Optimizing Pattern Matching

Fabrice Le Fessant, Luc Maranget

INRIA Roquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
(Email: {Fabrice.Le_fessant, Luc. Maranget}@Qinria.fr)

ABSTRACT

We present improvements to the backtracking technique of
pattern-matching compilation. Several optimizations are in-
troduced, such as commutation of patterns, use of exhaus-
tiveness information, and control flow optimization through
the use of labeled static exceptions and context information.
These optimizations have been integrated in the Objective-
Caml compiler. They have shown good results in increasing
the speed of pattern-matching intensive programs, without
increasing final code size.

1. INTRODUCTION

Pattern-matching is a key feature of functional languages.
It allows to discriminate between the values of a deeply
structured type, binding subparts of the value to variables
at the same time. ML users now routinely rely on their com-
piler for such a task; they write complicated, nested, pat-
terns. And indeed, transforming high-level pattern-matching
into elementary tests is a compiler job. Moreover, because
it considers the matching as a whole and that it knows some
intimate details of runtime issues such as the representation
of values, compiler code is often better than human code,
both as regards compactness and efficiency.

There are two approaches to pattern-matching compila-
tion, the underlying model being either decision trees [5] or
backtracking automata [1]. Using decision trees, one pro-
duces a priori faster code (because each position in a term
is tested at most once), while using backtracking automata,
one produces a priori less code (because patterns never get
copied, hence never get compiled more than once). The price
paid in each case is losing the advantage given by the other
technique.

This paper mostly focuses on producing faster code in the
backtracking framework. Examining the code generated by
the Objective-Caml compiler [11], which basically used the
Augustsson’s original algorithm, on small frequently found
programs, such as a list-merge function, or on large exam-
ples [14], we found that the backtracking scheme could still

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

ICFP’01, September 3-5, 2001, Florence, Italy.

Copyright 2001 ACM 1-58113-415-0/01/000955.00.

be improved.

Our optimizations improve the produced backtracking au-
tomaton by grouping elementary tests more often, removing
useless tests and avoiding the blind backtracking behavior
of previous schemes. To do so, the compiler uses new in-
formation and outputs a new construct. New information
include incompatibility between patterns, exhaustiveness in-
formation and contextual information at the time of back-
tracking. As to the new construct, previous schemes used a
lone “exit” construct whose effect is to jump to the nearest
enclosing “trap-handler” ; we enrich both exits and traps-
handlers with labels, resulting in finer control of execution
flow.

Our optimizations also apply to or-patterns, a convenient
feature to group clauses with identical actions. Unsharing
of actions is avoided by using our labelled exit construct. As
or-patterns may contain variables, the exit construct is also
extended to take arguments.

All our optimizations are now implemented in the latest
version of the Objective-Caml compiler, whose language of
accepted patterns has been extended by allowing variables
in or-patterns.

The structure of this article is the following: we first in-
troduce some theoretical basics on pattern-matching in sec-
tion 2 and describe the compilation scheme to backtracking
automata in section 3. Then, we briefly introduce our op-
timizations and or-pattern compilation in an intuitive way
in sections 4 and 5, while section 6 is a formalization of our
complete compilation scheme. Finally, some experimental
results are shown in section 7, and a comparison with other
approaches is discussed in section 8.

2. BASICS

In this section, we introduce some notations and defini-
tions. Most of the material here is folklore, save, perhaps,
or-patterns.

2.1 Patterns and Values

ML is a typed language, where new types of values can be
introduced using type definitions such as:

type t = Nil | One of int | Cons of int * t

This definition introduces a type t, with three constructors
that build values of type t. These three constructors define
the complete signature of type t. Every constructor has
an arity, i.e. the number of arguments it takes. Here arity
of Nil is zero, while the arities of One and Cons are one
and two respectively. A constructor of arity zero is called

a constant constructor, while other constructors are non-
constant constructors.

Most native data types in ML such as integers, records,
arrays, tuples — can be seen as particular instances of such
type definitions. For example, in the following we will con-
sider lists (nil being the constant constructor []1 and cons
the infix constructor ::), and tuples (the type of m-tuples
defines one constructor of arity n, pairs being written with
the infix constructor “,”). For our purpose, integers are
constant constructors, and the signature of the integer type
is infinite.

More formally, patterns and values are defined as follows:

po= Patterns
— wildcard
T variable
c(p1,p2y- -, Pa) constructor pattern
(p1|p2) or-pattern
v = Values
c(v1,v2,...,0q) constructor value
In the following, we freely replace variables by wild-cards “_”
when their names are irrelevant. While describing compila-
tion, convenient tools are vectors of values (7 = (v1 v2 ... vy)
and Unom = (Un...um)), vectors of patterns (5= (p1 p2...pn)
and Prnom = (Pn...pm)) and matrices of patterns (P = (p})).
In this paper, we present pattern-matching compilation as
a transformation on an intermediate code in the compiler,
called lambda-code. Here, another useful object is the clause
matriz (P — L):

p1 P2 o Pn =
(P—>1L)=
pi" p3t e pp = AT

A clause matrix associates rows of patterns (pt ph...pL) to
lambda-code actions I".

2.2 Pattern Matching in ML

A pattern can be seen as representing a set of values shar-
ing a common prefix.

DEFINITION 1 (INSTANCE). Let p be a pattern and v be
a value belonging to a common type. The value v s an
instance of the pattern p or p matches v, written p < v
when one of the following rules apply:

- 2w
r X w
(p1lp2) =X v iff ;1 v oorpx X
c(pry---ypa) 3 oc(vr,..) iff (pre.pa) 2 (Vi va)
(p1.-.pa) = (v1...vq) iff pi i, Vi € [1..a]

Seeing a pattern as the set of its instances, it is clear that
or-patterns express set union.

In ML, patterns are a binding construct, more specifically,
a successful match p < v, binds the variables of p to some
sub-terms of v. Such bindings can be computed while check-
ing that p matches v, provided that the following set V(p)

of variables defined by p is well-defined:

V(L) 0
V() = {z}
Vier,...,pa)) = V(p1...pa)
V(p1...pa) = V(p)U...UV(pa)
if for all i # j, V(pi) N V(p;) =0

V(pi|p2) = V(p), it V(p1) = V(p2)

The first “if” condition above is the linearity of patterns.
The second condition is specific to or-patterns, it means
that matching by either side of the or-pattern binds the
same variables (additionally, homonymous variables should
possess the same type).

