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Abstract

In the summer of 1947, when I fiist began to work on the simplex method for
solving linear programs, the first idea that occurred to me is one that would
occur to any trained mathematician, namely the idea of step by step descent
(with respect to the objective function) along edges of the convex polyhedral
set from one vertex to an adjacent one. I rejected this algorithm outright
on intuitive grounds - it had to be inefficient because it proposed to solve
the problem by wandering along some path of outside edges until the optimal
vertex was reached. I therefore began to look for other methods which gave
more promise of being efficient, such as those that went directly through the
interior, [1].

Today we know that before 1947 that four isolated papers had been published
on special cases of the linear programming problem by Fourier (1824) [5], de la
Vallde Poussin (1911) [6], Kantorovich (1939) [7] and Hitchcock (1941) [8]. All
except Kantorovich's paper proposed as a solution method descent along the
outside edges of the polyhedral set which is the way we describe the simplex
method today. There is no evidence that these papers had any influence on each
other. Evidently they sparked zero interest on the part of other mathematicians
and were unknown to me when I first proposed the simplex method. As we
shall see the simplex algorithm evolved from a very different geometry, one in
which it appeared to be very efficient.

The linear programming problem is to find

minz, x > 0 such that Ax = b, cx = z(min), (1)

where x = (X, ... ,X,),A is an m by n matrix, and b and c are column and row vectors.
V6
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Curiously enough up to 1947 when I first proposed that a model based on linear

inequalities be used for planning activities of large-scale enterprises, linear inequality theory

had produced only forty or so papers in contrast to linear equation theory and the related

subjects of linear algebra and approximation which had produced a vast literature, [4].

Perhaps this disproportionate interest in linear equation theory was motivated more than

mathematicians care to admit by its practical use as an important tool in engineering and

physicis, and by the belief that linear inequality systems would not be practical to solve

unless they had three or less variables, [5].

My proposal served as a kind of trigger - ideas that had been brewing all through

World War II but had never found expression burst forth like an explosion. Almost two

years to the day that I first proposed that L.P. be used for planning, Koopmans organized

the 1949 conference (now referred to as The Zero-th Symposium on Mathematical Pro-

gramming) at the University of Chicago. There mathematicians, economists, and statis-

ticians presented their research and produced a remarkable proceedings entitled Activity

Analysis of Production and Allocation, [2]. L.P. soon became part of the newly developing

professional fields of Operations Research and Management Science. Today thousands of

linear programs are solved daily throughout the world to schedule industry. These involve

many hundreds, thousands and sometimes tens of thousands of equations and variables.

Some mathematicians rank L.P. as "the newest yet most potent of mathematical tools"

[16].

John von Neumann, Tjalling C. Koopmans, Albert W. Tucker, and others well known

-" today, some just starting their careers back in late 1940's, played important roles in L.P.'s

early development. A group of young economists associated with Koopmans (R. Dorfman,

K. Arrow, P. Samuelson, H. Simon and others) became active contributors to the field.

Their research on L.P. had a profound effect on economic theory leading to Nobel Prizes.

Another group led by A.W.Tucker, notably D. Gale and H. Kuhn, began the development

of the mathematical theory.

This outpouring between the years of 1947-1950 coincided with the first building of

digital computers. The computer became the tool that made the application of linear

programming possible. Everywhere we looked, we found practical applications that no

one earlier could have posed seriously as optimization problems because solving them by

hand computation would have been out of the question. By good luck, clever algorithms

in conjunction with computer development gave early promise that linear programming

would become a practical science. The intense interest by the Defense Department in the

linear programming application also had an important impact on the early construction
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of computers [17]. The U.S. National Bureau of Standards with Pentagon funding became

a focal point for computer development under Sam Alexander; its Mathematics Group

under John Curtis began the first experiments on techniques for solving linear programs

primarily by Alan Hoffman, Theodore Motzkin, and others [3].

