Tips and Techniques for
Statistics Gathering

Agenda

e High Level
— Pending stats
— Correlated Stats
— Sampling

Reporting
* New reporting function for auto stats collection
 Returns the report in CLOB
SQOL> var ret clob

SQL> set long 999999

SOL> exec :ret :=
dbms stats.report stats operations;

PL/SQL procedure successfully completed.

SQL> print ret

rep.sql

Lowdown on Stats

Optimizer Statistics on tables and indexes are vital
for the optimizer to compute optimal execution
plans

In many cases you gather stats with estimate

Without accurate stats, the optimizer may decide on
a sub-optimal execution plan

When stats change, the optimizer may change the
plan

Truth: stats affect the plan, but not necessarily
positively

Data: Value vs Pattern
m After some days

1,000 10%
NY 5,000 50%
2,000 10%
Important
The data itself changed; but NY 10,000 0%
the pattern did not. The CA 8,000 40%
new stats will not change

the execution path, and
therefore probably not
needed

Stats Collection Tips and Techniques

Case 2
m

1,000 10% After some days

NY 5,000 50%
CA 4,000 40%
State | Customers | %age _

Important CT 2,500 12.5%
The pattern is different; NY 10.500 52 59

but still close to the
. CA 7,000 35.0%
original pattern. Most

qgueries should perform
well with the original
execution plan. Stats Collection Tips and Techniques .

Naked Truth

o Stats can actually create performance issues

e Example
— A query plan had nested loop as a path
— Data changed in the underlying tables
— But the pattern did not change much
— S0, NL was still the best path
— Stats were collected

— Optimizer detected the subtle change in data pattern
and changed to hash joins

— Disaster!

The problem with new stats

e The CBO does not now what is close enough
— Forit, 50.0% and 52.5% are different values

* The internal logic of the CBO may determine a
different plan due to this subtle change

 This new plan may be better, or worse

— This is why many experts recommend not collecting
stats when database performance is acceptable

Stats Collection Tips and Techniques

What's the Solution?

* If only you could predict the effect of new stats before
the CBO uses them

— and make CBO use them if there are no untoward issues

 Other Option
— You can collect stats in a different database

— Test in that database

— If everything looks ok, you can export the stats from there
and import into production database

 The other option is not a very good one
— The test database may not have the same distribution
— It may not have the same workload

Pending Stats

« Answer: Pending Statistics

e |n short
— DBA collects stats as usual
— But the CBO does not see these new stats

— DBA examines the effects of the stats on queries of a
session where these new stats are active

— If all look well, he can “publish” these stats
— Otherwise, he discards them

How to Make Stats “Pending”

o |t's the property of the table (or index)
o Set it by a packaged procedure

DBMS STATS.SET TABLE PREFS

e Example:
begin
dbms stats.set table prefs (
ownname => 'ARUP',
tabname => 'SALES',
pname => 'PUBLISH',
pvalue => 'FALSE’

)) prefs_false.sql

end; sales_stats.sql

o After this, the stats collected will be pending

Stats Collection Tips and Techniques

11

Table Preferences

* The procedure is not new. Used before to set the
default properties for stats collection on a table.

— e.g. to set the default degree of stats collection on the

table to 4:

dbms stats.set table prefs (
ownname => 'ARUP',
tabname => 'SALES',
pname => 'DEGREE’,
pvalue => 4

);

Stats Collection Tips and Techniques

12

Stats after “Pending”

When the table property of stats “PUBLISH” is set to
18}) :ALSE”

The stats are not visible to the Optimizer

The stats will not be updated on USER_TABLES view

either:

select to char(last analyzed, 'mm/dd/yy
hh24:mi:ss")

from user tables

where table name = 'SALES';

TO CHAR(LAST ANAL

09/10/07 22:04:37

la.sql_

Visibility of Pending Stats

e The stats will be visible on a new view
USER_TAB_PENDING STATS

select to char(last analyzed, 'mm/dd/yy

hh24:mi:ss')
from user tab pending stats
where table name = 'SALES';