We then define the now dominant, textual priority scheme
to disambiguate the case when several rows in a matrix
match:

DEFINITION 2 (MATCHING PREDICATE). Let P be a pat-
tern matriz and ¥ = (vi...vn) be a value vector. The value
v matches line number i in P, if and only if the following
two conditions are satisfied:

o (pi...pn) = (v1...vn)
o Vj<i, (pl...ph) A (vi...vn)

We will not give a full semantics for evaluating pattern-
matching expressions, and more generally lambda-code. In-
tuitively, given a clause matrix P — L and a value vec-
tor ¢ such that line number ¢ in P matches ¢, evaluating
the matching of ¥ by P — L in some environment p is eval-
uating I’ in p extended by the bindings introduced while
matching @ by (pi...p%). If ¥ is not matched by any line in
P, we say that the pattern-matching P fails. If no such ¥
exists, then the pattern-matching is said ezhaustive.

Like pattern vectors, pattern matrices represent sets of
value vectors. More specifically, when some line in P matches
¥ we simply say that P matches ¢. This looks obvious, but
representing sets using matrices is at the core of our opti-
mizations. One easily checks that the instances of P are
the union of the instances of the lines of P. That is, when
considering a matrix globally, the second condition in defi-
nition 2 above is irrelevant. More important, row order is
also irrelevant.

Finally, the instance relation induces relations on the pat-
terns themselves.

DEFINITION 3 (RELATIONS ON PATTERNS). We define the
following three relations:

1. Pattern p is less precise then pattern q, written p < q,
when all instances of q are instances of p.

2. Pattern p and q are equivalent, written p = q, when their

instances are the same.

3. Patterns p and q are compatible when p and q share a

common instance.

Here some remarks are to be made. Because of typing,
checking the precision relation is neither obvious nor cheap.
More precisely, there is no simple way to decide whether
p = _holds or not. For instance, ([]1|_::_) < _holds, while
(Nil|One _) = _ does not. Or-patterns are not responsi-
ble for this complication, since we also have (_,_) < _.
In such cases one should “expand” p and consider, whether

signatures are complete or not (see [13, Section 5.1]). By
contrast, compatibility can be checked by a simple recur-
sive algorithm. When compatible, patterns p and ¢ admit
a least upper bound, written p1¢q, which can be computed
while checking compatibility:

(Pr--pa)Naq1---qa) = (P11q1...patda)
-tg = ¢
pt— = p
C(pl;---;pa)Tc(qu---7qa) = C(T‘l,.--,?"a)

where (r1..-14) is (91 - pa) a1 - -)
With the following additional rules for or-patterns:

p11Tq, when ps and g not compatible
p21q, when p; and g not compatible

(p1tqlp271q), otherwise
ptarla2) = (a1]g2)Tp

(p1lp2)tqg=

Proving that p1q is indeed the least upper bound of p and
q is easy, by considering patterns as sets of their instances.
Note that p1q is defined up to =-equivalence, and that it
encodes instance intersection.

3. COMPILATION

In this section, we present a compilation scheme close to
the one described in [20, 1], and implemented in compilers
such as the hbc compiler or the Objective Caml compiler.
This classical scheme will be refined later into an optimized
scheme, using same notations and concepts.

3.1 Output of the match compiler

The compilation of pattern-matching is described by the
scheme C that maps a clause matrix to a lambda-code expres-
sion. We now describe the specific lambda-code constructs
that the scheme C outputs while compiling patterns.

e Let-bindings: let (z l,) [, nested let-bindings are abbre-
viated as:

let (z1 1) (x2 12) - (xn 1) 1

e Static exceptions, exit and traps, catch Iy with lp. If
when evaluating the body l1, exit is encountered, then
the result of evaluating catch Iy with [is ther result
evaluating the handler l», otherwise it is the result of eval-
uating [;. By contrast with dynamic exceptions, static
exceptions are directly compiled as jumps to the associ-
ated handlers (plus some environment adjustment, such
as stack pops), whereas traps do not generate any code.

e Switch constructs:

switch [with
case c1: l1---
default: d

case Cp: Ik

The result of a switch construct is the evaluation of the [;
corresponding to the constructor ¢; appearing as the head
of the value v of [. If the head constructor of v doesn’t
appear in the case list, the result is the evaluation of the
default d expression.

The default clause default: d can be omitted. In such a
case the switch behavior is unspecified on non-recognized
values. Scheme C can thus omit the default clause when

it is known that case lists will cover all possibilities at
runtime. We use the keyword switch#* to highlight switch
constructs with no default clause.

Those switch constructs are quite sophisticated, they com-
pile later into more basic constructs: tests, branches and
jump tables. We in fact modified the Objective Caml
compiler to improve the compilation of switch constructs,
using techniques first introduced in the context of compil-
ing the case statement of Pascal [3]. The key points are
using range tests, which can typically be performed by
one single (unsigned) test and branch plus possibly one
addition, cutting sparse case lists into denser ones, and
deciding which of jump tables or test sequence is more ap-
propriate to each situation. A survey of these techniques
can be found in [19].

e Accessors: field n x, where x is a variable and n is an
integer offset. By convention, the first argument of non-
constant constructors stands at offset zero.

e Sequences: l1; l2 and units: ()

3.2 Initial state

Input to the pattern matching compiler C consists of two
arguments: a vector of variables ¥ of size n and a clause
matrix P — L of width n and height m.

PRI R
. prop2 o pn
Z=(r122...%0), P—>L=

pv" py - pn = U7

The initial matrix is generated from source input. Given
a pattern-matching expression (in Caml syntax):

match z with | p'-> el p?-> €?...

m

| p™-> e
The initial call to C is:

catch

pl N ll

2 N l2
c@.|” 25

pm o qm

with (failwith "Partial match")

Where the [¥’s are the translations to lambda-code of the
e'’s, and (failwith "Partial match") is a runtime failure
that occurs when the whole pattern matching fails.

3.3 Classical scheme

By contrast with previous presentations, we assume that
matrix P — L has at least one row (i.e. m > 0). This
condition simplifies our presentation, without restricting its
generality. Hence, scheme C is defined by cases on non-
empty clause matrices:

1. If n is zero (i.e. when there are no more columns), then
the first row of P matches the empty vector ():

ll
l2

-
co.| . =t

- "

2. If n is not zero, then a simple compilation is possible,
using the following four rules.

(a) If all patterns in the first column of p are variables, y',
y?, ..., y™, then:

C(#,P—L)=C((z2 x3...xn), P = L")

where
py - pr — let (y' xy) I
, , p% pfl — let (yz z1) 12
P - L =)
pyt oo prt = let (y™ x1) I™

We call this rule, the variable rule. This case also han-
dles wild-card patterns: they are treated like variables
except that the let-binding is omitted.

(b) If all patterns in the first column of P are constructor
patterns c(qi, ..., qa), then let C be the set of matched
constructors, that is, the set of the head constructors of
the pi’s.

