
Optimizing TLS for High–Bandwidth Applications
in FreeBSD

Randall Stewart
Netflix Inc.

100 Winchester Circle
Los Gatos, CA 95032

USA
Email: rrs@netflix.com

John-Mark Gurney
Consultant

Oakland, CA
USA

Email: jmg@freebsd.org

Scott Long
Netflix Inc.

100 Winchester Circle
Los Gatos, CA 95032

USA
Email: scottl@netflix.com

Abstract—Transport Layer Security (TLS) is becoming in-
creasingly desirable and necessary in the modern Internet.
Unfortunately it also induces heavy penalties on application
CPU performance for both the client and server. In this paper
we examine the server-side performance implications on CPU
computational and data-movement overhead when enabling TLS
on Netflix’s OpenConnect Appliance (OCA [1]) network. We then
explore enhancements to FreeBSD to reduce the costs that TLS
adds when serving high volumes of video traffic. Finally we
describe recent changes and future improvements to FreeBSD’s
OpenCrypto Framework that can be used to further improve
performance.

I. INTRODUCTION

Transport Layer Security [2] (TLS) is becoming an opera-
tional requirement in today’s unfriendly Internet. It provides
both encryption and authentication to any application that
enables it; but as with many improvements it also comes at a
high cost in terms of additional CPU cycles. Up until recently
Netflix has not enabled TLS on its OpenConnect Appliances
(OCA).

An OCA is a FreeBSD-based appliance that serves movies
and television programming to Netflix subscribers. Confiden-
tial customer data like payment information, account authenti-
cation, and search queries are exchanged via an encrypted TLS
session between the client and the various application servers
that make up the Netflix infrastructure. The actual audio and
video content session is not encrypted. At first glance, this
might seem like a glaring oversight, but the audio and video
objects are already protected by Digital Rights Management
(DRM) that is pre-encoded into the objects prior to them being
distributed to the OCA network for serving. The addition of
TLS encryption to these objects was previously not considered
to be a high priority requirement.

Evolving market forces as well as the changing landscape of
the internet [3] have caused us to re-evaluate our view on TLS.
The computational cost of TLS serving is high, so with this
in mind Netflix launched a small pilot project to explore what
impacts enabling TLS would have on its products. We also
started to examine recent innovations in FreeBSD for ways
that we might be able to reduce the costs of TLS.

Fig. 1. Classic Web Serving

II. THE IDEA

The Netflix OpenConnect Appliance is a server-class com-
puter based on an Intel 64bit Xeon CPU and running FreeBSD
10.1 and Nginx 1.5. Each server is designed to hold between
10TB and 120TB of multimedia objects, and can accommodate
anywhere from 10,000 to 40,000 simultaneous long-lived TCP
sessions with customer client systems. The servers are also
designed to deliver between 10Gbps and 40Gbps of continuous
bandwidth utilization. Communication with the client is over
the HTTP protocol, making the system essentially into a large
static-content web server.

A traditional web server will receive a client request for
an object stored on a local disk, allocate a local buffer for
the object data via the malloc(3) library call, then issue a
read(2) system call to retrieve and copy the contents of the
object into the buffer, and finally issue a write(2) system call
to copy the buffer contents into a socket buffer which is then
transmitted to the client. This process usually involves two
or more data copies handled directly by the CPU as well
as some associated consumption of CPU cache and memory
bandwidth. This simple data flow model (see Fig 1) works
well and is easily maintainable for low-bandwidth needs, but
is taxing on the CPU for high bandwidth applications. Early
tests in the OCA development process showed that the server



Fig. 2. Optimized Nginx Web Serving

was typically unable to serve more than 4-5Gbps of bandwidth
under this model. Over time, more advanced hardware has
brought with it improvements in serving performance, but the
simplicity of this model continues to penalize the potential
performance.

