ORACLE

Oracle® Database
SQL Language Reference

11gRelease 1 (11.1)
B28286-07

July 2013

Oracle Database SQL Language Reference, 11g Release 1 (11.1)
B28286-07

Copyright © 1996, 2013, Oracle and/ or its affiliates. All rights reserved.
Primary Author: Diana Lorentz

Contributing Author: Special thanks to Bob Jenkins, who has always been willing to answer
questions—some of them more than once.

Contributors: Drew Adams, Nippun Agarwal, Shashaanka Agarwal, David Alpern, Patrick Amor, Rohan,
Angrish, Geeta Arora, Lance Ashdown, David Austin, Thomas Baby, Hermann Baer, Prasad Bagal,
Subhransu Basu, Mark Bauer, Eric Belden, Tugrul Bingol, Allen Brumm, Donna Carver, Sivasankaran
Chandrasekar, Atif Chaudhry, Beethoven Cheng, Timothy Chien, Alan Choi, George Claborn, Benoit
Dageville, Matthew Dombrowski, Jacco Draijjer, George Eadon, William Fisher, Steve Fogel, David
Friedman, Amit Ganesh, Raymond Guzman, John Haydu, Chi Hoang, Pat Huey, Sam Idicula,
Chandrasekharan Iyer, Ken Jacobs, Mark Jaeger, Balaji Krishnan, Ramkumar Krishnan, Vasudha
Krishnaswamy, Ramesh Kumar, Joydip Kundu, Simon Law, Bill Lee, Geoff Lee, Nina Lewis, Zhen Liu, Bryn
Llewellyn, Rich Long, Scott Lynn, Robert McGuirk, Ben Meng, Mughees Minhas, Krishna Mohan, Sheila
Moore, Tony Morales, Ari Mozes, Niloy Mukherjee, Denis Mukhin, Gopal Mulagund, Ravi Murthy, Sujatha
Muthulingam, DheerajPandey, Hanlin Qian, Kevin Quinn, Christopher Racicot, Venkatesh Radhakrishnan,
Ananth Raghavan, Ashish Ray, Kathy Rich, Shrikanth Sankar, Vivian Schupmann, Laurent Schneider, Lei
Sheng, Bipul Sinha, Wayne Smith, Kesavan Srinivasan, Peter Stengard, Gaby Stredie, Sankar Subramanian,
Seema Sundara, Anh-Tuan Tran, Kothanda Umamageswaran, Randy Urbano, Mark van de Wiel, Badhri
Varanasi, Srinivas Vemuri, Radek Vingralek, Guhan Viswanathan, William Waddington, Shaoyu Wang, Wei
Wang, Steve Wertheimer, Charles Wetherell, Rajiv Wickremesinghe, Andrew Witkowski, Brian Wolf,
Sergiusz Wolicki, Daniel Wong, Tsae-Feng Yu, Mohamed Zait, Mohammed Zaiuddin, Fred Zemke, Weiran
Zhang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

Preface ... xxi
AUAIEIICE ..ot XXi
Documentation AccesSibility ..o XXi
Related DOCUIMENLEScvuiiiiiiiiiiiii s XXi
CONVENLIONS ...ttt XXii

What's New in the SQL Language Reference? ... Xxiii
Oracle Database 11g Release 1 New Features in the SQL Language Reference.................c.......... Xxiii

1 Introduction to Oracle SQL

History of SQL ..o 1-1
SOL StANAArASoouooiiiiiiiee ettt et e h et be st et et et et ent et ent e b beebesaen 1-1

HOW SQL WOTKS ..tiitiiteeieeteceeete et ettt ettt ettt v eteeeveetteeaeeaeeebeeaeeseesseseessenseesseseenseeseensenseenses 1-2

Common Language for All Relational Databasesccccoeoeueieiiiciciciiiciicccee 1-3
Recent ENhanCements.cocciiiiiiiiiiiiiccircct ettt 1-3
Using Enterprise Manager ..o 1-3
Lexical CONVENHIONS. ..o 1-3
TOOIS SUPPOTIE ..o 1-4

2 Basic Elements of Oracle SQL

DatatyPesooovoiiii et 2-1
Oracle Built-in DatatyPes........ccociciiiiiiiiiiiiiccieccceeeceeeeeeee e 2-6
CHAR DatatyPe ..cooeueiiiiieieieeici ittt 2-9
NCHAR DatatyPe ..o 2-9
NVARCHAR2 Datatypeccoeiiiiiiiiiiiniiiiics s 2-9
VARCHAR2 Datatype ...c.coooeuiiiiiciei i s 2-10
VARCHAR Datatypecoceviiiiiiiiiiiiiiiiiciccc s 2-10
NUMBER Datatypeccccoviiiiiiiiiiiiiiiiiiii s 2-10
FLOAT DatatyPe......cccueiiiieieieiecii ittt 2-12
Floating-Point NUMDETSccccciiiiiiiiiiiiiiiiiicecc s 2-12
BINARY_FLOAT ..ottt s 2-13

BINARY_DOUBLE ...ttt et seese et e e eesesesnenees 2-13

INUMETIC Precedence ... 2-14
DATE DatatyPeccccoiiiiiiiiiiiiiiii e 2-17
Using Julian Dayscooiiiieiiiiciciec s 2-17
TIMESTAMP DatatyPeccccvuiiiriiiniiieiiiniiieiniie et 2-18
TIMESTAMP WITH TIME ZONE Datatypeccccoeviviiiiiiiiiiiiniceeiceecens 2-18
TIMESTAMP WITH LOCAL TIME ZONE Datatypeccccooevvvininininiiiiiinieeins 2-18
INTERVAL YEAR TO MONTH Datatypeccccooeeiviniininiiiiieisinicesiisesesisenenenis 2-19
INTERVAL DAY TO SECOND Datatypeccccocvvviviimiiniiiieiicecneeeceeseenes 2-19
Datetime/Interval ATITNIMEOTIC ...ooovviiiiieeieiie et eaee s et eseneeeenns 2-20
Support for Daylight Saving Timesccccocriieiiiiiiiiiicce s 2-21
Datetime and Interval EXamplescccccccociiiiiiiiiiiieccccececeeeeeeeeenene s 2-22
RAW and LONG RAW Datatypes ..ot 2-23
BFILE DatatyPecccoeuiiiiieiiiiiiisiicieseniestess st 2-25
BLOB DatatyPeccovviiiiiiiiiiiiiiici s 2-25
CLOB Datatypecoocueiiiicieieeci st s 2-26
INCLOB DatatyPecccviieieiiiiieiiiiiicieiieisiisisescie st ssssnans 2-26
ROWIA DAtatyPes ..c.cucveumimiuiiciiiiiiicicieieicicice ettt 2-26
ROWID DatatyPec.cuoviiiieieiiicieec it 2-26
UROWID DaatatyPecccoieuriiiiiiiiiniiieieiniiiiice it 2-27
ANSI, DB2, and SQL /DS DatatyPesccococeueeiemimimimeieieicieieieieieeeeneeenenenesesesesesesesesesenenenens 2-28
User-Defined TYPEScoviuiiiiicii 2-29
ODJECE TYPES .ttt s 2-29
REF DatatyPesccovuiiiiiiiiiiiiiicci e 2-30
VAITAYS «ooiiiiiiiiititiittt bbb 2-30
INested Tablesccccciiiiiiiiiiiiiii s 2-30
Oracle-SUpplied TYPESccoceuimiiiiiieiciccccce et 2-31
ANY TYPES ottt s 2-31
ANYTYPE ..o 2-31
ANYDATA ..o 2-31
ANYDATASET ... 2-31
XML TYPES ittt 2-32
XMLTYPE vttt 2-32
URI DaAtatyPes ..cccveveiiieieiiiiiciiieiii s 2-32
URIFACtOTY PaCKagecocvivimimiiiiiiiiiiiiiciccic s 2-33
SPALIAL TYPES ...t 2-33
SDO_GEOMETRY ..ot 2-34
SDO_TOPO_GEOMETRY ..ottt 2-34
SDO_GEORASTERcooiiiiiininiiete s 2-34
Media TYPES .eviiieiii s 2-34
ORDAUGIO ettt sttt 2-35
ORDIIMAEGE ...ttt 2-35
ORDVIAEO ..ottt 2-35
ORDIDDOC ...ttt sttt 2-35
ORDDICOIN ...vvveiiiteteietete et 2-35
SILSHIIMAGE ..vovviviiiiriieietitcitce ettt 2-35

o] I G 0) (o) TSROSO RO PORTRRRRRRORRR 2-35

SI_AVEIagECOIOTLooviiiiiiiiiiic s 2-35

SI_COolOrHIStOZIAMvviiiiiiiiiii s 2-35

ST P OSTHONAICOLOT .evieieeeeeeeeeeeee ettt ettt eee e e ateeeeaeeeeaeeseeeeeeseeseseessssaessenseessnsessansesnnne 2-35

ST TEOXEULE evveeieeeeeeeeee ettt e et e et e e ete e s eateeseaaeessnaeeeenteeessaeessseeessaessnneeesnneeeennes 2-35

ST FEATUTCLIST «.vvvviiiiiiieie ettt ee et e e e ettt e e e e e saaaae e e e sensaseessesaseeeeeeensnres 2-36
ORDIMAEESIZNALULEccooviiiiiiiiciii s 2-36
EXpression Filter TYPe......ooiiiiiiici s 2-36
EXPIESSION ...ouiiiiiiiiiitct s 2-36
Datatype Comparison Rules ... 2-36
INUIMNETIC VAIUES ...oovviiiiiieiieeiecieseete ettt ettt et e st et e et e ssessb e baesaesbeessansaessasseessesseessesseessensens 2-36
DAt VALUES ...ooveeeiiiicieeeteteeteete ettt ettt r et et e e b e sbeesbesbe e besbeesbabaesbeeseenseeseenaesreensenrean 2-36
Character VAIUESccveveeieieeieiieieiiete ettt ste et ettt st e e ese st e esesbessessessessessessessassassnsansessensenses 2-37
ODJECt VALUES ...ttt s 2-39
Varrays and Nested Tables ... 2-39
Datatype PreCedenceccccciiiiiiiiiiiccecceceeeee e 2-39
Data CONVEISION ...ecvveuiieeieiieeieiteetesteetesteetesteessesseestesseessasseessesseessesseessesssessasssessesssessesssessesseessenses 2-39
Implicit and Explicit Data CONVEIrSioNn ... 2-40
Implicit Data CONVETISIONccoiuiiiiiiiiiiiiiiiic e 2-40
Implicit Data Conversion EXamples............ccccooceiiiiiiininiiiiiiiis 2-42
Explicit Data CONVEISIONc.ccoiiiiiiiicieieiiciececee et 2-42
Security Considerations for Data CONVErSIONccccocucucucucueieiiueiciemeieieieicieneieeieeieneeeneneneneens 2-43
| 05T =] =Y F- TR STRPRRR 2-44
TEXE LIEETALS .eveveeeietieieeieeteeteete ettt ettt ettt eete e be e b e sbeesaesbeesbesbeessesseesbesseessesseessesrsensenseas 2-45
INUMETIC LITETALS .vivvevvieieeieiieiietieteieie ettt ettt e e te st e ebesbe b essessessessessessaseessesesessessensas 2-46
Integer Literalscooiviiiiiiiiiiiiciiiccicic s 2-46
NUMBER and Floating-Point Literalsccocoomiiiiiiiiiiiiieecceec 2-47
Datetime LtETalScococeeieieieieieieieise ettt ettt e et st e et e st e b b e b e b essessesseseeseesansensessensas 2-49
INEEIVAL LItEIALS...cvecuieiieieieceeie ettt ettt e b e sre et e s be e besbe e s s e ssessesseesseeseessesseessenseas 2-51
INTERVAL YEAR TO MONTHoootiieeeeeeeeeeteteetee ettt ettt e 2-52
INTERVAL DAY TO SECONDocctiiiiiitiiiiteieieieiesieetetesssesessesressessessessessessessesesssssensens 2-53
FOrmat IMOAEISccooiieiiiieiiiieiece ettt ettt et et e s te e s e s seesaesseessesssessesssessasssessenssensesssensenses 2-54
Number FOrmat MOEISccioiioiiiiiieiececteteeteete ettt ettt ettt et e s ve s e eaeensesaeaneen 2-55
Number FOrmat EIEMENTScocvivieieiieiieieieieecesieeetet ettt ettt ssessessesseseesansessens 2-56
Datetime FOrmat MOAELSccooieviiiiiiiiieieceeieteste ettt sttt sa e se e s e saessesssessennees 2-58
Datetime Format EIEIMENTSccooiiiiiiiiiiciiieeeeteeeeereetee ettt e ve e 2-59
Uppercase Letters in Date Format Elements ..., 2-59
Punctuation and Character Literals in Datetime Format Modelsccccceeverennenn. 2-59
Datetime Format Elements and Globalization SUpportcccoooeueiieeininiceiiiccceines 2-62
ISO Standard Date Format EIEMENLSc.ccceeiriiiiiriirieieieieteceee et ssess s sseseesesenesens 2-63
The RR Datetime Format EIEMENtccccceevvirieiiiiieiieeeieeteeeeee e 2-63

RR Datetime Format EXamples..........cccccccoeiuiiiiiiiiiiininiiiiiinnnccnnscnecees 2-63
Datetime Format Element SUfIXEScccecveeveieiriiiiiieiciesesreeeeeetteeee et saeneas 2-64
Format Model MOGIfIEI'Socuiiiieiieiieeeiesecte ettt ettt ae st e et et e s sa et eesaesesseessennnas 2-64
Format Model EXamples..........cccccociuiiiiiiiiiiiiiiiiiiiicieiee s 2-65
String-to-Date Conversion RUles ..o 2-67
XML FOrmat MOELcuociiiieiiceeie ettt ettt st et e sttt eesae st st esse e s e sseessessaesaessnessensnas 2-68
INULLS .ottt ettt ettt et e bt e b e e be e et e beesbeebeeabeebeeabeeaeenseessesbeeasebe st e beersebeersenteeseenteeaeereenes 2-69

vi

Nulls in SQL FUNCHONSvievieiieieeiieiisieeie st eteteete ettt e te s e esaesreesse s e essesssessesssessesssessesssessenses 2-69

Nulls with Comparison Conditionsccccceueiiiiciciiiiiicce e 2-69
Nulls in CONAIHONS «..vevviiiiiiiiiiiic e 2-70
COMMENES ..ottt s 2-70
Comments Within SQL StatemMentscccccveriieieiieieiieeieseee ettt eeesae e saeeeesaeseaenens 2-70
Comments on Schema and Nonschema ODbjectsc.cccccoceeieiiiiiiiiicencccceeeeeeeeees 2-71
USING HINES .ooviiiiiiii s 2-71
Alphabetical Listing of HINtsccooioiiiiiii 2-75
ALL_ROWS HINt «cooviiiiiiiiiiicicicc s 2-76
APPEND HiNt ..o 2-76
CACHE HINE oot 2-76
CLUSTER HINt oot 2-77
CURSOR_SHARING_EXACT HiINt ...oovvviviiiiiiiiiciiiicccnesennans 2-77
DRIVING_SITE HINE ..ot 2-77
DYNAMIC_SAMPLING HINt ..coouoviiiiiiiiiiiiiiiic e 2-77
FACT HINE oo s 2-78
FIRST_ROWS HINLt ..ot 2-78
FULL HiNE oottt 2-79
HASH HINE oo 2-79
INDEX HIN oottt 2-79
INDEX_ASC HINE oooviviiiiiiiiice s 2-80
INDEX_COMBINE HiNt ...oocviiiiiiiiiiiniiiiis s 2-80
INDEX_DESC HiNt ..ot 2-81
INDEX_FES HINt oo s s s 2-81
INDEX_JOIN HINt oo 2-81
INDEX_SS HINE ..ottt 2-82
INDEX_SS_ASC HINt .cooviriiiiiiiiiiiiiccicc s 2-82
INDEX_SS_DESC HINt ...coviriiiiiiiiiiiiiniiicsssssssssssss s 2-83
LEADING HiNt ..o 2-83
MERGE HINE ooviiiiiiic e 2-83
MODEL_MIN_ANALYSIS HiNt ...cccoouimiiviiiiiiniiiiiiiisssssssesssssesensnnnes 2-84
MONITOR HINE oottt 2-84
NATIVE_FULL_OUTER _JOINcccooiiiiiiiiiiiniiieniiesce s sssssn s 2-84
NOAPPEND HINt ..o 2-84
INOCACHE HINt .ttt 2-85
NO_EXPAND HINt coooviiiiiiiiiiiiiiic s sss s 2-85
INO_FACT HINL .o sse s 2-85
INO_INDEX HINE .ottt 2-86
NO_INDEX_FES HINt ...cvviiiiiiiiiiiiicc s 2-86
NO_INDEX_SS HIIt .oovviiiiiiiiiiiiiiiiiicssisssessssss s ssesssssssesssssnses 2-86
NO_MERGE HINE .ottt 2-87
NO_MONITOR HINt c.ooviiiiiiiiiiiiicec s 2-87
NO_NATIVE_FULL_OUTER_JOINccccecviniiiniiiiiininiiiiniiscessssesssssesennsnis 2-87
NO_PARALLEL HINE ...ttt 2-87
NOPARALLEL HiNtu..cviiiiiiiiiiici s e 2-88
NO_PARALLEL_INDEX HINt ...ccccoooiiiiiiiiiiiiiiiiissescnennnaes 2-88
NOPARALLEL_INDEX HiNt....cccuiiiiieieiniiieiinccereeeeresieeeseeie e 2-88

NO_PUSH_PRED HINt ..cooiriiiiniiiieiriencencenecnteenteeneee ettt essesesse st ses e e neene 2-88

NO_PUSH_SUBQ HiNt ..cccoiiiiiiiiiiiiiiiiicer et 2-88
NO_PX_JOIN_FILTER HiNt ..cooviiiiiiiiiiiiniiciiiccr s 2-89
NO_QUERY_TRANSFORMATION Hintcccccocouiininiiiiiiiiiinieccicceins 2-89
NO_RESULT_CACHE HINt ..ot 2-89
NO_REWRITE HiNt .ccvoviiiiiiiiiiiiic s 2-89
NOREWRITE HiNt ..o 2-89
NO_STAR_TRANSFORMATION Hintccccovuiiiiiiiiniiiiniiicnnicessesscceeinns 2-89
INO_UNNEST HINL oot 2-90
NO_USE_HASH HINt oo 2-90
NO_USE_MERGE HINLtcoouviiiiiiiiiiiieiiniiicie s 2-90
INO_USE_NL HINt «oooviiiiiiiiiiiiiieic s 2-90
NO_XMLINDEX_REWRITE HINt ...coovvviiiiiiiiiiiiiiiicinnes 2-91
NO_XML_QUERY_REWRITE Hint......cccecevuiiiiiiiiiiiiiniicnniiescene i 2-91
OPT_PARAM HINt oo 2-91
ORDERED HINL .ooiiiiiiiiniiiiiiss s 2-91
PARALLEL HINE .ot 2-92
PARALLEL_INDEX HiNt ..c.cvoviiiiiiiiiiiiiiccn s 2-93
PQ_DISTRIBUTE HiNtcoeovvviiiiiiiiiininiiiiiicins i 2-93
PUSH_PRED HINL ..ocviiiiiiiiiiiiicsiicc e 2-94
PUSH_SUBQ HIN ..oovviiiiiiiiiiiiieiccc s 2-95
PX_JOIN_FILTER HiNt ...ccoviiiiiiiiiiiiiiiniiiiiir s 2-95
QB_NAME HINt ..ottt 2-95
RESULT_CACHE HINt ..o 2-95
REWRITE HINE ..o 2-96
STAR_TRANSFORMATION HINtcoooiiiiiiiiiiniiiiiciiicrnincsssie e 2-96
UNNEST HINE covviiiiiiic s 2-97
USE_CONCAT HiNt .ooviiiiiiiiiiiiccir s 2-97
USE_HASH HINE ..ot 2-98
USE_MERGE HiNt ..o 2-98
USE_NL HINE «ooviiiiiiiiiiccii s 2-98
USE_NL_WITH_INDEX HINtcocviniiiiiiiriiiinniicerrceerenceeseese s 2-99
Database ODJectS ..o 2-99
Schema ODJECtSovuiiiiiiiiiiiii s 2-99
INONSChemMa ODBJECEScocviiiiiiiiiiiiiiiiicir e 2-100
Schema Object Names and Qualifiers ... 2-100
Schema Object Naming Rulesccoooiiiiii 2-101
Schema Object Naming EXamples ... 2-104
Schema Object Naming GUIdelinesccccccccuiueuiririiiiiiinnrcrrrerr e 2-104
Syntax for Schema Objects and Parts in SQL Statements..............ccoccooviiiiiiiiiiiin, 2-104
How Oracle Database Resolves Schema Object Referencescccooovveieieiccininiicncnennen. 2-105
References to Objects in Other SChemasc.ccccceuiiiiiiiiiirce e 2-106
References to Objects in Remote Databasesccccoeeeiiiiiiiiiiiiii 2-106
Creating Database LinKs ... 2-107
Database Link NAIESccccviviiiiiiiiiiiiiccc s 2-107
Username and Password ... 2-107
Database CONNect String..........cccovuvviiiiiiiniiniiiinn e 2-107

vii

viii

References t0 Database LINKSccouviiieiiiiiiiieeie et 2-108

References to Partitioned Tables and Indexesccccocoivviiiciiiniiiiiiniccccccee, 2-108
References to Object Type Attributes and Methods ... 2-110
Pseudocolumns
Hierarchical Query PSeudocolUmNSccccociiiiiiiiiiiiiiiii e 3-1
CONNECT_BY_ISCYCLE PSeUAOCOIUINIT ...oeieeviiiiiieeeieeeeieee ettt 3-1
CONNECT_BY_ISLEAF Pseud0OCOIUMIcucuiiiiiiiiiiiiiiciciiccsccec e 3-2
LEVEL PSEUAOCOIUINI «....oviiiiiiiiiiiiicicieeiec et 3-2
Sequence PseudocOlUMNScocooiiiiiiiiiii e 3-3
Where to Use Sequence ValUes ... 3-3
How to Use Sequence VAlUESccccciiiiiiiiiiiccceeieceeceeeeeeseeeeeeseseeeseseee e 3-4
Version Query Pseudocolimns ..o 3-5
COLUMN_VALUE PS@UAOCOIUINILc.oeviiiiiiiiiiiiiceee ettt ettt e s e e s s aaeessanaeean 3-6
OBJECT_ID PSEUAOCOIUINIoooiiiieiiiiieieeeeieetieteeeesteseeete st eteessesseeseessesssessesssessesssessesssensesssensennes 3-7
OBJECT_VALUE PSeUAOCOIUMIcoiiiiiiiiiiiiiiiniiiiieeteee ettt sttt ettt be b e 3-7
ORA_ROWSCN PS@UAOCOIUIMNIoooviieiiiiiiieieciee ettt ettt eeee vt e aeeereeeaeeeeaeeeteseeveeesesereeesseenseenses 3-8
ROWID PsetudOcOIUNI ..o 3-8
ROWNUM PSeudOcOlUMIcccoiiiiiiiiiiiiiiiii e 3-9
XMLDATA PSeudOcOlUIMNccoooiiiiiiiiiiiiiicci e 3-10
Operators
About SQL OPerators...........cccovvvviiiiiiiiiiiiiiiiii s 4-1
Unary and Binary OPEratorsc.cocccvrrrreninnirininirise et senes 4-2
Operator Precedence ... 4-2
Arithmetic OPerators ... 4-3
Concatenation OPETatorccooeiviiirieirieiceeree ettt 4-4
Hierarchical Query Operators............cccoovviiiiiiiiiiiiiiiiiii s 4-5
PRIOR ..ottt ettt sttt ettt ettt 4-5
CONNECT_BY_ROOT ..ottt 4-5
Set OPEIALOIS ..o 4-5
MULEISEE OPEIALOLS ..ottt ettt 4-6
MULTISET EXCEPT ..ottt 4-6
MULTISET INTERSECT ..ot 4-7
MULTISET UNION ...ttt sttt st et 4-8
User-Defined OPETatorsc.ccoeirieiriiiriiiiineenteteteneeeree ettt sae e re e saeesnennes 4-9
Functions
ADOUL SOL FUNCLIONSocviiiiiiiiiiciecieeeieciee ettt e tee e beesaeebeesabeesseesseessbaesssesaseessaaesseessaesssessesans 5-1
Single-ROW FUNCHONS ..ottt 5-3
NUmMeTric FUNCHONSc.coiiiiiiiiici e 5-3
Character Functions Returning Character Values ... 5-3
NLS Character FUNCLIONScooiuiiiiiiiiiiiiiic s 5-4
Character Functions Returning Number Valuesccccccevviiivnniinnniiinninne, 5-4
Datetime FUNCHONS ..o 5-4
General Comparison FUNCHONSccoiiiiiiiiiiiiiiiicci e 5-5

CONVETSION FUNCHONS ...vviiiiiiiieiiieceeeeeeee ettt e et e s e eaae s e enaeesenteeesnaeeesnnaes 5-5

Large Object FUNCHONSc.ccuouiiiiieiiicici e 5-6
Collection FUNCHONSc.oviviiiiiiiiiiiccc s 5-6
Hierarchical FUNCHONooviiiiiiiiiiiiiiiii s 5-6

Data Mining FUNCHONScooiiiiiiii 5-6

XML FUNCHONS ...vviiiiieiieeeee e 5-7
Encoding and Decoding FUNCHIONScc.cooriiiiiiiiiiiic e 5-7
NULL-Related FUNCHONSccoouiiiiiiiiiiiiiiiicicinccce s 5-8
Environment and Identifier FUNCHONSccccocoviiiiiiiiiiiiies 5-8
Aggregate FUNCHONSccoiiiiiiiiiii 5-8
Analytic FUNCHONSouoviiieic e 5-10
Object Reference FUNCHONSc.cocuiuiiiiiiiiiiiiiiiiieccieeeeee et 5-15
Model FUNCHONSooviviiiiiiiiiiiicicicic s 5-15
Alphabetical Listing of SQL FUNCHONSoooiiiiiiiiiii 5-15
ABS oo 5-16
ACOS .o s 5-17
ADD_MONTHScoooiiiiiiiiiiie bbb s 5-18
APPENDCHILDXMLcooviiiiiiiiiiiiiiiiscns s s 5-19
ASCIISTR .o 5-20
ASCII .o 5-21
ASIN e 5-22
ATAN s 5-23
ATAN Lo 5-24
AVG e 5-25
BFILENADMEcoiiiiiiiiiinci s 5-27
BIN_TO_NUDM ..ot s 5-28
BITAND oo 5-30
CARDINALITY oottt 5-32
CAST bbb 5-33
CEIL ..o 5-36
CHARTOROWID ...t 5-37
CHR ..ot 5-38
CLUSTER _ID ..ot 5-40
CLUSTER _PROBABILITYcoooiiiiiiiiiiiiiiiis s 5-42
CLUSTER_SET ...ttt s e s s s 5-44
COALESCE ...t 5-47
COLLECT ..ot 5-49
COMPOSE ...ttt 5-50
CONC AT ..ot s i 5-51
CONVERT ..ot 5-52
CORR ...ttt sttt b e sttt st 5-54
CORR_T oo 5-56
CORRLS i 5-57
CORR_K .ttt 5-58
COS s 5-59
COSH ..o 5-60
COUNT ..ottt 5-61