Then, for each constructor ¢ in C, we define the spe-
cialized clause matrix S(c, P — L) by mapping the fol-
lowing transformation on the rows of P.

ph S(c,P = L)

(g, q.) ai-qh phoph — 1
CI(QL---;Q:-Z') (cl ;éc)

(Matrices S(¢,P — L) and P — L define the same
matching predicate when z; is bound to some value
¢(v1,...,vq).) Furthermore, for a given constructor ¢
of arity a, let yi1,...,y. be fresh variables. Then, for
any constructor ¢ in C, we define the lambda-expression

r(c):

(let (y1 (field 0 z1))

No row

(y, (field (a—1) 1))
C((yla"'7ya7m27"'7zn)15(cﬂp_)L)))

Finally, assuming C' = {ci,...
result is:

,Ck}, the compilation

switch 1 with
case c1: r(c1) --case cg: r(ck)
default: exit

(Note that the default clause can be omitted when C
makes up a full signature.) We call this rule, the con-
structor rule.

(c) If P has only one row and that this row starts with an
or-pattern:

P=((q]-|q)p2 - pn = 1),
Then, compilation result is:
@ = ()
C((xn), : .pn = 1))
% = ()

This rule is the orpat rule. Observe that it does not
duplicate any pattern nor action. However, variables in

or-patterns are not supported, since, in clause ¢; — (),
the scope of ¢; variables is the action “()”.

(d) Finally, if none of the previous rules applies, the clause
matrix P — L is cut in two clause matrices P; — [,
and P, — Ls, such that P, — L; is the largest prefix
of P — L for which one of the variable, constructor or
orpat rule applies.

Then, compilation result is:

catch C(f7 P — Ll) with C(f, Py — LQ)
This rule is the mizture rule.

This paper doesn’t deal with optimizing let-bindings, which
are carelessly introduced by scheme C. This job is left to a
later compilation phase.

4. OPTIMIZATIONS

We now describe some improvement to the classical com-
pilation scheme. For simplicity, we present examples and
defer the full presentation of our scheme to section 6. In
all these examples, we focus on pattern-matching compi-
lation, replacing potentially arbitrary actions more simple
ones, such as integers or variables.

4.1 Optimizing the mixture rule
In this section and in the following, our running example

is the classical list-merge:

let merge 1lx ly = match 1x,ly with
IO, - —>1

I, O -—>2

| x::xs, yi:ys > 3

Such a matching on pairs encodes matching on two argu-
ments. As a consequene, we consider the following initial
call to scheme C:

C((1x 1y), (P — L))
Where (P — L) is:
1 - =
(P—>L)= - o -
X:iXs yiiys —
Applying the mixture rule twice yields three matrices:

P1—)L1:([] _—)1)
PQ—)LQZ(— [1 —)2)
P3—)L3:(x::xs y::ys—)3)

Now, consider another clause matrix (P’ — L'):

[l - =1
(PP LY=| x::xs y::ys — 3
- b -2

Both clause matrices define the same matching function,
namely they both map ([1 v) to 1, (vi::v2 [1) to 2 and
(vi::v2 v)::vy) to 3. Furthermore, (P’ — L') can be ob-
tained from (P — L) by swapping its second and third row.
More generally, one easily checks that swapping two contigu-
ous incompatible rows is legal. Then applying the mixture
rule to (P’ — L'), yields two matrices only:

1 - =1
Xx::ixs yi:ys — 3)’

PooLy=(- [0 - 2)

Pl - L=

catch
(catch
(switch 1x with case []: 1
default: exit)
with (catch
(switch ly with case []: 2
default: exit)
with (catch
(switch 1x with

case (::):
(switch ly with
case (::) : 3

default: exit)
default: exit))))
with (failwith "Partial match")

catch
(catch
(switch* 1x with
case []: 1
case (::)
(switch 1y with
case (::): 3
default: exit))
with
(switch ly with
case []: 2
default: exit)
with (failwith "Partial match")

Figure 1: Mixture optimization

Final outputs for P — L and P’ — L' are displayed on
Figure 1. Hence, as a result of replacing P — L by P’ — L',
the two tests on 1x that were performed separately on the
left code are now merged in a single switch in the right code.
Also notice that one trap disappears.

More generally, an optimized mixture rule should take
advantage of pattern-matching semantics to swap rows when
possible, so that as few cuts as possible are performed.

4.2 Using exhaustiveness information

The Objective Caml compiler checks the exhaustiveness
of pattern matching expressions and issues a warning be-
fore compiling non-exhaustive pattern matchings. However,
the exhaustiveness information can also be used for avoid-
ing tests. Matrix P’ of the previous section is exhaus-
tive; this means that there will be no "Partial match" fail-
ure at runtime. As an immediate consequence, the switch:
(switch 1y with case []: 2 default: exit) always suc-
ceeds (this switch is the last one performed by the optimized
code in figure 1). Thus, we replace it by 2. We can also sup-
press the outermost trap. Hence, applying both optimiza-
tions described up to now, compilation of P — L finally
yields:

catch
(switch* 1x with
case []: 1

case (::): (switch ly with
case []: 3
default: exit))
with 2

In the general case, exhaustiveness information is exploited
by slightly modifying scheme C. It suffices to avoid emitting
default clauses in switch constructs, when it is known that
no exit should escape from produced code. This property
holds initially for exhaustive pattern matchings, and trans-
mits to all recursive calls, except for the call on P, — L; in
the mixture rule.

4.3 Optimizing exits

The two previous optimizations yield optimal code for the
merge example. Hence we complicate the running example
by considering a matching on objects of type t from sec-

tion 2:
Nil - — 1
- Nil — 2
P— L= One x — — 3
— One y — 4
Cons (x,xs) Cons (y,ys) — 5

The optimized mixture rule yields four matrices:

P Nil _ -1
! '~ \ Coms (x,xs) Cons (y,ys) — 5

Py = Ly=(_ Nil — 2)
P3—)L3:(Unex_—)3)
P4—)L4:(_Oney—)4)

For reasons that will appear immediately, we apply the mix-
ture rule from bottom to top, thereby nesting trap handlers.
The match being exhaustive, compilation yields the code
displayed on the left part of Figure 2.

Now, consider what happens at run-time when (1x ly) is
(Cons (v1, wv2) One v). A first switch on 1x leads to line 7,
where a switch on 1y is performed. This switch fails, and
the default action jumps to the nearest enclosing handler
(line 13), where 1y is tested against Nil resulting in another
switch failure. Here, in our case, control goes to line 17,
where another switch on 1x (against One x) fails, resulting
in final jump to line 20.

Hence, it would be appropriate to jump to line 20 right
from the first test on ys. To do so, both exits and trap
handlers are now labelled by integers. Note that this new
feature does not really complicate the compilation of static
exceptions. Then, it becomes possible to jump to different
trap handlers from the same point and a better compilation
of P — L is displayed in the right part of figure 2.