Nginx employs a novel solution that uses the sendfile(2)
system call to perform a zero-copy data flow from disk to
socket (see Fig 2). When the client request comes in, Nginx
issues the sendfile call on both the file descriptor and the
socket descriptor. The kernel then retrieves the object into
its VM page cache subsystem and passes a set of pointers
to those cache pages to the socket buffer for transmission.
No additional buffers or data copies are required, and the
data never leaves the kernel memory address space. This
relieves the CPU of the burden of doing copies, greatly reduces
pressure on memory cache and bus resources, eliminates a
system call, and shortens the code pipeline for the data path.
Nginx improved this model by utilizing the AIO subsystem
to asynchronously prime the VM cache with disk reads prior
to issuing the sendfile call. This avoided forcing the Nginx
thread to wait on the disk I/O to be performed synchronously
by sendfile, but it increased the complexity of data flow and
risked that data might be flushed from the cache before it
could be put into the socket. Even with this complexity, the
savings resulted in 20% or more better performance on the
same hardware.

Netflix further improved this model by making the sendfile
system call asynchronous [4]. This allows Nginx to dispatch
multiple requests for multiple clients in parallel, with each
request proceeding on its own as disk I/O completes. This
further optimized the data path and allowed Nginx to scale to
more simultaneous connections.

Regular sendfile, along with faster hardware, allowed us to
jump from less than 10Gbps to 30Gbps of service capacity per
server. Moving to asynchronous sendfile allowed us to achieve
40Gbps and beyond on the same hardware. It’s important
to note that this scheme also lends itself to inserting other
operations into the disk-to-socket data flow without requiring
complex modifications to the web server or requiring that the

Fig. 3. Classic SSL Web Serving

Fig. 4. In-Kernel SSL Web Serving

data be copied into the application space.
TLS functionality has traditionally been performed in the

application space as a library to the web server (see Fig 3).
As the web server prepares objects for transmission to the
client, they are passed to the TLS library for encryption, after
encrypting the data the TLS library writes it to the socket
handle. Along with this bulk encryption functionality, the
TLS library also handles session setup, management, and key
generation and exchange with the client (See RFC5288 [5]
for details on TLS). This scheme fits well into the traditional
simple data flow model presented above. Unfortunately, it
is incompatible with the sendfile model since that model
does not allow the data to enter the application space. The
processing overhead of TLS combined with the loss of the
zero-copy optimization of sendfile resulted in our serving
capacity dropping by a factor of 2.5x to 3x in our initial testing,
whereas other business partners who were not using sendfile
were seeing a drop of only 2x in theirs.

In order to retain the benefits of the sendfile model but
also implement TLS functionality, we designed a hybrid
TLS scheme whereby session management would stay in the
application space, but the bulk encryption would be inserted
into the sendfile data pipeline in the kernel (see Fig 4). TLS



session negotiation and key exchange messages are passed
from Nginx to the TLS library, and session state resides in the
library’s application space. Once the TLS sessions is set up and
appropriate keys are generated and exchanged with the client,
those keys become associated with the communication socket
for the client and are shared into the kernel. For sockets that are
flagged for encryption, the TLS bulk encryption happens, via a
trip through the Open Crypto Framework, as the data pages are
added to the socket buffer. For sessions that require encryption
services not available in the Open Crypto Framework, Nginx
reverts to the traditional read+send model and performs the
encryption in the application space. This ultimately allows for
a modular selection of encryption protocols and algorithms
that best suit the requirements of the client and the available
resources of the server.

III. RECENT CHANGES TO FREEBSD OPEN CRYPTO
FRAMEWORK

The Open Crypto Framework provides a consistent API
to software and hardware-based cryptographic engines. It
features a modular design that allows the support of new
accelerators, such as the AES-NI processor instructions [6],
without changing the original code. Though the Open Crypto
Framework was usable as-is, there were a number of issues in
both performance and algorithm support that were required to
be fixed before it was ready to be deployed.

A. Sessions

The Framework was originally written to accelerate Internet
Protocol Security [7] (IPsec). The code was written assuming
that there would only be a small handful of security associ-
ations (SA). For each SA there is a key, and the Framework
requires a session for each key. For a normal IPsec gateway,
there are only a few SAs and hence only a few sessions. For
each client connection there will be a distinct key, requiring an
individual Framework session. Therefore on a busy server the
number of sessions will be very large (as much as 20-40,000
connections).

