
omplete or not (see [13, Se
tion 5.1℄). By
ontrast,
ompatibility
an be
he
ked by a simple re
ur-sive algorithm. When
ompatible, patterns p and q admita least upper bound, written p " q, whi
h
an be
omputedwhile
he
king
ompatibility:8>>><>>>: (p1 : : : pa) "(q1 : : : qa) = (p1 " q1 : : : pa " qa)" q = qp " = p
(p1; : : : ; pa) "
(q1; : : : ; qa) =
(r1; : : : ; ra)where (r1 : : : ra) is (p1 : : : pa) "(q1 : : : qa)With the following additional rules for or-patterns:(p1 j p2) " q = 8<: p1 " q; when p2 and q not
ompatiblep2 " q; when p1 and q not
ompatible(p1 " q j p2 " q); otherwisep "(q1 j q2) = (q1 j q2) " pProving that p " q is indeed the least upper bound of p andq is easy, by
onsidering patterns as sets of their instan
es.Note that p " q is de�ned up to �-equivalen
e, and that iten
odes instan
e interse
tion.
3. COMPILATIONIn this se
tion, we present a
ompilation s
heme
lose tothe one des
ribed in [20, 1℄, and implemented in
ompilerssu
h as the hb

ompiler or the Obje
tive Caml
ompiler.This
lassi
al s
heme will be re�ned later into an optimizeds
heme, using same notations and
on
epts.
3.1 Output of the match compilerThe
ompilation of pattern-mat
hing is des
ribed by thes
heme C that maps a
lause matrix to a lambda-
ode expres-sion. We now des
ribe the spe
i�
 lambda-
ode
onstru
tsthat the s
heme C outputs while
ompiling patterns.� Let-bindings: let (x lx) l, nested let-bindings are abbre-viated as:let (x1 l1) (x2 l2) � � �(xn ln) l� Stati
 ex
eptions, exit and traps,
at
h l1 with l2. If,when evaluating the body l1, exit is en
ountered, thenthe result of evaluating
at
h l1 with l2 is ther resultevaluating the handler l2, otherwise it is the result of eval-uating l1. By
ontrast with dynami
 ex
eptions, stati
ex
eptions are dire
tly
ompiled as jumps to the asso
i-ated handlers (plus some environment adjustment, su
has sta
k pops), whereas traps do not generate any
ode.� Swit
h
onstru
ts:swit
h l with
ase
1: l1� � �
ase
k: lkdefault: dThe result of a swit
h
onstru
t is the evaluation of the li
orresponding to the
onstru
tor
i appearing as the headof the value v of l. If the head
onstru
tor of v doesn'tappear in the
ase list, the result is the evaluation of thedefault d expression.The default
lause default: d
an be omitted. In su
h a
ase the swit
h behavior is unspe
i�ed on non-re
ognizedvalues. S
heme C
an thus omit the default
lause when

it is known that
ase lists will
over all possibilities atruntime. We use the keyword swit
h* to highlight swit
h
onstru
ts with no default
lause.Those swit
h
onstru
ts are quite sophisti
ated, they
om-pile later into more basi

onstru
ts: tests, bran
hes andjump tables. We in fa
t modi�ed the Obje
tive Caml
ompiler to improve the
ompilation of swit
h
onstru
ts,using te
hniques �rst introdu
ed in the
ontext of
ompil-ing the
ase statement of Pas
al [3℄. The key points areusing range tests, whi
h
an typi
ally be performed byone single (unsigned) test and bran
h plus possibly oneaddition,
utting sparse
ase lists into denser ones, andde
iding whi
h of jump tables or test sequen
e is more ap-propriate to ea
h situation. A survey of these te
hniques
an be found in [19℄.� A

essors: field n x, where x is a variable and n is aninteger o�set. By
onvention, the �rst argument of non-
onstant
onstru
tors stands at o�set zero.� Sequen
es: l1; l2 and units: ()
3.2 Initial stateInput to the pattern mat
hing
ompiler C
onsists of twoarguments: a ve
tor of variables ~x of size n and a
lausematrix P ! L of width n and height m.~x = (x1 x2 : : : xn); P ! L = 0BBB� p11 p12 � � � p1n ! l1p21 p22 � � � p2n ! l2...pm1 pm2 � � � pmn ! lm 1CCCAThe initial matrix is generated from sour
e input. Givena pattern-mat
hing expression (in Caml syntax):mat
h x with | p1-> e1| p2-> e2 : : : | pm-> emThe initial
all to C is:
at
hC((x);0BB� p1 ! l1p2 ! l2!pm ! lm 1CCA)with (failwith "Partial mat
h")Where the li's are the translations to lambda-
ode of theei's, and (failwith "Partial mat
h") is a runtime failurethat o

urs when the whole pattern mat
hing fails.
3.3 Classical schemeBy
ontrast with previous presentations, we assume thatmatrix P ! L has at least one row (i.e. m > 0). This
ondition simpli�es our presentation, without restri
ting itsgenerality. Hen
e, s
heme C is de�ned by
ases on non-empty
lause matri
es:1. If n is zero (i.e. when there are no more
olumns), thenthe �rst row of P mat
hes the empty ve
tor ():C(();0BBB� ! l1! l2...! lm 1CCCA) = l1

2. If n is not zero, then a simple
ompilation is possible,using the following four rules.(a) If all patterns in the �rst
olumn of p are variables, y1,y2, : : : , ym, then:C(~x; P ! L) = C((x2 x3 : : : xn); P 0 ! L0)whereP 0 ! L0 = 0BBB� p12 � � � p1n ! let (y1 x1) l1p22 � � � p2n ! let (y2 x1) l2...pm2 � � � pmn ! let (ym x1) lm 1CCCA)We
all this rule, the variable rule. This
ase also han-dles wild-
ard patterns: they are treated like variablesex
ept that the let-binding is omitted.(b) If all patterns in the �rst
olumn of P are
onstru
torpatterns
(q1; : : : ; qa), then let C be the set of mat
hed
onstru
tors, that is, the set of the head
onstru
tors ofthe pi1's.Then, for ea
h
onstru
tor
 in C, we de�ne the spe-
ialized
lause matrix S(
; P ! L) by mapping the fol-lowing transformation on the rows of P .pi1 S(
; P ! L)
(qi1; : : : ; qia) qi1 � � �qia pi2 � � �pin ! li
0(qi1; : : : ; qia0) (
0 6=
) No row(Matri
es S(
; P ! L) and P ! L de�ne the samemat
hing predi
ate when x1 is bound to some value
(v1; : : : ; va).) Furthermore, for a given
onstru
tor
of arity a, let y1; : : : ; ya be fresh variables. Then, forany
onstru
tor
 in C, we de�ne the lambda-expressionr(
):(let (y1 (field 0 x1))...(ya (field (a�1) x1))C((y1; : : : ; ya; x2; : : : ; xn);S(
; P ! L)))Finally, assuming C = f
1; : : : ;
kg, the
ompilationresult is:swit
h x1 with
ase
1: r(
1)� � �
ase
k: r(
k)default: exit(Note that the default
lause
an be omitted when Cmakes up a full signature.) We
all this rule, the
on-stru
tor rule.(
) If P has only one row and that this row starts with anor-pattern:P = � (q1 j ::: j qo) p2 � � � pn ! l �;Then,
ompilation result is:C((x1);0B� q1 ! ()...qo ! () 1CA); C((x2 : : : xn); (p2 : : : pn ! l))This rule is the orpat rule. Observe that it does notdupli
ate any pattern nor a
tion. However, variables in