COVAR _POP ...ttt sttt s eb s b sae 5-63

COVAR_SAMEP ..ottt e et e e et e e e eae e e e ta e e eetae e eeaaeaeeateseebaeeesaeeesseeeensesenaneas 5-65
CUBE_TABLE ...ttt e et e et e e s ta e e s taeeesesee s saaeessseeeassaeeassseesssseeesseennnsees 5-66
CUME_DIST ..ottt e et e e s bt e e et a e e e tbe e etbaeesbesesasaaesasaaeanssesessasessseseesseeenssens 5-68
CURRENT_DATE ...ttt ettt e et e et e e et e e etae e e aaeeeeabeseebaeeesaeeeataeeeesseeenaneas 5-70
CURRENT_TIMESTAMP ...ttt ettt e e e tte e et e e s aae e et e e e s sbae e sasbeeensseeesssaeenneas 5-71
Vet et e e e ettt e e et e e e e tae e eba e e e tbe e e tbeaeaabeeeataeeetbeaatbeeearbaaeantaeeabaeeatbeeeatbeeearreeennrees 5-72
DATAOBJ_TO_PARTITIONooiiiiiiiiiiiiieeteete sttt ettt sttt et s bt et st et s bt et e e st saee e eae 5-74
DBTIMEZONE ...ttt et e e et e et e e et e e e s taeesataeeesssee s ssaeesssaaaassaeeassseeassseessseennnsees 5-75
DECODE ...ttt e et e e et e e e e tae e etbae e tbeseesbaeeasaaa e tbaeasseseaasaeaanraseansaeeeassaeentraeannes 5-76
DECOMPOSE ... ettt e et e ettt e e e et e e e ete e e eeaaaeeetaeeeesaeeeeasaeseteseeseseenssseensresenans 5-78
B2 2 I 2 N 2, €, | USRS 5-79
DENSE_RANK ettt ete e e e etae e et e e eetbeeesabaae e bbeeesseseassasasssaseassaeessseeesrasennes 5-81
DIEPTH ...ttt e e et e e e e et ttaee e e e e tbaeeeeeasbaaaeeeaessaseeeeeassaeseseasnsstaaeeeansraeeas 5-83
DERETF ...ttt e et e e ettt e e s be e et e e e ab e e esaaeeessaeeasebee e abaeenbaeeansaeeantaeearbeeenraeennreas 5-84
DIUMP ..ot e et e et e e e e te e e etae e ebbee e tbesaesbaeesasaaaanssaearssesessasaasseseassseesassaeessasannes 5-85
EMPTY_BLOB, EMPTY_CLOB ...ttt ettt e e et eetae e et e e eaneas 5-87
EXISTSNODE ...ttt ee et e e ettt e et e e e eb e e e s baeesssaeaassseeessaaesssaaaassseeassseeansseessseesnnsees 5-88
EX P oottt e e e et e e e ta e e e tbe e e beaeatbe e e e baeeeabbaaataeeearbaeeantaeeabaeeetaeeetbeeerreeenaraes 5-89
EXTRACT (AAtetime)ccoooviiiiiiieiiieeieeeteeteeteete ettt ettt te et et te st s e e s essessessessesseseeseesens 5-90
EXTRACGCT (XIML) oottt ettt ettt et e s teeteestaeeaeestseebeesaesabeessseesssessessssessasssseesaesssesnsaenssean 5-93
EXTRACGTVALUE ...ttt s e e et e e et e e e aaa e e st e e eeabaeesasaeeenssesesseeenares 5-94
FEATURE_ID ...ttt e ettt e e et e e e et e e e eaa e e e etaeeeeaaeeeeateeeeteseeseeeeesseeensresennns 5-95
FEATURE_SET ...ttt ettt e e tte e ettt e et e e e ataeesasaee e saeessseeessseeasssaaeassseesssseeesssasannes 5-97
FEATURE_VALUE ...ttt ettt e et e e et ee et ae e abe s e avaeesasseeesseeeessaeesareeans 5-100
FIR ST ..ottt et e e et e e eett e e eetaeeeeteeeeteseeetaaeeessaeeenteseenssseensaseeasseeeensaeeaareeann 5-102
FIRST_VALUE ...ttt ettt ettt e e te e e bt e e e sta e e s saee e ssae e ssaeesnssaeassaeeensseesassaaessseenns 5-104
FLOOR .ottt ettt e e st e e e ta e e e tae e e abeeaesbseeesaae e sbaeesseseasssaesnssaeansseeeessaeesaseaann 5-106
FROMU_TZ ...t ettt e ettt e e et e e e e ae e e e te e e ebaseeetaaeeetteeeeateseessaeessseeasseeeessaeeaaseeann 5-107
GREATEST ...ttt ctte e et e ettt e e b e e e s te e e e sbeesasbaeassreeasssaaeasssaaassseeasssaeensseeasssesannes 5-108
GROUPL_ID ...ttt e ettt e e etae e e et e e e s te e e e baeesbaaeeseresaessaeesssaaeassaeeassesensseeaassesaanes 5-109
GROUPING ... et e et e ee e e et e e e eae e e eeaae e eetaeeeeareeeeseeeeesseeentseeenaseeeesnseeeseseenns 5-110
GROUPINGL_ID ..ottt tte e ettt e ettt e e bee e s be e e s seaeessaaeassreeasssaeessssaaassseeasssasensseessssesannes 5-111
HEXTORAW ettt ettt e e et e e e be e e e tb e e e tbaeeetaaeesebaeeessseeessaeessaeeassseeasssessaseaans 5-112
INTTICAP .o et e e e et e eea e e e e e e te e e eeaaeeeeaseeeeaseseenseeeesseeentseeennseseenseeereseenns 5-113
INSERTCHILDXIML ...ttt ete e vee e st e e e sete e ssaeeesereesssaeesssaaeasssaaasssasensseessssesannes 5-114
INSERTCHILDXIMLAFTER ...ttt e ettt ette e eive e eeavaeesvaaestaeeeasasenaseeesnrasannes 5-116
INSERTCHILDXMLBEFORE ... et e e e et e eenaeeeneeeereseenns 5-117
INSERTXMLAFTER ...ttt e e st e e et e e s eaeeeseb e e ensaeesssaeeessaeessssaeennseeenssesannes 5-118
INSERTXMLBEFORE ...ttt e e tae e et e e et e e e s vaaeebaeeeaseeesaseeassresannes 5-119
IINSTR oo et et e et e ee e e e e e e e ete e e eesaeeeeaseeeesreeeenseeeesseeentseeennreeeenseeerereenns 5-120
ITERATION_NUMBER ..ottt ettt estte e st e e e rare e seaeeesereessssaeessaeesssseessssasessseeesssesannes 5-122
LAG ettt e et e e et e e e tae e e ebaeeateeeaabeeaatbae e tteeeaabaeeaaaaeataeeeareeeaabaeaanteeaanes 5-124
L A S T e ettt et ettt e e e e et e e e —e e ea—aeeateeearaeeaaaaaeeataeeeereeeeareeerereenns 5-125
LA ST DAY ettt e e ettt e ettt e e tb e e e s te e e e sbee s sbaeessreeaansaeeassaeeansaeeansaeennbeeeanreaaanes 5-126
LAST_VALUE ...ttt et e et e e e st e e e e tae e stbaeeebeseeasaeesssaaasnsaeeessesensseeaassesannes 5-127

LENGTH ..ottt ettt ettt et s s sa ettt et eue b b e 5-131
LN e e bbbt a e 5-132
LININVL ettt s s a ettt et et sb e b 5-133
LOCALTIMESTAMP ..ottt ettt et s s sttt sae b 5-134
LOG e bttt 5-135
LOWER ..ottt s bbbt ettt ea e e b 5-136
LPAD ..ttt e s s b b a e et ettt ea e b ae 5-137
LTRIM Lo s bbbt sa s eb e 5-138
MAKE_REF ..ottt ettt s s sttt s sae s 5-139
IMLAX ettt ettt et et b e sa e et b e b st et eeae ettt be b sae 5-140
MEDIAN ..ot s 5-142
IMIIN Lottt et et et b e sa e e b b a ettt sae 5-144
IMIOD ettt sttt et et e s et b e b st ae et sttt be e sae s 5-145
MONTHS_BETWEENccoccoiiiiiiiiiiccce st s 5-146
INANVL Lttt ettt et e s e bbbttt st s e s besae s 5-147
INCHR ettt st sttt et et ae bt e bt e bt s bbb e b et esaenne st suesaeesessesaens 5-148
NEW_TIME ..ottt s s 5-149
INEXT DAY .ottt s b e sttt sae 5-150
NLS_CHARSET _DECL_LENccoiiitiiiiieenteetetetetee ettt sv st n et sesae s 5-151
NLS_CHARSET _ID ..ottt s 5-152
NLS_CHARSET _NAME ...ttt ettt s 5-153
INLS_INITCAP ...ttt sttt et ettt et sae et st sb st s e ese et s aesaeenesbesaens 5-154
NLS_LOWER ..ottt st s 5-155
INLSSORT ..ottt ettt et s b e s b ettt s besae 5-156
INLS_UPPER ...ttt sttt ettt st et st e b b s et a s et saesae s sbesae s 5-158
INTILE ..ottt sae 5-159
INULLIF ..ottt ettt et e bbbt s s s s b sae 5-160
NUMTODSINTERVAL ..ottt sttt ettt ettt sttt sae s s 5-161
NUMTOYMINTERVAL ..ottt s 5-162
INVL ettt ettt e e b e sae e b s b s et e b s ettt s e sae s nesae s 5-163
INVL2 ettt ettt sttt et a et ettt e bt e bt e bt sae sttt e s b et et et emteneeneeaesaeeseebesbesaens 5-164
ORA_HASH ..o st 5-165
PATH ..ottt s s s a ettt ea e e b 5-166
PERCENT_RANK ..ottt ettt ettt sttt s s sttt sa et et ettt sb e b b e 5-167
PERCENTILE_CONTocoiiiiiite ettt 5-169
PERCENTILE_DISCcooiiiiiiiiit ettt sttt 5-172
POWER ...ttt ettt ettt ettt ettt ettt b et s ae s b et e e e e et et et ene e bt emeebeenebenee 5-174
POWERMULTISETcooiiiiiiiite sttt 5-175
POWERMULTISET_BY_CARDINALITY ...ocoooiiiiiiiiiieieietcteeeteteese st 5-176
PREDICTION ...ttt ettt ettt ettt et ettt b st st bt et sa et et et ese e bt enesbeenebenee 5-177
PREDICTION_BOUNDScooiiiitcte sttt 5-179
PREDICTION_COST ..ottt sttt 5-181
PREDICTION_DETAILS ..ottt ettt ettt et se ettt et et sn e sn e 5-183
PREDICTION_PROBABILITY ...coooiiiiiiitiicc ettt 5-185
PREDICTION_SETooiiiiiiee ettt s sttt 5-187
PRESENTINNYV L.ttt ettt ettt ettt sttt st st st a e et et et e st bt enesn e b benne 5-190

xi

Xii

PREVIOUS ...ttt ettt et e te et ste e e e be e e e s teess e beessesteessasseensessaensesseensesssensesssensesseans 5-194
RAINK oottt ettt et et et e st et e st e te et e e s e ebesbessessassessassessastasaas st e es et essessessensessentessessaseaseasansenes 5-195
RATIO_TO_REPORT ..ottt ettt et e et e steesse e sste st e e st assaessessaessesseessesssessasssessansenns 5-198
RAWTOHEX ..ottt ettt ettt eae e e ae s ta e besbaesbeetsenbasssensaessenseeseesseesseseessessessnans 5-199
RAWTONHEX ..ottt ettt ete et e s te st et esbessessessessesaesaasassessessesessessessessessessessassaseasensenns 5-200
REF ..ottt ettt ettt ettt et e et et e et e e b e e ra e beesae b e es b et e es b et e e st aas e et e et e enteeseesseeteenseereensenreans 5-201
REFTOHEXooiiiiiiieceteeeteteettet ettt ettt ste et e be e b e sbaesbebaessesseessasseessesseensesseensesssensesssessessnans 5-202
REGEXP_COUNToooiiiiiiieieieieteteite et ste et e stestesbesbessessessessasaesassasssssessessassessessessessessessessassasensenns 5-203
REGEXP_INSTR ..ottt ettt e ste et steste s e e aestaessesbaessasseessasseessesseessesseessessesssesssessensenns 5-205
REGEXP_REPLACEootiiieeeeteteetetee ettt te e e aeste e s e ba e s e stesasasseessesreensesssessesssensesssessenseans 5-208
REGEXP_SUBSTR ..ottt ettt sttt e saess e st esaesassesseesessessessessessessassessassaseasensenns 5-211
REGR_ (Linear Regression) FUNCHONS ... 5-213
REMAINDER ..ottt ettt ettt te e e e be e aesbeesbebaessasseessasseensesseensesseessesssensesssessensnans 5-218
REPLACE ...ttt ettt et et e e et e et e et e st e b essessessassessastasaasaaseeseesessessessessessensassassassasensensenes 5-219
ROUND (MUMDET) ..ottt ettt ste e te s e et e steessesbeesaesseessasseessesseessesseessessesssesssessessenns 5-220
ROUND (At@) ..ocveeviviitietietietieteee ettt ettt ettt ettt es e s eteetsetseteeteebesaeesesbessensensersenserseteeseens 5-221
ROW_NUDMBERcoooiitiitiieieieietetete et ete e e s teste st e essessessessestesassassessessesassessessessessassessassassasensenns 5-222
ROWIDTOGCHAR ...ttt ettt ettt ste et ste s te s e e aestaessebaessesseessasseessesseessesseessesssessesssessesseans 5-224
ROWIDTONG CHAR ..ottt ettt a e te e e e s te e besbe e b e s teessasseessesseensesssessesssessesssessenseans 5-225
RPAD ..ottt ettt ettt et ettt et e te et e et e e b e s b esses b e st es b e s b e st e Rt e st e R e Rt Rt s e b e besbenbestententesteneeseerenrens 5-226
RTRIM ..ottt ettt ettt e et e et este et e sbeesaesseessassaessessaessaseessasseessessaessesseessesseassenssessenseans 5-227
SCN_TO_TIMESTAMP ...ttt ettt et e et v e te et e sreessesseesaesbeessesssessessnans 5-228
SESSIONTIMEZONIEcooioiiieieteteeee ettt ettt sa et stesa st e s sessesbesbesbessestessesseseassasensenns 5-230
ST oottt ettt et et e ettt e b e e rae b e et et e e st e bees b et e entaastenteereenaeeseenseeteenseestensenseans 5-231
SIGIN ettt ettt ettt et et este et e ebe e e e beebe b e er b e beerteeteeabaabeeteereenbeereenbeeteenteereebeereans 5-232
SN oottt ettt ettt et et et et et e st e et et e et e et e et e st s e b asbessesbesbestestesaeseeR e et e et e eReeResesbeeseesesessensentesean 5-233
SINH ..ottt ettt e et e st e et este et e sbeesaesse e st e s aessesbeesse s e essanseenteeseenseeseensesreenseeseensenreans 5-234
SOUNDEX ...ttt ettt ettt et e et este et e sbeesaesbeesaessaessasbaessasseessasseessesseessesssessesssensesssensasseans 5-235
SORT oottt e et et e b et et et e st esteseese et eeseese st essessessassassassastasaas st e es et e sessessesbessententestaseaseasansenes 5-236
STATS_BINOMIAL_TEST ...ttt te et te et s e ss e teeaesraesaesseesaesraessasssessanseens 5-237
STATS_CROSSTAB ...ttt ettt et et e st et esbe et e ere e b e ebeeseereeseeseesseessensesssensesseans 5-238
STATS_F_TEST ..ottt ettt ettt sttt s s s e sbesa e st e sa et e e sees et essessesbesbessestessessaseaseasensenns 5-239
STATS _KS_TEST ..ottt ettt ettt ste et e e et e s te et esbe et e st e essasseessessaensesseessesssessenssessensenns 5-241
STATS_IMODE ...ttt ettt ettt be et e be et e ete et aeseeaseereeaseessensesssensesssesesseens 5-242
STATS_IMW_TEST ..ottt ettt sttt e sttt s et et e s s e s e sessesbesbessestessessessaseasansenns 5-243
STATS_ONE_WAY_ANOVA .ottt ettt ettt ste et e sreeae e eaesbeessesssessassnans 5-245
STATS T _TEST _® oottt ettt et et e et et e et e e te e b e ebeeseereeaseeseensestsensesssesesseens 5-247

STATS_T_TEST _ONIE ...ttt ettt ettt sttt sbesa e esaesessesbessessessessessessesenns 5-249

STATS_T_TEST_PAIREDootieieiieeete ettt ettt e stesstesveesaesaeesaesteessessaessessaessansaessenns 5-250

STATS_T_TEST_INDEP and STATS_T_TEST_INDEPUccccoeeieiiieeeereeeeteeeeereeve v 5-251
STATS_WSR_TEST ..ottt ettt sttt ettt se e e s e s e sesbe b e b essestessesaaseaseasansenns 5-253
STDDEV ...ttt ettt ettt et este st e sbe et e s aeesaessaessesbaessasseessasseensessaessesseessesseassenssessesseans 5-254
STDDEV_POP ...ttt ettt et et ete et e e teestesba et e beesbeeteeasaeseeseeraeasesseensesssensesssesesseens 5-256
STDDEV_SAMP ...ttt ettt ettt sttt b e s e b ess e st et e e sa et e eseesessessessessessestessessassaseasensenns 5-258
SUBSTR ...ttt ettt este st e st e e aesbeesaa s aessesbaassesseessaseessesseessesseessesseessesssessenseans 5-260
SUM ottt ettt et e et et e e eete et e ebe et e e be et e ebaea b e be et eete et e bt eteereebeebeebeereebeeteeteereens 5-262

SYS_CONNECT_BY_PATH ..ottt sttt 5-264

SYS_CONTEXT ...ttt ettt ettt ettt ettt e ts e s eteeteeteeteeteesestessessensensessersessersetesenns 5-265
SYS_DBURIGENoooiitiiiieieieietetete ettt et esb et essesaessestesassassessessessassessessessessessessessassasensenes 5-271
SYS_EXTRACT_UTC ..ottt ettt ettt et et ess et e ss e s eseeteetestestesbesba s essessessessessessessesensenns 5-272
SYS_GUID ..ottt ettt ettt ettt ettt essesbetsetseteeteeteete st e se s ensensesserserserseterenns 5-273
SYS_TYPEID ..ottt ettt et b et e e s essesae st e st esessassesse et esbessessessessessaseessesensensansenes 5-274
SYS_XIMLAGG ...ttt ettt ettt ettt et e s e saesb e st eseeteebeebeebe b e b e b essessesseseeraersereerensenes 5-275
SYS_XIMLGEN ..ottt ettt ettt ettt et eas et eteetseteeteeteeteste et et ens et esserserserseteereans 5-276
SYSDATE ...ttt ettt ettt e e te et et et e b e s b esbessessesaessestaseaseasesseesesbessessessessestessesaaseasensansenes 5-277
SYSTIMESTAMPoootiiiteteeeeetette ettt ettt ss et e teets e beebeste b e b e b esbessesseseessessessesassenes 5-278
TAN oottt ettt ettt et e e te et e e te et e et et et et at st erseaseteeteebeeteeteete b et eabersensersersersetsetsereeteas 5-279
TANH oottt ettt e e s te et et e s be st e s b e st e st e st e st e Rt eRt e st et e e s e b ea b e b esbenbenbeseaseesaeseesenrens 5-280
TIMESTAMP_TO_SCNotiiiiiiiieieietieeee ettt te et et e b et et essesseseessessesaeseesessassessessessessassessesseseas 5-281
TO_BINARY_DQOUBLE ... ettt e et e et e e e et e e eataeeeteaeeeaseeeeaseaas 5-282
TO_BINARY_FLOAT ..ottt sttt teste et est et e st esessaesessaesessassassessessassessassesesssssensensensens 5-284
TO_BLOB ...ttt ettt ettt s e st et e b e b e st ess e st eseeteebeebeebeebesbesbesbessessessessesaereereesaaresaens 5-285
TO_CHAR (CRHATACEET) ..ottt ettt et e sttt e e et eesae e e staeesnaeeseaaeeesaaeeans 5-286
TO_CHAR (dAtetIme)cooooviiiiiiieiieeieee ettt ettt e ste e et e e teeeseeeateeeraeenteesseesneeenseens 5-287
TO_CHAR (MUIMDET) ..ottt e et e e e sttt e s eaaeseeaaeesssaeesnaessnaeessnneeann 5-289
TO_CLOB ...ttt ettt e et e et et e e st essesseasetseteeteeteeteesasbensessessessessessessessessesesaens 5-291
TO_DATE ..ottt ettt sttt e st e e b et e st e st estastaseesesseaseesessessessessassassassassassasensensessens 5-292
TO_DSINTERVALccootititietieietteteettett ettt ste st e b et st e s esseseeteetesbeesessessessassessassassassassessessesessessens 5-294
TO_LOB ..ottt ettt ettt e e et e et et e et et st ess e st easetseteeteeteeteebe b et estentensersersensetsetseteerens 5-295
TO_MULTI_BYTE ...ttt sttt et et seetaebesbesresb e s s essessessessassesseseassnsansensessens 5-296
TO_NCHAR (CRATACEET) ..ovviiieeeeeeeeeeeeeeee ettt et e et e e e e e te e s e saaeeseaaeessaseessnsesesseeeseneeeas 5-297
TO_NCHAR (dAtetiImie)ccooviuiiuieiieiietieiieieetecteeteteetee ettt ete e eteeveeveeteeteesesessessessessessessessesseseesens 5-298
TO_NCHAR (INUINDET) ..ottt ettt e e steeereseteeeseeenteeeseeenteenseesnseeseeans 5-299
TO_NCLOB ...ttt ettt et e st et e st e st esbeseeseateebeebesresbesbessesbessessessessasseseesaessasessens 5-300
TO_NUDMBER ... et e et e e et e e e e eta e e eeaae e eetteeeeteseesaaeeseseesteseesseaeearesann 5-301
TO_SINGLE_BYTE ..ottt sttt ettt ettt eta et e ssesresbessassessessassessesseseasessensansessens 5-302
TO_TIMESTAMP ...ttt ettt sttt et stesseseeseeteebeebesvesbesbesbesbessessassassassessessesessessens 5-303
TO_TIMESTAMP_TZ ...ttt e e et e e e e e eereeeeeraeeeeasaeeeaneseeneeeeneeean 5-304

TO_YMINTERVAL ...ttt ettt ettt ettt eseesaesa s e s e s s e b essessessessessaseassassssensensn 5-306
TRANSLATE ..ottt ettt s v sttt e e st essereeseateebeebeeresbesbesbessessessessessasseseessesassessens 5-307
TRANSLATE ... USING ..ot ettt e e e e ettt e e e e taeeeeanae e enaeeenseseensseeeenneens 5-308
TREAT ..ottt ettt ettt et et et et et st e et e besse s esbessestessesseseaseaseasesseaseasasessessessassassassassaseasansansensens 5-310
TRIM ..ottt ettt ettt ettt ettt e b e s beste s b e s b esba st essessessessaseeseebeesessesbassassessessessessassassessesassessens 5-311
TRUNC (INUIMDET) ..ottt ettt ettt et eteetesbeebesbeeabeebaesbesseenseessenseesseseessenseeneas 5-312
TRUNQC (AALE) ...cveevievieiieiiiiieieietetetette et ete e esteste st essesteste b esseseeseesaasessessassassessessassassessessessassassaseases 5-313
TZ_OFFSET ..ottt ettt ettt sttt ettt essereeseeseebeebeevesbesbessessessassassassassesseseessasessens 5-314
UTD oot e ettt e e e e e e tar e e e e e etaa e e e e eeetabaeaeeesasaaeeeeeansraaaeeeastsaaeeeensraaaeeeeanstaeeaeaannres 5-315
UNISTR ..ottt ettt et ettt e st e et e beste s s e s bessestestesseseaseaseasesseasaesessassessessassassassaseassasensensensens 5-316
UPDATEXIMLocooitiiititeieteet ettt ettt ettt st st st be st et e b essessesaeseeseeseesaebasbesessassassassessassessessassaseas 5-317
UPPER ...ttt ettt e e e et e e e e e e ta e e e e e eeabaeaeeeeaataaeeeeeeabaaaaeeeataaaaeeeeanrraaeeeeanrraeeeeaanres 5-319
USER ...ttt ettt ettt ettt e st et e st s s et e besse s esbessestessessastaseaseeseeseesees e s essesbesbestessessaseastasaasensensens 5-320
USERENY ..ottt ettt ettt ettt ettt e s te st et et e st e st essessessaseebeebeesesbesbasbessessessassassessessesessassessens 5-321
VALUE ...t e ettt e e e e e e ar e e e e eeetabeeeeeesetsaaeeeeeasssaaaeesestsaaeseesassseaeeeeansseeeeennnnres 5-323

xiii

Xiv

VAR _POP ...ttt sttt et saea 5-324

VAR_SAMP ..o 5-326
VARIANCE ... 5-327
VISIZE ... 5-329
WIDTH_BUCKETcooiiiiiii et 5-330
XMLAGG ..o s 5-332
XIMLCAST ..o bbb 5-334
XIMLCDATA L.t 5-335
XMLCOLATTVAL ..ot 5-336
XMLCOMMENT ..o 5-337
XIMLCONCAT ..ot 5-338
XMLDIEF ..ottt 5-339
XMLELEMENT ...t 5-341
XMLEXISTS ..ot 5-344
XMLEFOREST ...t 5-345
XMLPARSE ..o 5-346
XIMLPATCH ..ot 5-347
XIMLPT ..o 5-349
XMLQUERY ..ot 5-350
XIMLROOT ...t 5-352
XMLSEQUENCEcoiiiiiiiiiiic s 5-353
XMLSERIALIZEccoiiiiiiiiii s 5-355
XMLTABLE ...ttt 5-356
XMLTRANSFORM ..ot 5-359
ROUND and TRUNC Date FUNCHONS ... 5-361
About User-Defined FUNCLIONSccooiiiiiiiiiiiiicc s 5-362
PrereqUiSItes.......ccoviiiiiiiiiiiiiiiii e 5-363
NaAME PIeCeAENCEcocuiuiiiiiiiiiiii e 5-364
Naming CONVENtIONSccccoeiiiiiiiiiiiieiei s 5-364
Expressions
About SQL EXPIESSIONScocooviiiiiiiiiiiiiiiiiiiiiircn e 6-1
Simple EXPIeSSIONSccoccooiiiiiiiiiiicireereereeee ettt e 6-3
Compound EXPIreSsions ... 6-4
CASE EXPIESSIONScoiiiiiiiiiiiiiiiicicici st s s 6-5
ColUmN EXPIESSIONSooviiiiiiiiiiiiieiireereeree ettt ettt 6-6
CURSOR EXPIeSSIONS......c.coiiiiiiiiiiiiiiiiciiccc bbb 6-7
Datetime EXPIeSSions ..o 6-8
FUunction EXPIESSIONSccocoiriiiriiiniiieiiieiieeeetcteeeeere ettt nens 6-10
Interval EXPIeSSIONSccccoiiiiiiiiiiiiiiiiiici s 6-10
Model EXPIESSIONSc.cocuiiiiiiiiiiiiiiiicice s 6-11
Object Access EXPIeSSIONScccovuiuiiiiiiiiiiiiiiiii e 6-13
Placeholder EXPIreSSIONS ...t 6-14
Scalar Subquery EXPressions ... 6-14
Type Constructor EXpressions ... 6-14
EXPression LiStS ... s 6-16

Conditions

ADbOout SQL CONAItIONS.....c.eoiiiiiiieieiieee ettt ettt ettt b et et e et e b et et et enteseenesaesaeeaas 7-1
Condition Precedence........ccccoiuiiiiiiiiiiiiiicccccc e 7-3
Comparison CONAItIONS ... 7-4
Simple Comparison CoNditionsccceiiiiiiiiiiicice e 7-5
Group Comparison Conditions ... 7-6
Floating-Point CONditions ..o 7-7
Logical CONAItIONSccc.oviiiiiiiiiiiii s 7-7
Model CONAItIONS ..o 7-9
IS ANY CONAItION .oviiiiiiiiiiiici e 7-9
IS PRESENT CONAItIONcuiuiiiiiiiiiiiiciiiiiceeccee s 7-10
Multiset CONAItiONSccccoiiiiiiiiiiiii s 7-11
IS A SET CONAItiON ..ot 7-11
IS EMPTY CONAITION ..ottt 7-12
MEMBER CONAILION ...ttt eaaes 7-12
SUBMULTISET CONditioncccccoiiiiiiiiiiiiiiiiiiiccicccc s 7-13
Pattern-matching Conditions ... 7-14
LIKE CONAIION ..ottt 7-14
REGEXP_LIKE CONAItION «..ovviiiiieieieieieieieieieieieieieieieteieteseieneaeteiesese e seaesesssessaseeseesssasessssessesasenes 7-17
NUIL CONAIHONS ... 7-19
XML CONditions ..o 7-19
EQUALS_PATH Conditionccccoviiiiiiiiiiiiiiiiiciinccieeesc s 7-19
UNDER_PATH CONAIHION ..ottt 7-20
Compound CONAItIONSc.coeiiiiriiiiiiiccee e 7-20
BETWEEN CONdItiONscccocoiiiiiiiiiiiiiiiic s 7-21
EXISTS CONAItION ..o s 7-22
IN CONdition ... s 7-22
IS OF type CONAItion ..o 7-24

Common SQL DDL Clauses

ALLIOCATE_CXTCHE_CLAMSE ...ttt eae e e e e st sseaae s seaeeesnaaeeseseeseesaeesenneeean 8-2
COMSTIAINE ...ttt ettt et e et e e teestbe e teeess e e be e saeeabeeessaessaesseassaesseeassaansaessssansaeasseansaesssannseenns 8-4
ACALIOCATE_UNUSOA_CLAUSE ... eeeeeeeeeee e e et eeeeaeeeeeaeessseteesesaeeseseesarseesseseesanees 8-27
JIle_SPECIfICALIONcocooviiiiiiiiiiii s 8-29
[0GGING CIAUSE ... 8-37
PATALLEL_CLAUSE ...ttt 8-40
physical_attributes_ClAUSE ... 8-43
SEZE_CLAUSE ..ottt e et e et e st e e e et e e e s st e e saateesaaaeeseaseesaaseeesateeessaeesenneeessaesnans 8-46
SEOTAGE_CLAUSE ... 8-47

SQL Queries and Subqueries

About Queries and SUDQUETIEScccoeoiiiiiiiiiceee et 9-1
Creating Simple QUETIEs ... s 9-2
Hierarchical QUETIEScc.coieiieiiieieieieeeee ettt ettt ettt et et e b et e e b essensenseneeseeseesessessesas 9-3

Hierarchical Query EXamplescccccciiiiiiiiiiiiiiiiiceceeereee e 9-5
The UNION [ALL], INTERSECT, MINUS OpPeratorscccocoecvuviniiiniiiiiiiiniiiincnsnnens 9-8

XV

10

11

XVi

JOIIIS ettt ettt et e s b s st ettt sae e e 9-10
JOIN CONAITIONS ..vereieiieieriieierieieeeete st et se et et e st et e seessesseessesseessesseessesseensessesnsensesnsensesnsensennes 9-10
EQUIJOINS weieiiietieietet ettt 9-11
SEIE JOINIS vttt ettt ettt ettt ettt et et e st e st e st eh e e b e e be b e st et e st et e st en e e st eheebeebeebestenean 9-11
Cartesian Products ... 9-11
INDNET JOINS ittt ettt st bt et et s bt et e bt et sbeenaesbeeaesbeen 9-11
OULET JOINS ettt ettt ettt et e s bt et e sbe e be s bt et e ebt et e eae e tesbeeneesaeeaesuean 9-12
ANLHOINS it 9-13
SEMIJOINS .vivvviiiiicetc s 9-13

USING SUDQUETIEScooviiiiiiiiii s 9-13

Unnesting of Nested Subqueries ... 9-15

Selecting from the DUAL Table ..o 9-15

Distributed QUETIESc.ooiiiiiiiieieieee et ettt sttt st ettt et ea st eae bt b e b eentan 9-15