Since everywhere we looked, we could see possible applications of linear programs, it

seemed only natural to suppose that there was extensive literature on the subject. To my

surprise, I found in my search of the contemporary literature of 1947 only a few references

C.. on linear inequality systems and none on solving an optimization problem subject to linear

inequality constraints.

T.S. Motzkin in his definitive 1936 Ph.D. thesis on linear inequalities [4] makes no

mention of optimizing a function subject to a system of linear inequalities. However, 15

years later at the First Symposium on Linear Programming (June 1951), Motzkin declared:

"there have been numerous rediscoveries [of LP] partly because of the confusingly many

different geometric interpretations which these problems admit". He went on to say that

different geometric interpretations allows one "to better understand and sometimes to

better solve cases of these problems as they appeared and developed from a first occurrence

in Newton's Methodus Fluxionim to right now".

The "numerous rediscoveries" that Motzkin referred to probably were to two or three

papers we have already cited concerned with finding the least sum of absolute deviations, or

minimizing the maximum deviation of linear systems, or determining whether there exists

a solution to a system of linear inequalities. Fourier pointed out as early as 1824 these were

all equivalent problems, [5]. Linear Programs, however, had also appeared in other guises.

In 1928, von Neumann [19] formulated the zero-sum matrix game and proved the famous
1% Mini-Max Theorem, a forerunner of the famous Duality Theorem of Linear Programming

(also due to him) [11]. In 1936, Neyman-Pearson considered the problem of finding an

optimal critical region for testing a statistical hypothesis. Their famous Neyman-Pearson

Lemma is a statement about the Lagrange Multipliers associat,'d with an optimal solution

to a linear program, [20].

2 After I had searched the the contemporary literature of 1947 and found nothing, I

made a special trip to Chicago in June 1947 to visit T.J. Koopmans to see what economists

.. . knew about the problem. As a result of that meeting, Leonid Hurwicz, a young colleague

of Koopmans, visited me in the Pentagon in the summer and collaborated with me on

my early work on the simplex algorithm, a method which we described at the time as
"climbing up the bean pole" - we were maximizing the objective.

3
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Later I made another special trip, this one to Princeton in the fall of 1947, to visit the

great mathematician Johnny von Neumann to learn what mathematicians knew about the

subject. This was after I had already proposed the simplex method but before I realized

how very efficient it was going to be, [1].

The origins of the simplex method go back to one of two famous unsolved problems

in mathematical statistics proposed by Jerzy Neyman which I mistakenly solved as a

homework problem; it later became part of my Ph.D. thesis at Berkeley, [9]. Today we

would describe this problem as proving the existence of optimal Lagrange multipliers for a

semi-infinite linear program with bounded variables. Given a sample space f] whose sample
points u have a known probability distribution dP(u) in fl, the problem I considered was to

prove the existence of a critical region w in fl that satisfied the conditions of the Neyman-

Pearson Lemma. More precisely, the problem concerned finding a region w in fl that

minimized the Lebesgue-Stieltjes integral defined by (4) below, subject to (2) and (3):

]dP(u) = a, (2)

.t f f(u)dP(u) = b, (3)
. %%

a f -  g(u)dP(u) = z(min), (4)

where 0 < a < 1 is the specified "size" of the region; f(u) is a given vector function of u

with m - 1 components whose expected value over w is specified by the vector b; and g(u)

is a given scalar function of u whose unknown expected value z over w is to be minimized.

Instead of finding a critical region, we can try to find the characteristic function O(u)

with the property that O(u) = 1 if u E w and O(u) = 0 if u 0 w. The original problem can

then be restated as:

Find min z and a function 4(u) for u E fl such that:

,EO q.(u)dP(u) = a, 0 < 4(u) < 1, (5)

a-' f 4(u) f(u)dP(u) = b, (6)

a-1f ¢(u)g(u)dP(u) = z(min). (7)
.EO

A discrete analog of this semi-infinite linear program can be obtained by selecting

n representative sample points ul, ... u,. . ,u' in and replacing dP(ui) by discrete
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point probabilities A3 > 0 where n may be finite or infinite. Setting

i! = (A/C) -(W), 0 < 3  Aj/a, (8)

"" the approximation problem becomes the bounded variable LP:

Find min z, 0 < x _ Ai/ai:

n

SZzxj = 1 (9)

n
,7I

A.jx3 = b (10)

n

cjxz = z(min) (11)

where f (ui) A.3 are m - 1 component column vectors, and g(u y )  cj.