or-patterns are not supported, sin
e, in
lause qi ! (),the s
ope of qi variables is the a
tion \()".(d) Finally, if none of the previous rules applies, the
lausematrix P ! L is
ut in two
lause matri
es P1 ! L1and P2 ! L2, su
h that P1 ! L1 is the largest pre�xof P ! L for whi
h one of the variable,
onstru
tor ororpat rule applies.Then,
ompilation result is:
at
h C(~x; P1 ! L1) with C(~x; P2 ! L2)This rule is the mixture rule.This paper doesn't deal with optimizing let-bindings, whi
hare
arelessly introdu
ed by s
heme C. This job is left to alater
ompilation phase.
4. OPTIMIZATIONSWe now des
ribe some improvement to the
lassi
al
om-pilation s
heme. For simpli
ity, we present examples anddefer the full presentation of our s
heme to se
tion 6. Inall these examples, we fo
us on pattern-mat
hing
ompi-lation, repla
ing potentially arbitrary a
tions more simpleones, su
h as integers or variables.
4.1 Optimizing the mixture ruleIn this se
tion and in the following, our running exampleis the
lassi
al list-merge:let merge lx ly = mat
h lx,ly with| [℄, _ -> 1| _, [℄ -> 2| x::xs, y::ys -> 3Su
h a mat
hing on pairs en
odes mat
hing on two argu-ments. As a
onsequene, we
onsider the following initial
all to s
heme C: C((lx ly); (P ! L))Where (P ! L) is:(P ! L) = 0� [℄ ! 1[℄ ! 2x::xs y::ys ! 3 1AApplying the mixture rule twi
e yields three matri
es:P1 ! L1 = � [℄ ! 1 �P2 ! L2 = � [℄ ! 2 �P3 ! L3 = � x::xs y::ys ! 3 �Now,
onsider another
lause matrix (P 0 ! L0):(P 0 ! L0) = 0� [℄ ! 1x::xs y::ys ! 3[℄ ! 2 1ABoth
lause matri
es de�ne the same mat
hing fun
tion,namely they both map ([℄ v) to 1, (v1::v2 [℄) to 2 and(v1::v2 v01::v02) to 3. Furthermore, (P 0 ! L0)
an be ob-tained from (P ! L) by swapping its se
ond and third row.More generally, one easily
he
ks that swapping two
ontigu-ous in
ompatible rows is legal. Then applying the mixturerule to (P 0 ! L0), yields two matri
es only:P 01 ! L01 = � [℄ ! 1x::xs y::ys ! 3 �;P 02 ! L02 = � [℄ ! 2 �

at
h(
at
h(swit
h lx with
ase [℄: 1default: exit)with (
at
h(swit
h ly with
ase [℄: 2default: exit)with (
at
h(swit
h lx with
ase (::):(swit
h ly with
ase (::) : 3default: exit)default: exit))))with (failwith "Partial mat
h")

at
h(
at
h(swit
h* lx with
ase [℄: 1
ase (::) :(swit
h ly with
ase (::): 3default: exit))with(swit
h ly with
ase [℄: 2default: exit)with (failwith "Partial mat
h")Figure 1: Mixture optimizationFinal outputs for P ! L and P 0 ! L0 are displayed onFigure 1. Hen
e, as a result of repla
ing P ! L by P 0 ! L0,the two tests on lx that were performed separately on theleft
ode are now merged in a single swit
h in the right
ode.Also noti
e that one trap disappears.More generally, an optimized mixture rule should takeadvantage of pattern-mat
hing semanti
s to swap rows whenpossible, so that as few
uts as possible are performed.

4.2 Using exhaustiveness informationThe Obje
tive Caml
ompiler
he
ks the exhaustivenessof pattern mat
hing expressions and issues a warning be-fore
ompiling non-exhaustive pattern mat
hings. However,the exhaustiveness information
an also be used for avoid-ing tests. Matrix P 0 of the previous se
tion is exhaus-tive; this means that there will be no "Partial mat
h" fail-ure at runtime. As an immediate
onsequen
e, the swit
h:(swit
h ly with
ase [℄: 2 default: exit) always su
-
eeds (this swit
h is the last one performed by the optimized
ode in �gure 1). Thus, we repla
e it by 2. We
an also sup-press the outermost trap. Hen
e, applying both optimiza-tions des
ribed up to now,
ompilation of P ! L �nallyyields:
at
h(swit
h* lx with
ase [℄: 1
ase (::): (swit
h ly with
ase [℄: 3default: exit))with 2In the general
ase, exhaustiveness information is exploitedby slightly modifying s
heme C. It suÆ
es to avoid emittingdefault
lauses in swit
h
onstru
ts, when it is known thatno exit should es
ape from produ
ed
ode. This propertyholds initially for exhaustive pattern mat
hings, and trans-mits to all re
ursive
alls, ex
ept for the
all on P1 ! L1 inthe mixture rule.
4.3 Optimizing exitsThe two previous optimizations yield optimal
ode for themerge example. Hen
e we
ompli
ate the running exampleby
onsidering a mat
hing on obje
ts of type t from se
-