SQL Statements: ALTER CLUSTER to ALTER JAVA

Types of SQL Statementscccccovvviiiiiiiiiiiiiiiiiii s 10-1
Data Definition Language (DDL) Statementscccoceeuvrerrvirinirrnnrrrrreeereeeeeeeeeeeeeeaes 10-1
Data Manipulation Language (DML) Statementsc.ccoooeieieiiiniiiiiinceccce, 10-2
Transaction Control Statementscccccociiiiiiiiiiiiiiii 10-3
Session Control Statementscooeeveiiieieieieiieee e 10-3
System Control Statementc.couiiiiiiii 10-3
Embedded SQL StatemeENtScccoecieiuieiiiieieiieteeeereere ettt et te e te e s teea et e essesreennesreennas 10-3

How the SQL Statement Chapters are Organized ..., 10-4

ALTER CLUSTER ..ottt 10-5

ALTER DATABASE ...t s 10-9

ALTER DIMENSIONccoooiiiiiiiiiiiii s e 10-44

ALTER DISKGROUPccooviiiiiiiiiiii s s s ssa s saenas 10-47

ALTER FLASHBACK ARCHIVEcooiiiiiiiiiiiiiiicsssssisss e 10-62

ALTER FUNCTION ..ottt 10-65

ALTER INDEX ..ot sa s ssaenas 10-66

ALTER INDEXTYPEcocoooiiiiiiiiiiic s 10-85

ALTER JAVA s 10-88

SQL Statements: ALTER MATERIALIZED VIEW to ALTER SYSTEM

ALTER MATERIALIZED VIEWocciiiiiiiiiiiiiiitcine ettt 11-2
ALTER MATERIALIZED VIEW LOGcccoiiiiiiiiiiiiiiiictreeeeeestetenet ettt 11-16
ALTER OPERATOR ...ttt ettt ettt ettt st sa sttt ettt eneeseebesnesaens 11-22
ALTER OUTLINE ..ottt 11-25
ALTER PACKARGE ..ottt sttt 11-27
ALTER PROCEDUREcoiitiiiittntnieeesttstetete ettt ettt sae e s sttt se et ene st esessesaens 11-28
ALTER PROFILEccoooiiiiiiiiiiiiicet ettt st 11-29
ALTER RESOURCE COST ..ottt sttt saeas 11-32
ALTER ROLE ..ottt ettt ettt ettt et st et s st a e et ese et eneeneebennesaeas 11-35
ALTER ROLLBACK SEGMENTccooiiiiiiiiiiciiccectceeesee e 11-37
ALTER SEQUENCEc..ooiiiiiiiitt ettt st e 11-40
ALTER SESSION ...ttt sttt et ettt ettt ettt it sa e s b s et et e eseese e st eneeseesessesaens 11-42

12

13

14

15

Initialization Parameters and ALTER SESSION........cooouiiiiiiiiiieeeeee e eeaeeessieee s
Session Parameters and ALTER SESSION ...ttt saveesaveeesnveesnnaes
ALTER SYSTEM ...ttt ettt et e e ettt e et e e eaeeeaa e eeaeeeaasenseesaeesnteesseeenaeenseesnseenseens

SQL Statements: ALTER TABLE to ALTER TABLESPACE

ALTER TABLE ..ottt s
ALTER TABLESPACE ..ottt sttt s s

SQL Statements: ALTER TRIGGER to COMMIT

ALTER TRIGGERccooiiiiiiiecetee ettt
ALTER TYPE ..ottt ettt st s st sttt ettt st sb bbb nen

SQL Statements: CREATE CLUSTER to CREATE JAVA

CREATE CLUSTER ..ottt ettt ettt et sae v
CREATE CONTEXT ..ottt ettt ettt ettt st s st sae sttt et eaeenesuesae s b nens
CREATE CONTROLFILEccoiiiiiiiiiiiictctceei et
CREATE DATABASE ...ttt sttt
CREATE DATABASE LINKooiiiiiitetceteteetetet et st sttt sae s e
CREATE DIMENSION ..ottt
CREATE DIRECTORY ...coooiiiiiiiiiinettetetetetet ettt st
CREATE DISKGROUPcooooiiiiiiiiiietnesteestetetete ettt sae s sa st sae b ne
CREATE FLASHBACK ARCHIVE ..ottt
CREATE FUNCTION ..ottt s sa et
CREATE INDEX ...ttt ettt ettt sttt s s st sa et et ettt sb e b nee
CREATE INDEXTYPE ...ttt
CREATE JAVA L.ttt s sttt eb e

SQL Statements: CREATE LIBRARY to CREATE SPFILE

CREATE LIBRARY ..ottt sttt sttt et sae b
CREATE MATERIALIZED VIEWc.ooiiiiiiiiiiititeietetetetet ettt st st sttt et et ene et st sae s s naens
CREATE MATERIALIZED VIEW LOGccoccoiiiiiiiiiiiiiiiiceneeeeteeeee e
CREATE OPERATORcooiiiiiiiiiit ettt sttt s
CREATE OUTLINE ...ttt ettt s sttt ettt et sb e b ee
CREATE PACKAGE ...ttt
CREATE PACKAGE BODY ..ottt
CREATE PFILE ..ottt ettt ettt ettt s s st sttt et sb e b ee
CREATE PROCEDUREcoooiiiiiiiiietctett sttt

xvii

16

17

xviii

CREATE PROFILEc..ooiiiiiiiiiiiietee sttt sttt et 15-48

CREATE RESTORE POINT ...c.oociiiiiiiiiiinieientetetetetetetet ettt saesae ettt ene s e 15-54
CREATE ROLE ...ttt e 15-57
CREATE ROLLBACK SEGMENToociiiiiiiiiiitiicicteietettetncseeie ettt e 15-60
CREATE SCHEMA ...ttt sttt ettt st st a ettt ettt ene e e 15-63
CREATE SEQUENCEooiiiiiiiii sttt e 15-65
CREATE SPFILEoooiiiiiieeee sttt sttt ettt 15-69

SQL Statements: CREATE SYNONYM to CREATE TRIGGER

CREATE SYNONYM ..ottt sttt et sb s sae 16-2
CREATE TABLE ...ttt sttt ettt be bttt et st sue b b sae 16-6
CREATE TABLESPACE ...ttt e 16-76
CREATE TRIGGERcoooiiiiiiiiiiine ettt sttt e 16-91

SQL Statements: CREATE TYPE to DROP ROLLBACK SEGMENT

CREATE TYPE ...ttt bttt s sa s sae 17-3
CREATE TYPE BODY ...ttt sttt sttt et st sne b sae 17-5
CREATE USER ..ottt st sa e s 17-7
CREATE VIEW Lottt sttt et 17-14
DELETE ..ottt ettt ettt et st st b e st a e e e et et ettt besaea 17-25
DISASSOCIATE STATISTICSoociiiiiie e 17-33
DROP CLUSTERooiiiiiiiiiiiiietcetet ettt et s a et e saeas 17-35
DROP CONTEXT ..ottt sttt ettt et st st b s s s st eneeneenesnesaeas 17-37
DROP DATABASE ...t e 17-38
DROP DATABASE LINK ..ottt sttt saeas 17-39
DROP DIMENSION ..ottt ettt st sae s saesae s e sae s s esn et eneeneenessesaens 17-40
DROP DIRECTORY ..ottt e 17-41
DROP DISKGROUP ..ottt sttt et 17-42
DROP FLASHBACK ARCHIVE ..ottt sttt saeas 17-44
DROP FUNCTION ..ottt e 17-45
DROP INDEX ...ttt ettt sttt sa b b st st nesaeas 17-47
DROP INDEXTYPE ...ttt ettt st sae s s st se e et ese st esesbesaens 17-49
DROP JAVA et 17-50
DROP LIBRARY .ottt sttt et e saea 17-51
DROP MATERIALIZED VIEW.....ccoooiiiiiitttinenentestestestestet ettt et sse st sae st s st eaenaeneenees 17-52
DROP MATERIALIZED VIEW LOGccooiiiiiiiiiiiiiiiccccetteeeec e 17-54
DROP OPERATOR ..ottt st sttt 17-56
DROP OUTLINE ..ottt ettt ettt ettt st bbb sttt se e ese e st eneeseesessesaeas 17-57
DROP PACKAGE ..ottt 17-59
DROP PROCEDUREoooiiiiiiiiiietteteetete ettt sttt 17-61
DROP PROFILE ..ottt ettt sttt sttt et ettt saesre b s b st sa et et eseeneeneeneeseesessesaeas 17-62
DROP RESTORE POINT ..ottt e 17-63
DROP ROLE ...ttt ettt et s s st e ne e 17-64
DROP ROLLBACK SEGMENToooiiiiiiiiiiiictetetetetet ettt sttt st et seeseese et et e sresseseens 17-65

18

SQL Statements: DROP SEQUENCE to ROLLBACK

19

DROP SEQUENCEoooiiiiiiieet e sttt sa e
DROP SYNONYM ..ottt ettt s st sttt s sae s
DROP TABLE ...ttt ettt sttt s st sttt ettt st a b besae b
DROP TABLESPACE ...ttt s
DROP TRIGGER ...ttt sttt s
DROP TYPE ...ttt sttt ettt st et sae et sa st a e ese et st saeesessesae s
DROP TYPE BODY ..ottt sttt s
DROP USER ...ttt ettt s s sttt st s s
DROP VIEW ..ottt sttt ettt st et sae st sb st a e ese st sae s st s snesaens

SQL Statements: SAVEPOINT to UPDATE

SAVEPOINT ..ottt sttt ettt ettt st bbb s ettt eueenesuesaeenebensens
SELECT ... s bbbttt sa b
SET CONSTRAINTIST ..ottt ettt s
SET ROLE ...ttt ettt ettt e s s bbb ettt sueen b e
SET TRANSACTION ..ottt
TRUNCATE CLUSTER ..ottt sttt s
TRUNGCATE TABLE ..ottt ettt et et sae et st sae sttt et e ese et s st s st sesbesaens
UPDATE ..ot b sttt sae

How to Read Syntax Diagrams

Graphic Syntax DIagrams............cccooiiiiiiiiiiii s
Required Keywords and Parameters ..o
Optional Keywords and Parameters ...
SYNEAX LOOPS ...oviiiiiiiiiii s
Multipart DIagramsccooiriiieiiiiiec s
Database ODJECESc.cccuiuiiiiiiiiiiiiiiiiie s

Oracle and Standard SQL

ANST STANAATAS ..coeeiiieeieeeeee et ettt e e et e e e et e e s et e e satesseateesanteessseeseasaeesseessnnteesanses
| SO T 2=Vt Ue -3 s =R

Xix

Oracle Compliance To Core SQL:2003...........cccccoiiiiiiiiniii s B-3

Oracle Support for Optional Features of SQL/Foundation:2003...............c.cccoiiiinniiinniccnan. B-8
Oracle Compliance with SQL/CLI:2003cccccccoeoiriiriineireeeeneeereeereeereeeseere e reesnenees B-19
Oracle Compliance with SQL/PSM:2003 ...t B-19
Oracle Compliance with SQL/MED:2003ccocooooiiiiiiiiiiiiiiceee e B-19
Oracle Compliance with SQL/OLB:2003.............cccoeoiriririiriiriieeeneeereeereeeee e esaenees B-19
Oracle Compliance with SQL/XML:2006...............cccocooiuiiiniiiiiiiiiiicc s B-19
Oracle Compliance with FIPS 127-2cccoooiiiiiiiiiiicc e B-26
Oracle Extensions to Standard SQLccooooiiiiiiiieceeee et ere e ere e s B-28
Oracle Compliance with Older Standards ... B-28
Character Set SUPPOTL.........oocoiiiiiii e B-28
C Oracle Regular Expression Support
Multilingual Regular Expression Syntax ... C-1
Regular Expression Operator Multilingual Enhancements...............cccccocoooonniinnnn, C-2
Perl-influenced Extensions in Oracle Regular EXpressionsccccoooeiininiiiiiiiciiiennn, C-3
D Oracle Database Reserved Words
E Extended Examples
Using Extensible INAeXingccccocoiiiiiiiiiiiiiiiiic s E-1
Using XML in SQL Statementsccccooiiiiiiiiiiccc e E-8
Index

XX

Audience

Preface

This reference contains a complete description of the Structured Query Language
(SQL) used to manage information in an Oracle Database. Oracle SQL is a superset of
the American National Standards Institute (ANSI) and the International Standards
Organization (ISO) SQL:1999 standard.

This Preface contains these topics:
= Audience

= Documentation Accessibility
= Related Documents

s Conventions

The Oracle Database SQL Language Reference is intended for all users of Oracle SQL.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents

For more information, see these Oracle resources:

» Oracle Database PL/SQL Language Reference for information on PL/SQL, the
procedural language extension to Oracle SQL

» Pro*C/C++ Programmer’s Guide, Oracle SQL*Module for Ada Programmer’s Guide, and
the Pro*COBOL Programmer’s Guide for detailed descriptions of Oracle embedded
SQL

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database

XXi

installation. Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

Conventions

XXii

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

What's New in the SQL Language Reference?

This section describes new features of Oracle Database 11¢ and provides pointers to
additional information.

For information on features that were new in earlier versions of Oracle Database, refer
to the documentation for the earlier release.

Oracle Database 11g Release 1 New Features in the SQL Language
Reference

Structural Changes in the SQL Language Reference

A number of SQL statement are constructed almost entirely of PL/SQL elements.
Those statements continue to appear in this reference, but the bulk of their syntax and
semantics has been moved to Oracle Database PL/SQL Language Reference. The following
table contains links to both the abbreviated SQL syntax and semantics in this book and
to the full syntax and semantics in Oracle Database PL/SQL Language Reference.

Abbreviated SQL Section

Full Syntax and Semantics

CREATE FUNCTION on page 14-52 CREATE FUNCTION
CREATE PACKAGE on page 15-40 CREATE PACKAGE
CREATE PACKAGE BODY on page 15-42 CREATE PACKAGE BODY
CREATE PROCEDURE on page 15-46 CREATE PROCEDURE
CREATE TRIGGER on page 16-91 CREATE TRIGGER
CREATE TYPE on page 17-3 CREATE TYPE
CREATE TYPE BODY on page 17-5 CREATE TYPE BODY
ALTER FUNCTION on page 10-65 ALTER FUNCTION
ALTER PACKAGE on page 11-27 ALTER PACKAGE
ALTER PROCEDURE on page 11-28 ALTER PROCEDURE
ALTER TRIGGER on page 13-2 ALTER TRIGGER
ALTER TYPE on page 13-4 ALTER TYPE

New Features in the SQL Language Reference
The following top-level SQL statements are new or enhanced in this release:

= ALTER DATABASE on page 10-9 has been enhanced as follows:

xXiii

XXiv

The clause managed_standby_recovery on page 10-22 has been greatly
simplified. A number of subclauses have been deprecated as the database now
handles much of the recovery process automatically.

The supplemental_db_logging on page 10-31 contains new syntax that lets you
enable or disable supplemental logging of PL/SQL calls.

The standby_database_clauses on page 10-33 have new syntax that lets you
convert a physical standby database into a snapshot standby database or
convert a snapshot standby database into a physical standby database.

The clause managed_standby_recovery on page 10-22 has new KEEP IDENTITY
syntax that lets you use the rolling upgrade feature provided by a logical
standby and also revert to the original configuration of a primary database
and a physical standby.

ALTER DISKGROUP on page 10-47 has been enhanced as follows:

The check_diskgroup_clause on page 10-54 has simplified syntax for checking
the consistency of disk groups, disks, and files in an Automatic Storage
Management environment.

The clause diskgroup_availability on page 10-58 offers new options when
mounting a disk group.

New clauses disk_offline_clause on page 10-53 and disk_online_clause on
page 10-53 let you take a disk offline for repair and then bring it back online.

ALTER INDEX on page 10-66 has been enhanced as follows:

A new MIGRATE parameter lets you migrate a domain index from
user-managed storage tables to system-managed storage tables.

A new INVISIBLE parameter lets you modify an index so that it is invisible to
the optimizer.

The "PARAMETERS Clause" on page 10-77 now lets you rebuild an XMLIndex
index as well as a domain index.

ALTER SYSTEM on page 11-55 has been enhanced as follows:

New syntax lets you kill a session on another instance in an Oracle Real
Application Clusters (Oracle RAC) environment.

New rolling_migration_clauses on page 11-62 let you prepare an Automatic
Storage Management cluster for migration and return it to normal operation
after all nodes have migrated to the same software version.

ALTER TABLE on page 12-2 has been enhanced as follows:

The behavior of the add_column_clause on page 12-40 when you specify a
DEFAULT value has been enhanced for improved performance.

The syntax for READ ONLY | READ WRITE on page 12-38 lets you put a
table into read-only mode, to prevent DDL or DML changes during table
maintenance, and then back into read /write mode.

The clause add_table_partition on page 12-61 has expanded syntax to let you
add a system partition.

The flashback_archive_clause on page 12-37 lets you enable or disable historical
tracking for the table.

The add_column_clause on page 12-40 now lets you add a virtual column to a
table.

- New syntax lets you modify an XMLType table to add or remove one or more
XMLSchemas.

- A new clause alter_interval_partitioning on page 12-56 lets you convert a
range-partitioned table to an interval_partitioned table.

- A new dependent_tables_clause on page 12-70 lets you instruct the database to
cascade various partition maintenance operations on a table to
reference-partitioned child tables.

ALTER TABLESPACE on page 12-86 has new syntax that lets you shrink the space
taken by a temporary tablespace or an individual tempfile.

ASSOCIATE STATISTICS on page 13-22 has syntax that lets you specify that the
database should manage storage of statistics collected on a system-managed
domain index.

AUDIT on page 13-26 has new syntax that lets you audit various activities on data
mining models.

CALL on page 13-38 now permits positional, named, and mixed notation in the
argument to the routine being called, if the routine takes any arguments.

COMMENT on page 13-42 has a new MINING MODEL clause lets you provide
descriptive comments for a data mining model.

CREATE DISKGROUP on page 14-44 and ALTER DISKGROUP on page 10-47
have new syntax that lets you set various attributes of a disk group.

The new statements CREATE FLASHBACK ARCHIVE on page 14-49, ALTER
FLASHBACK ARCHIVE on page 10-62, and DROP FLASHBACK ARCHIVE on
page 17-44 let you create, modify, and drop flashback data archives, which in turn
let you track historical changes to tables.

CREATE INDEX on page 14-54 has been enhanced as follows:

- Anew local_domain_index_clause on page 14-71 lets you create a locally
partitioned domain index.

— The index_attributes on page 14-65 have been modified to let you create an
index that is invisible to the optimizer.

- Anew XMLIndex_clause on page 14-71 lets you create an XMLIndex index for
XML data.

CREATE INDEXTYPE on page 14-79 and ALTER INDEXTYPE on page 10-85 let
you specify that domain indexes built on the subject indextypes can be range
partitioned, and will have their storage tables and partition maintenance
operations managed by the database.

CREATE PFILE on page 15-44 has new syntax that lets you create a parameter file
from current system-wide parameter settings.

CREATE RESTORE POINT on page 15-54 has new syntax that lets you create a
restore point for a specified datetime or SCN in the past, and to preserve a
flashback database.

CREATE SPFILE on page 15-69 has new syntax that lets you create a system
parameter file from current system-wide parameter settings.

CREATE TABLE on page 16-6 has been enhanced as follows:

— The flashback_archive_clause on page 16-59 lets you create the table with
tracking of historical changes enabled

XXV

XXVi

- The clause system_partitioning on page 16-55 lets you partition the table BY
SYSTEM

— A new virtual_column_definition on page 16-27 lets you create a virtual column.
- New syntax for XML storage lets you store XML data in binary XML format.

— A new clause reference_partitioning on page 16-51 lets you partition a table by
reference to another partitioned table.

— The LOB_parameters on page 16-40 now include a SECUREFILE parameter,
which lets you specify a new storage for LOBs that is faster, more efficient, and
allows for new features such as LOB compression, encryption, and
deduplication.

- Anew LOB_compression_clause on page 16-42 lets you enable or disable
server-side LOB compression for LOBs using SecureFile storage.

- Anew LOB_deduplicate_clause on page 16-42 lets you coalesce duplicate data
into a single shared repository, reducing storage consumption and simplifying
storage management for LOBs using SecureFile storage.

— The LOB_parameters on page 16-40 now include ENCRYPT and DECRYPT clauses
to enable and disable encryption of LOB columns for LOBs using SecureFile
storage.

CREATE TABLESPACE on page 16-76 has new syntax which, along with a new
ENCRYPT keyword in the storage_clause on page 8-47, lets you encrypt an entire
tablespace.

DROP DISKGROUP on page 17-42 has a new FORCE keyword that lets you drop a
disk group that can no longer be mounted by an Automatic Storage Management
instance.

GRANT on page 18-33 contains several new system and object privileges that
enable the grantee to work with data mining models.

LOCK TABLE on page 18-72 has new syntax that lets you specify the maximum
number of seconds the statement should wait to obtain a DML lock on the table.

MERGE on page 18-75 now supports operations on tables with domain indexes.

SELECT on page 19-4 has new PIVOT syntax that lets you rotate rows into
columns. A new UNPIVOT operation lets you query data to rotate columns into
rows.

The following SQL built-in functions have been added or enhanced:

CUBE_TABLE on page 5-66 is a new built-in function that extracts data from a
cube or dimension and returns it in the two-dimensional format of a relational
table.

INSERTXMLAFTER on page 5-118 let you add one or more nodes of any kind
immediately after a target node that is not an attribute node.

REGEXP_INSTR on page 5-205 and REGEXP_SUBSTR on page 5-211 now have an
optional subexpr parameter that lets you target a particular substring of the
regular expression being evaluated.

REGEXP_COUNT on page 5-203 is a new built-in function that counts the number
of occurrences of a specified regular expression pattern in a source string.

PREDICTION on page 5-177, PREDICTION_COST on page 5-181, and
PREDICTION_SET on page 5-187 have been enhanced. New syntax let you specify

that the stored cost matrix should be used only if it is available, or to specify a cost
matrix inline.

PREDICTION_BOUNDS on page 5-179 is a new function that returns the lower
and upper confidence bounds for a prediction.

XMLCAST on page 5-334 and XMLEXISTS on page 5-344 are two new functions
that let you cast XML data to SQL scalar datatypes and determine whether an
XQuery expression returns a nonempty XQuery sequence, respectively.

XMLDIFF on page 5-339 and XMLPATCH on page 5-347 are two new functions
that provide SQL interfaces to the corresponding XMLDiff and XMLPatch C APIs.
They let you compare two XMLType documents and use the diff file to patch an
XMLType document.

The following miscellaneous changes have been made:

In earlier releases, one form of expression in Chapter 6, "Expressions" was the
variable expression. This form has been renamed to placeholder expression for
consistency with other books in the documentation set. See "Placeholder
Expressions" on page 6-14.

In earlier releases, the TRUNCATE statement was presented as a single statement
with separate syntactic branches for TABLE and CLUSTER. That command has now
been divided into TRUNCATE CLUSTER on page 19-60 and TRUNCATE TABLE
on page 19-62 for consistency with other top-level SQL statements. No actual
syntax or semantic changes have occurred.

Two new hints, "RESULT_CACHE Hint" on page 2-95 and "NO_RESULT_CACHE
Hint" on page 2-89, let you override settings of the RESULT_CACHE_MODE
initialization parameter.

"Function Expressions" on page 6-10 now permit positional, named, and mixed
notation in the argument to a user-defined function being used as an expression.

The index partition_descriptionsyntax of ALTER TABLE on page 12-2 and
ALTER INDEX on page 10-66 now lets you specify parameters for a partition of a
domain index.

A new object type object type is supported with Oracle Multimedia. See
ORDDicom on page 2-35

XXVii

XXViii

1

Introduction to Oracle SQL

Structured Query Language (SQL) is the set of statements with which all programs
and users access data in an Oracle database. Application programs and Oracle tools
often allow users access to the database without using SQL directly, but these
applications in turn must use SQL when executing the user's request. This chapter
provides background information on SQL as used by most database systems.

This chapter contains these topics:
= History of SQL
s SQL Standards

» Recent Enhancements

m Lexical Conventions

= Tools Support

History of SQL

Dr. E. F. Codd published the paper, "A Relational Model of Data for Large Shared Data
Banks", in June 1970 in the Association of Computer Machinery (ACM) journal,
Communications of the ACM. Codd's model is now accepted as the definitive model for
relational database management systems (RDBMS). The language, Structured English
Query Language (SEQUEL) was developed by IBM Corporation, Inc., to use Codd's
model. SEQUEL later became SQL (still pronounced "sequel”). In 1979, Relational
Software, Inc. (now Oracle) introduced the first commercially available
implementation of SQL. Today, SQL is accepted as the standard RDBMS language.

SQL Standards

Oracle strives to comply with industry-accepted standards and participates actively in
SQL standards committees. Industry-accepted committees are the American National
Standards Institute (ANSI) and the International Organization for Standardization
(ISO), which is affiliated with the International Electrotechnical Commission (IEC).
Both ANSI and the ISO/IEC have accepted SQL as the standard language for
relational databases. When a new SQL standard is simultaneously published by these
organizations, the names of the standards conform to conventions used by the
organization, but the standards are technically identical.

The latest SQL standard was adopted in July 2003 and is often called SQL:2003. One
part of the SQL standard, Part 14, SQL/XML (ISO/IEC 9075-14) was revised in 2006

Introduction to Oracle SQL 1-1

SQL Standards

and is often referenced as "SQL/XML:2006". The formal names of this standard, with
the exception of SQL /XML, are:

= ANSI/ISO/IEC 9075:2003, "Database Language SQL", Parts 1
("SQL/Framework"), 2 ("SQL/Foundation"), 3 ("SQL/CLI"), 4 ("SQL/PSM"), 9
("SQL/MED"), 10 ("SQL/OLB"), 11("SQL/Schemata"), and 13 ("SQL/JRT")

= ISO/IEC 9075:2003, "Database Language SQL", Parts 1 ("SQL/Framework"), 2
("SQL/Foundation"), 3 ("SQL/CLI"), 4 ("SQL/PSM"), 9 ("SQL/MED"), 10
("SQL/OLB"), 11("SQL/Schemata"), and 13 ("SQL/JRT")

See Also: Appendix B, "Oracle and Standard SQL" for a detailed
description of Oracle Database conformance to the SQL:2003
standards
The formal names of the revised part 14 are:
= ANSI/ISO/IEC 9075-14:2006, "Database Language SQL", Part 14 ("SQL/XML")
s ISO/IEC 9075-14:2006, "Database Language SQL", Part 14 ("SQL/XML")

How SQL Works

The strengths of SQL provide benefits for all types of users, including application
programmers, database administrators, managers, and end users. Technically
speaking, SQL is a data sublanguage. The purpose of SQL is to provide an interface to
a relational database such as Oracle Database, and all SQL statements are instructions
to the database. In this SQL differs from general-purpose programming languages like
C and BASIC. Among the features of SQL are the following:

» It processes sets of data as groups rather than as individual units.
= It provides automatic navigation to the data.

= It uses statements that are complex and powerful individually, and that therefore
stand alone. Flow-control statements were not part of SQL originally, but they are
found in the recently accepted optional part of SQL, ISO/IEC 9075-5: 1996.
Flow-control statements are commonly known as "persistent stored modules"
(PSM), and the PL/SQL extension to Oracle SQL is similar to PSM.

SQL lets you work with data at the logical level. You need to be concerned with the
implementation details only when you want to manipulate the data. For example, to
retrieve a set of rows from a table, you define a condition used to filter the rows. All
rows satisfying the condition are retrieved in a single step and can be passed as a unit
to the user, to another SQL statement, or to an application. You need not deal with the
rows one by one, nor do you have to worry about how they are physically stored or
retrieved. All SQL statements use the optimizer, a part of Oracle Database that
determines the most efficient means of accessing the specified data. Oracle also
provides techniques that you can use to make the optimizer perform its job better.

SQL provides statements for a variety of tasks, including:
= Querying data

= Inserting, updating, and deleting rows in a table

s Creating, replacing, altering, and dropping objects

= Controlling access to the database and its objects

= Guaranteeing database consistency and integrity

SQL unifies all of the preceding tasks in one consistent language.

1-2 Oracle Database SQL Language Reference

Lexical Conventions

Common Language for All Relational Databases

All major relational database management systems support SQL, so you can transfer
all skills you have gained with SQL from one database to another. In addition, all
programs written in SQL are portable. They can often be moved from one database to
another with very little modification.

Recent Enhancements

The Oracle Database SQL engine is the underpinning of all Oracle Database
applications. Oracle SQL continually evolves to meet the growing demands of
database applications and to support emerging computing architectures, APIs, and
network protocols.

In addition to traditional structured data, SQL is capable of storing, retrieving, and
processing more complex data:

» Object types, collection types, and REF types provide support for complex
structured data. A number of standard-compliant multiset operators are now
supported for the nested table collection type.

= Large objects (LOBs) provide support for both character and binary unstructured
data. A single LOB can reach a size of 8 to 128 terabytes, depending on database
block size.

s The XMLType datatype provides support for semistructured XML data.
Native support of standards-based capabilities includes the following features:

= Native regular expression support lets you perform pattern searches on and
manipulate loosely formatted, free-form text within the database.

= Native floating-point datatypes based on the IEEE754 standard improve the
floating-point processing common in XML and Java standards and reduce the
storage space required for numeric data.

s Built-in SQL aggregate and analytic functions facilitate access to and manipulation
of data in data warehouses and data marts.

Ongoing enhancements in Oracle SQL will continue to provide comprehensive
support for the development of versatile, scalable, high-performance database
applications.

Using Enterprise Manager

Many of the operations you can accomplish using SQL syntax can be done much more
easily using Enterprise Manager. For more information, see the Oracle Enterprise
Manager documentation set, Oracle Database 2 Day DBA, or any of the Oracle Database
2 Day + books.

Lexical Conventions

The following lexical conventions for issuing SQL statements apply specifically to the
Oracle Database implementation of SQL, but are generally acceptable in other SQL
implementations.