Since n the number of descrete j could be infinite, I found it more convenient to

analyze the L.P. problem in the geometry of the finite (m+ 1) dimensional space associated

with the coefficients in a column. I did so initially with the convexity constraint (9)

but with no explicit upper bound on the non-negative variables xi, [10], [2], [11]. Since

the first coefficient in a column (the one corresponding to (9)) is always 1, my analysis

omitted the initial 1 coordinate. Each column (A.3 , cj) becomes a point (y, z) in R ' where

y= (yt, . . . , ym-1) has m- 1 coordinates.

The problem can now be interpreted geometrically as one of assigning weights x > 0

to the n points (y, z3) = (A.j, cj) in R' so that the "center of gravity" of these points,

see Figure 1, lies on the vertical "requirement" line (b, z) and such that its z coordinate is

as small as possible.

Simplex Algorithm

Step t of the algorithm begins with an m - 1 simplex, see Figure 1, defined by some

m points (A.y,,c,) for i = (1,. ,m) and m weights x° > 0 (in the non-degenerate case)
such that E A.i, zy, = b. In the figure, the vertices of the m - 1 = 2 dimensional simplex

correspond to j, = 1, j2 = 2, j3 = 3. The line (b, z) intersects the plane of the simplex

(the triangle in the figure) ir an interior point (b, zt). A point (A.,, c.) is then determined

whose vertical distance below this "solution" plane of the simplex is maximum.

I5
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Figure 1. The m Dimensional Simplex

Algebraically the equation z = 7ry + 7ro of the plane associated with the simplex, is

found by solving the system m equations irA.,, + 7re = c,, ji = (jl,...,jm). Next, let

y -'j = s be the index of (A.,,c,) the point most below this plane, namely

s = argmin[c - (irA., + ro)]. (12)

If [c, - (7rA., +7ro)] turns out to be non-negative, the iterative process stops, otherwise

the m simplex, the tetrahedron in Figure 1, is formed as the convex combination of the

point A ,,c,) and the (m-1) simplex. The requirement line (b,z) intersects this m-simplex

in a segment (b, zt+1), (b, zt) where zt+t < zt. The face containing (b, zt+1) is then selected

as the new (m - 1)-simplex. Operationally the point (A.,c.) replaces A.., cj, for some r.

The index r is not difficult to determine algebraically.

Geometrical insight as to why the simplex method is efficient can be gained by viewing

the algorithm in two dimensions, see Figure 2. Suppose a piecewise linear function y = f(x)

is defined by the underbelly of the convex hull of the points (yi, zi) = (A.j, c.). We wish

6
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to solve the equation y = f(b) and to find two points (y, z ), (yk, Zk) and the weights

(A, 1) 0 on these two points such that Ayj + Ayk = b, A + /i = 1, Azi + Azk = f(b). In

the two dimensional case, the simplex method resembles a kind of secant method in which,

given any slope a, it is cheap to find a point (y', z') of the underbelly such that the slope
(actually the slope of a support) at ya is c, but where it is not possible given b to directly

compute y f(b).

z × (y ,zfy)

z X× 4 4

[, l..:p .Xz

.