tion 2:P ! L = 0BBB� Nil ! 1Nil ! 2One x ! 3One y ! 4Cons (x,xs) Cons (y,ys) ! 5 1CCCAThe optimized mixture rule yields four matri
es:P1 ! L1 = � Nil ! 1Cons (x,xs) Cons (y,ys) ! 5 �P2 ! L2 = � Nil ! 2 �P3 ! L3 = � One x ! 3 �P4 ! L4 = � One y ! 4 �For reasons that will appear immediately, we apply the mix-ture rule from bottom to top, thereby nesting trap handlers.The mat
h being exhaustive,
ompilation yields the
odedisplayed on the left part of Figure 2.Now,
onsider what happens at run-time when (lx ly) is(Cons (v1, v2) One v). A �rst swit
h on lx leads to line 7,where a swit
h on ly is performed. This swit
h fails, andthe default a
tion jumps to the nearest en
losing handler(line 13), where ly is tested against Nil resulting in anotherswit
h failure. Here, in our
ase,
ontrol goes to line 17,where another swit
h on lx (against One x) fails, resultingin �nal jump to line 20.Hen
e, it would be appropriate to jump to line 20 rightfrom the �rst test on ys. To do so, both exits and traphandlers are now labelled by integers. Note that this newfeature does not really
ompli
ate the
ompilation of stati
ex
eptions. Then, it be
omes possible to jump to di�erenttrap handlers from the same point and a better
ompilationof P ! L is displayed in the right part of �gure 2.The
ode above maps ve
tors (Cons (v1, v2) One v) to4 by exe
uting two swit
hes, while previous
ode neededfour swit
hes to perform the same task. Hen
e, exit opti-mization has a noti
eable bene�t as regards run-time eÆ-
ien
y. As regards
ode size, exit optimization may in
reaseit, sin
e some swit
hes may have larger
ase lists. However,
ode size remains under
ontrol, sin
e no extra swit
hes aregenerated. Hen
e, �nal
ode size
riti
ally depends on howswit
hes translate to ma
hine-level
onstru
ts. For instan
e,ma
hine-level
ode size obviously does not in
rease when

1
at
h2 (
at
h3 (
at
h4 (swit
h lx with5
ase Nil: 16
ase Cons:7 (swit
h ly with8
ase Cons: 59 default: exit)1011 default: exit)12 with13 (swit
h ly with14
ase Nil: 215 default: exit))16 with17 (swit
h lx with18
ase One: 319 default: exit))20 with 4

1
at
h2 (
at
h3 (
at
h4 (swit
h lx with5
ase Nil: 16
ase Cons:7 (swit
h* ly with8
ase Cons: 59
ase Nil: (exit 2)10
ase One: (exit 4))11 default: (exit 2))12 with (2)13 (swit
h ly with14
ase Nil: 215 default: (exit 3)))16 with (3)17 (swit
h lx with18
ase One: 319 default: (exit 4)))20 with (4) 4Unoptimized
ode Optimized
odeFigure 2: Exit optimizationswit
hes are translated to jump tables1.Surprisingly, performing exit optimization is quite simpleand
heap: the needed information is available at
ompile-time by inspe
ting pattern matri
es only. Rea
hable traphandlers are de�ned as pairs (P; e) of a pattern matrix andan integer. Rea
hable trap handlers originate from the di-vision performed by the mixture rule. Here, P1 ! L1 is
ompiled with the rea
hable trap-handlers (P2; 2), (P3; 3)and (P4; 4). Then, the
onstru
tor rule spe
ializes rea
habletrap handlers. Here, in the
ase where lx is Cons (v1, v2),spe
ializing rea
hable trap handlers results in ((Nil); 2) and((One y); 4) (note that spe
ializing P3 yields an empty ma-trix, whi
h is dis
arded). Hen
e, while generating the �rstswit
h on ly (line 7), it is known that the
ode produ
edby
ompiling trap handlers number 2 and 3 will surely exitwhen ly is One v, and a jump to trap handler number 4
anbe generated by the
ompiler in that
ase.
4.4 Aggressive control flow optimizationThe
ode produ
ed by exit optimization still
ontains re-dundant tests, some of whi
h
an be removed without al-tering the handler stru
ture introdu
ed by the mixture rule.More spe
i�
ally, we
onsider trap handler number 3 (line 16).It results from
ompiling P3 and is a swit
h of lx againstOne.The only (exit 3) lies in trap handler number 2 (line 15)and results from ly not being Nil, this gives us no dire
tinformation on lx. Now, looking upwards for (exit 2), we
an infer that trap handler number 2 is entered from twodi�erent points. In the �rst
ase (line 9), (lx ly) is fullyknown as (Cons (v1, v2) Nil), in the se
ond
ase (line 11),only lx is know to be One v. As (exit 3) on line 15 gets ex-e
uted only when ly is not Nil, we
an �nally dedu
e that1Given the Obje
tive Caml en
oding of
onstru
tors, we arehere in the same desirable situation where the
ompilationof apparently larger swit
hes does not result in produ
ingmore
ode.

the �rst
ase never results in entering trap handler num-ber 3. As a
onsequen
e, trap handler number 3 is exe
utedin a
ontext where lx ne
essarily is One v, the swit
h it per-forms is useless and line 16
an be simpli�ed into \3". Thiselimination of useless tests[4℄ is usually performed at a lowerlevel by
ombining dead
ode elimination[9℄ and
onditional
onstant propagation[21, 6℄.Finally, after all optimizations, there remains one redun-dant swit
h in produ
ed
ode, in trap-handler number 2(line 12). As a result, ve
tors (Cons (v1, v2) Nil) are mappedto 2 by testing ly twi
e. One should noti
e that this is pre-
isely the test that would get dupli
ated by
ompilation tode
ision trees.Des
ribing what is known on values while entering traphandlers is slightly involved. The key idea is representingset of value ve
tors as pattern matri
es. We
all su
h a set a
ontext. Contexts for the three trap handlers of our exampleare: Trap number Context2 � OneCons (,) Nil �3 � One (One j Cons (,)) �4 � Cons (,) One �If pre
ise enough and exploited fully, we
onje
ture that
on-texts subsume exhaustiveness information. However as in-tuition suggests and experien
e
on�rms,
ontexts get largerwhile
ompilation progresses, potentially rea
hing huge sizesat the end of matri
es. We
ure this by safely approximating
ontexts when they get too large, repla
ing some patterns inthem by wild-
ards. Hen
e the optimizations of se
tion 4.2is still worth
onsidering, as being
heap and always appli-
able.
5. COMPILING OR-PATTERNSUntil now, the
ode produ
ed for or-patterns is ineÆ
ient,be
ause only one or-pattern
an be
ompiled at a time, re-

quiring multiple appli
ations of the mixture rule before andafter ea
h or-pattern. Thanks to integer labelled exits, oneeasily avoids dividing matri
es before or-patterns. Considera \
ar" fun
tion for our three-
onstru
tors list:let
ar list = mat
h list with| Nil -> -1| (One x | Cons (x,_)) -> xCompilation pro
eeds by allo
ating a new trap-handlernumber 2 and expanding the
lause \One x | Cons (x,_)"into two
lauses with patterns \One x" and \Cons (x,_)".A
tions for the new
lauses are exits to 2:
at
hC((list);0� Nil ! -1One x' ! (exit 2 x')Cons (x',) ! (exit 2 x') 1A)with (2 x) C((); � ! x �)Note that both exits and trap handlers now take yet an-other extra argument, the o