When you issue a SQL statement, you can include one or more tabs, carriage returns,
spaces, or comments anywhere a space occurs within the definition of the statement.
Thus, Oracle Database evaluates the following two statements in the same manner:

Introduction to Oracle SQL 1-3

Tools Support

SELECT last_name,salary*12,MONTHS_BETWEEN (hire_date, SYSDATE)
FROM employees
WHERE department_id = 30
ORDER BY last_name;

SELECT last_name,
salary * 12,
MONTHS_BETWEEN (hire_date, SYSDATE)
FROM employees
ORDER BY last_name;

Case is insignificant in reserved words, keywords, identifiers and parameters.
However, case is significant in text literals and quoted names. Refer to "Text Literals"
on page 2-45 for a syntax description of text literals.

Note: SQL statements are terminated differently in different
programming environments. This documentation set uses the default
SQL*Plus character, the semicolon (;).

Tools Support
Oracle provides a number of utilities to facilitate your SQL development process:

s Oracle SQL Developer is a graphical tool that lets you browse, create, edit, and
delete (drop) database objects, edit and debug PL/SQL code, run SQL statements
and scripts, manipulate and export data, and create and view reports. With SQL
Developer, you can connect to any target Oracle database schema using standard
Oracle database authentication. Once connected, you can perform operations on
objects in the database. You can also connect to schemas for selected third-party
(non-Oracle) databases, such as MySQL, Microsoft SQL Server, and Microsoft
Access, view metadata and data in these databases, and migrate these databases to
Oracle.

= SQL*Plus is an interactive and batch query tool that is installed with every Oracle
Database server or client installation. It has a command-line user interface and a
web-based user interface called iSQL*Plus.

= Oracle JDeveloper is a multiple-platform integrated development environment
supporting the complete lifecycle of development for Java, Web services, and SQL.
It provides a graphical interface for executing and tuning SQL statements and a
visual schema diagrammer (database modeler). It also supports editing,
compiling, and debugging PL/SQL applications.

s Oracle Application Express is a hosted environment for developing and deploying
database-related Web applications. SQL Workshop is a component of Oracle
Application Express that lets you view and manage database objects from a Web
browser. SQL Workshop offers quick access to a SQL command processor and a
SQL script repository.

See Also: SQL*Plus User’s Guide and Reference and Oracle Database
Application Express User’s Guide for more information on these
products

The Oracle Call Interface and Oracle precompilers let you embed standard SQL
statements within a procedure programming language.

s The Oracle Call Interface (OCI) lets you embed SQL statements in C programs.

1-4 Oracle Database SQL Language Reference

Tools Support

s The Oracle precompilers, Pro*C/C++ and Pro*COBOL, interpret embedded SQL
statements and translate them into statements that can be understood by C/C++
and COBOL compilers, respectively.

See Also: Oracle C++ Call Interface Programmer’s Guide, Pro*COBOL
Programmer’s Guide, and Oracle Call Interface Programmer’s Guide for
additional information on the embedded SQL statements allowed in
each product

Most (but not all) Oracle tools also support all features of Oracle SQL. This reference
describes the complete functionality of SQL. If the Oracle tool that you are using does
not support this complete functionality, then you can find a discussion of the
restrictions in the manual describing the tool, such as SQL*Plus User’s Guide and
Reference.

Introduction to Oracle SQL 1-5

Tools Support

1-6 Oracle Database SQL Language Reference

2

Datatypes

Basic Elements of Oracle SQL

This chapter contains reference information on the basic elements of Oracle SQL.
These elements are the simplest building blocks of SQL statements. Therefore, before
using the statements described in Chapter 10 through Chapter 19, you should
familiarize yourself with the concepts covered in this chapter.

This chapter contains these sections:

= Datatypes

= Datatype Comparison Rules

= Literals

= Format Models

= Nulls

s Comments

= Database Objects

= Schema Object Names and Qualifiers

= Syntax for Schema Objects and Parts in SQL Statements

Each value manipulated by Oracle Database has a datatype. The datatype of a value
associates a fixed set of properties with the value. These properties cause Oracle to
treat values of one datatype differently from values of another. For example, you can
add values of NUMBER datatype, but not values of RAW datatype.

When you create a table or cluster, you must specify a datatype for each of its columns.
When you create a procedure or stored function, you must specify a datatype for each
of its arguments. These datatypes define the domain of values that each column can
contain or each argument can have. For example, DATE columns cannot accept the
value February 29 (except for a leap year) or the values 2 or 'SHOE'. Each value
subsequently placed in a column assumes the datatype of the column. For example, if
you insert '01-JAN-98"' into a DATE column, then Oracle treats the '01-JAN-98"
character string as a DATE value after verifying that it translates to a valid date.

Oracle Database provides a number of built-in datatypes as well as several categories
for user-defined types that can be used as datatypes. The syntax of Oracle datatypes
appears in the diagrams that follow. The text of this section is divided into the
following sections:

s Oracle Built-in Datatypes

Basic Elements of Oracle SQL 2-1

Datatypes

datatypes::=

= ANSI, DB2, and SQL/DS Datatypes
s User-Defined Types

s Oracle-Supplied Types

s Datatype Comparison Rules

= Data Conversion

A datatype is either scalar or nonscalar. A scalar type contains an atomic value,
whereas a nonscalar (sometimes called a "collection") contains a set of values. A large
object (LOB) is a special form of scalar datatype representing a large scalar value of
binary or character data. LOBs are subject to some restrictions that do not affect other
scalar types because of their size. Those restrictions are documented in the context of
the relevant SQL syntax.

See Also: "Restrictions on LOB Columns" on page 2-25

The Oracle precompilers recognize other datatypes in embedded SQL programs. These
datatypes are called external datatypes and are associated with host variables. Do not
confuse built-in datatypes and user-defined types with external datatypes. For
information on external datatypes, including how Oracle converts between them and
built-in datatypes or user-defined types, see Pro*COBOL Programmer’s Guide, and
Pro*C/C++ Programmer’s Guide.

Oracle_built_in_datatypes

ANSI_supported_datatypes

user_defined_types
' Oracle_supplied_types -

Oracle_built_in_datatypes::=

character_datatypes

number_datatypes

I

—(Iong_and_raw_datatypes)—

datetime_datatypes
large_object_datatypes

rowid_datatypes

ll

For descriptions of the Oracle built-in datatypes, refer to "Oracle Built-in Datatypes"
on page 2-6.

2-2 Oracle Database SQL Language Reference

Datatypes

character_datatypes::=

BYTE

| BYTE |
=)

size %
f| CHAR

ey
CHAR

- 0@ Lo
-

NCHAR

number_datatypes::=

NUMBER

“ precision a

BINARY_FLOAT

BINARY_DOUBLE
long_and_raw_datatypes::=
o)
[—
0,0

datetime_datatypes::=

f| DATE
LOCAL

ﬁ@e(fractional_seconds_precision}% WITH H TIME ZONE
—| TIMESTAMP
0 0
H INTERVAL || YEAR | 4 TO |->| MONTH
o o fe®—><fractional_seconds_precisionm
INTERVAL [+ DAY T0 H SECOND

Basic Elements of Oracle SQL 2-3

Datatypes

large_object _datatypes::=

rowid_datatypes::=

ROWID

e SO0 f

The ANSI-supported datatypes appear in the figure that follows. "ANSI, DB2, and
SQL/DS Datatypes" on page 2-28 discusses the mapping of ANSI-supported datatypes
to Oracle built-in datatypes.

ANSI_supported_datatypes::=

-VARYING

| CHARACTER ﬁ-_\
CHAR
il D@
NCHAR

®

scale
—- DECIMAL

DEC

— INT

D@D

-| DOUBLE |_>| PRECISION }

\| REAL

il

L

FLOAT

:

2-4 Oracle Database SQL Language Reference

Datatypes

Oracle_supplied_types::=

spatial_types

For a description of the expression_filter_type, refer to "Expression Filter Type" on
page 2-36. Other Oracle-supplied types follow:

any_types::=

SYS.AnyData
l SYS.AnyType .
l SYS.AnyDataSet '

For descriptions of the Any types, refer to "Any Types" on page 2-31.

XML_types::=
For descriptions of the XML types, refer to "XML Types" on page 2-32.
spatial_types::=

SDO_Geometry

SDO_Topo_Geometry

SDO_GeoRaster

For descriptions of the spatial types, refer to "Spatial Types" on page 2-33.

media_types::=

\(stillfimage,object,types)/

Basic Elements of Oracle SQL 2-5

Datatypes

still_image_object _types::=

S|_Stilllmage
SI_AverageColor
SI_PositionalColor
——{ SI_ColorHistogram |H—
Sl_Texture

S|_FeatureList

SI_Color

A

For descriptions of the media types, refer to "Media Types" on page 2-34.

Oracle Built-in Datatypes

The table that follows summarizes Oracle built-in datatypes. Refer to the syntax in the
preceding sections for the syntactic elements. The codes listed for the datatypes are
used internally by Oracle Database. The datatype code of a column or object attribute
is returned by the DUMP function.

Table 2-1 Built-in Datatype Summary

Code Datatype Description

1 VARCHAR2(size [BYTE | CHAR]) Variable-length character string having maximum length size
bytes or characters. Maximum size is 4000 bytes or characters,
and minimum is 1 byte or 1 character. You must specify size for
VARCHAR2.

BYTE indicates that the column will have byte length semantics.
CHAR indicates that the column will have character semantics.

1 NVARCHAR2(s1ize) Variable-length Unicode character string having maximum
length size characters. The number of bytes can be up to two
times size for AL16UTF16 encoding and three times size for UTF8
encoding. Maximum size is determined by the national
character set definition, with an upper limit of 4000 bytes. You
must specify size for NVARCHAR2.

2 NUMBER [(p[, s])] Number having precision p and scale s. The precision p can
range from 1 to 38. The scale s can range from -84 to 127. Both
precision and scale are in decimal digits. A NUMBER value
requires from 1 to 22 bytes.

2 FLOAT [(p)] A subtype of the NUMBER datatype having precision p. A FLOAT
value is represented internally as NUMBER. The precision p can
range from 1 to 126 binary digits. A FLOAT value requires from 1
to 22 bytes.

8 LONG Character data of variable length up to 2 gigabytes, or 23 -1
bytes. Provided for backward compatibility.

12 DATE Valid date range from January 1, 4712 BC, to December 31, 9999
AD. The default format is determined explicitly by the NLS_
DATE_FORMAT parameter or implicitly by the NLS_TERRITORY
parameter. The size is fixed at 7 bytes. This datatype contains the
datetime fields YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND. It
does not have fractional seconds or a time zone.

21 BINARY_FLOAT 32-bit floating point number. This datatype requires 5 bytes,
including the length byte.

2-6 Oracle Database SQL Language Reference

Datatypes

Table 2-1 (Cont.) Built-in Datatype Summary

Code

Datatype

Description

22

BINARY_DOUBLE

64-bit floating point number. This datatype requires 9 bytes,
including the length byte.

180

TIMESTAMP [(fractional_ seconds_
precision)]

Year, month, and day values of date, as well as hour, minute,
and second values of time, where fractional_seconds_
precisionis the number of digits in the fractional part of the
SECOND datetime field. Accepted values of fractional seconds_
precisionare 0 to 9. The default is 6. The default format is
determined explicitly by the NLS_DATE_FORMAT parameter or
implicitly by the NLS_TERRITORY parameter. The sizes varies
from 7 to 11 bytes, depending on the precision. This datatype
contains the datetime fields YEAR, MONTH, DAY, HOUR, MINUTE, and
SECOND. It contains fractional seconds but does not have a time
zone.

181

TIMESTAMP [(fractional_seconds)]
WITH TIME ZONE

All values of TIMESTAMP as well as time zone displacement value,
where fractional_ seconds_precisionis the number of digits
in the fractional part of the SECOND datetime field. Accepted
values are 0 to 9. The default is 6. The default format is
determined explicitly by the NLS_DATE_FORMAT parameter or
implicitly by the NLS_TERRITORY parameter. The size is fixed at
13 bytes. This datatype contains the datetime fields YEAR, MONTH,
DAY, HOUR, MINUTE, SECOND, TIMEZONE_HOUR, and TIMEZONE_
MINUTE. It has fractional seconds and an explicit time zone.

231

TIMESTAMP [(fractional_seconds)]
WITH LOCAL TIME ZONE

All values of TIMESTAMP WITH TIME ZONE, with the following
exceptions:

s Data is normalized to the database time zone when it is
stored in the database.

s When the data is retrieved, users see the data in the session
time zone.

The default format is determined explicitly by the NLS_DATE_
FORMAT parameter or implicitly by the NLS_TERRITORY parameter.
The sizes varies from 7 to 11 bytes, depending on the precision.

182

INTERVAL YEAR [(year_precision)]
TO MONTH

Stores a period of time in years and months, where year_
precisionis the number of digits in the YEAR datetime field.
Accepted values are 0 to 9. The default is 2. The size is fixed at 5
bytes.

183

INTERVAL DAY [(day_precision)] TO
SECOND [(fractional_seconds)]

Stores a period of time in days, hours, minutes, and seconds,
where

»s day precisionis the maximum number of digits in the DAY
datetime field. Accepted values are 0 to 9. The default is 2.

» fractional_seconds_precisionis the number of digits in
the fractional part of the SECOND field. Accepted values are 0
to 9. The default is 6.

The size is fixed at 11 bytes.

23

RAV(size)

Raw binary data of length size bytes. Maximum size is 2000
bytes. You must specify size for a RAW value.

24

LONG RAW

Raw binary data of variable length up to 2 gigabytes.

69

ROWID

Base 64 string representing the unique address of a row in its
table. This datatype is primarily for values returned by the ROWID
pseudocolumn.

208

UROWID [(size)]

Base 64 string representing the logical address of a row of an
index-organized table. The optional size is the size of a column
of type UROWID. The maximum size and default is 4000 bytes.

Basic Elements of Oracle SQL 2-7

Datatypes

Table 2-1 (Cont.) Built-in Datatype Summary

Code Datatype

Description

96 CHAR [(size [BYTE | CHAR])]

Fixed-length character data of length size bytes or characters.
Maximum size is 2000 bytes or characters. Default and
minimum sizeis 1 byte.

BYTE and CHAR have the same semantics as for VARCHAR2.

96 NCHAR[(s1ze)]

Fixed-length character data of length size characters. The
number of bytes can be up to two times size for AL16UTF16
encoding and three times size for UTF8 encoding. Maximum
sizeis determined by the national character set definition, with
an upper limit of 2000 bytes. Default and minimum sizeis 1
character.

112 CLOB

A character large object containing single-byte or multibyte
characters. Both fixed-width and variable-width character sets
are supported, both using the database character set. Maximum
size is (4 gigabytes - 1) * (database block size).

112 NCLOB

A character large object containing Unicode characters. Both
fixed-width and variable-width character sets are supported,
both using the database national character set. Maximum size is
(4 gigabytes - 1) * (database block size). Stores national character
set data.

113 BLOB

A binary large object. Maximum size is (4 gigabytes - 1) *
(database block size).

114 BFILE

Contains a locator to a large binary file stored outside the
database. Enables byte stream I/O access to external LOBs
residing on the database server. Maximum size is 4 gigabytes.

The sections that follow de
Database. For information
on page 2-44.

Character Datatypes

scribe the Oracle datatypes as they are stored in Oracle
on specifying these datatypes as literals, refer to "Literals"

Character datatypes store character (alphanumeric) data, which are words and

free-form text, in the datab

ase character set or national character set. They are less

restrictive than other datatypes and consequently have fewer properties. For example,

character columns can stor
only numeric values.

Character data is stored in

e all alphanumeric values, but NUMBER columns can store

strings with byte values corresponding to one of the

character sets, such as 7-bit ASCII or EBCDIC, specified when the database was
created. Oracle Database supports both single-byte and multibyte character sets.

These datatypes are used for character data:

s CHAR Datatype
= NCHAR Datatype

= NVARCHAR?2 Datatype

s VARCHAR?2 Datatype

For information on specifying character datatypes as literals, refer to "Text Literals" on

page 2-45.

2-8 Oracle Database SQL Language Reference

Datatypes

CHAR Datatype

The CHAR datatype specifies a fixed-length character string. Oracle ensures that all
values stored in a CHAR column have the length specified by size. If you insert a value
that is shorter than the column length, then Oracle blank-pads the value to column
length. If you try to insert a value that is too long for the column, then Oracle returns
an error.

The default length for a CHAR column is 1 byte and the maximum allowed is 2000
bytes. A 1-byte string can be inserted into a CHAR (10) column, but the string is
blank-padded to 10 bytes before it is stored.

When you create a table with a CHAR column, by default you supply the column length
in bytes. The BYTE qualifier is the same as the default. If you use the CHAR qualifier, for
example CHAR(10 CHAR), then you supply the column length in characters. A character
is technically a code point of the database character set. Its size can range from 1 byte
to 4 bytes, depending on the database character set. The BYTE and CHAR qualifiers
override the semantics specified by the NLS_LENGTH_SEMANTICS parameter, which has a
default of byte semantics. For performance reasons, Oracle recommends that you use
the NLS_LENGTH_SEMANTICS parameter to set length semantics and that you use the
BYTE and CHAR qualifiers only when necessary to override the parameter.

To ensure proper data conversion between databases with different character sets, you
must ensure that CHAR data consists of well-formed strings.

See Also: Oracle Database Globalization Support Guide for more
information on character set support and "Datatype Comparison
Rules" on page 2-36 for information on comparison semantics

NCHAR Datatype

The NCHAR datatype is a Unicode-only datatype. When you create a table with an NCHAR
column, you define the column length in characters. You define the national character
set when you create your database.

The maximum length of a column is determined by the national character set
definition. Width specifications of character datatype NCHAR refer to the number of
characters. The maximum column size allowed is 2000 bytes.

If you insert a value that is shorter than the column length, then Oracle blank-pads the
value to column length. You cannot insert a CHAR value into an NCHAR column, nor can
you insert an NCHAR value into a CHAR column.

The following example compares the translated_description column of the
pm.product_descriptions table with a national character set string:

SELECT translated_description FROM product_descriptions
WHERE translated_name = N'LCD Monitor 11/PM';

See Also: Oracle Database Globalization Support Guide for information
on Unicode datatype support

NVARCHAR2 Datatype

The NVARCHAR2 datatype is a Unicode-only datatype. When you create a table with an
NVARCHAR2 column, you supply the maximum number of characters it can hold. Oracle
subsequently stores each value in the column exactly as you specify it, provided the
value does not exceed the maximum length of the column.

Basic Elements of Oracle SQL 2-9

Datatypes

The maximum length of the column is determined by the national character set
definition. Width specifications of character datatype NVARCHAR2 refer to the number of
characters. The maximum column size allowed is 4000 bytes.

See Also: Oracle Database Globalization Support Guide for information
on Unicode datatype support.

VARCHAR?2 Datatype

The VARCHAR2 datatype specifies a variable-length character string. When you create a

VARCHAR2 column, you supply the maximum number of bytes or characters of data that
it can hold. Oracle subsequently stores each value in the column exactly as you specify
it, provided the value does not exceed the column's maximum length of the column. If
you try to insert a value that exceeds the specified length, then Oracle returns an error.

You must specify a maximum length for a VARCHAR2 column. This maximum must be
at least 1 byte, although the actual string stored is permitted to be a zero-length string
("). You can use the CHAR qualifier, for example VARCHAR2(10 CHAR), to give the
maximum length in characters instead of bytes. A character is technically a code point
of the database character set. You can use the BYTE qualifier, for example VARCHAR2(10
BYTE), to explicitly give the maximum length in bytes. If no explicit qualifier is
included in a column or attribute definition when a database object with this column
or attribute is created, then the length semantics are determined by the value of the
NLS_LENGTH_SEMANTICS parameter of the session creating the object. Independently of
the maximum length in characters, the length of VARCHAR2 data cannot exceed 4000
bytes. Oracle compares VARCHAR2 values using nonpadded comparison semantics.

To ensure proper data conversion between databases with different character sets, you
must ensure that VARCHAR2 data consists of well-formed strings. See Oracle Database
Globalization Support Guide for more information on character set support.

See Also: "Datatype Comparison Rules" on page 2-36 for
information on comparison semantics

VARCHAR Datatype

Do not use the VARCHAR datatype. Use the VARCHAR2 datatype instead. Although the
VARCHAR datatype is currently synonymous with VARCHAR2, the VARCHAR datatype is
scheduled to be redefined as a separate datatype used for variable-length character
strings compared with different comparison semantics.

Numeric Datatypes

The Oracle Database numeric datatypes store positive and negative fixed and
floating-point numbers, zero, infinity, and values that are the undefined result of an
operation—"not a number" or NAN. For information on specifying numeric datatypes as
literals, refer to "Numeric Literals" on page 2-46.

NUMBER Datatype

The NUMBER datatype stores zero as well as positive and negative fixed numbers with
absolute values from 1.0 x 10 to but not including 1.0 x 10'%. If you specify an
arithmetic expression whose value has an absolute value greater than or equal to 1.0 x
10", then Oracle returns an error. Each NUMBER value requires from 1 to 22 bytes.

Specify a fixed-point number using the following form:

NUMBER (p, s)

where:

2-10 Oracle Database SQL Language Reference

Datatypes

= pisthe precision, or the maximum number of significant decimal digits, where the
most significant digit is the left-most nonzero digit, and the least significant digit is
the right-most known digit. Oracle guarantees the portability of numbers with
precision of up to 20 base-100 digits, which is equivalent to 39 or 40 decimal digits
depending on the position of the decimal point.

= sisthescale, or the number of digits from the decimal point to the least significant
digit. The scale can range from -84 to 127.

Positive scale is the number of significant digits to the right of the decimal
point to and including the least significant digit.

Negative scale is the number of significant digits to the left of the decimal
point, to but not including the least significant digit. For negative scale the
least significant digit is on the left side of the decimal point, because the actual
data is rounded to the specified number of places to the left of the decimal
point. For example, a specification of (10,-2) means to round to hundreds.

Scale can be greater than precision, most commonly when e notation is used. When
scale is greater than precision, the precision specifies the maximum number of
significant digits to the right of the decimal point. For example, a column defined as
NUMBER (4, 5) requires a zero for the first digit after the decimal point and rounds all
values past the fifth digit after the decimal point.

It is good practice to specify the scale and precision of a fixed-point number column
for extra integrity checking on input. Specifying scale and precision does not force all
values to a fixed length. If a value exceeds the precision, then Oracle returns an error. If
a value exceeds the scale, then Oracle rounds it.

Specify an integer using the following form:

NUMBER (p)

This represents a fixed-point number with precision p and scale 0 and is equivalent to
NUMBER (p, 0).

Specify a floating-point number using the following form:

NUMBER

The absence of precision and scale designators specifies the maximum range and
precision for an Oracle number.

See Also: "Floating-Point Numbers" on page 2-12

Table 2-2 show how Oracle stores data using different precisions and scales.

Table 2-2 Storage of Scale and Precision

Actual Data Specified As Stored As

123.89 NUMBER 123.89

123.89 NUMBER (3) 124

123.89 NUMBER (3, 2) exceeds precision
123.89 NUMBER (4, 2) exceeds precision
123.89 NUMBER (5, 2) 123.89

123.89 NUMBER (6, 1) 123.9

123.89 NUMBER (6, -2) 100

Basic Elements of Oracle SQL 2-11

Datatypes

Table 2-2 (Cont.) Storage of Scale and Precision

Actual Data Specified As Stored As
.01234 NUMBER (4, 5) .01234
.00012 NUMBER (4, 5) .00012
.000127 NUMBER (4,5) .00013
.0000012 NUMBER (2, 7) .0000012
.00000123 NUMBER (2, 7) .0000012
1.2e-4 NUMBER (2, 5) 0.00012
1.2e-5 NUMBER(2, 5) 0.00001
FLOAT Datatype

The FLOAT datatype is a subtype of NUMBER. It can be specified with or without
precision, which has the same definition it has for NUMBER and can range from 1 to 126.
Scale cannot be specified, but is interpreted from the data. Each FLOAT value requires
from 1 to 22 bytes.

To convert from binary to decimal precision, multiply n by 0.30103. To convert from
decimal to binary precision, multiply the decimal precision by 3.32193. The maximum
of 126 digits of binary precision is roughly equivalent to 38 digits of decimal precision.

The difference between NUMBER and FLOAT is best illustrated by example. In the
following example the same values are inserted into NUMBER and FLOAT columns:

CREATE TABLE test (coll NUMBER(5,2), col2 FLOAT(5));
INSERT INTO test VALUES (1.23, 1.23);

INSERT INTO test VALUES (7.89, 7.89);
(
(

INSERT INTO test VALUES (12.79, 12.79);
INSERT INTO test VALUES (123.45, 123.45);

SELECT * FROM test;

coLl CoL2
1.23 1.2
7.89 7.9
12.79 13
123.45 120

In this example, the FLOAT value returned cannot exceed 5 binary digits. The largest
decimal number that can be represented by 5 binary digits is 31. The last row contains
decimal values that exceed 31. Therefore, the FLOAT value must be truncated so that its
significant digits do not require more than 5 binary digits. Thus 123.45 is rounded to
120, which has only two significant decimal digits, requiring only 4 binary digits.

Oracle Database uses the Oracle FLOAT datatype internally when converting ANSI
FLOAT data. Oracle FLOAT is available for you to use, but Oracle recommends that you
use the BINARY_FLOAT and BINARY_DOUBLE datatypes instead, as they are more robust.
Refer to "Floating-Point Numbers" on page 2-12 for more information.

Floating-Point Numbers

Floating-point numbers can have a decimal point anywhere from the first to the last
digit or can have no decimal point at all. An exponent may optionally be used
following the number to increase the range, for example, 1.777 €0 A scale value is not

2-12 Oracle Database SQL Language Reference

Datatypes

applicable to floating-point numbers, because the number of digits that can appear
after the decimal point is not restricted.

Binary floating-point numbers differ from NUMBER in the way the values are stored
internally by Oracle Database. Values are stored using decimal precision for NUMBER.
All literals that are within the range and precision supported by NUMBER are stored
exactly as NUMBER. Literals are stored exactly because literals are expressed using
decimal precision (the digits 0 through 9). Binary floating-point numbers are stored
using binary precision (the digits 0 and 1). Such a storage scheme cannot represent all
values using decimal precision exactly. Frequently, the error that occurs when
converting a value from decimal to binary precision is undone when the value is
converted back from binary to decimal precision. The literal 0.1 is such an example.

Oracle Database provides two numeric datatypes exclusively for floating-point
numbers:

BINARY_FLOAT BINARY_ FLOAT is a 32-bit, single-precision floating-point number
datatype. Each BINARY_FLOAT value requires 5 bytes, including a length byte.

BINARY_DOUBLE BINARY_DOUBLE is a 64-bit, double-precision floating-point number
datatype. Each BINARY_DOUBLE value requires 9 bytes, including a length byte.

In a NUMBER column, floating point numbers have decimal precision. In a BINARY_FLOAT
or BINARY_DOUBLE column, floating-point numbers have binary precision. The binary
floating-point numbers support the special values infinity and NaN (not a number).

You can specify floating-point numbers within the limits listed in Table 2-3 on
page 2-13. The format for specifying floating-point numbers is defined in "Numeric
Literals" on page 2-46.

Table 2-3 Floating Point Number Limits

Value BINARY_FLOAT BINARY_DOUBLE
Maximum positive finite value 3.40282E+38F 1.79769313486231E+308
Minimum positive finite value = 1.17549E-38F 2.22507485850720E-308

IEEE754 Conformance The Oracle implementation of floating-point datatypes
conforms substantially with the Institute of Electrical and Electronics Engineers (IEEE)
Standard for Binary Floating-Point Arithmetic, IEEE Standard 754-1985 (IEEE754). The
floating-point datatypes conform to IEEE754 in the following areas:

= The SQL function SQRT implements square root. See SQRT on page 5-236.

s The SQL function REMAINDER implements remainder. See REMAINDER on
page 5-218.

= Arithmetic operators conform. See "Arithmetic Operators" on page 4-3.

= Comparison operators conform, except for comparisons with NaN. Oracle orders
NaN greatest with respect to all other values, and evaluates NaN equal to NaN. See
"Floating-Point Conditions" on page 7-7.

= Conversion operators conform. See "Conversion Functions" on page 5-5.
s The default rounding mode is supported.
» The default exception handling mode is supported.

» The special values INF, -INF, and NaN are supported. See "Floating-Point
Conditions" on page 7-7.

Basic Elements of Oracle SQL 2-13

Datatypes

= Rounding of BINARY FLOAT and BINARY_DOUBLE values to integer-valued BINARY
FLOAT and BINARY_DOUBLE values is provided by the SQL functions ROUND, TRUNC,
CEIL, and FLOOR.

= Rounding of BINARY FLOAT/BINARY_DOUBLE to decimal and decimal to BINARY
FLOAT/BINARY_DOUBLE is provided by the SQL functions TO_CHAR, TO_NUMBER, TO_
NCHAR, TO_BINARY_ FLOAT, TO_BINARY_DOUBLE, and CAST.

The floating-point datatypes do not conform to IEEE754 in the following areas:

s -Ois coerced to +0.

s Comparison with NaN is not supported.

s All NaN values are coerced to either BINARY FLOAT NAN or BINARY DOUBLE_NAN.
= Non-default rounding modes are not supported.

= Non-default exception handling mode are not supported.

Numeric Precedence

Numeric precedence determines, for operations that support numeric datatypes, the
datatype Oracle uses if the arguments to the operation have different datatypes.
BINARY_DOUBLE has the highest numeric precedence, followed by BINARY_FLOAT, and
finally by NUMBER. Therefore, in any operation on multiple numeric values:

= If any of the operands is BINARY_DOUBLE, then Oracle attempts to convert all the
operands implicitly to BINARY_DOUBLE before performing the operation.