The code above maps vectors (Cons (vi, v2) One v) to
4 by executing two switches, while previous code needed
four switches to perform the same task. Hence, exit opti-
mization has a noticeable benefit as regards run-time effi-
ciency. As regards code size, exit optimization may increase
it, since some switches may have larger case lists. However,
code size remains under control, since no extra switches are
generated. Hence, final code size critically depends on how
switches translate to machine-level constructs. For instance,
machine-level code size obviously does not increase when

1 catch 1
2 (catch 2
3 (catch 3
4 (switch 1x with 4
5} case Nil: 1 5
6 case Cons: 6
7 (switch ly with 7
8 case Cons: 5 8
9 default: exit) 9
10 10
11 default: exit) 11
12 with 12
13 (switch 1y with 13
14 case Nil: 2 14
15 default: exit)) 15
16 with 16
17 (switch 1lx with 17
18 case One: 3 18
19 default: exit)) 19
20 with 4 20

Unoptimized code

catch
(catch
(catch
(switch 1x with
case Nil: 1
case Cons:
(switch* ly with
case Cons: b
case Nil: (exit 2)
case One: (exit 4))
default: (exit 2))
with (2)
(switch ly with
case Nil: 2
default: (exit 3)))
with (3)
(switch 1x with
case One: 3
default: (exit 4)))
with (4) 4

Optimized code

Figure 2: Exit optimization

switches are translated to jump tables®.

Surprisingly, performing exit optimization is quite simple
and cheap: the needed information is available at compile-
time by inspecting pattern matrices only. Reachable trap
handlers are defined as pairs (P, e) of a pattern matrix and
an integer. Reachable trap handlers originate from the di-
vision performed by the mixture rule. Here, P, — L; is
compiled with the reachable trap-handlers (P»,2), (Ps,3)
and (Ps,4). Then, the constructor rule specializes reachable
trap handlers. Here, in the case where 1x is Cons (v1, v2),
specializing reachable trap handlers results in ((Nil),2) and
((One y),4) (note that specializing Ps yields an empty ma-
trix, which is discarded). Hence, while generating the first
switch on 1y (line 7), it is known that the code produced
by compiling trap handlers number 2 and 3 will surely exit
when 1y is One v, and a jump to trap handler number 4 can
be generated by the compiler in that case.

4.4 Aggressive control flow optimization

The code produced by exit optimization still contains re-
dundant tests, some of which can be removed without al-
tering the handler structure introduced by the mixture rule.

More specifically, we consider trap handler number 3 (line 16).

It results from compiling P3 and is a switch of 1x against
One.

The only (exit 3) lies in trap handler number 2 (line 15)
and results from 1y not being Nil, this gives us no direct
information on 1x. Now, looking upwards for (exit 2), we
can infer that trap handler number 2 is entered from two
different points. In the first case (line 9), (1x 1y) is fully
known as (Cons (v1, w2) Nil), in the second case (line 11),
only 1x is know to be One v. As (exit 3) on line 15 gets ex-
ecuted only when 1y is not Nil, we can finally deduce that

!Given the Objective Caml encoding of constructors, we are
here in the same desirable situation where the compilation
of apparently larger switches does not result in producing
more code.

the first case never results in entering trap handler num-
ber 3. As a consequence, trap handler number 3 is executed
in a context where 1x necessarily is One v, the switch it per-
forms is useless and line 16 can be simplified into “3”. This
elimination of useless tests[4] is usually performed at a lower
level by combining dead code elimination[9] and conditional
constant propagation[21, 6].

Finally, after all optimizations, there remains one redun-
dant switch in produced code, in trap-handler number 2
(line 12). As aresult, vectors (Cons (v1, wv2) Nil) are mapped
to 2 by testing 1y twice. One should notice that this is pre-
cisely the test that would get duplicated by compilation to
decision trees.

Describing what is known on values while entering trap
handlers is slightly involved. The key idea is representing
set of value vectors as pattern matrices. We call such a set a
contert. Contexts for the three trap handlers of our example

are:
Trap number | Context
9 < One _ —)
Cons (_, _) Nil
3 (One _ (One _|Cons (_, 1)))
4 (Cons (_, _) One _)

If precise enough and exploited fully, we conjecture that con-
texts subsume exhaustiveness information. However as in-
tuition suggests and experience confirms, contexts get larger
while compilation progresses, potentially reaching huge sizes
at the end of matrices. We cure this by safely approximating
contexts when they get too large, replacing some patterns in
them by wild-cards. Hence the optimizations of section 4.2
is still worth considering, as being cheap and always appli-
cable.

5. COMPILING OR-PATTERNS

Until now, the code produced for or-patterns is inefficient,
because only one or-pattern can be compiled at a time, re-

quiring multiple applications of the mixture rule before and
after each or-pattern. Thanks to integer labelled exits, one
easily avoids dividing matrices before or-patterns. Consider
a “car” function for our three-constructors list:

let car list = match list with
| Ni1l > -1
| (One x | Cons (x,_)) -> x

Compilation proceeds by allocating a new trap-handler
number 2 and expanding the clause “One x | Cons (x,_)”
into two clauses with patterns “One x” and “Cons (x,_)".
Actions for the new clauses are exits to 2:

catch
Nil — -1
C((1ist), One x’ — (exit 2 x’) |)
Cons (x’, _) — (exit 2 x’)

with (2 x) C((),(— x))

Note that both exits and trap handlers now take yet an-
other extra argument, the occurrences of x’ in exits are
non-binding and refer to pattern variables, while the occur-
rence of x in handler is binding. This new construct allows
the compilation of or-patterns with variables. Implemen-
tation is not very tricky: the catch ... with (2 x)
construct allocates one mutable variable; an exit updates
this variable, which is read before entering the handler. In
a native code compiler, such a variable is a temporary and
ultimately a machine register. The generated lambda-code
is as follow:

catch
switch* list with
case Nil: -1
case One: (exit 2 (field 0 list))
case Cons: (exit 2 (field O list))
with (2 x) x

Moreover, by the semantics of pattern-matching, cuts af-
ter or-patterns can also be avoided in many situations. In
the case of one column matrices, where the expanded or-
patterns express the full matching performed, all cuts can
be avoided. Things get a bit more complicated when ma-
trices have more than one column. Consider the following
clause matrix,

1
P—)L:((llz) p2 — 1)

(318) g = I*

We further assume a match on (x y) and that match fail-
ure should result in (exit 1) (the static exception label
corresponding to match failure can be given as a third argu-
ment to the compilation scheme). Writing p1 = (112) and
q1 = (314), there are obviously no value vectors (v1 v2) such
that vy is an instance of both p; and ¢1. As a consequence,
the following compilation is correct:

catch
(catch
(switch x with
case 1: (exit 2) case 2: (exit 2)
case 3: (exit 3) case 4: (exit 3)
default: (exit 1))
with (2) C((y),(p= — 1"),1)
with (3) C((y),(@2 — I7),1)