When a session is created, an integer session identifier is
used. This isn’t necessarily a bad thing if an efficient data
structure is used to handle looking the identifier up. Though
a linked list (O(n)) was used, so it was a major performance
issue. Modifications were made such that a pointer to the
session is used instead of the identifier allowing the bypass
of the lookup stage.

B. Cipher Mode Support

Since the Framework was originally imported, only the
ciphers Camila (2007) and AES-XTS (2010) have been added.
In 2008, AES-GCM was standardized as part of TLS in
RFC5288 [5]. In previous modes, an HMAC using either
SHA1 or SHA256 was used to authenticate that the data
had not been tampered with. The AES-GCM cipher mode is
an Authenticated Encryption with Associated Data (AEAD)
cipher which integrates both encryption and authentication.
AES-GCM uses AES-CTR for encryption and GMAC for

Client	
   Server	
  

ClientHello	
  

ServerHello	
  

(Cer.ficate)*	
  

(ServerKeyExchange)*	
  

(Cer.ficateRequest)*	
  

ServerHelloDone	
  

(Cer.ficate)*	
  
(ClientKeyExchange)*	
  
(Cer.ficateVerify)*	
  
ChangeCipherSuite	
  
Finished	
  

ChangeCipherSuite	
  
Finished	
  

Fig. 5. An initial TLS exchange

authentication. The mode allows encrypting and authenticating
in a single pass avoiding walking the data a second time.

The addition of the AES-GCM cipher when combined with
AES-NI and CLMUL [8] instructions available on modern
AMD64 processors allow encryption and decryption at around
1GBps per core.

IV. HARNESSING THE OPEN CRYPTO FRAMEWORK FROM
WITHIN THE KERNEL

How does one go about using the sendfile() call with AESNI
and TLS? First one must consider the actual handshake flow
as seen in Fig 5; note that the messages with the ’*” are
optional. The key messages that we wish to focus on are the
ChangeCipherSuite (CCS) and Finished message. The CCS
message is the ”last” message that uses the previous cipher
(the initial cipher is the NULL cipher). Sending it causes the
internal state machine within TLS to change so that the next
message output (the Finished message) is encrypted with the
new cipher. This presumes that the keys were generated by
the sender and sent down into its encryption mechanism at
that time as well (this is what all of the previously exchanged
messages in the diagram were used for: generating the keys).
What is interesting to note here is that each side sends the CCS
when it is ready, when you consider that with the fact that
messages in the TCP stream may arrive out of order, adding
TLS for both sending and receiving adds a lot of complexity
to the kernel.

Normally the client’s CCS and Finished message arrives
before the server sends its CCS and Finished message. This
has some distinct implications for something running in the
kernel that is going to be encrypting and sending data over
a TCP connection or receiving and decrypting data. On the
receiving side, its possible that the keys are not quite in place
when messages that are encrypted with those keys arrive which



means the kernel must buffer the data for some time until the
keys are available for use. On the sending side the transmission
of the CCS must be coordinated with the engaging of the new
cipher for the next message. Other questions also abound here
such as:

1) Will the kernel need to process all the various forms of
key exchange to generate the keys?

2) How will the kernel handle re-keying?
3) Not all ciphers are supported by the Open Crypto

Framework, so how does one interwork with TLS library
to cover ciphers not yet supported by the kernel?

After studying the problem for quite some time the approach
decided upon was to exclude decryption (the receive side) and
defer that work for some future time. Since the main goal was
to be able to continue to use the sendfile system call, one could
narrow the problem down to a sender side problem only. This
then would simplify the design making the actual impact to
the kernel much smaller. To handle the handshake, rekeying
and ciphers not yet supported, it was decided to lean heavily
on the TLS library. The design that took shape was to let
all of the key exchanges and normal SSL processing occur
as usual. When the keys were ready, have the TLS library
send them to the kernel and let the kernel do the encryption
part, while all the other parts of TLS would continue to be
executed by the TLS library. The TLS library would continue
to frame its messages and submit framed but un-encrypted
messages to the kernel. The kernel would then use the keys
given earlier to encrypt and send the data. For the sendfile
system call, the kernel would add in a framing layer as well
as the encryption. This would then allow the TLS library to
do all of the processing of keys and TLS state and to handle
re-keying, should one of the sides initiate that procedure and
yet still allow the sendfile system call to operate.