= If none of the operands is BINARY_DOUBLE but any of the operands is BINARY_FLOAT,
then Oracle attempts to convert all the operands implicitly to BINARY_FLOAT before
performing the operation.

s Otherwise, Oracle attempts to convert all the operands to NUMBER before
performing the operation.

If any implicit conversion is needed and fails, then the operation fails. Refer to
Table 2-10, " Implicit Type Conversion Matrix" on page 2-40 for more information on
implicit conversion.

In the context of other datatypes, numeric datatypes have lower precedence than the
datetime/interval datatypes and higher precedence than character and all other
datatypes.

LONG Datatype

Do not create tables with LONG columns. Use LOB columns (CLOB, NCLOB, BLOB) instead.
LONG columns are supported only for backward compatibility.

LONG columns store variable-length character strings containing up to 2 gigabytes -1, or
2311 bytes. LONG columns have many of the characteristics of VARCHAR2 columns. You
can use LONG columns to store long text strings. The length of LONG values may be
limited by the memory available on your computer. LONG literals are formed as
described for "Text Literals" on page 2-45.

Oracle also recommends that you convert existing LONG columns to LOB columns. LOB
columns are subject to far fewer restrictions than LONG columns. Further, LOB
functionality is enhanced in every release, whereas LONG functionality has been static
for several releases. See the modify_col_properties clause of ALTER TABLE on

page 12-2 and TO_LOB on page 5-295 for more information on converting LONG
columns to LOB.

You can reference LONG columns in SQL statements in these places:

2-14 Oracle Database SQL Language Reference

Datatypes

SELECT lists
SET clauses of UPDATE statements

VALUES clauses of INSERT statements

The use of LONG values is subject to these restrictions:

A table can contain only one LONG column.
You cannot create an object type with a LONG attribute.

LONG columns cannot appear in WHERE clauses or in integrity constraints (except
that they can appear in NULL and NOT NULL constraints).

LONG columns cannot be indexed.
LONG data cannot be specified in regular expressions.
A stored function cannot return a LONG value.

You can declare a variable or argument of a PL/SQL program unit using the LONG
datatype. However, you cannot then call the program unit from SQL.

Within a single SQL statement, all LONG columns, updated tables, and locked tables
must be located on the same database.

LONG and LONG RAW columns cannot be used in distributed SQL statements and
cannot be replicated.

If a table has both LONG and LOB columns, then you cannot bind more than 4000
bytes of data to both the LONG and LOB columns in the same SQL statement.
However, you can bind more than 4000 bytes of data to either the LONG or the LOB
column.

In addition, LONG columns cannot appear in these parts of SQL statements:

GROUP BY clauses, ORDER BY clauses, or CONNECT BY clauses or with the DISTINCT
operator in SELECT statements

The UNIQUE operator of a SELECT statement

The column list of a CREATE CLUSTER statement

The CLUSTER clause of a CREATE MATERIALIZED VIEW statement
SQL built-in functions, expressions, or conditions

SELECT lists of queries containing GROUP BY clauses

SELECT lists of subqueries or queries combined by the UNION, INTERSECT, or MINUS
set operators

SELECT lists of CREATE TABLE ... AS SELECT statements
ALTER TABLE ... MOVE statements

SELECT lists in subqueries in INSERT statements

Triggers can use the LONG datatype in the following manner:

A SQL statement within a trigger can insert data into a LONG column.

If data from a LONG column can be converted to a constrained datatype (such as
CHAR and VARCHAR?2), then a LONG column can be referenced in a SQL statement
within a trigger.

Variables in triggers cannot be declared using the LONG datatype.

:NEW and :0LD cannot be used with LONG columns.

Basic Elements of Oracle SQL 2-15

You can use Oracle Call Interface functions to retrieve a portion of a LONG value from
the database.

See Also: Oracle Call Interface Programmer’s Guide

Datetime and Interval Datatypes

The datetime datatypes are DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, and
TIMESTAMP WITH LOCAL TIME ZONE. Values of datetime datatypes are sometimes called
datetimes. The interval datatypes are INTERVAL YEAR TO MONTH and INTERVAL DAY TO
SECOND. Values of interval datatypes are sometimes called intervals. For information
on expressing datetime and interval values as literals, refer to "Datetime Literals" on
page 2-49 and "Interval Literals" on page 2-51.

Both datetimes and intervals are made up of fields. The values of these fields
determine the value of the datatype. Table 2—4 lists the datetime fields and their
possible values for datetimes and intervals.

To avoid unexpected results in your DML operations on datetime data, you can verify
the database and session time zones by querying the built-in SQL functions
DBTIMEZONE and SESSIONTIMEZONE. If the time zones have not been set manually, then
Oracle Database uses the operating system time zone by default. If the operating
system time zone is not a valid Oracle time zone, then Oracle uses UTC as the default
value.

Table 2-4 Datetime Fields and Values

Datetime Field

Valid Values for Datetime

Valid Values for INTERVAL

YEAR -4712 to 9999 (excluding year 0) Any positive or negative
integer

MONTH 01 to 12 0to11

DAY 01 to 31 (limited by the values of MONTH and YEAR, Any positive or negative
according to the rules of the current NLS calendar integer
parameter)

HOUR 00 to 23 0to23

MINUTE 00 to 59 0to 59

SECOND 00 to 59.9(n), where 9(n) is the precision of time 0 to 59.9(n), where 9(n) is the

fractional seconds. The 9(n) portion is not applicable

for DATE.

precision of interval
fractional seconds

TIMEZONE_HOUR

-12 to 14 (This range accommodates daylight saving
time changes.) Not applicable for DATE or TIMESTAMP.

Not applicable

TIMEZONE_MINUTE
(See note at end of table)

00 to 59. Not applicable for DATE or TIMESTAMP.

Not applicable

TIMEZONE_REGION

Query the TZNAME column of the V$TIMEZONE_NAMES Not applicable
data dictionary view. Not applicable for DATE or

TIMESTAMP. For a complete listing of all timezone

regions, refer to Oracle Database Globalization Support

Guide.

TIMEZONE_ABBR

Query the TZABBREV column of the VSTIMEZONE_ Not applicable
NAMES data dictionary view. Not applicable for DATE
or TIMESTAMP.

2-16 Oracle Database SQL Language Reference

Datatypes

Note: TIMEZONE_HOUR and TIMEZONE_MINUTE are specified together
and interpreted as an entity in the format + | - hh:mm, with values
ranging from -12:59 to +14:00. Refer to Oracle Data Provider for NET
Developer’s Guide for information on specifying time zone values for
that API.

DATE Datatype

The DATE datatype stores date and time information. Although date and time
information can be represented in both character and number datatypes, the DATE
datatype has special associated properties. For each DATE value, Oracle stores the
following information: century, year, month, date, hour, minute, and second.

You can specify a DATE value as a literal, or you can convert a character or numeric
value to a date value with the TO_DATE function. For examples of expressing DATE
values in both these ways, refer to "Datetime Literals" on page 2-49.

Using Julian Days A Julian day number is the number of days since January 1, 4712 BC.
Julian days allow continuous dating from a common reference. You can use the date
format model "J" with date functions TO_DATE and TO_CHAR to convert between Oracle
DATE values and their Julian equivalents.

Note: Oracle Database uses the astronomical system of calculating
Julian days, in which the year 4713 BC is specified as -4712. The
historical system of calculating Julian days, in contrast, specifies 4713
BC as -4713. If you are comparing Oracle Julian days with values
calculated using the historical system, then take care to allow for the
365-day difference in BC dates. For more information, see
http://aa.usno.navy.mil/faqg/docs/millennium.php.

The default date values are determined as follows:

» The year is the current year, as returned by SYSDATE.

s The month is the current month, as returned by SYSDATE.
s The dayis 01 (the first day of the month).

s The hour, minute, and second are all 0.

These default values are used in a query that requests date values where the date itself
is not specified, as in the following example, which is issued in the month of May:

SELECT TO_DATE('2005', 'YYYY') FROM DUAL;

TO_DATE ('

01-MAY-05
Example This statement returns the Julian equivalent of January 1, 1997:
SELECT TO_CHAR(TO_DATE ('01-01-1997', 'MM-DD-YYYY'),'J"')

FROM DUAL;

TO_CHAR

2450450

Basic Elements of Oracle SQL 2-17

Datatypes

See Also: "Selecting from the DUAL Table" for a description of the
DUAL table

TIMESTAMP Datatype

The TIMESTAMP datatype is an extension of the DATE datatype. It stores the year, month,
and day of the DATE datatype, plus hour, minute, and second values. This datatype is
useful for storing precise time values. Specify the TIMESTAMP datatype as follows:

TIMESTAMP [(fractional_seconds_precision)]

where fractional_seconds_precision optionally specifies the number of digits
Oracle stores in the fractional part of the SECOND datetime field. When you create a
column of this datatype, the value can be a number in the range 0 to 9. The default is 6.

See Also: TO_TIMESTAMP on page 5-303 for information on
converting character data to TIMESTAMP data

TIMESTAMP WITH TIME ZONE Datatype

TIMESTAMP WITH TIME ZONE is a variant of TIMESTAMP that includes a time zone region
name or a a time zone offset in its value. The time zone offset is the difference (in
hours and minutes) between local time and UTC (Coordinated Universal
Time—formerly Greenwich Mean Time). This datatype is useful for collecting and
evaluating date information across geographic regions.

Specify the TIMESTAMP WITH TIME ZONE datatype as follows:

TIMESTAMP [(fractional_seconds_precision)] WITH TIME ZONE

where fractional_ seconds_precision optionally specifies the number of digits
Oracle stores in the fractional part of the SECOND datetime field. When you create a
column of this datatype, the value can be a number in the range 0 to 9. The default is 6.

Oracle time zone data is derived from the public domain information available at
ftp://elsie.nci.nih.gov/pub/. Oracle time zone data may not reflect the most
recent data available at this site.

See Also:

» Oracle Database Globalization Support Guide for more information
on Oracle time zone data

= "Support for Daylight Saving Times" on page 2-21 and Table 2-17,
" Matching Character Data and Format Models with the FX
Format Model Modifier" on page 2-66 for information on daylight
saving support

s TO_TIMESTAMP_TZ on page 5-304 for information on converting
character data to TIMESTAMP WITH TIME ZONE data

s ALTER SESSION on page 11-42 for information on the ERROR_ON_
OVERLAP_TIME session parameter

TIMESTAMP WITH LOCAL TIME ZONE Datatype

TIMESTAMP WITH LOCAL TIME ZONE is another variant of TIMESTAMP that includes a time
zone offset in its value. It differs from TIMESTAMP WITH TIME ZONE in that data stored in
the database is normalized to the database time zone, and the time zone offset is not
stored as part of the column data. When a user retrieves the data, Oracle returns it in
the user's local session time zone. The time zone offset is the difference (in hours and

2-18 Oracle Database SQL Language Reference

Datatypes

minutes) between local time and UTC (Coordinated Universal Time—formerly
Greenwich Mean Time). This datatype is useful for displaying date information in the
time zone of the client system in a two-tier application.

Specify the TIMESTAMP WITH LOCAL TIME ZONE datatype as follows:
TIMESTAMP [(fractional_seconds_precision)] WITH LOCAL TIME ZONE
where fractional_seconds_precision optionally specifies the number of digits

Oracle stores in the fractional part of the SECOND datetime field. When you create a
column of this datatype, the value can be a number in the range 0 to 9. The default is 6.

Oracle time zone data is derived from the public domain information available at
ftp://elsie.nci.nih.gov/pub/. Oracle time zone data may not reflect the most
recent data available at this site.

See Also:

» Oracle Database Globalization Support Guide for more information
on Oracle time zone data

» Oracle Database Advanced Application Developer’s Guide for
examples of using this datatype and CAST on page 5-33 for
information on converting character data to TIMESTAMP WITH LOCAL
TIME ZONE

INTERVAL YEAR TO MONTH Datatype

INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH datetime
fields. This datatype is useful for representing the difference between two datetime
values when only the year and month values are significant.

Specify INTERVAL YEAR TO MONTH as follows:

INTERVAL YEAR [(year_precision)] TO MONTH

where year_precisionis the number of digits in the YEAR datetime field. The default
value of year_precisionis 2.

You have a great deal of flexibility when specifying interval values as literals. Refer to
"Interval Literals" on page 2-51 for detailed information on specifying interval values
as literals. Also see "Datetime and Interval Examples" on page 2-22 for an example
using intervals.

INTERVAL DAY TO SECOND Datatype

INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes, and
seconds. This datatype is useful for representing the precise difference between two
datetime values.

Specify this datatype as follows:

INTERVAL DAY [(day_precision)]
TO SECOND [(fractional_seconds_precision)]

where

» day_precisionis the number of digits in the DAY datetime field. Accepted values
are 0 to 9. The default is 2.

» fractional_seconds_precisionis the number of digits in the fractional part of
the SECOND datetime field. Accepted values are 0 to 9. The default is 6.

Basic Elements of Oracle SQL 2-19

Datatypes

You have a great deal of flexibility when specifying interval values as literals. Refer to
"Interval Literals" on page 2-51 for detailed information on specify interval values as
literals. Also see "Datetime and Interval Examples" on page 2-22 for an example using
intervals.

Datetime/Interval Arithmetic

You can perform a number of arithmetic operations on date (DATE), timestamp
(TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE) and
interval (INTERVAL DAY TO SECOND and INTERVAL YEAR TO MONTH) data. Oracle calculates
the results based on the following rules:

= You can use NUMBER constants in arithmetic operations on date and timestamp
values, but not interval values. Oracle internally converts timestamp values to
date values and interprets NUMBER constants in arithmetic datetime and interval
expressions as numbers of days. For example, SYSDATE + 1 is tomorrow. SYSDATE -
7 is one week ago. SYSDATE + (10/1440) is ten minutes from now. Subtracting the
hire_date column of the sample table employees from SYSDATE returns the
number of days since each employee was hired. You cannot multiply or divide
date or timestamp values.

s Oracle implicitly converts BINARY_FLOAT and BINARY_DOUBLE operands to NUMBER.

s Each DATE value contains a time component, and the result of many date
operations include a fraction. This fraction means a portion of one day. For
example, 1.5 days is 36 hours. These fractions are also returned by Oracle built-in
functions for common operations on DATE data. For example, the MONTHS_BETWEEN
function returns the number of months between two dates. The fractional portion
of the result represents that portion of a 31-day month.

= If one operand is a DATE value or a numeric value, neither of which contains time
zone or fractional seconds components, then:

- Oracle implicitly converts the other operand to DATE data. The exception is
multiplication of a numeric value times an interval, which returns an interval.

— If the other operand has a time zone value, then Oracle uses the session time
zone in the returned value.

— If the other operand has a fractional seconds value, then the fractional seconds
value is lost.

= When you pass a timestamp, interval, or numeric value to a built-in function that
was designed only for the DATE datatype, Oracle implicitly converts the non-DATE
value to a DATE value. Refer to "Datetime Functions" on page 5-4 for information
on which functions cause implicit conversion to DATE.

s When interval calculations return a datetime value, the result must be an actual
datetime value or the database returns an error. For example, the next two
statements return errors:

SELECT TO_DATE('31-AUG-2004"', 'DD-MON-YYYY') + TO_YMINTERVAL('O-1') FROM DUAL;
SELECT TO_DATE('29-FEB-2004"', 'DD-MON-YYYY') + TO_YMINTERVAL('1-0') FROM DUAL;

The first fails because adding one month to a 31-day month would result in
September 31, which is not a valid date. The second fails because adding one year
to a date that exists only every four years is not valid. However, the next statement
succeeds, because adding four years to a February 29 date is valid:

SELECT TO_DATE('29-FEB-2004', 'DD-MON-YYYY') + TO_YMINTERVAL('4-0') FROM DUAL;

2-20 Oracle Database SQL Language Reference

Datatypes

TO_DATE ('

29-FEB-08

s Oracle performs all timestamp arithmetic in UTC time. For TIMESTAMP WITH LOCAL
TIME ZONE, Oracle converts the datetime value from the database time zone to UTC
and converts back to the database time zone after performing the arithmetic. For
TIMESTAMP WITH TIME ZONE, the datetime value is always in UTC, so no conversion
is necessary.

Table 2-5 is a matrix of datetime arithmetic operations. Dashes represent operations
that are not supported.

Table 2-5 Matrix of Datetime Arithmetic

Operand & Operator DATE TIMESTAMP INTERVAL Numeric
DATE

+ - - DATE DATE

- NUMBER INTERVAL DATE DATE

* — — — —

/ — — — —
TIMESTAMP

+ - - TIMESTAMP DATE

- INTERVAL INTERVAL TIMESTAMP DATE

* — — — —

/ — - — —
INTERVAL

+ DATE TIMESTAMP INTERVAL -

- - - INTERVAL -

* - - - INTERVAL
/ - - - INTERVAL
Numeric

+ DATE DATE - NA

- - - - NA

* - - INTERVAL NA

/ - - - NA

Examples You can add an interval value expression to a start time. Consider the
sample table oe.orders with a column order_date. The following statement adds 30
days to the value of the order_date column:

SELECT order_id, order_date + INTERVAL '30' DAY FROM orders
ORDER BY order_id, "Due Date";

Support for Daylight Saving Times

Oracle Database automatically determines, for any given time zone region, whether
daylight saving is in effect and returns local time values accordingly. The datetime
value is sufficient for Oracle to determine whether daylight saving time is in effect for

Basic Elements of Oracle SQL 2-21

Datatypes

a given region in all cases except boundary cases. A boundary case occurs during the
period when daylight saving goes into or comes out of effect. For example, in the
US-Pacific region, when daylight saving goes into effect, the time changes from 2:00
a.m. to 3:00 a.m. The one hour interval between 2 and 3 a.m. does not exist. When
daylight saving goes out of effect, the time changes from 2:00 a.m. back to 1:00 a.m.,
and the one-hour interval between 1 and 2 a.m. is repeated.

To resolve these boundary cases, Oracle uses the TZR and TzD format elements, as
described in Table 2-17. TZR represents the time zone region in datetime input strings.
Examples are 'Australia/North', 'UTC', and 'Singapore'. TZD represents an abbreviated
form of the time zone region with daylight saving information. Examples are 'PST' for
US/Pacific standard time and 'PDT' for US/Pacific daylight time. To see a listing of
valid values for the TZR and TZD format elements, query the TZNAME and TZABBREV
columns of the V$TIMEZONE_NAMES dynamic performance view.

Note: Timezone region names are needed by the daylight saving
feature. The region names are stored in two time zone files. The
default time zone file is a small file containing only the most
common time zones to maximize performance. If your time zone is
not in the default file, then you will not have daylight saving
support until you provide a path to the complete (larger) file by
way of the ORA_TZFILE environment variable.

For a complete listing of the timezone region names in both files, refer to Oracle
Database Globalization Support Guide.

Oracle time zone data is derived from the public domain information available at
ftp://elsie.nci.nih.gov/pub/. Oracle time zone data may not reflect the most
recent data available at this site.

See Also:

s "Datetime Format Models" on page 2-58 for information on the
format elements and the session parameter ERROR_ON_
OVERLAP_TIME on page 11-48.

» Oracle Database Globalization Support Guide for more information
on Oracle time zone data

s Oracle Database Reference for information on the dynamic
performance views

Datetime and Interval Examples
The following example shows how to specify some datetime and interval datatypes.

CREATE TABLE time_table (

start_time TIMESTAMP,
duration_1 INTERVAL DAY (6) TO SECOND (5),
duration_2 INTERVAL YEAR TO MONTH) ;

The start_time column is of type TIMESTAMP. The implicit fractional seconds precision
of TIMESTAMP is 6.

The duration_1 column is of type INTERVAL DAY TO SECOND. The maximum number of
digits in field DAY is 6 and the maximum number of digits in the fractional second is 5.
The maximum number of digits in all other datetime fields is 2.

2-22 Oracle Database SQL Language Reference

Datatypes

The duration_2 column is of type INTERVAL YEAR TO MONTH. The maximum number of
digits of the value in each field (YEAR and MONTH) is 2.

Interval datatypes do not have format models. Therefore, to adjust their presentation,
you must combine character functions such as EXTRACT and concatenate the
components. For example, the following examples query the hr.employees and
oe.orders tables, respectively, and change interval output from the form "yy-mm" to
"yy years mm months" and from "dd-hh" to "dddd days hh hours":

SELECT last_name, EXTRACT(YEAR FROM (SYSDATE - hire_date) YEAR TO MONTH)

|| ' years '
|| EXTRACT (MONTH FROM (SYSDATE - hire_date) YEAR TO MONTH)
|| * months' *"Interval"

FROM employees ;

LAST_NAME Interval

King 17 years 11 months
Kochhar 15 years 8 months
De Haan 12 years 4 months
Hunold 15 years 4 months
Ernst 14 years 0 months
Austin 7 years 11 months
Pataballa 7 years 3 months
Lorentz 6 years 3 months
Greenberg 10 years 9 months

SELECT order_id,
EXTRACT (DAY FROM (SYSDATE - order_date) DAY TO SECOND)
|| * days '
| | EXTRACT (HOUR FROM (SYSDATE - order_date) DAY TO SECOND)
|| * hours' "Interval"
FROM orders;

ORDER_ID Interval

RAW and LONG RAW Datatypes

The RAW and LONG RAW datatypes store data that is not to be explicitly converted by
Oracle Database when moving data between different systems. These datatypes are
intended for binary data or byte strings. For example, you can use LONG RAW to store
graphics, sound, documents, or arrays of binary data, for which the interpretation is
dependent on the use.

Oracle strongly recommends that you convert LONG RAW columns to binary LOB (BLOB)
columns. LOB columns are subject to far fewer restrictions than LONG columns. See
TO_LOB on page 5-295 for more information.

Basic Elements of Oracle SQL 2-23

Datatypes

RAW is a variable-length datatype like VARCHAR2, except that Oracle Net (which connects
user sessions to the instance) and the Oracle import and export utilities do not perform
character conversion when transmitting RAW or LONG RAW data. In contrast, Oracle Net
and the Oracle import and export utilities automatically convert CHAR, VARCHAR2, and
LONG data from the database character set to the user session character set. If the two
character sets are different, you can set the user session character set with the NLS_
LANGUAGE parameter of the ALTER SESSION statement.

When Oracle automatically converts RAW or LONG RAW data to and from CHAR data, the
binary data is represented in hexadecimal form, with one hexadecimal character
representing every four bits of RAW data. For example, one byte of RAW data with bits
11001011 is displayed and entered as CB.

Large Object (LOB) Datatypes
The built-in LOB datatypes BLOB, CLOB, and NCLOB (stored internally) and BFILE (stored
externally) can store large and unstructured data such as text, image, video, and
spatial data. The size of BLOB, CLOB, and NCLOB data can be up to (2°*-1 bytes) * (the
value of the CHUNK parameter of LOB storage). If the tablespaces in your database are
of standard block size, and if you have used the default value of the CHUNK parameter
of LOB storage when creating a LOB column, then this is equivalent to (2%*-1 bytes) *
(database block size). BFILE data can be up to 2°4-1 bytes, although your operating
system may impose restrictions on this maximum.

When creating a table, you can optionally specify different tablespace and storage
characteristics for LOB columns or LOB object attributes from those specified for the
table.

CLOB, NCLOB, and BLOB values up to approximately 4000 bytes are stored inline if you
enable storage in row at the time the LOB column is created. LOBs greater than 4000
bytes are always stored externally. Refer to ENABLE STORAGE IN ROW on

page 16-40 for more information.

LOB columns contain LOB locators that can refer to internal (in the database) or
external (outside the database) LOB values. Selecting a LOB from a table actually
returns the LOB locator and not the entire LOB value. The DBMS_LOB package and
Oracle Call Interface (OCI) operations on LOBs are performed through these locators.

LOBs are similar to LONG and LONG RAW types, but differ in the following ways:
= LOBs can be attributes of an object type (user-defined datatype).

s The LOB locator is stored in the table column, either with or without the actual
LOB value. BLOB, NCLOB, and CLOB values can be stored in separate tablespaces.
BFILE data is stored in an external file on the server.

= When you access a LOB column, the locator is returned.

= A LOB can be up to (2%-1 bytes)*(database block size) in size. BFILE data can be up
to 2%4-1 bytes, although your operating system may impose restrictions on this
maximum.

= LOBs permit efficient, random, piece-wise access to and manipulation of data.
= You can define more than one LOB column in a table.

= With the exception of NCLOB, you can define one or more LOB attributes in an
object.

= You can declare LOB bind variables.

» You can select LOB columns and LOB attributes.

2-24 Oracle Database SQL Language Reference

Datatypes

= You can insert a new row or update an existing row that contains one or more LOB
columns or an object with one or more LOB attributes. In update operations, you
can set the internal LOB value to NULL, empty, or replace the entire LOB with data.
You can set the BFILE to NULL or make it point to a different file.

= You can update a LOB row-column intersection or a LOB attribute with another
LOB row-column intersection or LOB attribute.

= You can delete a row containing a LOB column or LOB attribute and thereby also
delete the LOB value. For BFILEs, the actual operating system file is not deleted.

You can access and populate rows of an inline LOB column (a LOB column stored in
the database) or a LOB attribute (an attribute of an object type column stored in the
database) simply by issuing an INSERT or UPDATE statement.

Restrictions on LOB Columns LOB columns are subject to a number of rules and
restrictions. See Oracle Database SecureFiles and Large Objects Developer’s Guide for a
complete listing.

See Also:

» Oracle Database PL/SQL Packages and Types Reference and Oracle Call
Interface Programmer’s Guide for more information about these
interfaces and LOBs

s themodify col_properties clause of ALTER TABLE on page 12-2
and TO_LOB on page 5-295 for more information on converting
LONG columns to LOB columns

BFILE Datatype

The BFILE datatype enables access to binary file LOBs that are stored in file systems
outside Oracle Database. A BFILE column or attribute stores a BFILE locator, which
serves as a pointer to a binary file on the server file system. The locator maintains the
directory name and the filename.

You can change the filename and path of a BFILE without affecting the base table by
using the BFILENAME function. Refer to BFILENAME on page 5-27 for more
information on this built-in SQL function.

Binary file LOBs do not participate in transactions and are not recoverable. Rather, the
underlying operating system provides file integrity and durability. BFILE data can be
up to 2%4-1 bytes, although your operating system may impose restrictions on this
maximum.

The database administrator must ensure that the external file exists and that Oracle
processes have operating system read permissions on the file.

The BFILE datatype enables read-only support of large binary files. You cannot modify
or replicate such a file. Oracle provides APIs to access file data. The primary interfaces
that you use to access file data are the DBMS_LOB package and Oracle Call Interface
(OCI).

See Also: Oracle Database SecureFiles and Large Objects Developer’s
Guide and Oracle Call Interface Programmer’s Guide for more
information about LOBs and CREATE DIRECTORY on page 14-42

BLOB Datatype

The BLOB datatype stores unstructured binary large objects. BLOB objects can be
thought of as bitstreams with no character set semantics. BLOB objects can store binary

Basic Elements of Oracle SQL 2-25

Datatypes

data up to (4 gigabytes -1) * (the value of the CHUNK parameter of LOB storage). If the
tablespaces in your database are of standard block size, and if you have used the
default value of the CHUNK parameter of LOB storage when creating a LOB column,
then this is equivalent to (4 gigabytes - 1) * (database block size).

BLOB objects have full transactional support. Changes made through SQL, the DBMS_
LOB package, or Oracle Call Interface (OCI) participate fully in the transaction. BLOB
value manipulations can be committed and rolled back. However, you cannot save a
BLOB locator in a PL/SQL or OCI variable in one transaction and then use it in another
transaction or session.

CLOB Datatype

The CLOB datatype stores single-byte and multibyte character data. Both fixed-width
and variable-width character sets are supported, and both use the database character
set. CLOB objects can store up to (4 gigabytes -1) * (the value of the CHUNK parameter of
LOB storage) of character data. If the tablespaces in your database are of standard
block size, and if you have used the default value of the CHUNK parameter of LOB
storage when creating a LOB column, then this is equivalent to (4 gigabytes - 1) *
(database block size).

CLOB objects have full transactional support. Changes made through SQL, the DBMS_
LOB package, or Oracle Call Interface (OCI) participate fully in the transaction. CLOB
value manipulations can be committed and rolled back. However, you cannot save a
CLOB locator in a PL/SQL or OCI variable in one transaction and then use it in another
transaction or session.

NCLOB Datatype

The NCLOB datatype stores Unicode data. Both fixed-width and variable-width
character sets are supported, and both use the national character set. NCLOB objects can
store up to (4 gigabytes -1) * (the value of the CHUNK parameter of LOB storage) of
character text data. If the tablespaces in your database are of standard block size, and if
you have used the default value of the CHUNK parameter of LOB storage when creating
a LOB column, then this is equivalent to (4 gigabytes - 1) * (database block size).

NCLOB objects have full transactional support. Changes made through SQL, the DBMS_
LOB package, or OCI participate fully in the transaction. NCLOB value manipulations
can be committed and rolled back. However, you cannot save an NCLOB locator in a
PL/SQL or OCI variable in one transaction and then use it in another transaction or
session.

See Also: Oracle Database Globalization Support Guide for information
on Unicode datatype support

Rowid Datatypes

Each row in the database has an address. The sections that follow describe the two
forms of row address in an Oracle Database.

ROWID Datatype

The rows in heap-organized tables that are native to Oracle Database have row
addresses called rowids. You can examine a rowid row address by querying the
pseudocolumn ROWID. Values of this pseudocolumn are strings representing the
address of each row. These strings have the datatype ROWID. You can also create tables
and clusters that contain actual columns having the ROWID datatype. Oracle Database

2-26 Oracle Database SQL Language Reference

Datatypes

does not guarantee that the values of such columns are valid rowids. Refer to
Chapter 3, "Pseudocolumns" for more information on the ROWID pseudocolumn.