Intuitively, once x is checked, the choice between first and
second row is made. Depending on the value of y, matching
may still fail, but then, the whole matching fails.
Conversely, matrix division cannot be avoided when match-
ing by p1 does not exclude matching by ¢1, that is, when p;
and ¢1 are compatible. This is the case, for instance, when
p1 = (112) and ¢q; = (213). Then, a correct compilation is:

catch
(catch
(switch x with
case 1: (exit 2) case 2: (exit 2)
default: (exit 3))
with (2) C((y),(p2 — 1"),3)
with (3)
(catch
(switch x with
case 2: (exit 4) case 3: (exit 4)
default: (exit 1))
with (4) C((y),(@2 — 1°),1))

Note that the third argument to the first recursive call to
the compilation scheme is “3” and not “1”. As a conse-
quence, vectors (2 va) such that p» does not match vs while
g2 matches vy get mapped correctly to I2. A slight innefiency
shows up, since x is tested twice. More striking, perhaps,
vectors (1 v2) such that ps, does not match vy also lead to
testing x twice.

An alternative compilation rule for or-pattern would sim-
ply expand or-patterns in a pre-processing phase, yielding
the matrix:

i
il
12
12

D2
D2
q2
q2

A

Then, there are no extra run-time tests on x, since the con-
structor rule applies. However, patterns p» and g2 are now
compiled twice. Note that there is no simple solution for
avoiding this duplication of effort, since, once the construc-
tor rule is applied, the two occurences of these patterns occur
in different contexts. More generally, code size is now out of
control, a clear contradiction with the spirit of bactracking
automata.

6. OUR COMPILATION SCHEME

The new scheme C* takes five arguments and a typical
call is C* (%, P — L, ez, def, ctz), where £ = (z1...7,) and
P — L is a clause matrix of width n:

pi o opn o I

pi - opn o I
P—-L=

pi" - opn = 7

Extra arguments are:

e The exhaustiveness argument ez is either partial or total
depending on whether compilation can produce escaping
exit constructs or not.

e Reachable trap handlers def are sequences (Pi,e1); -
(P, et), where the e;’s are integers (trap handler numbers)
and the P;’s are pattern matrices of width n.

Figure 3: Operations on contexts

(a) Context specialization

S(c,Pe Q) row

Pe(row |
pioophoe clal, .., qn) - qn| Py
piopie - Can| pio
pic oo dghh-an) o an

Ph ol 2) e i g qegr
P clo) @ = o G o
no row

(b) Context collection

Pe(row

| COL(Pe Q) row

pio v els

=) e gl gk Ghgr

gl pi - ph e clgh,..dl) - dl

(¢) Context pushing and popping

Pe(row |

J(PeQ) row |

T(PeQ) row

P phoe gl -

e The context ctz is a pattern matrix of width k+n, equiva-
lent to a pair of matrixes Pe (), where each row is divided
into a prefix (in P) of width k and a fringe (in Q) of
width n.

pi pé . qi qé
PeQ ptr - P ® @1 - 4y
° =

pi* o PR qr o gy

Informally, at any point in compilation, contexts are pre-
order representations of what is known about matched
values. The fringe records the possible values for #, while
the prefix records the same information for other sub-
terms which are relevant to pending calls to C*. Transfers
of patterns from fringe to prefix are performed on the ar-
guments of recursive calls, while transfers in the opposite
direction are performed as results are collected.

The initial call to C* for an exhaustive match is:
pl N ll
p2 N l2

C*((z), , total, 0, (e _))

For a non-exhaustive match, ez is partial, def is the one-
element sequence ((—),1) and a trap handler is added as in
section 3.3. The context argument remains the same: it
expresses that nothing is known yet about the value of Z.

The new scheme returns a lambda-code [and a jump
summary, p = {...,i +— ctz,...}, which is a mapping
from trap numbers to contexts. Jump summaries describe
what is known about matched values at the places where
(exit ¢ ...) occur in L.

6.1 Operations on contexts

We define the following four operations on contexts :

(a) Context specialization, S, by a constructor ¢ of arity a is
defined by mapping the transformation of figure 3-(a) on
context rows.

qi‘p’i cophoqi e gh -

ar ‘pi PR e PR 4t an

(b) Context collection, COL, is the reverse of specialization.
It combines the the last element of the prefix with the
appropriate number of arguments standing at beginning
of the fringe (see figure 3-(b)).

(c) Context pushing | and popping f} move the fringe limit
one step forward and backward, without examining any
pattern (see figure 3-(c)).

As contexts are used to represent set of values, we natu-
rally define union and intersection over contexts. Context
union Pe@QUP’ @’ yields a new matrix whose rows are the
rows of Pe () and P’ e Q'. Row order is not relevant. Con-
text intersection PeQ NP’ (' is defined as a context whose
rows are the least upper bounds of the compatible rows of
Pe(Q and P’ ¢ Q. Context eztraction £X is a particular
case of context intersection.

EX(pP o Q) = (- ... _ep..)NP eQ
For example, when p is ¢(_,...,_), context extraction re-
tains those value vectors represented by P’ Q' whose k+ 1th
components admit ¢ as head constructor. Observe that such
a computation involves extracting or-pattern arguments and
making wild-cards more precise.

Except for collection and popping, which consume pre-
fix elements, all these operations can be extended to simple
matrices, by using an empty prefix in input, and taking the
fringe for output. Doing so, we obtain exactly the operations
of section 3.3 used to compute pattern matrices (specializa-
tion § in particular).

Operations on contexts are extended to jump summaries
in the natural manner. For instance, the union of p and p’
is defined as:

pUp ={ .. i=pli)Uup'(i),...}

Operations on matrices are extended to reachable trap
handlers in a similar manner: for instance, pushing trap
handlers is defined as pushing all matrices in them :

U((Pryer);- o (Pryer)) = (M), en); 5 (P, er)

6.2 Compilation scheme

We now describe scheme C* by considering cases over the

typical call.

1. If n is zero. then we have:

ll

* - l2 1
c((),) ,ex, def, ctr) = 1",
- "™
Observe that the jump summary is empty since no exit is
outputed.

. With respect to section 3.3, the variable rule only changes
as regards the extra arguments ez, def and ctz. We ounly
describe these changes. The performed recursive call re-
turns code ! and jump summary p :

Lp=C (o yen e U(def), Ucta)

Exhaustiveness information ez does not change, while def
and ctz are pushed.

The variable rule returns [unchanged and p popped.