To make all of the pieces come together a number of
changes would be needed:

• Changes to the kernel to add two socket options. One
which tells the caller if the requested cipher is supported
and the second which accepts the keying material and
starts the kernel looking for the CCS message. Once the
CCS message is seen by the kernel, the new cipher suite
would then be engaged for subsequent sends. Note that
once the socket options are enabled any message sent
without a TLS framing would be considered invalid and
would cause an error return to the caller.

• Importing to our FreeBSD 10 stable kernel the new
changes that have been made to the Open Crypto Frame-
work.

• Changes to the TLS library to use the new feature, setting
in the keying material and not encrypting data that needed
to be sent to the peer. When making this change we
would only attach the changes to specific ciphers that we
wished to support. Note that any TLS library could have
been used and modified, but for our purposes we choose
to work with OpenSSL since it is readily available in
FreeBSD.

Fig. 6. OCA Rev D Performance under normal (no TLS) load

• Changes to the application so that if the OpenSSL library
indicated it was acceptable to use sendfile, the application
(nginx) would use the new SSLsendfile call instead of
reading and writing the data to the OpenSSL library.

V. RESULTS

First, let us look at a typical OCA that serves content. For
our testing we will use a standard flash OCA called a ”Rev
D”. A Rev D is an Intel AMD64 class machine with an E5-
2650L processor, it is considered a ”Flash” box since it holds
40 Gigabytes of flash and has 64 Gigabytes of main memory.

We used three of these machines, serving real Netflix traffic,
to gather results for our paper. First, lets look at how an OCA
preforms that is not serving any TLS, and is instead handling
current requests for service. We see in Fig 6 the result of a
typical night of transfer of Netflix content to its subscribers
(the same evening our TLS OCAs were running). Note that in
general a Rev D will serve, during peak, around 19-20 Gbps
of traffic as we see in the figure.

After making the changes described above to the FreeBSD
kernel, OpenSSL library and nginx, we then put the new image
into production on the same night to measure the impact of
using TLS as well as using TLS with our enhancements.

To allow for precise testing, we added a sysctl so that
we could use the exact same firmware image. The sysctl
would either allow all hardware based ciphers that we support
(chiefly AESNI based ciphers) to return that SSLsendfile was
allowed or (when disabled) always return that SSLsendfile is
not allowed.

For our tests (both with our enhancement and without) we
configured nginx in such a way so that it prefers the AESNI
ciphers and the most preferable cipher is AESNI with GCM
(Galios Counter Mode). AES-GCM, as mentioned earlier,
allows us to do only one pass over the data for both the
encryption and the authentication.

The first results from our TLS enabled machines can be seen
in Fig 7 this shows a plot of throughput of one of our OCAs
with the feature completely disabled yet configured to serve



Fig. 7. OCA Rev D Performance using just OpenSSL

TLS traffic and shows our Rev D serving about a 8.5GPS.
This is a drastic performance difference from our standard
Rev D serving 19-20GPS of traffic. But this does give us a
base line for how much performance we can expect from nginx
when combined with OpenSSL. In Fig 8 we see the result of
enabling the SSLsendfile feature, here we server about 9Gps
of traffic instead of the 8.5Gps with OpenSSL. This gives us
a slight performance improvement, but not nearly as much as
we had hoped for. So why did we not see the performance
improvements we had hoped for? We currently believe that
there are several reasons our performance gains were less than
we had expected:

• When we were looking at our initial performance change
(from not using sendfile as compared to using sendfile) a
large part of the work load that we observe with SSL
is not in place (the encryption). This means that any
gain seen without SSL is a smaller subset of the overall
performance of the machine. Since SSL is such a big
part of the new workload we will have a less beneficial
gain from being able to keep the data in the kernel in
comparison to the overall workload.