Note: Beginning with Oracle8, Oracle SQL incorporated an extended
format for rowids to efficiently support partitioned tables and indexes
and tablespace-relative data block addresses without ambiguity. If you
are running Version 7 of the database and you intend to upgrade, use
the DBMS_ROWID package to migrate rowids in your data to the
extended format. Refer to Oracle Database PL/SQL Packages and Types
Reference for information on DBMS_ROWID and to Oracle Database
Upgrade Guide for information on upgrading from Oracle?.

Rowids contain the following information:

= The data block of the datafile containing the row. The length of this string
depends on your operating system.

s The row in the data block.

= The database file containing the row. The first datafile has the number 1. The
length of this string depends on your operating system.

= The data object number, which is an identification number assigned to every
database segment. You can retrieve the data object number from the data
dictionary views USER_OBJECTS, DBA_OBJECTS, and ALL_OBJECTS. Objects that share
the same segment (clustered tables in the same cluster, for example) have the same
object number.

Rowids are stored as base 64 values that can contain the characters A-Z, a-z, 0-9, and

the plus sign (+) and forward slash (/). Rowids are not available directly. You can use
the supplied package DBMS_ROWID to interpret rowid contents. The package functions

extract and provide information on the four rowid elements listed above.

See Also: Oracle Database PL/SQL Packages and Types Reference for
information on the functions available with the DBMS_ROWID package
and how to use them

UROWID Datatype

The rows of some tables have addresses that are not physical or permanent or were not
generated by Oracle Database. For example, the row addresses of index-organized
tables are stored in index leaves, which can move. Rowids of foreign tables (such as
DB2 tables accessed through a gateway) are not standard Oracle rowids.

Oracle uses universal rowids (urowids) to store the addresses of index-organized and
foreign tables. Index-organized tables have logical urowids and foreign tables have
foreign urowids. Both types of urowid are stored in the ROWID pseudocolumn (as are
the physical rowids of heap-organized tables).

Oracle creates logical rowids based on the primary key of the table. The logical rowids
do not change as long as the primary key does not change. The ROWID pseudocolumn
of an index-organized table has a datatype of UROWID. You can access this
pseudocolumn as you would the ROWID pseudocolumn of a heap-organized table
(using a SELECT ... ROWID statement). If you want to store the rowids of an
index-organized table, then you can define a column of type UROWID for the table and
retrieve the value of the ROWID pseudocolumn into that column.

Basic Elements of Oracle SQL 2-27

Datatypes

Note: Heap-organized tables have physical rowids. Oracle does not
recommend that you specify a column of datatype UROWID for a
heap-organized table.

ANSI, DB2, and SQL/DS Datatypes

SQL statements that create tables and clusters can also use ANSI datatypes and
datatypes from the IBM products SQL/DS and DB2. Oracle recognizes the ANSI or
IBM datatype name that differs from the Oracle Database datatype name. It converts
the datatype to the equivalent Oracle datatype, records the Oracle datatype as the
name of the column datatype, and stores the column data in the Oracle datatype based
on the conversions shown in the tables that follow.

Table 2-6 ANSI Datatypes Converted to Oracle Datatypes

ANSI SQL Datatype Oracle Datatype
CHARACTER (n) CHAR (n)

CHAR (n)

CHARACTER VARYING (n) VARCHAR?2 (n)

CHAR VARYING (n)

NATIONAL CHARACTER (n) NCHAR (n)
NATIONAL CHAR (n)

NCHAR (n)

NATIONAL CHARACTER VARYING (n) NVARCHAR?2 (n)
NATIONAL CHAR VARYING (n)

NCHAR VARYING (n)

NUMERIC[(p,s)] NUMBER (p, s)
DECIMAL[(p,s)] (Note a)

INTEGER NUMBER (38)
INT

SMALLINT

FLOAT (Note b) FLOAT (126)
DOUBLE PRECISION (Note c) FLOAT (126)
REAL (Note d) FLOAT (63)
Notes:

a. The NUMERIC and DECIMAL datatypes can specify only fixed-point numbers. For
those datatypes, the scale (s) defaults to 0.

b. The FLOAT datatype is a floating-point number with a binary precision b. The
default precision for this datatype is 126 binary, or 38 decimal.

c. The DOUBLE PRECISION datatype is a floating-point number with binary
precision 126.

d. The REAL datatype is a floating-point number with a binary precision of 63, or
18 decimal.

Do not define columns with the following SQL/DS and DB2 datatypes, because they
have no corresponding Oracle datatype:

2-28 Oracle Database SQL Language Reference

Datatypes

= GRAPHIC

= LONG VARGRAPHIC
= VARGRAPHIC

s TIME

Note that data of type TIME can also be expressed as Oracle datetime data.

See Also: Datatypes in Oracle Database SQL Language Reference

Table 2-7 SQL/DS and DB2 Datatypes Converted to Oracle Datatypes

SQL/DS or DB2 Datatype Oracle Datatype
CHARACTER (n) CHAR (n)

VARCHAR (n) VARCHAR (n)

LONG VARCHAR LONG

DECIMAL (p,s) (a) NUMBER (p,)
INTEGER NUMBER (38)
SMALLINT

FLOAT (b) NUMBER

Notes:

a. The DECIMAL datatype can specify only fixed-point numbers. For this datatype,
s defaults to 0.

b. The FLOAT datatype is a floating-point number with a binary precision b. The
default precision for this datatype is 126 binary or 38 decimal.

User-Defined Types

User-defined datatypes use Oracle built-in datatypes and other user-defined datatypes
as the building blocks of object types that model the structure and behavior of data in
applications. The sections that follow describe the various categories of user-defined

types.
See Also:
» Oracle Database Concepts for information about Oracle built-in
datatypes
s CREATE TYPE on page 17-3 and the CREATE TYPE BODY on
page 17-5 for information about creating user-defined types
» Oracle Database Object-Relational Developer’s Guide for information
about using user-defined types
Object Types

Object types are abstractions of the real-world entities, such as purchase orders, that
application programs deal with. An object type is a schema object with three kinds of
components:

= A name, which identifies the object type uniquely within that schema.

= Attributes, which are built-in types or other user-defined types. Attributes model
the structure of the real-world entity.

Basic Elements of Oracle SQL 2-29

Datatypes

= Methods, which are functions or procedures written in PL/SQL and stored in the
database, or written in a language like C or Java and stored externally. Methods
implement operations the application can perform on the real-world entity.

REF Datatypes

An object identifier (represented by the keyword 0ID) uniquely identifies an object
and enables you to reference the object from other objects or from relational tables. A
datatype category called REF represents such references. A REF datatype is a container
for an object identifier. REF values are pointers to objects.

When a REF value points to a nonexistent object, the REF is said to be "dangling". A
dangling REF is different from a null REF. To determine whether a REF is dangling or
not, use the condition IS [NOT] DANGLING. For example, given object view oc_orders in
the sample schema oe, the column customer_ref is of type REF to type customer_typ,
which has an attribute cust_email:

SELECT o.customer_ref.cust_email
FROM oc_orders o
WHERE o.customer_ref IS NOT DANGLING;

Varrays

An array is an ordered set of data elements. All elements of a given array are of the
same datatype. Each element has an index, which is a number corresponding to the
position of the element in the array.

The number of elements in an array is the size of the array. Oracle arrays are of
variable size, which is why they are called varrays. You must specify a maximum size
when you declare the varray.

When you declare a varray, it does not allocate space. It defines a type, which you can
use as:

» The datatype of a column of a relational table
= An object type attribute
= A PL/SQL variable, parameter, or function return type

Oracle normally stores an array object either in line (as part of the row data) or out of
line (in a LOB), depending on its size. However, if you specify separate storage
characteristics for a varray, then Oracle stores it out of line, regardless of its size. Refer
to the varray_col_properties of CREATE TABLE on page 16-43 for more information
about varray storage.

Nested Tables

A nested table type models an unordered set of elements. The elements may be
built-in types or user-defined types. You can view a nested table as a single-column
table or, if the nested table is an object type, as a multicolumn table, with a column for
each attribute of the object type.

A nested table definition does not allocate space. It defines a type, which you can use
to declare:

» The datatype of a column of a relational table
= An object type attribute

= A PL/SQL variable, parameter, or function return type

2-30 Oracle Database SQL Language Reference

Datatypes

When a nested table appears as the type of a column in a relational table or as an
attribute of the underlying object type of an object table, Oracle stores all of the nested
table data in a single table, which it associates with the enclosing relational or object
table.

Oracle-Supplied Types

Any Types

Oracle provides SQL-based interfaces for defining new types when the built-in or
ANSI-supported types are not sufficient. The behavior for these types can be
implemented in C/C++, Java, or PL/ SQL. Oracle Database automatically provides the
low-level infrastructure services needed for input-output, heterogeneous client-side
access for new datatypes, and optimizations for data transfers between the application
and the database.

These interfaces can be used to build user-defined (or object) types and are also used
by Oracle to create some commonly useful datatypes. Several such datatypes are
supplied with the server, and they serve both broad horizontal application areas (for
example, the Any types) and specific vertical ones (for example, the spatial types).

The Oracle-supplied types, along with cross-references to the documentation of their
implementation and use, are described in the following sections:

= Any Types

= XML Types

= Spatial Types

= Media Types

The Any types provide highly flexible modeling of procedure parameters and table
columns where the actual type is not known. These datatypes let you dynamically
encapsulate and access type descriptions, data instances, and sets of data instances of
any other SQL type. These types have OCI and PL/SQL interfaces for construction
and access.

ANYTYPE
This type can contain a type description of any named SQL type or unnamed transient
type.

ANYDATA

This type contains an instance of a given type, with data, plus a description of the
type. ANYDATA can be used as a table column datatype and lets you store heterogeneous
values in a single column. The values can be of SQL built-in types as well as
user-defined types.

ANYDATASET

This type contains a description of a given type plus a set of data instances of that
type. ANYDATASET can be used as a procedure parameter datatype where such
flexibility is needed. The values of the data instances can be of SQL built-in types as
well as user-defined types.

See Also: Oracle Database PL/SQL Packages and Types Reference for
information on the ANYTYPE, ANYDATA, and ANYDATASET types

Basic Elements of Oracle SQL 2-31

Datatypes

XML Types

Extensible Markup Language (XML) is a standard format developed by the World
Wide Web Consortium (W3C) for representing structured and unstructured data on
the World Wide Web. Universal resource identifiers (URIs) identify resources such as
Web pages anywhere on the Web. Oracle provides types to handle XML and URI data,
as well as a class of URIs called DBURIRef types to access data stored within the
database itself. It also provides a set of types to store and access both external and
internal URIs from within the database.

XMLType

This Oracle-supplied type can be used to store and query XML data in the database.
XMLType has member functions you can use to access, extract, and query the XML data
using XPath expressions. XPath is another standard developed by the W3C committee
to traverse XML documents. Oracle XMLType functions support many W3C XPath
expressions. Oracle also provides a set of SQL functions and PL/SQL packages to
create XMLType values from existing relational or object-relational data.

XMLType is a system-defined type, so you can use it as an argument of a function or as
the datatype of a table or view column. You can also create tables and views of
XMLType. When you create an XMLType column in a table, you can choose to store the
XML data in a CLOB column, as binary XML (stored internally as a CLOB), or object
relationally.

You can also register the schema (using the DBMS_XMLSCHEMA package) and create a
table or column conforming to the registered schema. In this case Oracle stores the
XML data in underlying object-relational columns by default, but you can specify

storage in a CLOB or binary XML column even for schema-based data.

Queries and DML on XMLType columns operate the same regardless of the storage
mechanism.

See Also: Oracle XML DB Developer’s Guide for information about
using XMLType columns

URI Datatypes

Oracle supplies a family of URI types—URIType, DBURIType, XDBURIType, and
HITPURIType—which are related by an inheritance hierarchy. URIType is an object type
and the others are subtypes of URIType. Since URIType is the supertype, you can create
columns of this type and store DBURIType or HTTPURIType type instances in this
column.

HTTPURIType You can use HTTPURIType to store URLs to external Web pages or to
files. Oracle accesses these files using HTTP (Hypertext Transfer Protocol).

XDBURIType You can use XDBURIType to expose documents in the XML database
hierarchy as URIs that can be embedded in any URIType column in a table. The
XDBURIType consists of a URL, which comprises the hierarchical name of the XML
document to which it refers and an optional fragment representing the XPath syntax.
The fragment is separated from the URL part by a pound sign (#). The following lines
are examples of XDBURIType:

/home/oe/docl.xml
/home/oe/docl.xml#/orders/order_item

2-32 Oracle Database SQL Language Reference

Datatypes

Spatial Types

DBURIType DBURIType can be used to store DBURIRef values, which reference data
inside the database. Storing DBURIRef values lets you reference data stored inside or
outside the database and access the data consistently.

DBURIRef values use an XPath-like representation to reference data inside the database.
If you imagine the database as an XML tree, then you would see the tables, rows, and
columns as elements in the XML document. For example, the sample human resources
user hr would see the following XML tree:

<HR>
<EMPLOYEES>
<ROW>
<EMPLOYEE_ID>205</EMPLOYEE_ID>
<LAST NAME>Higgins</LAST NAME>
<SALARY>12000</SALARY>

. <!-- other columns -->
</ROW>
. <!-- other rows -->
</EMPLOYEES>
<!-- other tables..-->
</HR>
<!-- other user schemas on which you have some privilege on..-->

The DBURIRef is an XPath expression over this virtual XML document. So to reference
the SALARY value in the EMPLOYEES table for the employee with employee number 205,
you can write a DBURIRef as,

/HR/EMPLOYEES/ROW[EMPLOYEE_ID=205]/SALARY

Using this model, you can reference data stored in CLOB columns or other columns and
expose them as URLSs to the external world.

URIFactory Package

Oracle also provides the URIFactory package, which can create and return instances of
the various subtypes of the URITypes. The package analyzes the URL string, identifies
the type of URL (HTTP, DBURI, and so on), and creates an instance of the subtype. To
create a DBURI instance, the URL must start with the prefix /oradb. For example,
URIFactory.getURI('/oradb/HR/EMPLOYEES') would create a DBURIType instance and
URIFactory.getUri('/sys/schema') would create an XDBURIType instance.

See Also:

» Oracle Database Object-Relational Developer’s Guide for general
information on object types and type inheritance

» Oracle XML DB Developer’s Guide for more information about
these supplied types and their implementation

» Oracle Streams Advanced Queuing User’s Guide for information
about using XMLType with Oracle Advanced Queuing

Oracle Spatial is designed to make spatial data management easier and more natural
to users of location-enabled applications, geographic information system (GIS)
applications, and geoimaging applications. After the spatial data is stored in an Oracle
database, you can easily manipulate, retrieve, and relate it to all the other data stored
in the database. The following datatypes are available only if you have installed Oracle
Spatial.

Basic Elements of Oracle SQL 2-33

Datatypes

Media Types

SDO_GEOMETRY

The geometric description of a spatial object is stored in a single row, in a single
column of object type SDO_GEOMETRY in a user-defined table. Any table that has a
column of type SDO_GEOMETRY must have another column, or set of columns, that
defines a unique primary key for that table. Tables of this sort are sometimes called
geometry tables.

The SDO_GEOMETRY object type has the following definition:

CREATE TYPE SDO_GEOMETRY AS OBJECT (

sgo_gtype NUMBER,
sdo_srid NUMBER,
sdo_point SDO_POINT_TYPE,

sdo_elem_info SDO_ELEM_INFO_ARRAY,
sdo_ordinates SDO_ORDINATE_ARRAY)

SDO_TOPO_GEOMETRY

This type describes a topology geometry, which is stored in a single row, in a single
column of object type SDO_TOPO_GEOMETRY in a user-defined table.

The SDO_TOPO_GEOMETRY object type has the following definition:

CREATE TYPE SDO_TOPO_GEOMETRY AS OBJECT (

tg_type NUMBER,
tg_id NUMBER,
tg_layer_id NUMBER,
topology_id NUMBER)

SDO_GEORASTER

In the GeoRaster object-relational model, a raster grid or image object is stored in a
single row, in a single column of object type SDO_GEORASTER in a user-defined table.
Tables of this sort are called GeoRaster tables.

The SDO_GEORASTER object type has the following definition:

CREATE TYPE SDO_GEORASTER AS OBJECT (
rasterType NUMBER,
spatialExtent SDO_GEOMETRY,
rasterDataTable VARCHAR2 (32),
rasterID NUMBER,
metadata XMLType)

See Also: Oracle Spatial Developer's Guide, Oracle Spatial Topology and
Network Data Models Developer's Guide, and Oracle Spatial GeoRaster
Developer’s Guide for information on the full implementation of the
spatial datatypes and guidelines for using them

Oracle Multimedia uses object types, similar to Java or C++ classes, to describe
multimedia data. An instance of these object types consists of attributes, including
metadata and the media data, and methods. The Multimedia datatypes are created in
the ORDSYS schema. Public synonyms exist for all the datatypes, so you can access them
without specifying the schema name.

2-34 Oracle Database SQL Language Reference

Datatypes

See Also: Oracle Multimedia Reference for information on the
implementation of these types and guidelines for using them

ORDAudio

The ORDAudio object type supports the storage and management of audio data.

ORDImage

The ORDImage object type supports the storage and management of image data.

ORDVideo

The ORDVideo object type supports the storage and management of video data.

ORDDoc

The ORDDoc object type supports storage and management of any type of media data,
including audio, image and video data. Use this type when you want all media to be
stored in a single column.

ORDDicom

The ORDDicom object type supports the storage and management of Digital Imaging
and Communications in Medicine (DICOM), the format universally recognized as the
standard for medical imaging.

The following datatypes provide compliance with the ISO-IEC 13249-5 Still Image
standard, commonly referred to as SQL /MM Stilllmage.

SI_Stilllmage

The SI_StillImage object type represents digital images with inherent image
characteristics such as height, width, and format.

Sl _Color

The SI_Color object type encapsulates color values.

SI_AverageColor

The SI_AverageColor object type represents a feature that characterizes an image by
its average color.

SI_ColorHistogram

The SI_ColorHistogram object type represents a feature that characterizes an image by
the relative frequencies of the colors exhibited by samples of the raw image.

SI_PositionalColor

Given an image divided into n by m rectangles, the SI_PositionalColor object type
represents the feature that characterizes an image by the n by m most significant colors
of the rectang]es.

SI_Texture

The SI_Texture object type represents a feature that characterizes an image by the size
of repeating items (coarseness), brightness variations (contrast), and predominant
direction (directionality).

Basic Elements of Oracle SQL 2-35

Datatype Comparison Rules

S|_FeatureList

The SI_FeatureList object type is a list containing up to four of the image features
represented by the preceding object types (SI_AverageColor, SI_ColorHistogram, SI_
PositionalColor, and SI_Texture), where each feature is associated with a feature
weight.

ORDImageSignature

The ORDImageSignature object type has been deprecated and should no longer been
introduced into your code. Existing occurrences of this object type will continue to
function as in the past.

Expression Filter Type

The Oracle Expression Filter allows application developers to manage and evaluate
conditional expressions that describe users' interests in data. The Expression Filter
includes the following datatype:

Expression

Expression Filter uses a virtual datatype called Expression to manage and evaluate
conditional expressions as data in database tables. The Expression Filter creates a
column of Expression datatype from a VARCHAR2 column by assigning an attribute set
to the column. This assignment enables a data constraint that ensures the validity of
expressions stored in the column.

You can define conditions using the EVALUATE operator on an Expression datatype to
evaluate the expressions stored in a column for some data. If you are using Enterprise
Edition, then you can also define an Expression Filter index on a column of
Expression datatype to process queries using the EVALUATE operator.

See Also: Oracle Database Rules Manager and Expression Filter
Developer’s Guide for more information on the Expression Filter

Datatype Comparison Rules

This section describes how Oracle Database compares values of each datatype.

Numeric Values

Date Values

A larger value is considered greater than a smaller one. All negative numbers are less
than zero and all positive numbers. Thus, -1 is less than 100; -100 is less than -1.

The floating-point value NaN (not a number) is greater than any other numeric value
and is equal to itself.

See Also: "Numeric Precedence" on page 2-14 and "Floating-Point
Numbers" on page 2-12 for more information on comparison
semantics

A later date is considered greater than an earlier one. For example, the date equivalent
of "29-MAR-2005' is less than that of '05-JAN-2006' and '05-JAN-2006 1:35pm' is greater
than '05-JAN-2005 10:09am .

2-36 Oracle Database SQL Language Reference

Datatype Comparison Rules

Character Values

Character values are compared on the basis of two measures:
= Binary or linguistic sorting
= Blank-padded or nonpadded comparison semantics

The following subsections describe the two measures.

Binary and Linguistic Comparisons

In binary comparison, which is the default, Oracle compares character strings
according to the concatenated value of the numeric codes of the characters in the
database character set. One character is greater than another if it has a greater numeric
value than the other in the character set. Oracle considers blanks to be less than any
character, which is true in most character sets.

These are some common character sets:

s 7-bit ASCII (American Standard Code for Information Interchange)
= EBCDIC Code (Extended Binary Coded Decimal Interchange Code)
= ISO 8859/1 (International Standards Organization)

s JEUC Japan Extended UNIX

Linguistic comparison is useful if the binary sequence of numeric codes does not
match the linguistic sequence of the characters you are comparing. Linguistic
comparison is used if the NLS_SORT parameter has a setting other than BINARY and the
NLS_COMP parameter is set to LINGUISTIC. In linguistic sorting, all SQL sorting and
comparison are based on the linguistic rule specified by NLS_SORT.

See Also: Oracle Database Globalization Support Guide for more
information about linguistic sorting

Blank-Padded and Nonpadded Comparison Semantics

With blank-padded semantics, if the two values have different lengths, then Oracle
first adds blanks to the end of the shorter one so their lengths are equal. Oracle then
compares the values character by character up to the first character that differs. The
value with the greater character in the first differing position is considered greater. If
two values have no differing characters, then they are considered equal. This rule
means that two values are equal if they differ only in the number of trailing blanks.
Oracle uses blank-padded comparison semantics only when both values in the
comparison are either expressions of datatype CHAR, NCHAR, text literals, or values
returned by the USER function.

With nonpadded semantics, Oracle compares two values character by character up to
the first character that differs. The value with the greater character in that position is
considered greater. If two values of different length are identical up to the end of the
shorter one, then the longer value is considered greater. If two values of equal length
have no differing characters, then the values are considered equal. Oracle uses
nonpadded comparison semantics whenever one or both values in the comparison
have the datatype VARCHAR2 or NVARCHAR2.

The results of comparing two character values using different comparison semantics
may vary. The table that follows shows the results of comparing five pairs of character
values using each comparison semantic. Usually, the results of blank-padded and
nonpadded comparisons are the same. The last comparison in the table illustrates the
differences between the blank-padded and nonpadded comparison semantics.

Basic Elements of Oracle SQL 2-37

Datatype Comparison Rules

Blank-Padded Nonpadded
‘ac' > 'ab' ‘ac' > 'ab'
'ab' > 'a ' 'ab' > 'a !
'ab' > 'a’ 'ab' > 'a'
'ab' = 'ab' 'ab' = 'ab'
'‘a '='a' 'a '> al

Portions of the ASCII and EBCDIC character sets appear in Table 2-8 and Table 2-9.
Uppercase and lowercase letters are not equivalent. The numeric values for the
characters of a character set may not match the linguistic sequence for a particular
language.

Table 2-8 ASCII Character Set

Symbol Decimal value Symbol Decimal value
blank 32 ; 59
! 33 < 60
" 34 = 61
35 > 62
$ 36 ? 63
% 37 @ 64
& 38 A-Z 65-90
! 39 [91
(40 \ 92
) 41] 93
* 42 ~ 94
+ 43 _ 95
, 44 ! 96
- 45 a-z 97-122
46 { 123
/ 47 | 124
0-9 48-57 } 125
58 ~ 126
Table 2-9 EBCDIC Character Set
Symbol Decimal value Symbol Decimal value
blank 64 % 108
¢ 74 _ 109
75 > 110
< 76 ? 111
(77 : 122

2-38 Oracle Database SQL Language Reference

Datatype Comparison Rules

Obiject Values

Table 2-9 (Cont.) EBCDIC Character Set

Symbol Decimal value Symbol Decimal value

+ 78 # 123

79 @ 124
& 80 ' 125
! 90 = 126
$ 91 " 127
* 92 a-i 129-137
) 93 j-r 145-153
; 94 S-z 162-169
% 95 A-I 193-201
- 96 J-R 209-217
/ 97 S-Z 226-233

Object values are compared using one of two comparison functions: MAP and ORDER.
Both functions compare object type instances, but they are quite different from one
another. These functions must be specified as part of any object type that will be
compared with other object types.

See Also: CREATE TYPE on page 17-3 for a description of MAP and
ORDER methods and the values they return

Varrays and Nested Tables

Comparison of nested tables is described in "Comparison Conditions" on page 7-4.

Datatype Precedence

Oracle uses datatype precedence to determine implicit datatype conversion, which is
discussed in the section that follows. Oracle datatypes take the following precedence:

= Datetime and interval datatypes
= BINARY DOUBLE

= BINARY FLOAT

= NUMBER

» Character datatypes

= All other built-in datatypes

Data Conversion

Generally an expression cannot contain values of different datatypes. For example, an
expression cannot multiply 5 by 10 and then add 'JAMES'. However, Oracle supports
both implicit and explicit conversion of values from one datatype to another.

Basic Elements of Oracle SQL 2-39

Datatype Comparison Rules

Implicit and Explicit Data Conversion

Oracle recommends that you specify explicit conversions, rather than rely on implicit
or automatic conversions, for these reasons:

= SQL statements are easier to understand when you use explicit datatype
conversion functions.

= Implicit datatype conversion can have a negative impact on performance,
especially if the datatype of a column value is converted to that of a constant
rather than the other way around.

= Implicit conversion depends on the context in which it occurs and may not work
the same way in every case. For example, implicit conversion from a datetime
value to a VARCHAR2 value may return an unexpected year depending on the value
of the NLS_DATE_FORMAT parameter.

= Algorithms for implicit conversion are subject to change across software releases
and among Oracle products. Behavior of explicit conversions is more predictable.

Implicit Data Conversion

Oracle Database automatically converts a value from one datatype to another when
such a conversion makes sense. Implicit conversion to character datatypes follows
these rules:

Table 2-10 is a matrix of Oracle implicit conversions. The table shows all possible
conversions, without regard to the direction of the conversion or the context in which
it is made. The rules governing these details follow the table.

Table 2-10 Implicit Type Conversion Matrix

o
2)
o [e) 2
(3] o ~ - [e]
g £ Lz g © 8
T ' o E =2 w > > a m
o < i m o o o = m m
< & I % pEgw = S £ 2 = = & & 3
T < o > g < Z 2 = = o < @) | | O
o S 2 = o o Z = o o o o e o o 2
CHAR - X X X X X X X X X X - X X X
VARCHAR2 X - X X X X X X X X X X X - X
NCHAR X X -- X X X X X X X X X X - X
NVARCHAR2 X X X - X X X X X X X X X - X
DATE X X X - - - - - - - - - - —
DATETIME/ X X X X - - - - - X - - - - -
INTERVAL
NUMBER X X X X - - - X X - - - - - -
BINARY_ X X X X - - X - X - - - - - —
FLOAT
BINARY_ X X X X - - X X - - - - - - —
DOUBLE
LONG X X X - X1 - - - - X - X - X
RAW X X X - - - - - X - - - X -
ROWID - X X X - - - - - - - - - - -
cLoB X X X X - - - - - X - - - - X

2-40 Oracle Database SQL Language Reference

Datatype Comparison Rules

Table 2-10 (Cont.) Implicit Type Conversion Matrix

4
b m
[\ o 2
g < i z 8
S . 3 =3 & o . o
= [[a
g ¢ £ & wwpwgf £ < < ¢ = £ 8§ 3 9
T < [3) > g 5 & = = = o < o par| pr| [3)
[3) S 4 F4 o o Z P4 o [} ar] o i o [} P4
BLOB — - - ~ - - — - — - X ~ - - —
NCLOB X X X X - - - - - X - - X - -

Note 1: You cannot convert LONG to INTERVAL directly, but you can convert LONG to VARCHAR2 using TO_CHAR(interval), and then
convert the resulting VARCHAR2 value to INTERVAL.

The following rules govern the direction in which Oracle Database makes implicit
datatype conversions:

= During INSERT and UPDATE operations, Oracle converts the value to the datatype of
the affected column.

= During SELECT FROM operations, Oracle converts the data from the column to the
type of the target variable.

= When manipulating numeric values, Oracle usually adjusts precision and scale to
allow for maximum capacity. In such cases, the numeric datatype resulting from
such operations can differ from the numeric datatype found in the underlying
tables.

= When comparing a character value with a numeric value, Oracle converts the
character data to a numeric value.

= Conversions between character values or NUMBER values and floating-point
number values can be inexact, because the character types and NUMBER use decimal
precision to represent the numeric value, and the floating-point numbers use
binary precision.

= When converting a CLOB value into a character datatype such as VARCHAR2, or
converting BLOB to RAW data, if the data to be converted is larger than the target
datatype, then the database returns an error.

n Conversions from BINARY_ FLOAT to BINARY DOUBLE are exact.

s Conversions from BINARY_DOUBLE to BINARY_FLOAT are inexact if the BINARY_
DOUBLE value uses more bits of precision that supported by the BINARY_FLOAT.

= When comparing a character value with a DATE value, Oracle converts the
character data to DATE.

= When you use a SQL function or operator with an argument of a datatype other
than the one it accepts, Oracle converts the argument to the accepted datatype.

= When making assignments, Oracle converts the value on the right side of the
equal sign (=) to the datatype of the target of the assignment on the left side.

= During concatenation operations, Oracle converts from noncharacter datatypes to
CHAR or NCHAR.

s During arithmetic operations on and comparisons between character and
noncharacter datatypes, Oracle converts from any character datatype to a numeric,
date, or rowid, as appropriate. In arithmetic operations between CHAR /VARCHAR2
and NCHAR/NVARCHAR2, Oracle converts to a NUMBER.