. In the constructor rule, let C' = {c1, ..., cr} be the matched
constructors, let also ¥ be the signature of their type. For
a given constructor ¢ € C, the performed recursive call is:

C(...,...,ex,8(c, def),S(c, ctz))

Exhaustiveness information ez is passed unchanged, while
the other two extra arguments are specialized (specializa-
tion of trap handlers being the natural extension of matrix
specialization).

Each recursive call returns a lambda-code I(c) and a jump
summary p.. Lambda-code I(c) gets wrapped into let-
bindings like in section 3.3, yielding the final lambda-code
r(c). We then define a case list £ and a jump summary
prec as follows:

L =case c1: r(c1)---case cp: r(ck)

prec = {... i | J COL(p(3)),...}

ceC

The case list is as before, while the jump summary is the
union of the the jump summaries produced by recursive
calls, once collected.

Optimizations are then performed. For clarity, optimiza-
tions are described as a two phase process: first, extend
(or not extend) the case list £ with constructors taken
from ¥ \ C, and add (or not add) a default case; then,
compute the final jump summary.

A first easy case is when X\ C is empty or when ez is
total. Then, the case list £ is not augmented. Otherwise,
we distinguish two cases :

(a) If ¥\ C is finite, then for all constructors c¢ in this set
we consider the context

QC b Qlc = EX(C(—7 e a—)a CtI)

Then, trap handlers (Pi,e1);...; (P, e;) are scanned
left-to-right, stopping at the smallest ¢, such that the
intersection Q.. N P; is not empty. That is, we find the

trap handler where to jump to when the head construc-
tor of x; is ¢, in order to extend the case list as follows :

L =L case c: (exit e;)

It is possible that e; does not exist (when @, is empty).
This means that x; head constructor will never be c at
runtime.

(b) If ¥\ C is infinite (as in the case of integers) or consid-
ered too large (as it might be in the case of characters),
then, a default case is added to the case list :

L = L default: (exit ep)

That is, all non-recognized constructors lead to a jump
the nearest enclosing reachable trap-handler.

However it is still possible to extend the case list for
particular constructors, applying the previous proce-
dure (a) to the constructors that appear in the first
column of reachable trap handler matrices and not in C.

The final jump summary is computed by considering the
final case list £. For a given trap handler number e; let
{c'1,...,c 1} be the set of constructors such that case cj:
(exit e;) appears in £. Then the jump summary p.; is

defined as:

Pe; = {6,‘ HSX(CII(—V-'7—)|”' |clk’(—a"'a—))50t$)}

Moreover, if there is a default clause, the jump sum-
mary pgq is defined as:

pa = {e1 — ctx}

Finally the constructor rule returns a switch on case list £
and the jump summary built by performing the union of
prec, of all p¢,’s and, when appropriate, of pg.

The constructor rule performs many context unions, so
that contexts may become huge. Fortunately, contexts
can be made smaller using a simple observation. Namely,
let ' and ¢ be two rows in a context, such that 7 is less
precise than ¢ (i.e., all instances of ¢ are instances of p).
Then, row ¢ can be removed from the context, without
modifying its meaning as a set of value vectors. Hence,
while performing context union, one can leave aside some
pattern rows. If the produced context is still too large,
then contexts are safely approximated by first replacing
some patterns in them by wild-cards (typically all the pat-
tern in a given column) and then removing rows using the
previous remark. Rough experiments lead us to set the
maximal admissible context size to 32 rows, yielding sat-
isfactory compilation time in pathological examples and
exact contexts in practical examples.

. Or-pattern compilation operates on matrices whose first
column contains at least one or-pattern. Additionally,
when pi is a or-pattern, then for all j, i < j < m one of
the following, mutually exclusive, conditions must hold:

(a) pi and p{ are not compatible.
(b) pi and p{ are compatible, and (pé .. pln) is less precise
than (p}...pl)
Conditions (a) and (b) guarantee that, whenever p! matches

the first value vector v; of a value ¥, but row ¢ does not
match ¥, then no further row in P matches ¥ either. This

is necessary since further rows of P won’t be reachable in
case of failure in the or-pattern trap handler.

Now, consider one row number i, such that p¢ is the or-
pattern g1 |-+ |¢o. Further assume that this or-pattern
binds the variables yi,...,y,. First, we allocate a fresh
trap number e and divide P — L into the following or-
body P’ — L' and or-trap P" — L" clauses:

pzfl pi;l — it
q1 — = (exit e y1... You)
P > L =
o — = (exit e y1... You)
s e
o n
P”—)L”:(pé pin—)li)

In the or-body matrix, observe that the or-pattern is ex-
panded, while the other patterns in row number ¢ are
replaced by wild-cards and the action is replaced by exits.

Recursive calls are performed as follows:

I',p) = C(Z,P' — L, ez, def, ctr)
- C(Taem, P" — L ez, W(EX (p, def)), U(EX (p, ctz)))

Outputed code finally is catch l'with (e y1... y,) "
and the returned jump summary is p = p’ U ft(p").

. The mixture rule is responsible for feeding the other rules
with appropriate clause matrices. We first consider the
case of a random division. Hence let us cut P — L into
Q — M and R — N at some row. Then a fresh trap num-
ber e is allocated and a first recursive call is performed:

ly, pg =C*(Z,Q — M, partial, (R, e); def, ctz)

The exhaustiveness information is partial, since nothing
about the exhaustiveness of () derives from the exhaus-
tiveness of P. Reachable trap handlers are extended.

Then, a second recursive call is performed:
ly,pr =C*(Z,R > N, ex, def, pq(€))

It is no surprise that the context argument to the new call
is extracted from the jump summary of the previous call.
Argument ez does not change. Indeed, if matching by P
cannot fail, then matching by R neither can.

Then, the scheme can output the code
l = catch [, with (e) [,

and return the jump summary (pg\{e})Up,, where p,\{e}
stands for p, with the binding for e removed.

Of course, our optimizing compiler does not perform a
random division into two matrices. It instead divides
P — L right away into several sub-matrices. This can
be described formally as several, clever, applications of
the random mixture rule, so that one of the three previ-
ous rules apply to each matrix in the division. The aim of
the optimizing mixture rule is thus to perform a division
of P into as few sub-matrices as possible. We present a
simple, greedy, approach that scans P downwards.