0 (b,O)

(y ty
D(b,

-" Figure 2. The Under-belly of the Convex Hull

In Figure 2, the algorithm is initiated (in Phase II of the simplex method) by two

points, say (y',z') and (y 6 , z6 ), on opposite sides of the requirement line. The slope of the
"solution" line joining them is or. Next, one determines that the point (yh, z 5 ) is the one

most below the line joining (y', z') to (y6, z6 ) with slope or. This is done algebraically by

simply substituting the coordinates (y, zj) into the equation of the solution line z - zG =

aI(y - y6 ) and finding the point j = s such that a (yj - y6 ) - (zi - z6 ) is maximum. For

the example above, s = 5 and thus (ys, z5 ) replaces (y 6 , z6 ). The steps are then repeated

with (y', z1) and (y 5 , z5 ). The algorithm finds the optimum point (b, z*) in two iterations

with the pair (y3 z 3), (y, Z5 ).

7

94



V( In practical applications, one would expect that most of the points (A.j,cj) would

lie above the underbelly of their convex hull. We would therefore expect that very few

j would be extreme points of the underbelly. Since the algorithm only chooses (A.,, c.)

. from among the latter and these typically would be rare, I conjectured that the algorithm

would have very few choices and would take about m steps in practice.

It is, of course, not difficult to construct cases that take more than m iterations so let

me make some remarks about the rate of convergence of zt to z*, the minimum value of

z, in the event that the method takes more than m interations.

Convergence Rate of the Simplex Method

Assume there exists a constant 0 > 0 such that for every iteration r, the values of all

. basic variables x', satisfy

S.7. > 0 > 0 for allj 1 , (13)

At the start of iteration t, by eliminating the basic variables from the objective equation,

we obtain

z'"- z (14)

where C. = 0 for all basic j =j. If (- ) max(-.) < 0, the iterative process stops3,-

with the current basic feasible solution optimal. Otherwise, we increase non-basic x, to

x., = t > 0 and adjust basic variables to obtain the basic feasible solution to start iteration

tt + 1.

Let z* = min z and xj = x! > 0 be the corresponding optimal x3. We define At

Zt - Z*.

Theorem. Independent of n the number of variables,

(A-/AO) < (1 - 01)(1 - 02) .. (1 - 0t) < - E° r < e - 0 t . (15)

where Ot > 0> 0 is the value of the incoming basic variable x, on iteration t.

Proof.
A- t1- * (cj)xj <_ (-C4) EXi = (-el). (16)

At- - At = Zt-. - Zt = (-t-)x = (-)0t > At- "O, (17)

where the inequality between the last two terms is obtained by multiplying (16) by Ot.

Rearranging terms,

At < (1 - 0t)At_ A < < e-At_1  (18)

and (15) follows. I

8
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Corollary. Assuming Or has "on the average" the same average value as any other xj
1

, 

namely (1/m), then the expected number of iterations t required to affect an e-k fold 

decrca::m in ~o will be less than km iterations, i.e. 

(19) 

Thus, under the assumption that the value of the incoming variable is 1/m on the 

average, a thousand-fold decrease in ~t = Zt - z* could be expected to be obtai.ned in less 

that 7m iterations because e- 7 < .001. 

It was considerations such ~ __ these that led me back in 1947 to believe that the simplex 

method would be very efficient. 

It is fortunate back in 1947 when algorithms for solving linear programming were first 

being developed, that the column geometry and not the row geometry was used. As we 

have seen, the column geometry suggested a very different algorithm, one that promised to 

be very efficient. Accordingly, I developed a variant of the algorithm without the convexity 

constraint (9) and arranged in the fall of 1947 to have the Bureau of Standards test it on 

George Stiegler's nutrition problem [14). Of course, I soon observed that what appeared 

in the column geometry to be a new algorithm was, in the row geometry, the vertex 

descending algorithm that I had rejected earlier. 

It is my opinion that any well trained mathematician viewing the linear programming 

problem in the row geometry of the variables would have immediately come up with the 

idea of solving it by a vertex descending algorithm as did Fourier, de la Vallee Poussin, 

and Hitchcock before me- each of us proposing it independently of the other. I believe, 

however, that if anyone had to consider it as a practical method, as I had to, he would 

have quickly rejected it on intuitive.:grounds as a very stupid idea without merit. My 

own contributions towards the discovery of the simplex method were (1) independently 

proposing the algorithm, (2) initiating the development <;>f the software necessary for its 

practical use, and (3) observing by viewing the problem in the geometry of the columns 

rather than the rows that, contrary to geometric intuition, following a path on the outside 

of the convex polyhedron, might be a very efficient procedure. 