urren
es of x' in exits arenon-binding and refer to pattern variables, while the o

ur-ren
e of x in handler is binding. This new
onstru
t allowsthe
ompilation of or-patterns with variables. Implemen-tation is not very tri
ky: the
at
h : : : with (2 x) : : :
onstru
t allo
ates one mutable variable; an exit updatesthis variable, whi
h is read before entering the handler. Ina native
ode
ompiler, su
h a variable is a temporary andultimately a ma
hine register. The generated lambda-
odeis as follow:
at
hswit
h* list with
ase Nil: -1
ase One: (exit 2 (field 0 list))
ase Cons: (exit 2 (field 0 list))with (2 x) xMoreover, by the semanti
s of pattern-mat
hing,
uts af-ter or-patterns
an also be avoided in many situations. Inthe
ase of one
olumn matri
es, where the expanded or-patterns express the full mat
hing performed, all
uts
anbe avoided. Things get a bit more
ompli
ated when ma-tri
es have more than one
olumn. Consider the following
lause matrix,P ! L = � (1|2) p2 ! l1(3|4) q2 ! l2 �We further assume a mat
h on (x y) and that mat
h fail-ure should result in (exit 1) (the stati
 ex
eption label
orresponding to mat
h failure
an be given as a third argu-ment to the
ompilation s
heme). Writing p1 = (1|2) andq1 = (3|4), there are obviously no value ve
tors (v1 v2) su
hthat v1 is an instan
e of both p1 and q1. As a
onsequen
e,the following
ompilation is
orre
t:
at
h(
at
h(swit
h x with
ase 1: (exit 2)
ase 2: (exit 2)
ase 3: (exit 3)
ase 4: (exit 3)default: (exit 1))with (2) C((y); � p2 ! l1 �; 1))with (3) C((y); � q2 ! l2 �; 1)

Intuitively, on
e x is
he
ked, the
hoi
e between �rst andse
ond row is made. Depending on the value of y, mat
hingmay still fail, but then, the whole mat
hing fails.Conversely, matrix division
annot be avoided when mat
h-ing by p1 does not ex
lude mat
hing by q1, that is, when p1and q1 are
ompatible. This is the
ase, for instan
e, whenp1 = (1|2) and q1 = (2|3). Then, a
orre
t
ompilation is:
at
h(
at
h(swit
h x with
ase 1: (exit 2)
ase 2: (exit 2)default: (exit 3))with (2) C((y); � p2 ! l1 �; 3))with (3)(
at
h(swit
h x with
ase 2: (exit 4)
ase 3: (exit 4)default: (exit 1))with (4) C((y); � q2 ! l2 �; 1))Note that the third argument to the �rst re
ursive
all tothe
ompilation s
heme is \3" and not \1". As a
onse-quen
e, ve
tors (2 v2) su
h that p2 does not mat
h v2 whileq2 mat
hes v2 get mapped
orre
tly to l2. A slight inne�en
yshows up, sin
e x is tested twi
e. More striking, perhaps,ve
tors (1 v2) su
h that p2 does not mat
h v2 also lead totesting x twi
e.An alternative
ompilation rule for or-pattern would sim-ply expand or-patterns in a pre-pro
essing phase, yieldingthe matrix: 0BB� 1 p2 ! l12 p2 ! l12 q2 ! l23 q2 ! l2 1CCAThen, there are no extra run-time tests on x, sin
e the
on-stru
tor rule applies. However, patterns p2 and q2 are now
ompiled twi
e. Note that there is no simple solution foravoiding this dupli
ation of e�ort, sin
e, on
e the
onstru
-tor rule is applied, the two o

uren
es of these patterns o

urin di�erent
ontexts. More generally,
ode size is now out of
ontrol, a
lear
ontradi
tion with the spirit of ba
tra
kingautomata.
6. OUR COMPILATION SCHEMEThe new s
heme C� takes �ve arguments and a typi
al
all is C�(~x; P ! L; ex; def;
tx), where ~x = (x1 : : : xn) andP ! L is a
lause matrix of width n:P ! L = 0BBB� p11 � � � p1n ! l1p21 � � � p2n ! l2...pm1 � � � pmn ! lm 1CCCAExtra arguments are:� The exhaustiveness argument ex is either partial or totaldepending on whether
ompilation
an produ
e es
apingexit
onstru
ts or not.� Rea
hable trap handlers def are sequen
es (P1; e1); � � � ;(Pt; et), where the ei's are integers (trap handler numbers)and the Pi's are pattern matri
es of width n.

Figure 3: Operations on
ontexts(a) Context spe
ializationP �Q row S(
; P �Q) rowpi1 � � � pik �
(qi1; : : : ; qia) � � � qin pi1 � � � pik
(; : : : ;) � qi1 � � � qia qia+1 � � � qinpi1 � � � pik � � � � qin pi1 � � � pik
(; : : : ;) � � � � qia+1 � � � qinpi1 � � � pik �
0(qi1; : : : ; qia) � � � qin no row(b) Context
olle
tionP �Q row COL(P �Q) rowpi1 � � � pik�1
(; : : : ;) � qi1 � � � qia qia+1 � � � qin pi1 � � � pik �
(qi1; : : : ; qia) � � � qin(
) Context pushing and poppingP �Q row +(P �Q) row *(P �Q) rowpi1 � � � pik � qi1 � � � qin pi1 � � � pik qi1 � qi2 � � � qin pi1 � � � pik�1 � pik qi1 � � � qin� The
ontext
tx is a pattern matrix of width k+n, equiva-lent to a pair of matrixes P �Q, where ea
h row is dividedinto a pre�x (in P) of width k and a fringe (in Q) ofwidth n.P �Q = 0BBB� p11 � � � p1k � q11 � � � q1np21 � � � p2k � q21 � � � q2n...pm1 � � � pmk � qm1 � � � qmn 1CCCAInformally, at any point in
ompilation,
ontexts are pre-order representations of what is known about mat
hedvalues. The fringe re
ords the possible values for ~x, whilethe pre�x re
ords the same information for other sub-terms whi
h are relevant to pending
alls to C�. Transfersof patterns from fringe to pre�x are performed on the ar-guments of re
ursive
alls, while transfers in the oppositedire
tion are performed as results are
olle
ted.The initial
all to C� for an exhaustive mat
h is:C�((x);0BBB� p1 ! l1p2 ! l2...pm ! lm 1CCCA; total ; ;; (�))For a non-exhaustive mat
h, ex is partial , def is the one-element sequen
e ((); 1) and a trap handler is added as inse
tion 3.3. The
ontext argument remains the same: itexpresses that nothing is known yet about the value of ~x.The new s
heme returns a lambda-
ode l and a jumpsummary, � = f: : : ; i 7!
tx; : : : g, whi
h is a mappingfrom trap numbers to
ontexts. Jump summaries des
ribewhat is known about mat
hed values at the pla
es where(exit i : : :) o

ur in l.
6.1 Operations on contextsWe de�ne the following four operations on
ontexts :(a) Context spe
ialization, S, by a
onstru
tor
 of arity a isde�ned by mapping the transformation of �gure 3-(a) on
ontext rows.