We only describe the case when p} is a constructor pat-
tern. Thus, having performed the classical mixture rule,
we are in a situation where the ¢ topmost rows of P have
a constructor pattern in first position (i.e. are construc-
tor rows for short) and where p’*' is not a constructor
pattern. At that point, a matrix C has been built, which
encompasses all the rows of P from 1 to 4. Let us fur-
ther write P’ for what remains of P, and let O and R
be two new, initially empty matrices. We then scan the
rows of P' from top to bottom, appending them at the
end of C, O or R. That is, given row number j in P":

(a) If p’{ is a variable, then append row j at the end of R.
(b) If p’{ is a constructor pattern, then ...

i. If row j is not compatible with all the rows of both R
and O, then append row j at the end of C (i.e., move
row j above all the rows that have been extracted
from P’ at previous stages).

ii. If row j is not compatible with all the rows of R and
that one of conditions (a) or (b) for applying the or-
pattern rule are met by O with row j appended at
the end, then do such an append.

iii. Otherwise, append row j at the end of R.

(¢) If p' is a or-pattern, then consider cases (i) and (iii).

When the scan of P’ is over, three matrices, C, O and R
have been built. In the case where O is empty, matrix C' is
valid input to the constructor rule; otherwise, appending
the rows of O at the end of C yields valid input for ap-
plying (maybe more than once) the or-pattern rule, which
will in turn yield valid input to the constructor rule (pro-
vided that (_ | ...) or patterns have been replaced by
semantically equivalent wild-cards in a previous phase).
Thus, the matrix built by appending O at the end of C is
recorded into the overall division and the division process
is restarted with input R, unless R is empty.

Finally, the full process divides the input matrix P into
several matrices, each of which is valid input to the other
rules of the compilation scheme.

7. EXPERIMENTAL RESULTS

We compare the performance of the code generated by
the Objective-Caml compilers version 3.00 and 3.01, where
the former implements the scheme of section 3.3 and the
latter implements our new optimizing scheme (there are
other differences of minor relevance to our purpose). For
most programs there is little difference; this is natural since
pattern-matching usually accounts for a small fraction of
most programs running time. A full analysis of the effi-
ciency of our optimizations would in fact require counting
relevant instructions (test, branches and indirect branches
through jump tables), both statically and dynamically. By
lack of time, we only present some programs that demon-
strate significant improvement.

Our first benchmark is the traditionnal £ib, that we write
using a or-pattern.

let rec fib n = match n with
| (0I1) -> 1 | _ -> fib (n-1) + fib (n-2)

Here, we simply measure the execution time of computing
fib 38. Our second benchmark, pcf, is a byte-code com-
piler and interpreter for PCF. We compute the geometric

mean of the execution time for a set of five different PCF
programs. The time-consuming part of this program is the
byte-code machine which we coded in the style of the byte-
code machine included in [14], the winning entry of the
2000 ICFP programming contest. (we also give figures for
this program under the name raytrace).

Experiments were performed on a lightly loaded 366Mhz
Pentium Pro Linux PC. The tables show wall-clock times
(in seconds) and ratios:

fib raytrace pcf
V 3.00 | 5.36 100 | 1.69 100 | 8.12 100
V 3.01 | 3.74 71 | 1.62 96 | 5.08 63

Obviously, as demonstrated by the fib example, compila-
tion of or-patterns has much improved. Testing similar ex-
amples confirms that fact. Improvements also comes from
the better compilation of switches. The pcf example is
more interesting, it shows that our optimizations yield a 37%
speed-up, in the case of a typical ML application (a quickly
written, compact, prototype implementation of some pro-
gramming language). The raytrace example exhibits less
important improvements on the whole test suite of the con-
test; however, improvements are noticeable for some inputs.

It should also be noticed that the new compiler somehow
equates the runtime performance of various coding styles, a
feature that is important for a high-level construct such as
pattern-matching. Variations in coding style include the rel-
ative ordering of non-overlapping patterns and on the order
of arguments in pairs.

We also performed measurements on a 500Mhz Dec Alpha
server. They suggest that the effects of our optimization do
not depend on the targeted architecture.

fib pct
V 3.00 | 3.4 100 | 4.13 100
V 3.01 | 25 74 | 2.86 69

The raytrace example is is omitted because it relies on
IEEE floating point arithmetic, which is not implemented
in the Objective Caml compiler for this architecture.

More detailed information on these benchmarks is avail-
able at http://caml.inria.fr/pattern/speed.html.

8. RELATED WORK
8.1 Decision Treess Backtracking

Compiling to decision trees is the original approach to
pattern matching compilation; it first appeared in the Hope
compiler and is described in [5]. It is currently used in the
SML-NJ compiler [7].

In this approach, there is no mixture rule: instead, the
constructor rule applies as soon as there is at least one con-
structor in the first column, and a specialization matrix is
created for each matched constructor, plus one additional
matrix for the remaining constructors in the signature of
the types of matched values, if any. Specialization is done
by following the rules of section 6.1. This means that rows
whose first pattern is a variable get copied several times.

On the one hand, this approach guarantees that one con-
structor test is never performed twice. On the other hand,
copied pattern rows are compiled independently and this
result in potentially large code size. Namely, examples ex-
ist that make the SML-NJ compiler produce exponential
code [12].

Compilation to backtracking automata is the classical scheme

of section 3.3 (see also [1, 20]). It is currently in use in the
Haskell-HBC and Objective-Caml compiler [11]. As we al-
ready argued, its main advantage is that patterns are never
copied, yielding linear output size. Of course, the price paid
is potentially testing the same sub-term several times, re-
sulting in potentially poor runtime performance. In that
aspect, our new compilation scheme shows that this price
can be reduced significantly.

Compilation to decision trees easily detects unused match
cases and non-exhaustive matchings, since there is no dead
code in a decision tree. Detecting these situations is impor-
tant, as programmers should be warned about them. How-
ever, those problems are NP-complete [17] and this gives
us a hint about the potential size of decision trees. More
concretely, a decision tree may have many leafs correspond-
ing to non-matched values, whereas knowing that one such
values exist is the needed information. Rather, we check
unused match cases and exhaustiveness before compilation
with a simple algorithm [13] that solves the used matched
case problem by basically traversing the decision tree with-
out generating it. Advantages are not generating the tree,
stopping search as soon as used match cases are found and
applying various heuristics and matrix simplifications which
are not relevant to direct compilation. Then, one of our
optimizations uses exhaustiveness information.

8.2 Compiling or-patterns

From available ML or Haskell compilers, we only found
two compilers dealing with or-patterns: the (old) Objective-
Caml compiler and the SML-NJ compiler. Our technique
makes the old Objective-Caml scheme (see section 3.3) ob-
solete, by both producing more efficient code and allowing
variables in or-patterns.

The SML-NJ approach is very simple to understand and
implement: or-patterns are expanded during a pre-processing
phase. However, as we already discussed at the end of sec-
tion 5, this may lead to many duplications of patterns. Such
a risk is compatible with the very philosophy of compilation
to decision trees and is natural in that context.