The Role of Sparsity in the Simplex Method 

To determine .s = arg min;[c;- (1r A.,.+1ro}] requires forming the scalar product of two 

vectors 1r and A.; for each j. This "pricing out" operation~ it is called is usually very 

cheap because the vectors A.,- are sparse, i.e., they typically have few non-zero coefficients 

9 



(perhaps on the average 4 or 5 non-zeros). Nevertheless if the number of columns n is

large, say several thousand, pricing can use up a lot of CPU time. (Parallel processors

could be used very effectively for pricing by assigning subsets of the columns to different

N .processors, [18].)

In single processors, various partial pricing schemes are used. One scheme used in

MINOS software system is to partition the columns into subsets of some k columns each,

[12]. The choice of s is restricted to columns that price out negative among the first k

until there are none and then moving on to the next k, etc. Another scheme used is to

price out all the columns and rank them as to how negative they price out. A subset of j,
say the fifty most negative in rank, are then used to iteratively select s until this subset no

longer has a column that prices out negative. Then a new subset is generated for selecting

s and the process is repeated. The use of partial pricing schemes are very effective when n

is large especially for matrix structures that contain so called "GUB" (Generalized Upper

Bound) rows, [13].

Besides the pricing-out of the columns, the simplex method requires that the current

basis B, i.e. the columns (j.,... j,,) used to form the simplex in Figure 1 be maintained

from iteration t to t + 1 in a form that makes it easy to compute two vectors v and 7r where

By = A., and 7rB = (c.,... ,c,). The matrix B is typically very sparse. In problems

where the number of rows m > 1,000, the percent of non-zeros may be less than - of one2

percent. Even, for such B, it is not practical to maintain B explicitly because it could

turn out to be 100% dense. Instead B is often represented as the product of a lower and

upper triangular matrix where each is maintained as a product of elementary matrices

with every effort being made to to keep the single non-unit column of these elementary

matrices as sparse as possible. Maintaining this sparsity is important otherwise for the

- ~. case of m = 1,000 the algorithm would have to manipulate data sets with millions of

non-zero numbers. Solving systems By = A.. in order to detrmine which variable leaves

the basis would become too costly.

*. The Role of Near Triangularity of the Basis

The success of the simplex method in solving very large problems encountered in

practice depends on two properties found in almost every practical problem. First, the

basis is usually very sparse. Second, one can usually rearrange the rows and columns of

the various bases encountered in the course of solution so that they are nearly triangular.

Near triangularity makes it a relatively inexpensive operation to represent it as a product

of a lower and upper triangular matrices and to preserve much of the original sparsity.

10
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Even if the bases were very sparse but not nearly triangular, solving systems By = A,

could be too costly to perform.

The success of solving linear programming therefore depends on a number of factors:

(1) the power of computers, (2) extremely clever algorithms; but it depends most of all

upon (3) a lot of good luck that the matrices of practical problems will be very very sparse

and that their bases, after rearrangement, will be nearly triangular.

For forty years the simplex method has reigned supreme as the preferred method for

solving linear programs. It is historically the reason for the practical success of the field.

-'. As of this writing, however, the algorithm is being challenged by new interior methods

proposed by N. Karmarkar [15] and others, and by methods that exploit special structure.

If these new methods turn out to be more successful than the simplex method for solving

certain practical classes of problems, I predict it will not be because of any theoretical

reasons having to do with polynomial time but because they can more effectively exploit

the sparsity and near triangularity of practical problems than the simplex method is able

to do.

..