(b) Context
olle
tion, COL, is the reverse of spe
ialization.It
ombines the the last element of the pre�x with theappropriate number of arguments standing at beginningof the fringe (see �gure 3-(b)).(
) Context pushing + and popping * move the fringe limitone step forward and ba
kward, without examining anypattern (see �gure 3-(
)).As
ontexts are used to represent set of values, we natu-rally de�ne union and interse
tion over
ontexts. Contextunion P�Q[P 0 �Q0 yields a new matrix whose rows are therows of P �Q and P 0 �Q0 . Row order is not relevant. Con-text interse
tion P�Q\P 0 �Q0 is de�ned as a
ontext whoserows are the least upper bounds of the
ompatible rows ofP � Q and P 0 � Q0 . Context extra
tion EX is a parti
ular
ase of
ontext interse
tion.EX (p; P 0 �Q0) = (: : : � p : : :) \ P 0 �Q0For example, when p is
(; : : : ;),
ontext extra
tion re-tains those value ve
tors represented by P 0 �Q0 whose k+1th
omponents admit
 as head
onstru
tor. Observe that su
ha
omputation involves extra
ting or-pattern arguments andmaking wild-
ards more pre
ise.Ex
ept for
olle
tion and popping, whi
h
onsume pre-�x elements, all these operations
an be extended to simplematri
es, by using an empty pre�x in input, and taking thefringe for output. Doing so, we obtain exa
tly the operationsof se
tion 3.3 used to
ompute pattern matri
es (spe
ializa-tion S in parti
ular).Operations on
ontexts are extended to jump summariesin the natural manner. For instan
e, the union of � and �0is de�ned as:� [�0 = f: : : ; i 7! �(i) [�0(i); : : : gOperations on matri
es are extended to rea
hable traphandlers in a similar manner: for instan
e, pushing traphandlers is de�ned as pushing all matri
es in them :+((P1; e1); : : : ; (Pt; et)) = (+(P1); e1); : : : ; (+(Pt); et)

6.2 Compilation schemeWe now des
ribe s
heme C� by
onsidering
ases over thetypi
al
all.1. If n is zero. then we have:C�(();0BBB� ! l1! l2...! lm 1CCCA; ex; def;
tx) = l1; ;Observe that the jump summary is empty sin
e no exit isoutputed.2. With respe
t to se
tion 3.3, the variable rule only
hangesas regards the extra arguments ex, def and
tx. We onlydes
ribe these
hanges. The performed re
ursive
all re-turns
ode l and jump summary � :l; � = C�(: : : ; : : : ; ex;+(def);+(
tx))Exhaustiveness information ex does not
hange, while defand
tx are pushed.The variable rule returns l un
hanged and � popped.3. In the
onstru
tor rule, let C = f
1; : : : ;
kg be the mat
hed
onstru
tors, let also � be the signature of their type. Fora given
onstru
tor
 2 C, the performed re
ursive
all is:C�(: : : ; : : : ; ex;S(
; def);S(
;
tx))Exhaustiveness information ex is passed un
hanged, whilethe other two extra arguments are spe
ialized (spe
ializa-tion of trap handlers being the natural extension of matrixspe
ialization).Ea
h re
ursive
all returns a lambda-
ode l(
) and a jumpsummary �
. Lambda-
ode l(
) gets wrapped into let-bindings like in se
tion 3.3, yielding the �nal lambda-
oder(
). We then de�ne a
ase list L and a jump summary�re
 as follows:L =
ase
1: r(
1) � � �
ase
k: r(
k)�re
 = f : : : ; i 7! [
2C COL(�
(i)); : : : gThe
ase list is as before, while the jump summary is theunion of the the jump summaries produ
ed by re
ursive
alls, on
e
olle
ted.Optimizations are then performed. For
larity, optimiza-tions are des
ribed as a two phase pro
ess: �rst, extend(or not extend) the
ase list L with
onstru
tors takenfrom � n C, and add (or not add) a default
ase; then,
ompute the �nal jump summary.A �rst easy
ase is when � n C is empty or when ex istotal . Then, the
ase list L is not augmented. Otherwise,we distinguish two
ases :(a) If � n C is �nite, then for all
onstru
tors
 in this setwe
onsider the
ontextQ
 �Q0
 = EX (
(; : : : ;);
tx)Then, trap handlers (P1; e1); : : : ; (Pt; et) are s
annedleft-to-right, stopping at the smallest i, su
h that theinterse
tion Q0
 \ Pi is not empty. That is, we �nd the

trap handler where to jump to when the head
onstru
-tor of x1 is
, in order to extend the
ase list as follows :L = L
ase
: (exit ei)It is possible that ei does not exist (when Q0
 is empty).This means that x1 head
onstru
tor will never be
 atruntime.(b) If � nC is in�nite (as in the
ase of integers) or
onsid-ered too large (as it might be in the
ase of
hara
ters),then, a default
ase is added to the
ase list :L = L default: (exit e1)That is, all non-re
ognized
onstru
tors lead to a jumpthe nearest en
losing rea
hable trap-handler.However it is still possible to extend the
ase list forparti
ular
onstru
tors, applying the previous pro
e-dure (a) to the
onstru
tors that appear in the �rst
olumn of rea
hable trap handler matri
es and not in C.The �nal jump summary is
omputed by
onsidering the�nal
ase list L. For a given trap handler number ei letf
01; : : : ;
0k0g be the set of
onstru
tors su
h that
ase
0j:(exit ei) appears in L. Then the jump summary �ei isde�ned as:�ei = f ei 7! EX (
01(; : : : ;) j � � � j
0k0(; : : : ;));
tx) gMoreover, if there is a default
lause, the jump sum-mary �d is de�ned as:�d = f e1 7!
txgFinally the
onstru
tor rule returns a swit
h on
ase list Land the jump summary built by performing the union of�re
, of all �ei 's and, when appropriate, of �d.The
onstru
tor rule performs many
ontext unions, sothat
ontexts may be
ome huge. Fortunately,
ontexts
an be made smaller using a simple observation. Namely,let ~p and ~q be two rows in a
ontext, su
h that ~p is lesspre
ise than ~q (i.e., all instan
es of ~q are instan
es of ~p).Then, row ~q
an be removed from the
ontext, withoutmodifying its meaning as a set of value ve
tors. Hen
e,while performing
ontext union, one
an leave aside somepattern rows. If the produ
ed
ontext is still too large,then
ontexts are safely approximated by �rst repla
ingsome patterns in them by wild-
ards (typi
ally all the pat-tern in a given
olumn) and then removing rows using theprevious remark. Rough experiments lead us to set themaximal admissible
ontext size to 32 rows, yielding sat-isfa
tory
ompilation time in pathologi
al examples andexa
t
ontexts in pra
ti
al examples.4. Or-pattern
ompilation operates on matri
es whose �rst
olumn
ontains at least one or-pattern. Additionally,when pi1 is a or-pattern, then for all j, i < j � m one ofthe following, mutually ex
lusive,
onditions must hold:(a) pi1 and pj1 are not
ompatible.(b) pi1 and pj1 are
ompatible, and (pi2 : : : pin) is less pre
isethan (pj2 : : : pjn)Conditions (a) and (b) guarantee that, whenever pi1 mat
hesthe �rst value ve
tor v1 of a value ~v, but row i does notmat
h ~v, then no further row in P mat
hes ~v either. This