TO CHAR(LAST ANAL

09/21/07 11:03:35

Stats Collection Tips and Techniques

pending.sql_

14

Checking the Effect

o Set a special parameter in the session

alter session set
optimizer use pending statistics = true;

o After this setting, the CBO will consider the new
stats in that session only

e You can even create and index and collect the
pending stats on the presence of the index

 To check if the index would make any sense

alter_true.sql

Publishing Stats

 Once satisfied, you can make the stats visible to

optimizer

begin

dbms_stats.publish pending stats
("ARUP', 'SALES');

end;
* Now the USER_TABLES will show the correct stats
 Optimizer will use the newly collected stats

* Pending Stats will be deleted

publish.sql_

New Stats make 1t Worse?

o Simply delete them
begin
dbms_stats.delete pending stats
('ARUP', “SALES');
end;

 The pending stats will be deleted
* You will not be able to publish them

Stats Collection Tips and Techniques

17

Checking for Preferences

* You can check for the preference for publishing
stats on the table SALES:

select dbms stats.get prefs ('PUBLISH','ARUP','SALES') from dual;

DBMS STATS.GET _PREFS('PUBLISH','ARUP', 'SALES")

 Or, here is another way, with the change time:

select pname, valchar, valnum, chgtime

from optstat user prefs$

where obj# = (select object id from dba objects
where object name = 'SALES’ and owner = 'ARUP')

PNAME VALCHAR CHGTIME

PUBLISH TRUE 02-MAR-10 01.38.56.362783 PM -05:00

Stats Collection Tips and Techniques
18

Other Preferences

 The table property is now set to FALSE

 You can set the default stats gathering of a whole

schema to pending
begin
dbms_stats.set schema prefs (
ownname => 'ARUP',
pname => 'PUBLISH',
pvalue => 'FALSE');
end;

* You can set it for the whole database as well
— dbms_stats.set database prefs

Loading of Partitioned Tables

1. Load Partition P1 1. Load Partition P2
of Table of Table

2. Rebuild Partition 2. Rebuild Partition
P1 of the Local P2 of the Local
Index Index

3. Repeat for all local 3. Repeat for all local
indexes indexes

4. Collect stats 4. Collect stats

Collect Table Global Stats

1. You may want to make sure that the final table global stats are collected
after all partition stats are gathered
2. And all are visible to CBO at the same time

Stats Collection Tips and Techniques
20

Options
 You can postpone the stats collection of the

partitions to the very end

 But that means you will lose the processing window
that was available after the partition was loaded

o Better option: set the table’s stats PUBLISH
preference to FALSE

 Once the partition is loaded, collect the stat; but
defer the publication to the very end

Defer Partition Table Stats

Original

Changed

Stats visible
here

" il |
P2
P3

Time
"l |
P2
P3

Time

>

e e

Stats Collection Tips and Techniques

-Table Loading

Index Building
-Stats Collection

Stats visible
here

22

Stats History

* When new stats are collected, they are maintained
in a history as well

 |n the table sys.wrt$ opTsTAT TAB HISTORY

o Exposed through * 1as_stats_HIstory

select to char(stats update time, 'mm/dd/yy hh24:mi:ss')
from user tab stats history

where table name = 'SALES®;

TO_CHAR(STATS UPD

03/01/10 21:32:57
03/01/10 21:40:38

hist.sql_

Reinstate the Stats

* Suppose things go wrong

 You wish the older stats were present rather than
the newly collected ones

e You want to restore the old stats

begin
dbms stats.restore table stats (
ownname => 'ARUP',
tabname => 'SALES',
as_of timestamp => '14-SEP-13 11:59:00 AM'
)
end;

reinstate.sql_

Stats Collection Tips and Techniques

24

Exporting the Pending Stats

* First create a table to hold the stats
begin
dbms stats.create stat table (

ownname => 'ARUP',
stattab => "STAT TABLE'