-I,

, 11



N.,i

References

[1] G.B. Dantzig, "Reminiscences about the Origins of Linear Programming," Mathe-

matical Programming (R.W. Cottle, M.L. Kelmanson, B. Korte, eds.), Proceedings

of the International Congress on Mathematical Programing, Rio de Janeiro, 1984, pp.

105-112.

[2] T.C. Koopmans (ed). Actively Analysis of Production and Allocation, John Wiley &

Sons, Inc., New York, 1951, 404 pages.
• "[3] A.J. Hoffman, M. Mannos, D. Sokolousky, and N. Wiegmann, "Computational Expe-

rience in Solving Linear Programs," J. Soc. Indus. Appli. Math., Vol. 1, No 1, 1953,

pp. 17-33.

[4] T.S. Motzkin, "Beitrage zur Theorie der Linearen Ungleichungen," Jerusalem, 1936

(Doctoral Thesis, University of Zurich).

[51 J.B.J. Fourier, "Solution d'une question particuliere du calcul des inegalities," original

1826 paper with an abstract of an 1824 paper reprinted in Oeuvres de Fourier, Tome
' II Olms, Hildesheim 1970, pp. 317-319.

[6] Ch. de ]a Valle Poussin, "Sur la Methode de l'approximation minimum," Annales de

la Societe de Bruxelles, 35 (2) 1910-1, pp. 1-16.

[7] L.V. Kantorovich, "Mathematical Methods in the Organization and Planning of Pro-

duction," Publication House of the Leningrad State University, 1939, 68 pp. Trans-

lated in Management Science, Vol. 6, 1960, pp. 366-422.

[8] F.L. Hitchcock, "The Distribution of a Product from Several-Sources to Numerous

Localities," J. Math. Phys., Vol. 20, 1941, pp. 224-230.

[91 G.B. Dantzig and A. Wald, "On the Fundamental Lemma of Neyman and Pearson,"

Ann. Math. Statist., Vol. 22, 1951, pp. 87-93.

ri0] G.B. Dantzig, "Linear Programming," in Problems for the Numerical Analysis of the

Future, Proceedings of Symposium on Modern Calculating Machinery and Numeri-

cal Methods, UCLA, July 29-31, 1948, Appl. Math., Series 15, National Bureau of

Standards, June 1951, pp. 18-21.

11] G.B. Dantzig, Linear Programming and Extensions, Princeton University Press,

Princeton, NJ, 1963, 627 pages.

-V 

12



[12] B.A. Murtagh and M.A. Saunders, "MINOS 5.0 User's Guide" Technical Report SOL
83-20, Systems Optimization Laboratory, Department of Operations Research, Stan-

ford University, 1983.

" [13] G.B. Dantzig and R.M. Van Slyke, "Generalized Upper Bounding Techniques", J.

Computer and System Sciences, Vol 1, No. 3, October 1967, pp. 213-226.

[14] G.J. Stigler, "The Cost of Subsistence", J. of Farm Econ., Vol. 27, No. 2, May 1945,
pp. 303-314.

[15] N. Karmarkar, "A New Polynomial Algorithm for Linear Programmir-g," Combina-
torica, Vol. 4, 1984.

[16] R. Coughlin and D.E. Zitarelli, The Ascent of Mathematics, McGraw-Hill, 1984, p.

265.
[17] G.B. Dantzig, "Impact of Linear Programming on Computer Development", Technical

Report SOL 85-7, Department of Operations Research, Stanford University, Stanford,

June 1985.

[18] G.B. Dantzig, "Planning Under Uncertainty Using Parallel Computing," Technical

Report SOL-87-1, Department of Operations Research, Stanford University, Stanford,

January 1987.

[19] J. von Neumann, "Zur Theorie de Gesellschaftsspiele," Math. Ann., Vol. 100, 1928,
pp. 295-320. Translated by Sonya Bargmann in A.W. Tucker and R.D. Luce (eds),
Contributions to the Theory of Games, Vol IV, Annals of Mathematics Study No. 40,

Princeton University Press, Princeton, New Jersey, 1959, pp. 13-42.