is ne
essary sin
e further rows of P won't be rea
hable in
ase of failure in the or-pattern trap handler.Now,
onsider one row number i, su
h that pi1 is the or-pattern q1 j � � � j qo. Further assume that this or-patternbinds the variables y1; : : : ; yv. First, we allo
ate a freshtrap number e and divide P ! L into the following or-body P 0 ! L0 and or-trap P 00 ! L00
lauses:P 0 ! L0 = 0BBBBBBBBBBBB�
...pi�11 : : : pi�1n ! li�1q1 : : : ! (exit e y1... yv)...qo : : : ! (exit e y1... yv)pi+11 : : : pi+1n ! lj+1...

1CCCCCCCCCCCCAP 00 ! L00 = � pi2 : : : pim ! li �In the or-body matrix, observe that the or-pattern is ex-panded, while the other patterns in row number i arerepla
ed by wild-
ards and the a
tion is repla
ed by exits.Re
ursive
alls are performed as follows:l0; �0 = C�(~x; P 0 ! L0; ex; def;
tx)l00; �00 = : : :: : : C�(~x2$n; P 00 ! L00; ex;+(EX (p; def));+(EX (p;
tx)))Outputed
ode �nally is
at
h l0with (e y1... yv) l00and the returned jump summary is � = �0 [*(�00).5. The mixture rule is responsible for feeding the other ruleswith appropriate
lause matri
es. We �rst
onsider the
ase of a random division. Hen
e let us
ut P ! L intoQ!M and R! N at some row. Then a fresh trap num-ber e is allo
ated and a �rst re
ursive
all is performed:lq ; �q = C�(~x;Q!M; partial ; (R; e); def;
tx)The exhaustiveness information is partial , sin
e nothingabout the exhaustiveness of Q derives from the exhaus-tiveness of P . Rea
hable trap handlers are extended.Then, a se
ond re
ursive
all is performed:lr; �r = C�(~x;R! N; ex; def; �q(e))It is no surprise that the
ontext argument to the new
allis extra
ted from the jump summary of the previous
all.Argument ex does not
hange. Indeed, if mat
hing by P
annot fail, then mat
hing by R neither
an.Then, the s
heme
an output the
odel =
at
h lq with (e) lrand return the jump summary (�qnfeg)[�r, where �qnfegstands for �q with the binding for e removed.Of
ourse, our optimizing
ompiler does not perform arandom division into two matri
es. It instead dividesP ! L right away into several sub-matri
es. This
anbe des
ribed formally as several,
lever, appli
ations ofthe random mixture rule, so that one of the three previ-ous rules apply to ea
h matrix in the division. The aim ofthe optimizing mixture rule is thus to perform a divisionof P into as few sub-matri
es as possible. We present asimple, greedy, approa
h that s
ans P downwards.

We only des
ribe the
ase when p11 is a
onstru
tor pat-tern. Thus, having performed the
lassi
al mixture rule,we are in a situation where the i topmost rows of P havea
onstru
tor pattern in �rst position (i.e. are
onstru
-tor rows for short) and where pi+11 is not a
onstru
torpattern. At that point, a matrix C has been built, whi
hen
ompasses all the rows of P from 1 to i. Let us fur-ther write P 0 for what remains of P , and let O and Rbe two new, initially empty matri
es. We then s
an therows of P 0 from top to bottom, appending them at theend of C, O or R. That is, given row number j in P 0:(a) If p0j1 is a variable, then append row j at the end of R.(b) If p0j1 is a
onstru
tor pattern, then : : :i. If row j is not
ompatible with all the rows of both Rand O, then append row j at the end of C (i.e., moverow j above all the rows that have been extra
tedfrom P 0 at previous stages).ii. If row j is not
ompatible with all the rows of R andthat one of
onditions (a) or (b) for applying the or-pattern rule are met by O with row j appended atthe end, then do su
h an append.iii. Otherwise, append row j at the end of R.(
) If p0j1 is a or-pattern, then
onsider
ases (ii) and (iii).When the s
an of P 0 is over, three matri
es, C, O and Rhave been built. In the
ase where O is empty, matrix C isvalid input to the
onstru
tor rule; otherwise, appendingthe rows of O at the end of C yields valid input for ap-plying (maybe more than on
e) the or-pattern rule, whi
hwill in turn yield valid input to the
onstru
tor rule (pro-vided that (_ | : : :) or patterns have been repla
ed bysemanti
ally equivalent wild-
ards in a previous phase).Thus, the matrix built by appending O at the end of C isre
orded into the overall division and the division pro
essis restarted with input R, unless R is empty.Finally, the full pro
ess divides the input matrix P intoseveral matri
es, ea
h of whi
h is valid input to the otherrules of the
ompilation s
heme.
7. EXPERIMENTAL RESULTSWe
ompare the performan
e of the
ode generated bythe Obje
tive-Caml
ompilers version 3.00 and 3.01, wherethe former implements the s
heme of se
tion 3.3 and thelatter implements our new optimizing s
heme (there areother di�eren
es of minor relevan
e to our purpose). Formost programs there is little di�eren
e; this is natural sin
epattern-mat
hing usually a

ounts for a small fra
tion ofmost programs running time. A full analysis of the eÆ-
ien
y of our optimizations would in fa
t require
ountingrelevant instru
tions (test, bran
hes and indire
t bran
hesthrough jump tables), both stati
ally and dynami
ally. Byla
k of time, we only present some programs that demon-strate signi�
ant improvement.Our �rst ben
hmark is the traditionnal fib, that we writeusing a or-pattern.let re
 fib n = mat
h n with| (0|1) -> 1 | _ -> fib (n-1) + fib (n-2)Here, we simply measure the exe
ution time of
omputingfib 38. Our se
ond ben
hmark, p
f, is a byte-
ode
om-piler and interpreter for PCF. We
ompute the geometri