);

end;
* This will create a table called star tasLE
o This table will hold the pending stats

cr_stattab.sql__

Stats Collection Tips and Techniques

25

Export the stats

* Now export the pending stats to the newly created

stats table
begin
dbms_stats.export pending stats (
tabname => 'SALES',
stattab => 'STAT TABLE' oxportsal

) . del stats.sql
’ import.sql_

end;

* Now you can export the table and plug in these
stats in a test database
— dbms_stats.import pending stats

Some additional uses

* You can create a SQL Profile in your session
— With private stats

 Then this profile can be applied to the other queries

 You can create SQL Plan Management Baselines
based on these private stats

 Later you can apply these baselines to other
sessions

Real Application Testing

* You can use Database Replay and SQL Performance Analyzer to recreate the
production workload

» But under the pending stats, to see the impact
» That way you can predict the impact of the new stats with your specific workload

Guided Workflow
Page Refreshed Moy 28, 2007 1:53:15 PMEST | Rafracp) Yiew Data | Real Time: 15 Second Refresh v

The Following guided workflow contains the sequence of steps necessary to execuke a successful bwo-trial S0L Performance Analyzer besk,
Mote: Be sure that the Trial environment matches the tesks wou want o conduct.,

Step Description Excecuted Status Execute
1 Create SOL Performance Analvzer Task based on SOL Tuning Set u “E
z Replay 0L Tuning Set in Initial Environment u Idn
3 Replay SQL Tuning Set in Changed Environment - S|
4 Compare Step 2 and Step 3 - E=]
5 Wiew Trial Comparison Report u [J

(¥ TIP For an explanation of the icons and symbols used in the Following table, see the Icon Key

Stats Collection Tips and Techniques
28

Sampling

 Estimate_Percent parameter of doms_stats
begin
dbms stats.gather table stats (
ownname => 'ARUP',
tabname => 'SALES’,
estimate percent => dbms stats.auto sample size

);

end;

Stats Collection Tips and Techniques

29

Histograms
e Query

select .. from customers where age = 35
e Should index be used?
Age Count Age Count Age Count
Under 30 10% Under 30 80% Under 30 10%
30-40 80% 30-40 10% 30-35 10%
Over 40 10% Over 40 10% 36-40 70%

Over 40 10%

method opt => "for all columns size auto’

exec :ret := dbms.stats.report col usage
('ARUP', "SALES");

Cardinality

Number
of Rows

X

Number of
Distinct Values
of Col1

Stats Collection Tips and Techniques

X

1

Number of
Distinct Values
of Col2

31

Effect of Stats on Two Columns

 Optimizer Statistics on tables and indexes are vital
for the optimizer to compute optimal execution
plans

 |fthere are stats on two different columns used in
the query, how does the optimizer decide?

o |t takes the selectivity of each column, and
multiplies that to get the selectivity for the query.

Stats Collection Tips and Techniques

32

Example

e Two columns
— Month of Birth: selectivity = 1/12
— Zodiac Sign: selectivity = 1/12
 What will be the selectivity of a query
— Where zodiac sign = ‘Pisces’
— And month of birth = ‘January’
* Problem:
— According to the optimizer it will be 1/12 < 1/12 = 1/144
— In reality, it will be 0, size the combination is not possible
 What will be the selectivity of a query

— Where zodiac sign = ‘Capricorn’
— And month of birth = ‘January’

Multi-column Intelligence

o |f the Optimizer knew about these combinations, it
would have been able to choose the proper path

* How would you let the optimizer learn about these?