[20] J. Neyman and E.S. Pearson, "Contributions to the Theory of Testing Statistical

Hypotheses," Statist. Res. Mem., Parts I and I, 1936, 1938.

[21] G. Monge, "Debla et Remblai," Mem. de L' Ac. Sciences, 1781.

[22] P. Appello, "Le Probleme Geometrique des Deblai et Remplai," Mem. des Sciences

Math., 27 Paris, 1928.

13



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whom Dmb_ __ ___N

-~ READ DSSTWICTIOUISREPORT DOCUMETAYTN PAGE BEFORE COMPLETMn FORM
OT MUMMER LVT ACCESSION NO. & RECIPIENT*S CATALOG NUMUER

SOL-87-5
4. TITLE w ,bas.) S. TYPE OF REPORT A PERoOD COVERED

j Origins of the Simplex Method Technical Report

a.'.6. PERFORIING ORo. REPORT NUMBER

7. AUTHOR( ) S. CONTRACT o GRANT NUMSER(s)

George B. Dantzig N00014-85-K-0343

9. P7ORMIrNNm ORGANIZATION NAME AND ADDRESS SO. PROGRAM ELEMENT. PROJECT, TASK
Department of Operations Research - SOL AREA & WORK UNIT NUNERS

Stanford University NR-047-064
Stanford, CA 94305

I. Cou TOLLIMO FFIC NEAN A RES I. REPORT ItTLcO arcn --lept. of the Navy May 1987
800 N. Quincy Street ,S. NUSROPAGE
Arlington, VA 22217 ifpp

14. MONITORING AGENCY NAME S ADDRESS(Di dlieten Ilium CM100lldf OUfoe) IS. SECURITY CLASS. (of Okl. npoe)

UNCLASSIFIED

I". DEC ASIFICATION/DOWNoGRADIN

IS. DISTRIBUTION STATEMENT (of Oio RAtO)

This document has been approved for public release and sale;
its distribution is unlimited.

17. DISTRIBUTION STATEMENT (.5 M 6*.rac mle in 35.6k 20. II Etheame9 *mf

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (C&mm.. on tewmam old* IIUeaeeor awl Idw AWea b k imber)

linear programming simplex method origins
simplex method geometry simplex method convergence rate
sparse matrices near triangular bases

20. ABSTRACT (Conme on roweee Wdl It Nemoom and Idomnift b bleek s.obo)

Please see attached.

',

D D n 1473 EDITION OF I NOVe lI OSOLT.E

SECURITY CLASSIFICATION OF THIS PAGE (Whm DaEin0e10



p.

SECURITY CLASSIFICATION OF THIS PA@IM(Phlm DoafteeM lD

q/ .

In the summer of 1947, when j first began to work on the simplex method for
*' solving linear programs, the first idea that occurred to -ne is one that would

occur to any trained mathematician, namely the idea of step by step descent
(with respect to the objective function) along edges of the convex polyhedral
set from one vertex to an adjacent one. I rejected this algorithm outright
on intuitive grounds - it had to be inefficient because it proposed to solve
the problem by wandering along some path of outside edges until the optimal
vertex was reached. I therefore began to look for other methods which gave
more promise of being efficient, such as those that went directly through the
interior, Ill.
Today we know that before 1947 that five isolated papers had been published
on special cases of the linear programming problem by Monge (1781), 211, '
Fourier (1824) [64, de la Vall~e Poussin (1911),O], Kantorovich (1939),471 and
Hitchcock (1941). [8}. Fourier, Poussin, and Hitchcock proposed as a solution
method descent along the outside edges of the polyhedral set which is the way
we describe the simplex method today. There is no evidence that these papers
had any influence on each other. Evidently they sparked zero interest on the
part of other mathematicians, an exception being a paper by Appell (1928) 1221*-
on Monge's translocation of masses problem. These references were unknown
to me when I first proposed the simplex method. As we shall see the simplex
algorithm evolved from a very different geometry, one in which it appeared to
be very efficient.
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