mean of the exe
ution time for a set of �ve di�erent PCFprograms. The time-
onsuming part of this program is thebyte-
ode ma
hine whi
h we
oded in the style of the byte-
ode ma
hine in
luded in [14℄, the winning entry of the2000 ICFP programming
ontest. (we also give �gures forthis program under the name raytra
e).Experiments were performed on a lightly loaded 366MhzPentium Pro Linux PC. The tables show wall-
lo
k times(in se
onds) and ratios:fib raytra
e p
fV 3.00 5.36 100 1.69 100 8.12 100V 3.01 3.74 71 1.62 96 5.08 63Obviously, as demonstrated by the fib example,
ompila-tion of or-patterns has mu
h improved. Testing similar ex-amples
on�rms that fa
t. Improvements also
omes fromthe better
ompilation of swit
hes. The p
f example ismore interesting, it shows that our optimizations yield a 37%speed-up, in the
ase of a typi
al ML appli
ation (a qui
klywritten,
ompa
t, prototype implementation of some pro-gramming language). The raytra
e example exhibits lessimportant improvements on the whole test suite of the
on-test; however, improvements are noti
eable for some inputs.It should also be noti
ed that the new
ompiler somehowequates the runtime performan
e of various
oding styles, afeature that is important for a high-level
onstru
t su
h aspattern-mat
hing. Variations in
oding style in
lude the rel-ative ordering of non-overlapping patterns and on the orderof arguments in pairs.We also performed measurements on a 500Mhz De
 Alphaserver. They suggest that the e�e
ts of our optimization donot depend on the targeted ar
hite
ture.fib p
fV 3.00 3.4 100 4.13 100V 3.01 2.5 74 2.86 69The raytra
e example is is omitted be
ause it relies onIEEE
oating point arithmeti
, whi
h is not implementedin the Obje
tive Caml
ompiler for this ar
hite
ture.More detailed information on these ben
hmarks is avail-able at http://
aml.inria.fr/pattern/speed.html.
8. RELATED WORK

8.1 Decision Treesvs BacktrackingCompiling to de
ision trees is the original approa
h topattern mat
hing
ompilation; it �rst appeared in the Hope
ompiler and is des
ribed in [5℄. It is
urrently used in theSML-NJ
ompiler [7℄.In this approa
h, there is no mixture rule: instead, the
onstru
tor rule applies as soon as there is at least one
on-stru
tor in the �rst
olumn, and a spe
ialization matrix is
reated for ea
h mat
hed
onstru
tor, plus one additionalmatrix for the remaining
onstru
tors in the signature ofthe types of mat
hed values, if any. Spe
ialization is doneby following the rules of se
tion 6.1. This means that rowswhose �rst pattern is a variable get
opied several times.On the one hand, this approa
h guarantees that one
on-stru
tor test is never performed twi
e. On the other hand,
opied pattern rows are
ompiled independently and thisresult in potentially large
ode size. Namely, examples ex-ist that make the SML-NJ
ompiler produ
e exponential
ode [12℄.

Compilation to ba
ktra
king automata is the
lassi
al s
hemeof se
tion 3.3 (see also [1, 20℄). It is
urrently in use in theHaskell-HBC and Obje
tive-Caml
ompiler [11℄. As we al-ready argued, its main advantage is that patterns are never
opied, yielding linear output size. Of
ourse, the pri
e paidis potentially testing the same sub-term several times, re-sulting in potentially poor runtime performan
e. In thataspe
t, our new
ompilation s
heme shows that this pri
e
an be redu
ed signi�
antly.Compilation to de
ision trees easily dete
ts unused mat
h
ases and non-exhaustive mat
hings, sin
e there is no dead
ode in a de
ision tree. Dete
ting these situations is impor-tant, as programmers should be warned about them. How-ever, those problems are NP-
omplete [17℄ and this givesus a hint about the potential size of de
ision trees. More
on
retely, a de
ision tree may have many leafs
orrespond-ing to non-mat
hed values, whereas knowing that one su
hvalues exist is the needed information. Rather, we
he
kunused mat
h
ases and exhaustiveness before
ompilationwith a simple algorithm [13℄ that solves the used mat
hed
ase problem by basi
ally traversing the de
ision tree with-out generating it. Advantages are not generating the tree,stopping sear
h as soon as used mat
h
ases are found andapplying various heuristi
s and matrix simpli�
ations whi
hare not relevant to dire
t
ompilation. Then, one of ouroptimizations uses exhaustiveness information.
8.2 Compiling or-patternsFrom available ML or Haskell
ompilers, we only foundtwo
ompilers dealing with or-patterns: the (old) Obje
tive-Caml
ompiler and the SML-NJ
ompiler. Our te
hniquemakes the old Obje
tive-Caml s
heme (see se
tion 3.3) ob-solete, by both produ
ing more eÆ
ient
ode and allowingvariables in or-patterns.The SML-NJ approa
h is very simple to understand andimplement: or-patterns are expanded during a pre-pro
essingphase. However, as we already dis
ussed at the end of se
-tion 5, this may lead to many dupli
ations of patterns. Su
ha risk is
ompatible with the very philosophy of
ompilationto de
ision trees and is natural in that
ontext.
8.3 OptimizationsMost optimizations dealing with pattern-mat
hing in theliterature try to improve the order in whi
h tests are per-formed. In the matrix-based des
ription, one
onsiders al-ternatives to systemati
ally
hoosing the �rst
olumn of ma-tri
es in the
onstru
tor rule. Hen
e, su
h an approa
h
anbe
hara
terized as \
olumn optimization", while our ap-proa
h would rather be \row optimization". Sin
e
hoos-ing the best
olumn is thought to be NP-
omplete (to ourknowledge, there is no published proof), most approa
hesdes
ribe heuristi
s. A typi
al and early work on su
h heuris-ti
s is [2℄, a more re
ent and thorough study is [16℄. Another,related in pra
ti
e, approa
h relies on sequentiality theoryto identify dire
tions that are
olumns that must be testedby all possible mat
hers [10, 15, 17, 13℄. However,
omput-ing dire
tions is expansive, and one
an
onsider relying on
heaper heuristi
s.These works rather apply to the de
ision trees, with aprimary fo
us on redu
ing
ode size. It is un
lear to us howto
ombine
olumn and row optimization in pra
ti
e andwhether this would yield noti
eable improvements or not.There also exists a partial-evaluation based approa
h to