Basic Elements of Oracle SQL 2-41

Datatype Comparison Rules

s Comparisons between CHAR and VARCHAR2 and between NCHAR and NVARCHAR2
types may entail different character sets. The default direction of conversion in
such cases is from the database character set to the national character set.

Table 2-11 shows the direction of implicit conversions between different character

types.

s Most SQL character functions are enabled to accept CLOBs as parameters, and
Oracle performs implicit conversions between CLOB and character types. Therefore,
functions that are not yet enabled for CLOBs can accept CLOBs through implicit
conversion. In such cases, Oracle converts the CLOBs to CHAR or VARCHAR? before the
function is invoked. If the CLOB is larger than 4000 bytes, then Oracle converts only
the first 4000 bytes to CHAR.

Table 2-11 Conversion Direction of Different Character Types

to CHAR to VARCHAR2 to NCHAR to NVARCHAR2
from CHAR - VARCHAR?2 NCHAR NVARCHAR?2
from VARCHAR2 VARCHAR2 - NVARCHAR2 NVARCHAR?2
from NCHAR NCHAR NCHAR -- NVARCHAR2
from NVARCHAR2 NVARCHAR2 NVARCHAR2 NVARCHAR?2 -

User-defined types such as collections cannot be implicitly converted, but must be
explicitly converted using CAST ... MULTISET

Implicit Data Conversion Examples

Text Literal Example The text literal '10' has datatype CHAR. Oracle implicitly converts
it to the NUMBER datatype if it appears in a numeric expression as in the following
statement:

SELECT salary + '10'
FROM employees;

Character and Number Values Example When a condition compares a character
value and a NUMBER value, Oracle implicitly converts the character value to a NUMBER
value, rather than converting the NUMBER value to a character value. In the following
statement, Oracle implicitly converts 200" to 200:

SELECT last_name
FROM employees
WHERE employee_id = '200';

Date Example In the following statement, Oracle implicitly converts '03-MAR-97"to a
DATE value using the default date format 'DD-MON-YY":

SELECT last_name
FROM employees
WHERE hire_date = '03-MAR-97';

Explicit Data Conversion

You can explicitly specify datatype conversions using SQL conversion functions.
Table 2-12 shows SQL functions that explicitly convert a value from one datatype to
another.

You cannot specify LONG and LONG RAW values in cases in which Oracle can perform
implicit datatype conversion. For example, LONG and LONG RAW values cannot appear in

2-42 Oracle Database SQL Language Reference

Datatype Comparison Rules

expressions with functions or operators. Refer to "LONG Datatype" on page 2-14 for
information on the limitations on LONG and LONG RAW datatypes.

Table 2-12 Explicit Type Conversions

4
- =
o < o
o o 2
| r o
" N - %) [T (a]
o o oc [} = =z | |
. O < w £ a - - > >
xr < ~ I m = = O [11] oc <
< IO s S = s z o g g
T O < =) T 2 < © o0 ¢ o o = =
o 5 <>t =z Qg o c a2 o 9 m m
222 o o E ° 229 eoq@ 2 °
from CHAR, TO_CHAR TO_ TO_DATE HEXTORAW CHARTO=R -- TO_CLOB TO_ TO_
VARCHAR2, (char.) NUMBER T0_TIMESTAMP OWID T0_NCLOB BINARY_ BINARY_
NCHAR, TO NCHAR FLOAT DOUBLE
NVARCHAR2 = TO_TIMESTAMP_
(char.)
TZ
TO_YMINTERVAL
TO_DSINTERVAL
from NUMBER TO_CHAR -- TO_DATE -- -- -- -- TO_ TO_
oo e o
TO_NCHAR INTERVAL
(number) NUMTODS-
INTERVAL
from Datetime/ TO_CHAR -- -- -- -- -- -- -- --
Interval (date)
TO_NCHAR
(datetime)
from RAW RAWTOHEX -- -- -- -- -- TO_BLOB -- --
RAWTONHEX
from ROWID ROWIDTOCHAR -- -- -- -- -- -- -- --
from LONG / -- -- -- -- -- -- TO_LOB -- --
LONG RAW
from CLOB, TO_CHAR -- -- -- -- -- TO_CLOB -- --
NCLOB, BLOB TO_NCHAR TO_NCLOB
from CLOB, TO_CHAR -- -- -- -- -- TO_CLOB -- --
NCLOB, BLOB TO_NCHAR TO_NCLOB
from BINARY_ TO_CHAR TO_ -- -- -- -- -- TO_ TO_
FLOAT (char.) NUMBER BINARY_ BINARY_
TO_NCHAR FLOAT DOUBLE
(char.)
from BINARY_ TO_CHAR TO_ -- -- -- -- -- TO_ TO_
DOUBLE (char.) NUMBER BINARY_ BINARY_
TO_ NCHAR FLOAT DOUBLE
(char.)

See Also: "Conversion Functions" on page 5-5 for details on all of
the explicit conversion functions

Security Considerations for Data Conversion

When a datetime value is converted to text, either by implicit conversion or by explicit
conversion that does not specify a format model, the format model is defined by one of
the globalization session parameters. Depending on the source datatype, the
parameter name is NLS_DATE_FORMAT, NLS_TIMESTAMP_FORMAT, or NLS_TIMESTAMP_TZ_

Basic Elements of Oracle SQL 2-43

Literals

Literals

FORMAT. The values of these parameters can be specified in the client environment or in
an ALTER SESSION statement.

The dependency of format models on session parameters can have a negative impact
on database security when conversion without an explicit format model is applied to a
datetime value that is being concatenated to text of a dynamic SQL statement.
Dynamic SQL statements are those statements whose text is concatenated from
fragments before being passed to a database for execution. Dynamic SQL is frequently
associated with the built-in PL/SQL package DBMS_SQL or with the PL/SQL statement
EXECUTE IMMEDIATE, but these are not the only places where dynamically constructed
SQL text may be passed as argument. For example:

EXECUTE IMMEDIATE
'SELECT name FROM employee WHERE hiredate > ''' || start_date || '''';

where start_date has the datatype DATE.

In the above example, the value of start_dateis converted to text using a format
model specified in the session parameter NLS_DATE_FORMAT. The result is concatenated
into SQL text. A datetime format model can consist simply of literal text enclosed in
double quotation marks. Therefore, any user who can explicitly set globalization
parameters for a session can decide what text is produced by the above conversion. If
the SQL statement is executed by a PL/SQL procedure, the procedure becomes
vulnerable to SQL injection through the session parameter. If the procedure runs with
definer's rights, with higher privileges than the session itself, the user can gain
unauthorized access to sensitive data.

See Also: Oracle Database PL/SQL Language Reference for further
examples and for recommendations on avoiding this security risk

Note: This security risk also applies to middle-tier applications that
construct SQL text from datetime values converted to text by the
database or by OCI datetime functions. Those applications are
vulnerable if session globalization parameters are obtained from a
user preference.

Implicit and explicit conversion for numeric values may also suffer from the analogous
problem, as the conversion result may depend on the session parameter NLS_NUMERIC_
CHARACTERS. This parameter defines the decimal and group separator characters. If the
decimal separator is defined to be the quotation mark or the double quotation mark,
some potential for SQL injection emerges.

See Also:

» Oracle Database Globalization Support Guide for detailed
descriptions of the session globalization parameters

= "Format Models" on page 2-54 for information on the format
models

The terms literal and constant value are synonymous and refer to a fixed data value.
For example, TACK', 'BLUE ISLAND', and 101" are all character literals; 5001 is a
numeric literal. Character literals are enclosed in single quotation marks so that Oracle
can distinguish them from schema object names.

2-44 Oracle Database SQL Language Reference

Literals

Text Literals

This section contains these topics:
» Text Literals

s Numeric Literals

» Datetime Literals

s Interval Literals

Many SQL statements and functions require you to specify character and numeric
literal values. You can also specify literals as part of expressions and conditions. You
can specify character literals with the 'text' notation, national character literals with
the N'text ' notation, and numeric literals with the integer, or number notation,
depending on the context of the literal. The syntactic forms of these notations appear
in the sections that follow.

To specify a datetime or interval datatype as a literal, you must take into account any
optional precisions included in the datatypes. Examples of specifying datetime and
interval datatypes as literals are provided in the relevant sections of "Datatypes" on
page 2-1.

Use the text literal notation to specify values whenever 'string' appears in the syntax
of expressions, conditions, SQL functions, and SQL statements in other parts of this
reference. This reference uses the terms text literal, character literal, and string
interchangeably. Text, character, and string literals are always surrounded by single
quotation marks. If the syntax uses the term char, then you can specify either a text
literal or another expression that resolves to character data — for example, the last_
name column of the hr.employees table. When char appears in the syntax, the single
quotation marks are not used.

The syntax of text literals or strings follows:

quote_delimiter

where N or n specifies the literal using the national character set (NCHAR or NVARCHAR2
data). By default, text entered using this notation is translated into the national
character set by way of the database character set when used by the server. To avoid
potential loss of data during the text literal conversion to the database character set, set
the environment variable ORA_NCHAR_LITERAL_ REPLACE to TRUE. Doing so transparently
replaces the n' internally and preserves the text literal for SQL processing.

See Also: Oracle Database Globalization Support Guide for more
information about N-quoted literals
In the top branch of the syntax:

= c is any member of the user's character set. A single quotation mark (') within the
literal must be preceded by an escape character. To represent one single quotation
mark within a literal, enter two single quotation marks.

Basic Elements of Oracle SQL 2-45

Literals

= ''are two single quotation marks that begin and end text literals.
In the bottom branch of the syntax:

= Qor gindicates that the alternative quoting mechanism will be used. This
mechanism allows a wide range of delimiters for the text string.

s The outermost ' ' are two single quotation marks that precede and follow,
respectively, the opening and closing quote_delimiter.

= cis any member of the user's character set. You can include quotation marks (") in
the text literal made up of ¢ characters. You can also include the quote_delimiter,
as long as it is not immediately followed by a single quotation mark.

» quote_delimiteris any single- or multibyte character except space, tab, and
return. The quote_delimiter can be a single quotation mark. However, if the
quote_delimiter appears in the text literal itself, ensure that it is not immediately
followed by a single quotation mark.

If the opening quote_delimiterisoneof [, {, <, or (, then the closing quote_
delimiter must be the corresponding 1, }, >, or). In all other cases, the opening
and closing quote_delimiter must be the same character.

Text literals have properties of both the CHAR and VARCHAR2 datatypes:

= Within expressions and conditions, Oracle treats text literals as though they have
the datatype CHAR by comparing them using blank-padded comparison semantics.

= A text literal can have a maximum length of 4000 bytes.
Here are some valid text literals:

'Hello'

'ORACLE.dbs'
'Jackie''s raincoat'
'09-MAR-98"

N'nchar literal'

Here are some valid text literals using the alternative quoting mechanism:

g'!name LIKE '$%DBMS_%%'!'

g'<'So, "' she said, 'It's finished.'>"'

q' {SELECT * FROM employees WHERE last_name = 'Smith';}"'
ng'i Y1234 i

g'"name like '['"'

1

See Also: "Blank-Padded and Nonpadded Comparison Semantics'
on page 2-37

Numeric Literals

Use numeric literal notation to specify fixed and floating-point numbers.

Integer Literals

You must use the integer notation to specify an integer whenever integer appears in
expressions, conditions, SQL functions, and SQL statements described in other parts of
this reference.

The syntax of integer follows:

2-46 Oracle Database SQL Language Reference

Literals

integer::=

where digitisoneof0,1,2,3,4,5,6,7,8,9.
An integer can store a maximum of 38 digits of precision.
Here are some valid integers:

7
+255

NUMBER and Floating-Point Literals

You must use the number or floating-point notation to specify values whenever
number or n appears in expressions, conditions, SQL functions, and SQL statements in
other parts of this reference.

The syntax of number follows:

number::=

(G O[]
ol X

2N B

where

=+ or-indicates a positive or negative value. If you omit the sign, then a positive
value is the default.

m digitisoneof0,1,2,3,4,5,6,7, 8or9.

= eor Eindicates that the number is specified in scientific notation. The digits after
the E specify the exponent. The exponent can range from -130 to 125.

s for Findicates that the number is a 32-bit binary floating point number of type
BINARY_FLOAT

s dor Dindicates that the number is a 64-bit binary floating point number of type
BINARY_DOUBLE

If you omit f or F and d or D, then the number is of type NUMBER.

The suffixes f (F) and d (D) are supported only in floating-point number literals,
not in character strings that are to be converted to NUMBER. For example, if Oracle is
expecting a NUMBER and it encounters the string '9', then it converts the string to
the number 9. However, if Oracle encounters the string '9£', then conversion fails
and an error is returned.

Basic Elements of Oracle SQL 2-47

Literals

A number of type NUMBER can store a maximum of 38 digits of precision. If the literal
requires more precision than provided by NUMBER, BINARY_FLOAT, or BINARY_DOUBLE,
then Oracle truncates the value. If the range of the literal exceeds the range supported
by NUMBER, BINARY_FLOAT, or BINARY_DOUBLE, then Oracle raises an error.

If you have established a decimal character other than a period (.) with the
initialization parameter NLS_NUMERIC_CHARACTERS, then you must specify numeric
literals with 'text ' notation. In these cases, Oracle automatically converts the text

literal to a numeric value.

Note: You cannot use this notation for floating-point number literals.

For example, if the NLS_NUMERIC_CHARACTERS parameter specifies a decimal character
of comma, specify the number 5.123 as follows:

'5,123"

See Also: ALTER SESSION on page 11-42 and Oracle Database

Reference

Here are some valid NUMBER literals:

25
+6.34
0.5
25e-03
-1

Here are some valid floating-point number literals:

25f
+6.34F
0.5d
-1D

You can also use the following supplied floating-point literals in situations where a
value cannot be expressed as a numeric literal:

Literal

Meaning

Example

binary_float_nan

binary_float_
infinity

binary_double_nan

binary_double_
infinity

A value of type
BINARY_FLOAT for
which the condition
IS NAN is true

Single-precision
positive infinity

A value of type
BINARY_DOUBLE for
which the condition
IS NAN is true

Double-precision
positive infinity

SELECT COUNT (*)

FROM employees

WHERE TO_BINARY FLOAT (commission_pct)
= BINARY FLOAT NAN;

SELECT COUNT (*)
FROM employees
WHERE salary < BINARY_ FLOAT INFINITY;

SELECT COUNT (*)

FROM employees

WHERE TO_BINARY_ FLOAT (commission_pct)
!= BINARY_FLOAT_NAN;

SELECT COUNT (*)
FROM employees
WHERE salary < BINARY_FLOAT INFINITY;

2-48 Oracle Database SQL Language Reference

Literals

Datetime Literals

Oracle Database supports four datetime datatypes: DATE, TIMESTAMP, TIMESTAMP WITH
TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE.

Date Literals You can specify a DATE value as a string literal, or you can convert a
character or numeric value to a date value with the TO_DATE function. DATE literals are
the only case in which Oracle Database accepts a TO_DATE expression in place of a
string literal.

To specify a DATE value as a literal, you must use the Gregorian calendar. You can
specify an ANSI literal, as shown in this example:

DATE '1998-12-25"

The ANSI date literal contains no time portion, and must be specified in the format
'YYYY-MM-DD'. Alternatively you can specify an Oracle date value, as in the following
example:

TO_DATE ('98-DEC-25 17:30"', 'YY-MON-DD HH24:MI')

The default date format for an Oracle DATE value is specified by the initialization
parameter NLS_DATE_FORMAT. This example date format includes a two-digit number
for the day of the month, an abbreviation of the month name, the last two digits of the
year, and a 24-hour time designation.

Oracle automatically converts character values that are in the default date format into
date values when they are used in date expressions.

If you specify a date value without a time component, then the default time is
midnight (00:00:00 or 12:00:00 for 24-hour and 12-hour clock time, respectively). If you
specify a date value without a date, then the default date is the first day of the current
month.

Oracle DATE columns always contain both the date and time fields. Therefore, if you
query a DATE column, then you must either specify the time field in your query or
ensure that the time fields in the DATE column are set to midnight. Otherwise, Oracle
may not return the query results you expect. You can use the TRUNC date function to set
the time field to midnight, or you can include a greater-than or less-than condition in
the query instead of an equality or inequality condition.

Here are some examples that assume a table my_table with a number column row_num
and a DATE column datecol:

INSERT INTO my_table VALUES (1, SYSDATE);
INSERT INTO my_table VALUES (2, TRUNC (SYSDATE)) ;

SELECT * FROM my_table;

ROW_NUM DATECOL

1 03-0CT-02
2 03-0CT-02

SELECT * FROM my_table
WHERE datecol = TO_DATE('03-0CT-02', 'DD-MON-YY');

ROW_NUM DATECOL

2 03-0CT-02

Basic Elements of Oracle SQL 2-49

Literals

SELECT * FROM my_table
WHERE datecol > TO_DATE('02-0CT-02', 'DD-MON-YY');

ROW_NUM DATECOL

1 03-0CT-02
2 03-0CT-02

If you know that the time fields of your DATE column are set to midnight, then you can
query your DATE column as shown in the immediately preceding example, or by using
the DATE literal:

SELECT * FROM my_table WHERE datecol = DATE '2002-10-03';

However, if the DATE column contains values other than midnight, then you must filter
out the time fields in the query to get the correct result. For example:

SELECT * FROM my_table WHERE TRUNC (datecol) = DATE '2002-10-03';

Oracle applies the TRUNC function to each row in the query, so performance is better if
you ensure the midnight value of the time fields in your data. To ensure that the time

fields are set to midnight, use one of the following methods during inserts and
updates:

s Use the TO_DATE function to mask out the time fields:
INSERT INTO my_table VALUES
(3, TO_DATE('3-0CT-2002"', 'DD-MON-YYYY'));
s Use the DATE literal:

INSERT INTO my_table VALUES (4, '03-0CT-02');

= Use the TRUNC function:
INSERT INTO my_table VALUES (5, TRUNC (SYSDATE));
The date function SYSDATE returns the current system date and time. The function

CURRENT_DATE returns the current session date. For information on SYSDATE, the TO_*
datetime functions, and the default date format, see "Datetime Functions" on page 5-4.

TIMESTAMP Literals The TIMESTAMP datatype stores year, month, day, hour, minute,
and second, and fractional second values. When you specify TIMESTAMP as a literal, the
fractional_seconds_precision value can be any number of digits up to 9, as follows:

TIMESTAMP '1997-01-31 09:26:50.124"

TIMESTAMP WITH TIME ZONE Literals The TIMESTAMP WITH TIME ZONE datatypeisa
variant of TIMESTAMP that includes a time zone region name or time zone offset. When
you specify TIMESTAMP WITH TIME ZONE as a literal, the fractional seconds_
precision value can be any number of digits up to 9. For example:

TIMESTAMP '1997-01-31 09:26:56.66 +02:00"'

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent the
same instant in UTC, regardless of the TIME ZONE offsets stored in the data. For
example,

TIMESTAMP '1999-04-15 8:00:00 -8:00"'

is the same as

2-50 Oracle Database SQL Language Reference

Literals

TIMESTAMP '1999-04-15 11:00:00 -5:00"

8:00 a.m. Pacific Standard Time is the same as 11:00 a.m. Eastern Standard Time.

You can replace the UTC offset with the TZR (time zone region) format element. For
example, the following example has the same value as the preceding example:

TIMESTAMP '1999-04-15 8:00:00 US/Pacific'

To eliminate the ambiguity of boundary cases when the daylight saving time switches,
use both the TZR and a corresponding TzD format element. The following example
ensures that the preceding example will return a daylight saving time value:

TIMESTAMP '1999-10-29 01:30:00 US/Pacific PDT'

You can also express the time zone offset using a datetime expression:

SELECT TIMESTAMP '1999-10-29 01:30:00' AT TIME ZONE 'US/Pacific' FROM DUAL;

See Also: "Datetime Expressions" on page 6-8 for more information

If you do not add the TZD format element, and the datetime value is ambiguous, then
Oracle returns an error if you have the ERROR_ON_OVERLAP_TIME session parameter set
to TRUE. If that parameter is set to FALSE, then Oracle interprets the ambiguous
datetime as standard time in the specified region.

TIMESTAMP WITH LOCAL TIME ZONE Literals The TIMESTAMP WITH LOCAL TIME
ZONE datatype differs from TIMESTAMP WITH TIME ZONE in that data stored in the
database is normalized to the database time zone. The time zone offset is not stored as
part of the column data. There is no literal for TIMESTAMP WITH LOCAL TIME ZONE.
Rather, you represent values of this datatype using any of the other valid datetime
literals. The table that follows shows some of the formats you can use to insert a value
into a TIMESTAMP WITH LOCAL TIME ZONE column, along with the corresponding value

returned by a query.

Value Specified in INSERT Statement Value Returned by Query
'19-FEB-2004" 19-FEB-2004.00.00.000000 AM
SYSTIMESTAMP 19-FEB-04 02.54.36.497659 PM
TO_TIMESTAMP ('19-FEB-2004', 'DD-MON-YYYY')); 19-FEB-04 12.00.00.000000 AM
SYSDATE 19-FEB-04 02.55.29.000000 PM
TO_DATE('19-FEB-2004', 'DD-MON-YYYY')); 19-FEB-04 12.00.00.000000 AM
TIMESTAMP'2004-02-19 8:00:00 US/Pacific'); 19-FEB-04 08.00.00.000000 AM

Notice that if the value specified does not include a time component (either explicitly
or implicitly, then the value returned defaults to midnight.

Interval Literals

An interval literal specifies a period of time. You can specify these differences in terms
of years and months, or in terms of days, hours, minutes, and seconds. Oracle
Database supports two types of interval literals, YEAR TO MONTH and DAY TO SECOND.
Each type contains a leading field and may contain a trailing field. The leading field
defines the basic unit of date or time being measured. The trailing field defines the
smallest increment of the basic unit being considered. For example, a YEAR TO MONTH

Basic Elements of Oracle SQL 2-51

Literals

interval considers an interval of years to the nearest month. A DAY TO MINUTE interval
considers an interval of days to the nearest minute.

If you have date data in numeric form, then you can use the NUMTOYMINTERVAL or
NUMTODSINTERVAL conversion function to convert the numeric data into interval values.

Interval literals are used primarily with analytic functions.

See Also: "Analytic Functions" on page 5-10, NUMTODSINTERVAL
on page 5-161, NUMTOYMINTERVAL on page 5-162, and Oracle
Database Data Warehousing Guide

INTERVAL YEAR TO MONTH

Specify YEAR TO MONTH interval literals using the following syntax:

interval_year to_month::=

.integer
—{ INTERVAL |->@{integer) S O->

OlCEDI0

where

s 'integer [-integer]' specifies integer values for the leading and optional
trailing field of the literal. If the leading field is YEAR and the trailing field is MONTH,
then the range of integer values for the month field is 0 to 11.

» precisionis the maximum number of digits in the leading field. The valid range

of the leading field precision is 0 to 9 and its default value is 2.

Restriction on the Leading Field If you specify a trailing field, then it must be less
significant than the leading field. For example, INTERVAL '0-1' MONTH TO YEAR is not
valid.

The following INTERVAL YEAR TO MONTH literal indicates an interval of 123 years, 2
months:

INTERVAL '123-2' YEAR(3) TO MONTH

Examples of the other forms of the literal follow, including some abbreviated versions:

Form of Interval Literal Interpretation

INTERVAL '123-2' YEAR(3) TO MONTH An interval of 123 years, 2 months. You must
specify the leading field precision if it is
greater than the default of 2 digits.

INTERVAL '123' YEAR(3) An interval of 123 years 0 months.
INTERVAL '300' MONTH(3) An interval of 300 months.
INTERVAL '4' YEAR Maps to INTERVAL '4-0' YEAR TO MONTH and

indicates 4 years.

INTERVAL '50' MONTH Maps to INTERVAL '4-2' YEAR TO MONTH and
indicates 50 months or 4 years 2 months.

2-52 Oracle Database SQL Language Reference

Literals

Form of Interval Literal Interpretation

INTERVAL '123' YEAR Returns an error, because the default precision
is 2, and '123' has 3 digits.

You can add or subtract one INTERVAL YEAR TO MONTH literal to or from another to yield
another INTERVAL YEAR TO MONTH literal. For example:

INTERVAL '5-3' YEAR TO MONTH + INTERVAL'20' MONTH =
INTERVAL '6-11' YEAR TO MONTH

INTERVAL DAY TO SECOND
Specify DAY TO SECOND interval literals using the following syntax:

interval_day_to_second::=
)

Ie@e(fractional,seconds,precisionh
~ }5(leading_precision) %

SECOND

MINUTE

ﬁ@e(fractional_seconds_precisionm

SECOND

where

= integer specifies the number of days. If this value contains more digits than the
number specified by the leading precision, then Oracle returns an error.

» time_expr specifies a time in the format HH[:MI[:SS[.n]]] or MI[:SS[.n]] or
SS[.n], where n specifies the fractional part of a second. If n contains more digits
than the number specified by fractional_seconds_precision, then nis rounded
to the number of digits specified by the fractional seconds_precision value.
You can specify time_expr following an integer and a space only if the leading
field is DAY.

» leading precisionis the number of digits in the leading field. Accepted values
are 0 to 9. The default is 2.

m fractional_seconds_precisionis the number of digits in the fractional part of
the SECOND datetime field. Accepted values are 1 to 9. The default is 6.

Basic Elements of Oracle SQL 2-53

Format Models

Restriction on the Leading Field: If you specify a trailing field, then it must be less
significant than the leading field. For example, INTERVAL MINUTE TO DAY is not valid. As
a result of this restriction, if SECOND is the leading field, the interval literal cannot have
any trailing field.

The valid range of values for the trailing field are as follows:
= HOUR:0to 23

= MINUTE: 0 to 59

= SECOND: 0 to 59.999999999

Examples of the various forms of INTERVAL DAY TO SECOND literals follow, including
some abbreviated versions:

Form of Interval Literal Interpretation

INTERVAL '4 5:12:10.222' DAY TO 4 days, 5 hours, 12 minutes, 10 seconds, and
SECOND (3) 222 thousandths of a second.

INTERVAL '4 5:12' DAY TO MINUTE 4 days, 5 hours and 12 minutes.

INTERVAL '400 5' DAY(3) TO HOUR 400 days 5 hours.

INTERVAL '400' DAY (3) 400(iay&

INTERVAL '11:12:10.2222222' HOUR TO 11 hours, 12 minutes, and 10.2222222 seconds.
SECOND (7)

INTERVAL '11:20' HOUR TO MINUTE 11 hours and 20 minutes.

INTERVAL '10' HOUR 10 hours.

INTERVAL '10:22' MINUTE TO SECOND 10 minutes 22 seconds.

INTERVAL '10' MINUTE 10 minutes.

INTERVAL '4' DAY 4 days.

INTERVAL '25' HOUR 25 hours.

INTERVAL '40' MINUTE 40 minutes.

INTERVAL '120' HOUR(3) 120 hours.

INTERVAL '30.12345' SECOND(2,4) 30.1235 seconds. The fractional second '12345'

is rounded to '1235' because the precision is 4.

You can add or subtract one DAY TO SECOND interval literal from another DAY TO SECOND
literal. For example.

INTERVAL'20' DAY - INTERVAL'240' HOUR = INTERVAL'10-0' DAY TO SECOND

Format Models

A format model is a character literal that describes the format of datetime or numeric
data stored in a character string. A format model does not change the internal
representation of the value in the database. When you convert a character string into a
date or number, a format model determines how Oracle Database interprets the string.
In SQL statements, you can use a format model as an argument of the TO_CHAR and TO_
DATE functions to specify:

s The format for Oracle to use to return a value from the database

= The format for a value you have specified for Oracle to store in the database

2-54 Oracle Database SQL Language Reference

Format Models

For example:

s The datetime format model for the string '17:45:29"is 'HH24:MI:SS'.

s The datetime format model for the string '11-Nov-1999'is 'DD-Mon-YYYY'.
s The number format model for the string '$2,304.25"is '$9,999.99".

For lists of number and datetime format model elements, see Table 2-13, " Number
Format Elements" on page 2-56 and Table 2-15, " Datetime Format Elements" on
page 2-59.

The values of some formats are determined by the value of initialization parameters.
For such formats, you can specify the characters returned by these format elements
implicitly using the initialization parameter NLS_TERRITORY. You can change the
default date format for your session with the ALTER SESSION statement.

See Also:

= ALTER SESSION on page 11-42 for information on changing the
values of these parameters and Format Model Examples on
page 2-65 for examples of using format models

s TO_CHAR (datetime) on page 5-287, TO_CHAR (number) on
page 5-289, and TO_DATE on page 5-292

» Oracle Database Reference and Oracle Database Globalization Support
Guide for information on these parameters

This remainder of this section describes how to use the following format models:
= Number Format Models
= Datetime Format Models

s Format Model Modifiers

Number Format Models

You can use number format models in the following functions:

s In the TO_CHAR function to translate a value of NUMBER, BINARY_FLOAT, or BINARY
DOUBLE datatype to VARCHAR2 datatype

s In the TO_NUMBER function to translate a value of CHAR or VARCHAR2 datatype to
NUMBER datatype

s In the TO_BINARY_FLOAT and TO_BINARY DOUBLE functions to translate CHAR and
VARCHAR2 expressions to BINARY_ FLOAT or BINARY DOUBLE values

All number format models cause the number to be rounded to the specified number of
significant digits. If a value has more significant digits to the left of the decimal place
than are specified in the format, then pound signs (#) replace the value. This event
typically occurs when you are using TO_CHAR with a restrictive number format string,
causing a rounding operation.

= If a positive NUMBER value is extremely large and cannot be represented in the
specified format, then the infinity sign (~) replaces the value. Likewise, if a
negative NUMBER value is extremely small and cannot be represented by the
specified format, then the negative infinity sign replaces the value (-~).

s If a BINARY FLOAT or BINARY_ DOUBLE value is converted to CHAR or NCHAR, and the
input is either infinity or NaN (not a number), then Oracle always returns the

Basic Elements of Oracle SQL 2-55

Format Models

pound signs to replace the value. However, if you omit the format model, then
Oracle returns either Inf or Nan as a string.