* In Oracle 10g, we saw a good approach — SQL Profiles
— which allowed data to be considered for execution plans
— but was not a complete approach
— it still lacked a dynamism — applicability in all circumstances

* In 11g, there is an ability to provide this information to

the optimizer
— Multi-column stats

An Example

HOTEL ID RATE CODE COUNT(1)

* Table BOOKINGS o e e

10 12 50308
e Index on (HOTEL_ID, 5 =
RATE_CODE)
 \What will be plan for the
following?

select min(book txn)

from booki - cr_bookings.sql
O 00 1ng§ cr_indx.sql

where hotel id = 10 ins_bookings.sq|

and rate code = 23 stats.sq|
= vals.sqgl

The Plan

Here is the plan explLsql
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 0 | 769 (3)| 00:00:10 |

| 1| SORT AGGREGATE | | 1 | 0

|* 2 | TABLE ACCESS FULL| BOOKINGS | 199K]| 769 (3)| 00:00:10 |

Predicate Information (identified by operation id):

PLAN_TABLE_OUTPUT

2 - filter("RATE_CODE"=23 AND "HOTEL ID"=10))

e |t didn’t choose index scan

e The estimated number of rows are 199K, or about 20%:
so full table scan was favored over index scan

Solution

e Create Extended Stats in the related columns —
HOTEL ID and RATE CODE

var ret varchar2(2000)

begin
:ret := dbms_stats.create extended stats(

'"ARUP', 'BOOKINGS','(HOTEL ID, RATE CODE)'

)

end;

/

print ret

e The variable “ret” shows the name of the extended
statistics

xstats.sql

Then Collect Stats Normally

begin
dbms_stats.gather table stats (
ownname => 'ARUP',
tabname => 'BOOKINGS',
estimate percent=> 100,
method opt => '"FOR ALL COLUMNS SIZE SKEWONLY',
cascade => true
)5
end;
/

stats.sql

Stats Collection Tips and Techniques

38

The Plan Now

o After extended stats, the plan looks like this:

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
0	SELECT STATEMENT		1] 10	325 (1)] 00:00:04		
1	SORT AGGREGATE		1] 10			
2	TABLE ACCESS BY INDEX ROWID	BOOKINGS 99 234K	325 (1)] 00:00:04			
* 3	INDEX RANGE SCAN	IN BOOKINGS 01 %	59 (0)] 00:00:01			
* Note:

— No of Rows is now more accurate

— As a result, the index scan was chosen expl1.sql

Stats Collection Tips and Techniques
39

Extended Stats

» Extended stats store the correlation of data among
the columns

— The correlation helps optimizer decide on an execution
path that takes into account the data

— Execution plans are more accurate
* Under the covers,

— extended stats create an invisible virtual column

— Stats on the columns collects stats on this virtual column
as well

10053 Trace

Single Table Cardinality Estimation for BOOKINGS[BOOKINGS]
Column (#2):
NewDensity:0.247422, 0ldDensity:0.000000 BktCnt:1000000,
PopBktCnt:1000000, PopValCnt:2, NDV:2
Column (#3):
NewDensity:0.025295, OldDensity:0.000000 BktCnt:1000000,
PopBktCnt:1000000, PopValCnt:4, NDV:4
Column (#5):
NewDensity:0.025295, OldDensity:0.000000 BktCnt:1000000,
PopBktCnt:1000000, PopValCnti4;—NDvig
ColGroup (#1, VC) SYS STU4JHE7J4YQ3ZLDXSW5L108KX
Col#: 2 3 CorStregtii.—2.00
ColGroup Usage:: PredCnt: 2 Matches Full: Using density:
0.025295 of col #5 as selectivity of unpopular value pred

Extended Stats

 This hidden virtual column shows up in column

statistics

select column name, density, num distinct
from user tab col statistics

where table name = "BOOKINGS®

COLUMN_NAME DENSITY NUM DISTINCT
BOOKING ID .000001 1000000
HOTEL_ID .0000005 2
RATE_CODE .0000005 4
BOOK_TXN .002047465 2200
SYS STU4JHE7]4YQ3ZLDXSW5L108KX .0000005 4

Stats Collection Tips and Techniques

Tabcolstats.sql

42

Checking for Extended Stats

 To check the presence of extended stats, check the
view dba_stat_extensions.

select extension name, extension
from dba stat extensions
where table name='BOOKINGS';

Output:

EXTENSION NAME EXTENSION

SYS STU4JHE73J4YQ3ZLDXSW5L108KX ("HOTEL ID","RATE CODE")
check.sql

Stats Collection Tips and Techniques
43

Deleting Extended Stats

o |f you want, you can drop the extended stats, you
can use the dboms_stats package, specifically the
procedure drop_exteneded_stats

begin
dbms stats.drop extended stats (
ownname => 'ARUP',
tabname => 'BOOKINGS',
extension => '("HOTEL ID","RATE CODE")'

); drop.sql
end;

Stats Collection Tips and Techniques

44

Another way

 You can collect the extended stats using the normal
dbms_stats as well:

begin
dbms_stats.gather table stats (
ownname => 'ARUP',
tabname => 'BOOKINGS',
estimate percent => 100,
method opt =>

"FOR ALL COLUMNS SIZE SKEWONLY FOR COLUMNS
(HOTEL_ID,RATE_CODE)',
cascade => true
);

end;

/ startx.sql

Stats Collection Tips and Techniques
45

The Case on Case Sensitivity

e Atable of CUSTOMERS with 1 million rows
e LAST NAME field has the values

— Mc
— MC
— Mc

Donald - 20%
DONALD - 10%

DONALD - 10%

—mcdonald - 10%

e They

make up 50% of the rows, with the variation of

the same name.
* \When you issue a query like this:

select * from customers where upper(last name) = 'MCDONALD'

Stats Collection Tips and Techniques
46

Normal Plan

 The plan looks like this:

| Id | Operation | Name | Rows | Bytes | C (%CPU)| Time

O | SELECT STATEMENT | | 10000 | 498K| 2140 (2)| 00:00:26 |
1 | TABLE ACCESS FULL| CUSTOMERS | 10000 | 498K| 2140 (2)| 00:00:26 |

1 - filter(UPPER("LAST NAME")="'MCDONALD")

expl2.sql

Stats Collection Tips and Techniques
47

Extended Stats

* You collect the stats for the UPPER() function
begin
dbms stats.gather table stats (
ownname => '"ARUP',
tabname => 'CUSTOMERS',
method opt => 'for all columns
size skewonly for columns
(upper(last name))’
);

end; statsx_cust.sql

With Extended Stats

« The plan is now:

| Id | Operation | Name
| 0 | SELECT STATEMENT | | 500K]| 33M| 2140 (2)| 00:00:26 |
|* 1 | TABLE ACCESS FULL| CUSTOMERS | 500K| 33M| 2140 (2)| 00:00:26 |

expl2.sql

Stats Collection Tips and Techniques
49

Alternatives

 Remember, the extended stats create a virtual
column - hidden from you

 You can have the same functionality as extended
stats by defining virtual columns

 Advantage
— You can have a column name of your choice
— You can index it, if needed
— You can partition it
— You can create Foreign Key constraints on it

Restrictions

e Has to be 11.0 or higher

* Not for SYS owned tables

e Noton IOT, clustered tables, GTT or external tables
e Can’t be on a virtual column

* An Expression
— can't contain a subquery
— must have =1 columns

e A Column Group
— no of columns should be <32 and =2
— can't contain expressions
— can't have the same column repeated

Column Usage

SOL> select
dbms stats.report col usage('ARUP','ACCOUNTS") from
dual;

DBMS_STATS.REPORT_COL_USAGE('ARUP', 'ACCOUNTS')

LEGEND:

EQ : Used in single table EQuality predicate
RANGE : Used in single table RANGE predicate

LIKE : Used in single table LIKE predicate

NULL : Used in single table is (not) NULL predicate
EQ_JOIN : Used in EQuality JOIN predicate

NONEQ_JOIN : Used in NON EQuality JOIN predicate

FILTER : Used in single table FILTER predicate

JOIN : Used in JOIN predicate

GROUP_BY : Used in GROUP BY expression

HHHHH

COLUMN USAGE REPORT FOR ARUP.ACCOUNTS

Stats Collection Tips and Techniques
1. ACCNO : EQ

Thank You!

My Blog: arup.blogspot.com
My Tweeter: arupnanda