pattern-mat
hing optimization. [8℄ and later [18℄ spe
ializean ultra-naive pattern-mat
hing interpreter to
reate an eÆ-
ient pattern-mat
hing
ompiler. Both authors use
ontextinformation as we do. By
ontrast, their target is de
isiontrees. In the end, the automati
 pro
ess of partial evaluationdoes not �nd as many optimizations as we do.
9. CONCLUSIONThis paper
ontribution is twofold. First, we propose animprovement on the
lassi
al te
hnique of
ompiling pattern-mat
hing expressions into ba
ktra
king automata, a te
h-nique that has remained virtually the same for about 15 years.Our improvements yield automata whi
h run faster, therebyalleviating the disadvantage of ba
ktra
king automata inpra
ti
al
ases. Moreover the very stru
ture of the produ
edautomata is not altered and hen
e the highly desirable prop-erty that output size is linear in the input size is preserved.As a se
ond
ontribution, we propose a te
hnique for eÆ-
iently
ompiling or-patterns with variables, still preserv-ing the linearity of output size. Using or-patterns in pla
eof \
at
h-all" wild-
ards results in more robust programs,while using one
lause with a or-pattern in pla
e of sev-eral
lauses with identi
al a
tions results in more
ompa
t,sometime
learer, programs. ML programmers
an now en-joy these bene�ts, without being afraid of degraded runtimeeÆ
ien
y or
ode size explosion.We would have wished to make a
lear statement on
om-paring ba
tra
king automata and de
ision trees. However,sophisti
ated
ompilation te
hniques exist that minimize thedrawba
ks of both approa
hes. Those are our te
hniques forba
ktra
king automata, and hash-
onsing and
olumn opti-mizations for de
ision trees. In the absen
e of a pra
ti
al
omparison of full-
eged algorithms,
hoosing one te
hniqueor the other re
e
ts one's
ommitment to guaranteed
odesize or guaranteed runtime performan
e.
10. REFERENCES[1℄ Augustsson, L. Compiling pattern mat
hing. InFun
tional Programming Languages and ComputerAr
hite
ture, J.-P. Jouannaud, Ed. Springer-Verlag,Berlin, DE, 1985, pp. 368{381. Le
ture Notes inComputer S
ien
e 201Pro
eedings of. Conferen
e atNan
y.[2℄ Baudinet, M., and Ma
Queen, D. Tree patternmat
hing for ML,. unpublished paper, De
. 1985.[3℄ Bernstein, R. L. Produ
ing good
ode for the
asestatement. Software|Pra
ti
e and Experien
e 15, 10(O
t. 1985), 1021{1024.[4℄ Bod��k, R., Gupta, R., and Soffa, M. L.Interpro
edural
onditional bran
h elimination. InPro
eedings of the ACM SIGPLAN Conferen
e onProgramming Language Design and Implementation(PLDI-97) (New York, June 15{18 1997), vol. 32, 5 ofACM SIGPLAN Noti
es, ACM Press, pp. 146{158.[5℄ Cardelli, L. Compiling a fun
tional language. InConferen
e Re
ord of the 1984 ACM Symposium onLisp and Fun
tional Programming (Aug. 1984), ACM,ACM, pp. 208{217.[6℄ Fraser, C. W. A
ompa
t, ma
hine-independentpeephole optimizer. In Conferen
e Re
ord of the SixthAnnual ACM Symposium on Prin
iples of

Programming Languages (Jan. 1979), ACM, ACM,pp. 1{6.[7℄ Harper, R. W., Ma
Queen, D. B., and Milner,R. Standard ML. Report ECS-LFCS-86-2,Department of Computer S
ien
e, University ofEdinburgh, Edinburgh, UK, 1986. Also CSR-209-86.[8℄ J�rgensen, J. Generating a pattern mat
hing
ompiler by partial evaluation. In Glasgow Workshopon Fun
tional Programming, Ullapool (GlasgowUniversity, July 1990), P. C. J. van Rijsbergen, Ed.,Springer-Verlag, pp. 177{195.[9℄ Knoop, J., R�uthing, O., and Steffen, B. Partialdead
ode elimination. In Pro
eedings of theConferen
e on Programming Language Design andImplementation (New York, NY, USA, June 1994),ACM Press, pp. 147{158.[10℄ Laville, A. Implementation of lazy pattern mat
hingalgorithms. In ESOP'88 (1988), H. Ganzinger, Ed.,vol. 300, pp. 298{316.[11℄ Leroy, X. The obje
tive
aml system:Do
umentation and user's manual, 2000. WithDamien Doligez, Ja
ques Garrigue, Didier R�emy, andJ�rôme Vouillon. Available fromhttp://
aml.inria.fr.[12℄ Maranget, L. Compiling lazy pattern mat
hing. InPro
. of the 1992
onferen
e on Lisp and Fun
tionalProgramming (1992), ACM Press.[13℄ Maranget, L. Two te
hniques for
ompiling lazypattern mat
hing. Resear
h Report 2385, INRIARo
quen
ourt, O
t. 1994.[14℄ PLClub, and Caml'R Us. Obje
tive-
aml: Winnerof the �rst and se
ond prizes of the p rogramming
ontest. ACM SIGPLAN International Conferen
e onFun
tional Programming (ICFP '2000).[15℄ Puel, L., and Su�arez, A. Compiling patternmat
hing by term de
omposition. Journal of Symboli
Computation 15, 1 (Jan. 1993), 1{26.[16℄ S
ott, K., and Ramsey, N. When domat
h-
ompilation heuristi
s matter? Te
h. Rep.CS-2000-13, Department of Computer S
ien
e,University of Virginia, May 2000.[17℄ Sekar, R. C., Ramesh, R., and Ramakrishnan,I. V. Adaptive pattern mat
hing. In Automata,Languages and Programming, 19th InternationalColloquium (Vienna, Austria, 13{17 July 1992),W. Kui
h, Ed., vol. 623 of Le
ture Notes in ComputerS
ien
e, Springer-Verlag, pp. 247{260.[18℄ Sestoft, P. ML pattern mat
h
ompilation andpartial evaluation, 1996.[19℄ Spuler, D. A. Compiler
ode generation for multiwaybran
h statements as a stati
 sear
h problem. Te
h.Rep. 94/3, Department of Computer S
ien
e, JamesCook University, 1994.[20℄ Wadler, P. Compilation of pattern mat
hing. In TheImplementation of Fun
tional ProgrammingLanguages, S. L. Peyton Jones, Ed. Prenti
e-HallInternational, 1987,
h. 7.[21℄ Wegman, M., and Zade
k, F. K. Constantpropagation with
onditional bran
hes. In Conferen
eRe
ord of the 12th Annual ACM Symposium onPrin
iples of Programming Languages (New Orleans,LS, Jan. 1985), B. K. Reid, Ed., ACM Press,

pp. 291{299.