8.3 Optimizations

Most optimizations dealing with pattern-matching in the
literature try to improve the order in which tests are per-
formed. In the matrix-based description, one considers al-
ternatives to systematically choosing the first column of ma-
trices in the constructor rule. Hence, such an approach can
be characterized as “column optimization”, while our ap-
proach would rather be “row optimization”. Since choos-
ing the best column is thought to be NP-complete (to our
knowledge, there is no published proof), most approaches
describe heuristics. A typical and early work on such heuris-
tics is [2], a more recent and thorough study is [16]. Another,
related in practice, approach relies on sequentiality theory
to identify directions that are columns that must be tested
by all possible matchers [10, 15, 17, 13]. However, comput-
ing directions is expansive, and one can consider relying on
cheaper heuristics.

These works rather apply to the decision trees, with a
primary focus on reducing code size. It is unclear to us how
to combine column and row optimization in practice and
whether this would yield noticeable improvements or not.

There also exists a partial-evaluation based approach to

pattern-matching optimization. [8] and later [18] specialize
an ultra-naive pattern-matching interpreter to create an effi-
cient pattern-matching compiler. Both authors use context
information as we do. By contrast, their target is decision
trees. In the end, the automatic process of partial evaluation
does not find as many optimizations as we do.

9. CONCLUSION

This paper contribution is twofold. First, we propose an
improvement on the classical technique of compiling pattern-
matching expressions into backtracking automata, a tech-

nique that has remained virtually the same for about 15 years.

Our improvements yield automata which run faster, thereby
alleviating the disadvantage of backtracking automata in
practical cases. Moreover the very structure of the produced
automata is not altered and hence the highly desirable prop-
erty that output size is linear in the input size is preserved.
As a second contribution, we propose a technique for effi-
ciently compiling or-patterns with variables, still preserv-
ing the linearity of output size. Using or-patterns in place
of “catch-all” wild-cards results in more robust programs,
while using one clause with a or-pattern in place of sev-
eral clauses with identical actions results in more compact,
sometime clearer, programs. ML programmers can now en-
joy these benefits, without being afraid of degraded runtime
efficiency or code size explosion.

We would have wished to make a clear statement on com-
paring bactracking automata and decision trees. However,
sophisticated compilation techniques exist that minimize the
drawbacks of both approaches. Those are our techniques for
backtracking automata, and hash-consing and column opti-
mizations for decision trees. In the absence of a practical
comparison of full-fleged algorithms, choosing one technique
or the other reflects one’s commitment to guaranteed code
size or guaranteed runtime performance.

10. REFERENCES

[1] AuGusTssoN, L. Compiling pattern matching. In
Functional Programming Languages and Computer
Architecture, J.-P. Jouannaud, Ed. Springer-Verlag,
Berlin, DE, 1985, pp. 368-381. Lecture Notes in
Computer Science 201Proceedings of. Conference at
Nancy.

[2] BAUDINET, M., AND MACQUEEN, D. Tree pattern
matching for ML,. unpublished paper, Dec. 1985.

[3] BERNSTEIN, R. L. Producing good code for the case
statement. Software Practice and Ezrperience 15, 10
(Oct. 1985), 1021-1024.

[4] Bonik, R., GupTa, R., AND SOFFA, M. L.
Interprocedural conditional branch elimination. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI-97) (New York, June 15 18 1997), vol. 32, 5 of
ACM SIGPLAN Notices, ACM Press, pp. 146-158.

[5] CARDELLI, L. Compiling a functional language. In
Conference Record of the 1984 ACM Symposium on
Lisp and Functional Programming (Aug. 1984), ACM,
ACM, pp. 208 217.

[6] FraSER, C. W. A compact, machine-independent
peephole optimizer. In Conference Record of the Sizth
Annual ACM Symposium on Principles of

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

Programming Languages (Jan. 1979), ACM, ACM,
pp. 1-6.

HARPER, R. W., MACQUEEN, D. B., AND MILNER,
R. Standard ML. Report ECS-LFCS-86-2,
Department of Computer Science, University of
Edinburgh, Edinburgh, UK, 1986. Also CSR-209-86.
JORGENSEN, J. Generating a pattern matching
compiler by partial evaluation. In Glasgow Workshop
on Functional Programming, Ullapool (Glasgow
University, July 1990), P. C. J. van Rijsbergen, Ed.,
Springer-Verlag, pp. 177 195.

Knoop, J., RUTHING, O., AND STEFFEN, B. Partial
dead code elimination. In Proceedings of the
Conference on Programming Language Design and
Implementation (New York, NY, USA, June 1994),
ACM Press, pp. 147 158.

LAvILLE, A. Implementation of lazy pattern matching
algorithms. In ESOP’88 (1988), H. Ganzinger, Ed.,
vol. 300, pp. 298 316.

Leroy, X. The objective caml system:
Documentation and user’s manual, 2000. With
Damien Doligez, Jacques Garrigue, Didier Rémy, and
Jféme Vouillon. Available from
http://caml.inria.fr.

MARANGET, L. Compiling lazy pattern matching. In
Proc. of the 1992 conference on Lisp and Functional
Programming (1992), ACM Press.

MARANGET, L. Two techniques for compiling lazy
pattern matching. Research Report 2385, INRIA
Rocquencourt, Oct. 1994.

PLCruB, AND CAML'R Us. Objective-caml: Winner
of the first and second prizes of the p rogramming
contest. ACM SIGPLAN International Conference on
Functional Programming (ICFP ’2000).

PUEL, L., AND SUAREZ, A. Compiling pattern
matching by term decomposition. Journal of Symbolic
Computation 15, 1 (Jan. 1993), 1 26.

ScorT, K., AND RAMSEY, N. When do
match-compilation heuristics matter? Tech. Rep.
(CS-2000-13, Department of Computer Science,
University of Virginia, May 2000.

SEKAR, R. C.; RAMESH, R.; AND RAMAKRISHNAN,
I. V. Adaptive pattern matching. In Automnata,
Languages and Programming, 19th International
Colloquium (Vienna, Austria, 13 17 July 1992),

W. Kuich, Ed., vol. 623 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 247-260.

SESTOFT, P. ML pattern match compilation and
partial evaluation, 1996.

SPULER, D. A. Compiler code generation for multiway
branch statements as a static search problem. Tech.
Rep. 94/3, Department of Computer Science, James
Cook University, 1994.

WADLER, P. Compilation of pattern matching. In The
Implementation of Functional Programming
Languages, S. L. Peyton Jones, Ed. Prentice-Hall
International, 1987, ch. 7.

WEGMAN, M., AND ZADECK, F. K. Constant
propagation with conditional branches. In Conference
Record of the 12th Annual ACM Symposium on
Principles of Programming Languages (New Orleans,
LS, Jan. 1985), B. K. Reid, Ed., ACM Press,

pp. 291-299.