Number Format Elements

A number format model is composed of one or more number format elements. The
tables that follow list the elements of a number format model and provide some
examples.

Negative return values automatically contain a leading negative sign and positive
values automatically contain a leading space unless the format model contains the MI,
S, or PR format element.

Table 2-13 Number Format Elements

Element Example Description

, (comma) 9,999 Returns a comma in the specified position. You can specify multiple commas in a
number format model.

Restrictions:
= A comma element cannot begin a number format model.

= A comma cannot appear to the right of a decimal character or period in a
number format model.

. (period) 99.99 Returns a decimal point, which is a period (.) in the specified position.

Restriction: You can specify only one period in a number format model.

$ $9999 Returns value with a leading dollar sign.
0 0999 Returns leading zeros.
9990 Returns trailing zeros.
9 9999 Returns value with the specified number of digits with a leading space if positive

or with a leading minus if negative. Leading zeros are blank, except for a zero
value, which returns a zero for the integer part of the fixed-point number.

B B9999 Returns blanks for the integer part of a fixed-point number when the integer part
is zero (regardless of zeros in the format model).

C €999 Returns in the specified position the ISO currency symbol (the current value of the
NLS_ISO_CURRENCY parameter).

D 99D99 Returns in the specified position the decimal character, which is the current value
of the NLS_NUMERIC_CHARACTER parameter. The default is a period (.).

Restriction: You can specify only one decimal character in a number format model.

EEEE 9.9EEEE Returns a value using in scientific notation.

G 9G999 Returns in the specified position the group separator (the current value of the NLS_
NUMERIC_CHARACTER parameter). You can specify multiple group separators in a
number format model.

Restriction: A group separator cannot appear to the right of a decimal character or
period in a number format model.

L 1999 Returns in the specified position the local currency symbol (the current value of
the NLS_CURRENCY parameter).

MI 9999MI Returns negative value with a trailing minus sign (-).
Returns positive value with a trailing blank.

Restriction: The MI format element can appear only in the last position of a
number format model.

2-56 Oracle Database SQL Language Reference

Format Models

Table 2-13 (Cont.) Number Format Elements

Element

Example Description

PR

9999PR Returns negative value in <angle brackets>.
Returns positive value with a leading and trailing blank.

Restriction: The PR format element can appear only in the last position of a
number format model.

RN

m

RN Returns a value as Roman numerals in uppercase.
rn Returns a value as Roman numerals in lowercase.

Value can be an integer between 1 and 3999.

59999 Returns negative value with a leading minus sign (-).
Returns positive value with a leading plus sign (+).

9999s Returns negative value with a trailing minus sign (-).
Returns positive value with a trailing plus sign (+).

Restriction: The S format element can appear only in the first or last position of a
number format model.

™

™ The text minimum number format model returns (in decimal output) the smallest
number of characters possible. This element is case insensitive.

The default is TM9, which returns the number in fixed notation unless the output
exceeds 64 characters. If the output exceeds 64 characters, then Oracle Database
automatically returns the number in scientific notation.

Restrictions:
= You cannot precede this element with any other element.

= You can follow this element only with one 9 or one E (or e), but not with any
combination of these. The following statement returns an error:

SELECT TO_CHAR (1234, 'TM9e’) FROM DUAL;

U9999 Returns in the specified position the Euro (or other) dual currency symbol,
determined by the current value of the NLS_DUAL_CURRENCY parameter.

999v99 Returns a value multiplied by 10" (and if necessary, round it up), where n is the
number of 9’s after the V.

XXXX Returns the hexadecimal value of the specified number of digits. If the specified

N number is not an integer, then Oracle Database rounds it to an integer.

Restrictions:

s This element accepts only positive values or 0. Negative values return an
error.

= You can precede this element only with 0 (which returns leading zeroes) or
FM. Any other elements return an error. If you specify neither 0 nor FM with
X, then the return always has one leading blank.

Table 2-14 shows the results of the following query for different values of number and
'fmt "

SELECT TO_CHAR (number, 'fmt')
FROM DUAL;

Table 2-14 Results of Number Conversions

number '‘fmt' Result
-1234567890 99999999998 '1234567890-"
0 99.99 ! .00

Basic Elements of Oracle SQL 2-57

Format Models

Table 2-14 (Cont.) Results of Number Conversions

number ‘fmt' Result

+0.1 99.99 ! .10
-0.2 99.99 to-.20
0 90.99 ' 0.00"
+0.1 90.99 ' 0.10"
-0.2 90.99 ' -0.20"

0 9999 ! 0

1 9999 ! 1

0 B9999 ' '

1 B9999 ! 1

0 B90.99 ' '
+123.456 999.999 ' 123.456"
-123.456 999.999 '-123.456"
+123.456 FM999.009 '123.456"
+123.456 9.9EEEE ' 1.2E+02"'
+1E+123 9.9EEEE " 1.0E+123"
+123.456 FM9 . 9EEEE "1.2E+02"
+123.45 FM999.009 '123.45"
+123.0 FM999.009 '123.00"
+123.45 L999.99 ! $123.45"
+123.45 FML999.99 '$123.45"

+1234567890 9999999999s '1234567890+"

Datetime Format Models

You can use datetime format models in the following functions:

s In the TO_* datetime functions to translate a character value that is in a format
other than the default format into a datetime value. (The TO_* datetime functions
are TO_DATE, TO_TIMESTAMP, and TO_TIMESTAMP_TZ.)

= In the TO_CHAR function to translate a datetime value into a character value that is
in a format other than the default format (for example, to print the date from an
application)

The total length of a datetime format model cannot exceed 22 characters.

The default datetime formats are specified either explicitly with the NLS session
parameters NLS_DATE_FORMAT, NLS_TIMESTAMP_FORMAT, and NLS_TIMESTAMP_TZ_FORMAT,
or implicitly with the NLS session parameter NLS_TERRITORY. You can change the
default datetime formats for your session with the ALTER SESSION statement.

See Also: ALTER SESSION on page 11-42 and Oracle Database
Globalization Support Guide for information on the NLS parameters

2-58 Oracle Database SQL Language Reference

Format Models

Datetime Format Elements

A datetime format model is composed of one or more datetime format elements as
listed in Table 2-15, " Datetime Format Elements" on page 2-59.

= For input format models, format items cannot appear twice, and format items that
represent similar information cannot be combined. For example, you cannot use
'SYYYY' and 'BC' in the same format string.

s The second column indicates whether the format element can be used in the TO_*
datetime functions. All format elements can be used in the TO_CHAR function.

= The following datetime format elements can be used in timestamp and interval
format models, but not in the original DATE format model: FF, TzD, TZH, TZM, and
TZR.

= Many datetime format elements are padded with blanks or leading zeroes to a
specific length. Refer to the format model modifier FM on page 2-65 for more
information.

Uppercase Letters in Date Format Elements Capitalization in a spelled-out word,
abbreviation, or Roman numeral follows capitalization in the corresponding format
element. For example, the date format model 'DAY" produces capitalized words like
'MONDAY"; 'Day' produces 'Monday'; and 'day' produces 'monday’.

Punctuation and Character Literals in Datetime Format Models You can include these
characters in a date format model:

= Punctuation such as hyphens, slashes, commas, periods, and colons

» Character literals, enclosed in double quotation marks

These characters appear in the return value in the same location as they appear in the
format model.

Table 2-15 Datetime Format Elements

TO_*
datetime
Element functions? Description
- Yes Punctuation and quoted text is reproduced in the result.
/
"text"
AD Yes AD indicator with or without periods.
A.D.
AM Yes Meridian indicator with or without periods.
A.M.
BC Yes BC indicator with or without periods.
B.C.

Basic Elements of Oracle SQL 2-59

Format Models

Table 2-15 (Cont.) Datetime Format Elements

Element

TO_*
datetime
functions?

Description

cc
Scc

Century.

= If the last 2 digits of a 4-digit year are between 01 and 99 (inclusive), then the
century is one greater than the first 2 digits of that year.

= If the last 2 digits of a 4-digit year are 00, then the century is the same as the first
2 digits of that year.

For example, 2002 returns 21; 2000 returns 20.

Yes

Day of week (1-7).

DAY

Yes

Name of day.

DD

Yes

Day of month (1-31).

DDD

Yes

Day of year (1-366).

DL

Yes

Returns a value in the long date format, which is an extension of Oracle Database’s
DATE format, determined by the current value of the NLS_DATE_FORMAT parameter.
Makes the appearance of the date components (day name, month number, and so
forth) depend on the NLS_TERRITORY and NLS_LANGUAGE parameters. For example, in
the AMERICAN_AMERICA locale, this is equivalent to specifying the format ‘' fmDay,
Month dd, yyyy'. In the GERMAN_GERMANY locale, it is equivalent to specifying the
format ‘fmDay, dd. Month yyyy’'.

Restriction: You can specify this format only with the TS element, separated by
white space.

DS

Yes

Returns a value in the short date format. Makes the appearance of the date
components (day name, month number, and so forth) depend on the NLS_TERRITORY
and NLS_LANGUAGE parameters. For example, in the AMERICAN_AMERICA locale, this is
equivalent to specifying the format "MM/DD/RRRR’. In the ENGLISH_UNITED_KINGDOM
locale, it is equivalent to specifying the format 'DD/MM/RRRR’.

Restriction: You can specify this format only with the TS element, separated by
white space.

DY

Yes

Abbreviated name of day.

Yes

Abbreviated era name (Japanese Imperial, ROC Official, and Thai Buddha
calendars).

EE

Yes

Full era name (Japanese Imperial, ROC Official, and Thai Buddha calendars).

FF [1..9]

Yes

Fractional seconds; no radix character is printed. Use the X format element to add
the radix character. Use the numbers 1 to 9 after FF to specify the number of digits in
the fractional second portion of the datetime value returned. If you do not specify a
digit, then Oracle Database uses the precision specified for the datetime datatype or
the datatype’s default precision. Valid in timestamp and interval formats, but not in
DATE formats.

Examples: 'HH:MI:SS.FF’
SELECT TO_CHAR (SYSTIMESTAMP, ‘SS.FF3’) from dual;

FM

Yes

Returns a value with no leading or trailing blanks.

See Also: Additional discussion on this format model modifier in the Oracle
Database SQL Language Reference

FX

Yes

Requires exact matching between the character data and the format model.

See Also: Additional discussion on this format model modifier in the Oracle
Database SQL Language Reference

HH
HH12

Yes

Hour of day (1-12).

2-60 Oracle Database SQL Language Reference

Format Models

Table 2-15 (Cont.) Datetime Format Elements

TO_*
datetime

Element functions? Description

HH24 Yes Hour of day (0-23).

Iw Week of year (1-52 or 1-53) based on the ISO standard.

1YY Last 3, 2, or 1 digit(s) of ISO year.

IY

I

1YYy 4-digit year based on the ISO standard.

J Yes Julian day; the number of days since January 1, 4712 BC. Number specified with J
must be integers.

MI Yes Minute (0-59).

MM Yes Month (01-12; January = 01).

MON Yes Abbreviated name of month.

MONTH Yes Name of month.

PM Yes Meridian indicator with or without periods.

P.M.

0 Quarter of year (1, 2, 3, 4; January - March = 1).

RM Yes Roman numeral month (I-XIL; January = I).

RR Yes Lets you store 20th century dates in the 21st century using only two digits.
See Also: Additional discussion on RR datetime format element in the Oracle
Database SQL Language Reference

RRRR Yes Round year. Accepts either 4-digit or 2-digit input. If 2-digit, provides the same
return as RR. If you do not want this functionality, then enter the 4-digit year.

Ss Yes Second (0-59).

SSSss Yes Seconds past midnight (0-86399).

TS Yes Returns a value in the short time format. Makes the appearance of the time
components (hour, minutes, and so forth) depend on the NLS_TERRITORY and NLS_
LANGUAGE initialization parameters.
Restriction: You can specify this format only with the DL or DS element, separated by
white space.

TZD Yes Daylight savings information. The TZD value is an abbreviated time zone string
with daylight saving information. It must correspond with the region specified in
TZR. Valid in timestamp and interval formats, but not in DATE formats.
Example: PST (for US/Pacific standard time); PDT (for US/Pacific daylight time).

TZH Yes Time zone hour. (See TzZM format element.) Valid in timestamp and interval formats,
but not in DATE formats.
Example: "HH:MI:SS.FFTZH:TZM'.

TZM Yes Time zone minute. (See TZH format element.) Valid in timestamp and interval
formats, but not in DATE formats.
Example: "HH:MI:SS.FFTZH:TZM'.

TZR Yes Time zone region information. The value must be one of the time zone regions

supported in the database. Valid in timestamp and interval formats, but not in DATE
formats.

Example: US/Pacific

Basic Elements of Oracle SQL 2-61

Format Models

Table 2-15 (Cont.) Datetime Format Elements

TO_*
datetime
Element functions? Description
ww Week of year (1-53) where week 1 starts on the first day of the year and continues to
the seventh day of the year.
W Week of month (1-5) where week 1 starts on the first day of the month and ends on
the seventh.
X Yes Local radix character.
Example: 'HH:MI:SSXFF'.
Y,YYY Yes Year with comma in this position.
YEAR Year, spelled out; S prefixes BC dates with a minus sign (-).
SYEAR
YYYy Yes 4-digit year; S prefixes BC dates with a minus sign.
SYYYY
YYY Yes Last 3, 2, or 1 digit(s) of year.
YY
Y

Oracle Database converts strings to dates with some flexibility. For example, when the
TO_DATE function is used, a format model containing punctuation characters matches
an input string lacking some or all of these characters, provided each numerical
element in the input string contains the maximum allowed number of digits—for
example, two digits '05' for 'MM' or four digits 2007" for 'YYYY". The following
statement does not return an error:

SELECT TO_CHAR (TO_DATE('0297','MM/YY'), 'MM/YY') FROM DUAL;

However, the following format string does return an error, because the FX (format
exact) format modifier requires an exact match of the expression and the format string:

SELECT TO_CHAR(TO_DATE('0207', 'fxmm/yy'), 'mm/yy') FROM DUAL;
SELECT TO_CHAR (TO_DATE('0207', 'fxmm/yy'), 'mm/yy') FROM DUAL

*

ERROR at line 1:
ORA-01861: literal does not match format string

See Also: "Format Model Modifiers" on page 2-64 and
"String-to-Date Conversion Rules" on page 2-67 for more information

Datetime Format Elements and Globalization Support

The functionality of some datetime format elements depends on the country and
language in which you are using Oracle Database. For example, these datetime format
elements return spelled values:

= MONTH
= MON

» DAY

= DY

2-62 Oracle Database SQL Language Reference

Format Models

s BCorADorB.C.or AD.
s AM or PM or AM or PM.

The language in which these values are returned is specified either explicitly with the
initialization parameter NLS_DATE_LANGUAGE or implicitly with the initialization
parameter NLS_LANGUAGE. The values returned by the YEAR and SYEAR datetime format
elements are always in English.

The datetime format element D returns the number of the day of the week (1-7). The
day of the week that is numbered 1 is specified implicitly by the initialization
parameter NLS_TERRITORY.

See Also: Oracle Database Reference and Oracle Database Globalization
Support Guide for information on globalization support initialization
parameters

ISO Standard Date Format Elements

Oracle calculates the values returned by the datetime format elements IYYY, IYY, IY, I,
and IW according to the ISO standard. For information on the differences between
these values and those returned by the datetime format elements YYYY, YYY, YY, Y,
and WW, see the discussion of globalization support in Oracle Database Globalization
Support Guide.

The RR Datetime Format Element

The RR datetime format element is similar to the YY datetime format element, but it
provides additional flexibility for storing date values in other centuries. The RR
datetime format element lets you store 20th century dates in the 21st century by
specifying only the last two digits of the year.

If you use the TO_DATE function with the YY datetime format element, then the year
returned always has the same first 2 digits as the current year. If you use the RR
datetime format element instead, then the century of the return value varies according
to the specified two-digit year and the last two digits of the current year.

That is:
» If the specified two-digit year is 00 to 49, then

- If the last two digits of the current year are 00 to 49, then the returned year has
the same first two digits as the current year.

- If the last two digits of the current year are 50 to 99, then the first 2 digits of
the returned year are 1 greater than the first 2 digits of the current year.

» If the specified two-digit year is 50 to 99, then

- If the last two digits of the current year are 00 to 49, then the first 2 digits of
the returned year are 1 less than the first 2 digits of the current year.

- If the last two digits of the current year are 50 to 99, then the returned year has
the same first two digits as the current year.

The following examples demonstrate the behavior of the RR datetime format element.

RR Datetime Format Examples
Assume these queries are issued between 1950 and 1999:

SELECT TO_CHAR (TO_DATE('27-0CT-98', 'DD-MON-RR') ,'YYYY') "Year"
FROM DUAL;

Basic Elements of Oracle SQL 2-63

Format Models

Year

1998

SELECT TO_CHAR(TO_DATE('27-0CT-17', 'DD-MON-RR') ,'YYYY') "Year"
FROM DUAL;

Year

2017

Now assume these queries are issued between 2000 and 2049:

SELECT TO_CHAR(TO_DATE('27-0CT-98', 'DD-MON-RR') ,'YYYY') "Year"
FROM DUAL;

Year

1998

SELECT TO_CHAR(TO_DATE('27-0CT-17', 'DD-MON-RR') ,'YYYY') "Year"
FROM DUAL;

Year

2017

Note that the queries return the same values regardless of whether they are issued
before or after the year 2000. The RR datetime format element lets you write SQL
statements that will return the same values from years whose first two digits are
different.

Datetime Format Element Suffixes
Table 2-16 lists suffixes that can be added to datetime format elements:

Table 2-16 Date Format Element Suffixes

Suffix Meaning Example Element Example Value
TH Ordinal Number DDTH 4TH

SP Spelled Number DDSP FOUR

SPTH or THSP Spelled, ordinal number DDSPTH FOURTH

Notes on date format element suffixes:

= When you add one of these suffixes to a datetime format element, the return value
is always in English.

= Datetime suffixes are valid only to format output. You cannot use them to insert a
date into the database.

Format Model Modifiers

The FM and FX modifiers, used in format models in the TO_CHAR function, control blank
padding and exact format checking.

A modifier can appear in a format model more than once. In such a case, each
subsequent occurrence toggles the effects of the modifier. Its effects are enabled for the

2-64 Oracle Database SQL Language Reference

Format Models

portion of the model following its first occurrence, and then disabled for the portion
following its second, and then reenabled for the portion following its third, and so on.

FM Fill mode. Oracle uses trailing blank characters and leading zeroes to fill format
elements to a constant width. The width is equal to the display width of the largest
element for the relevant format model:

= Numeric elements are padded with leading zeros to the width of the maximum
value allowed for the element. For example, the YYYY element is padded to four
digits (the length of '9999"), HH24 to two digits (the length of '23'), and DDD to three
digits (the length of '366").

» The character elements MONTH, MON, DAY, and DY are padded with trailing blanks to
the width of the longest full month name, the longest abbreviated month name,
the longest full date name, or the longest abbreviated day name, respectively,
among valid names determined by the values of NLS_DATE_LANGUAGE and NLS_
CALENDAR parameters. For example, when NLS_DATE_LANGUAGE is AMERICAN and
NLS_CALENDAR is GREGORIAN (the default), the largest element for MONTH is
SEPTEMBER, so all values of the MONTH format element are padded to nine display
characters. The values of the NLS_DATE_LANGUAGE and NLS_CALENDAR parameters
are specified in the third argument to TO_CHAR and TO_* datetime functions or they
are retrieved from the NLS environment of the current session.

» The character element RM is padded with trailing blanks to the length of 4, which
is the length of 'viii'.

» Other character elements and spelled-out numbers (SP, SPTH, and THSP suffixes)
are not padded.

The FM modifier suppresses the above padding in the return value of the TO_CHAR
function.

FX Format exact. This modifier specifies exact matching for the character argument
and datetime format model of a TO_DATE function:

s Punctuation and quoted text in the character argument must exactly match (except
for case) the corresponding parts of the format model.

» The character argument cannot have extra blanks. Without FX, Oracle ignores extra
blanks.

= Numeric data in the character argument must have the same number of digits as
the corresponding element in the format model. Without FX, numbers in the
character argument can omit leading zeros.

When FX is enabled, you can disable this check for leading zeros by using the F
modifier as well.

If any portion of the character argument violates any of these conditions, then Oracle
returns an error message.

Format Model Examples
The following statement uses a date format model to return a character expression:

SELECT TO_CHAR(SYSDATE, 'fmDDTH')||' of '||TO_CHAR
(SYSDATE, 'fmMonth')||', '||TO_CHAR(SYSDATE, 'YYYY') "Ides"
FROM DUAL;

Ides

3RD of April, 1998

Basic Elements of Oracle SQL 2-65

Format Models

The preceding statement also uses the FM modifier. If F1 is omitted, then the month is
blank-padded to nine characters:

SELECT TO_CHAR(SYSDATE, 'DDTH')||' of '||
TO_CHAR (SYSDATE, 'Month')||', '|]
TO_CHAR (SYSDATE, 'YYYY') "Ides"

FROM DUAL;

03RD of April , 1998
The following statement places a single quotation mark in the return value by using a
date format model that includes two consecutive single quotation marks:

SELECT TO_CHAR (SYSDATE, 'fmDay')||'''s Special' "Menu"
FROM DUAL;

Tuesday's Special
Two consecutive single quotation marks can be used for the same purpose within a
character literal in a format model.

Table 2-17 shows whether the following statement meets the matching conditions for
different values of char and 'fmt' using FX (the table named table has a column date_
column of datatype DATE):

UPDATE table
SET date_column = TO_DATE(char, 'fmt');

Table 2-17 Matching Character Data and Format Models with the FX Format Model

Modifier
char ‘fmt’ Match or Error?

'15/ JAN /1998 'DD-MON-YYYY' Match
' 15! JAN % /1998' 'DD-MON-YYYY' Error
'15/JAN/1998" ' FXDD-MON-YYYY' Error
'15-JAN-1998" ' FXDD-MON-YYYY' Match
'1-JAN-1998" ' FXDD-MON-YYYY' Error
"01-JAN-1998" ' FXDD-MON-YYYY' Match
'1-JAN-1998" ' FXFMDD-MON-YYYY' Match

Format of Return Values: Examples You can use a format model to specify the
format for Oracle to use to return values from the database to you.

The following statement selects the salaries of the employees in Department 80 and
uses the TO_CHAR function to convert these salaries into character values with the
format specified by the number format model '$99,990.99":

SELECT last_name employee, TO_CHAR (salary, '$99,990.99')
FROM employees
WHERE department_id = 80;

Because of this format model, Oracle returns salaries with leading dollar signs,
commas every three digits, and two decimal places.

2-66 Oracle Database SQL Language Reference

Format Models

The following statement selects the date on which each employee from Department 20
was hired and uses the TO_CHAR function to convert these dates to character strings
with the format specified by the date format model 'fmMonth DD, YYYY":

SELECT last_name employee,
TO_CHAR (hire_date, 'fmMonth DD, YYYY') hiredate
FROM employees
WHERE department_id = 20;

With this format model, Oracle returns the hire dates without blank padding (as
specified by fm), two digits for the day, and the century included in the year.

See Also: "Format Model Modifiers" on page 2-64 for a description
of the fm format element

Supplying the Correct Format Model: Examples When you insert or update a
column value, the datatype of the value that you specify must correspond to the
column datatype of the column. You can use format models to specify the format of a
value that you are converting from one datatype to another datatype required for a
column.

For example, a value that you insert into a DATE column must be a value of the DATE
datatype or a character string in the default date format (Oracle implicitly converts
character strings in the default date format to the DATE datatype). If the value is in
another format, then you must use the TO_DATE function to convert the value to the
DATE datatype. You must also use a format model to specify the format of the character
string.

The following statement updates Hunold's hire date using the TO_DATE function with
the format mask 'YYYY MM DD' to convert the character string 1998 05 20' to a DATE
value:

UPDATE employees
SET hire_date = TO_DATE('1998 05 20','YYYY MM DD')
WHERE last_name = 'Hunold';

String-to-Date Conversion Rules

The following additional formatting rules apply when converting string values to date
values (unless you have used the FX or FXFM modifiers in the format model to control
exact format checking):

= You can omit punctuation included in the format string from the date string if all
the digits of the numerical format elements, including leading zeros, are specified.
For example, specify 02 and not 2 for two-digit format elements such as MM, DD,
and YY.

= You can omit time fields found at the end of a format string from the date string.

» If a match fails between a datetime format element and the corresponding
characters in the date string, then Oracle attempts alternative format elements, as
shown in Table 2-18.

Table 2-18 Oracle Format Matching

Original Format Element Additional Format Elements to Try in Place of the Original

‘MM 'MON' and 'MONTH'
'MON 'MONTH'
'MONTH' 'MON'

Basic Elements of Oracle SQL 2-67

Format Models

Table 2-18 (Cont.) Oracle Format Matching

Original Format Element Additional Format Elements to Try in Place of the Original

'YY'! 'YYYY!
'RR' 'RRRR"
XML Format Model

The SYS_XMLGEN function returns an instance of type XMLType containing an XML
document. Oracle provides the XMLFormat object, which lets you format the output of
the SYS_XMLGEN function.

Table 2-19 lists and describes the attributes of the XMLFormat object. The function that
implements this type follows the table.
See Also:

s SYS_XMLGEN on page 5-276 for information on the SYS_XMLGEN
function

» Oracle XML Developer’s Kit Programmer’s Guide for more
information on the implementation of the XMLFormat object and its
use

Table 2-19 Attributes of the XMLFormat Object

Attribute Datatype Purpose

enclTag VARCHAR2 (100) The name of the enclosing tag for the result of the SYS_XMLGEN
function. If the input to the function is a column name, then the
default is the column name. Otherwise the default is Row. When
schemaType is set to USE_GIVEN_SCHEMA, this attribute also gives the
name of the XMLSchema element.

schemaType VARCHAR2 (100) The type of schema generation for the output document. Valid values
are 'NO_SCHEMA' and 'USE_GIVEN_SCHEMA'. The default is 'NO_SCHEMA'.

schemaName VARCHAR2 (4000) The name of the target schema Oracle uses if the value of the
schemaType is 'USE_GIVEN_SCHEMA' If you specify schemaName, then
Oracle uses the enclosing tag as the element name.

targetNameSpace VARCHAR2 (4000) The target namespace if the schema is specified (that is, schemaType is
GEN_SCHEMA_*, or USE_GIVEN_SCHEMA)

dburl VARCHAR2 (2000) The URL to the database to use if WITH_SCHEMA is specified. If this
attribute is not specified, then Oracle declares the URL to the types as
a relative URL reference.

processingIns VARCHAR2 (4000) User-provided processing instructions, which are appended to the top
of the function output before the element.

The function that implements the XMLFormat object follows:

STATIC FUNCTION createFormat (

enclTag IN varchar2 := 'ROWSET',
schemaType IN varchar2 := 'NO_SCHEMA',
schemaName IN varchar2 := null,
targetNameSpace IN varchar2 := null,

dburlPrefix IN varchar2 := null,
processingIns IN varchar2 := null) RETURN XMLGenFormatType
deterministic parallel_enable,
MEMBER PROCEDURE genSchema (spec IN varchar2),
MEMBER PROCEDURE setSchemaName (schemaName IN varchar?),

2-68 Oracle Database SQL Language Reference

Nulls

Nulls

MEMBER PROCEDURE setTargetNameSpace (targetNameSpace IN varchar2),
MEMBER PROCEDURE setEnclosingElementName (enclTag IN varchar2),
MEMBER PROCEDURE setDbUrlPrefix(prefix IN varchar2),

MEMBER PROCEDURE setProcessingIns(pi IN varchar2),

CONSTRUCTOR FUNCTION XMLGenFormatType (

enclTag IN varchar2 := 'ROWSET',
schemaType IN varchar2 := 'NO_SCHEMA',
schemaName IN varchar2 := null,
targetNameSpace IN varchar2 := null,

dbUrlPrefix IN varchar2 := null,
processingIns IN varchar2 := null) RETURN SELF AS RESULT
deterministic parallel_enable,
STATIC function createFormat2 (
enclTag in varchar2 := 'ROWSET',
flags in raw) return sys.xmlgenformattype
deterministic parallel_enable

If a column in a row has no value, then the column is said to be null, or to contain null.
Nulls can appear in columns of any datatype that are not restricted by NOT NULL or
PRIMARY KEY integrity constraints. Use a null when the actual value is not known or
when a value would not be meaningful.

Oracle Database treats a character value with a length of zero as null. However, do not
use null to represent a numeric value of zero, because they are not equivalent.

Note: Oracle Database currently treats a character value with a
length of zero as null. However, this may not continue to be true in
future releases, and Oracle recommends that you do not treat empty
strings the same as nulls.

Any arithmetic expression containing a null always evaluates to null. For example,
null added to 10 is null. In fact, all operators (except concatenation) return null when
given a null operand.

Nulls in SQL Functions

Most scalar functions return null when given a null argument. You can use the NVL
function to return a value when a null occurs. For example, the expression

NVL (commission_pct, 0) returns 0 if commission_pct is null or the value of
commission_pct if it is not null.

For information on how aggregate functions handle nulls, see "Aggregate Functions"
on page 5-8.

Nulls with Comparison Conditions

To test for nulls, use only the comparison conditions IS NULL and IS NOT NULL. If you
use any other condition with nulls and the result depends on the value of the null,
then the result is UNKNOWN. Because null represents a lack of data, a null cannot be equal
or unequal to any value or to another null. However, Oracle considers two nulls to be
equal when evaluating a DECODE function. Refer to DECODE on page 5-76 for syntax
and additional information.

Basic Elements of Oracle SQL 2-69

Comments

Oracle also considers two nulls to be equal if they appear in compound keys. That