• Due to the current nature of the Open Crypto Framework,
we must perform an extra copy of all data being en-
crypted. The Open Crypto Framework currently encrypts
in place, any input. This means that data coming from
the disk and used by sendfile will be ”read-only” mbufs
that must be copied before passing into the Open Crypto
Framework.

• Normally the kernel does not use floating point state,
so during context switches into the kernel, often times,
floating point state is not saved. This, of course, is not
true for the AESNI code which uses some of the float-
ing point registers. This then makes the kernel version
require added state saving when it comes into context as
compared to just plain Open SSL doing the encryption.

Fig. 8. OCA Rev D Performance using SSL sendfile

VI. FUTURE DIRECTIONS AND IMPROVEMENTS

Having completed our initial study and integrated the
changes into the Netflix OCA code base, we are busy planning
how we can further improve the performance we obtain by
using sendfile. As noted above we have several things which
we can improve that will help reduce the cost of encryption
within the kernel. These include:

1) Enhancing the SHA256, 384 and 512 code so that
AESNI with Cipher Block Chaining (CBC) type of en-
cryption is faster. Currently the added HMAC has a huge
performance penalty that the standard OpenSSL library
does far more efficiently. Increasing the performance of
the SHA algorithms may give us additional performance.

2) Elimnate the extra copy by expanding the Open Crypto
Framework so we can pass in an additional pointer and
flag to indicate to the Open Crypto Framework not to
encrypt in place but to instead encrypt to the output
pointer instead.

3) Enhance the way floating point saves occur, this will
involve both optimizing FPU state saves as well as
allowing for multiple encryption operations after the
state has been saved, instead of the current operation
where every request undergoes a FPU save and restore
state.

4) Currently AES-CBC and SHA are not able to be fully
pipelined. If multiple streams are processed at once,
the operations can be pipelined, allowing additional
performance increases.

We will also be exploring the addition of offload cards
and other assist mechanisms using hardware acceleration. The
advantage of continuing to use the Open Crypto Framework
is that any work we do using it should be able to integrate
nicely into what hardware support is currently (and becomes)
available to FreeBSD.

Adding encryption and authentication no matter how you
slice it will impact performance, as can be seen in our results.
Most of our studies so far have shown a minimum of a 50
percent drop in performance when TLS is turned on (if not



larger). Hopefully, our future enhancements will make some
inroads against that number and lessen the overall cost of
TLS. Since we, like many others, fully believe that TLS is
the right way to move forward when it comes to securing
communications between two internet applications.

ACKNOWLEDGMENT

The authors would like to Gleb Smirnoff for his help
on nginx, Warner Losh for his support and reviews, Robert
Watson for helping us narrow the problem, and Alex Gutarin
for being supportive of our small team.

REFERENCES

[1] Netflix, “Netflix Open Connect”, http://openconnect.itp.netflix.com/
openconnect/index.html, August 2014

[2] T Dierks, E Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.2”, RFC 5246, August 2008

[3] E Snowden, “Edward Snowden: The ten biggest revelations”, http:
//mashable.com/2014/06/05/edward-snowden-revelations, August 2014

[4] G Smirnoff, “New non-blocking on disk I/O implementation of sendfile()
syscall for FreeBSD (in Russian)”, http://people.freebsd.org/∼glebius/
articles/sendfile.pdf, December 2014

[5] J Salowey, A choudhury, D McGrew, “AES Galois Counter Mode
(GCM) Cipher Suites for TLS”, RFC 5288, August 2008

[6] S Gueron, “Intel Advanced Encryption Standard (AES) Instruction Set”,
April 2008

[7] S Kent, K Seo, “Security Architecture for the Internet Protocol”,
RFC 4301, December 2005

[8] S Gueron, M Kounavis, “Intel Carry-Less Multiplication Instruction and
its Usage for Computing the GCM Mode”, April 2008


