
Overlapping Matrix Pattern Visualization: a Hypergraph Approach

Ruoming Jin Yang Xiang David Fuhry Feodor F. Dragan

Department of Computer Science

Kent State University, Kent, OH 44242

{jin,yxiang,dfuhry, dragan}@cs.kent.edu

Abstract

In this work, we study a visual data mining problem:

Given a set of discovered overlapping submatrices of inter-

est, how can we order the rows and columns of the data

matrix to best display these submatrices and their relation-

ships? We find this problem can be converted to the hyper-

graph ordering problem, which generalizes the traditional

minimal linear arrangement (or graph ordering) problem

and then we are able to prove the NP-hardness of this prob-

lem. We propose a novel iterative algorithm which uti-

lize the existing graph ordering algorithm to solve the op-

timal visualization problem. This algorithm can always

converge to a local minimum. The detailed experimental

evaluation using a set of publicly available transactional

datasets demonstrates the effectiveness and efficiency of the

proposed algorithm.

1 Introduction

Given a set of discovered submatrices of interests, how

can we order the rows and columns of the data matrix to

best display these submatrices and their relationships? For

example, the right matrix reveals much richer information

about the four submatrix patterns than the left one. This is

a central problem emerging from the visualization require-

ment of a wide range of data mining tasks [8; 13; 24]:

Figure 1. An example of matrix pattern visu-

alization

Overlapping Bicluster Visualization: Gene-expression

data is commonly represented as a matrix, where each gene

corresponds to a row and each experimental condition cor-

responds to a column. Each element of this matrix rep-

resents the expression level of the gene under a specific

condition. Often, this matrix can be converted into a bi-

nary matrix by considering that each gene is either “on” or

“off”. The typical pattern discovery task, often referred to

as bi-clustering [14], would find “homogeneous” submatri-

ces, which are composed subsets of genes and conditions:

the genes are coregulated or coexpressed under the condi-

tions in the corresponding submatrices. Recently, there is a

lot of interest in discovering overlapping bi-clusters [8; 13].

Considering we have a list of most interesting submatrices

(bi-clusters) which overlap each other, how can we reorder

the rows and columns of the entire matrix so that we can vi-

sually inspect the relationship between these submatrices?

Transactional Data Visualization: The shopping-basket

data is one of the most studied data types in data mining.

Here each transaction corresponds to a row and each item

corresponds to column. The element of the binary matrix

records if the transaction purchased the item or not. Re-

cently, there is an increasing interest in summarizing the

data using a set of “dense” binary matrices [26; 5; 27]. In

a nutshell, the dense submatrix contains almost all 1s, and
a list of them can cover all the 1s in the entire matrix with

small false positive rate. Thus, the dense submatrix is also

closely related to the approximate frequent itemset pattern.

Given this, a similar problem occurs: how can we visualize

the entire matrix so that the dense submatrices of interests

and their relationships can be inspected?

Clearly, this task is very important in its own right and

complementary to some of the most critical and widely used

data mining tasks, such as bi-clustering and association rule

mining. However, it is not a typical data mining task, but be-

longs to the area of visual data mining or information visual-

ization [11; 4]. Visual data mining can be largely partitioned

into two categories: data visualization [11] and pattern visu-

alization [28; 25]. In the first category, the goal is to provide

the user an overview of the data. This is especially impor-

tant for the high dimensional data and other types of struc-

ture or text data, where a direct 2D view does not exist. In

this study, we will visualize high-dimensional transactional

data through its matrix representation. Note that matrix vi-

sualization has been a useful tool for visualizing relational

datasets, such as graphs [11]. In the second category, we are

interested in a visual representation of those already discov-

ered patterns or other mining models, such as association

rules and decision trees [28; 25]. Interestingly, our problem

is a combination of the two categories: 1) we are interested

in matrix visualization, by applying discovered patterns to

guide the visualization; and 2) we visualize the discovered

patterns through the matrix representation.

Matrix visualization has a deep root in numerical compu-

tation [7] and is closely related to graph theory [16]. Mueller

et al. [16] applied three major classes of algorithms for

(symmetric) similarity matrix visualization: simple graph

theoretic algorithms, symbolic sparse matrix reordering al-

gorithms and spectral decomposition algorithms. Here, our

problem setting is more general, in the sense that their sym-

metric matrix can be viewed as a special case of our transac-

tional matrix. In addition, our problem is more challenging

as our goal is to visualize the discovered dense submatrices.

Their techniques do not consider such constraints, and our

submatrices or substructures of interest cannot be meaning-

fully identified in their visual representation of the matrix.

1.1 Problem Definition

Let the transaction database DB be represented as a bi-

nary matrix such that a cell (i, j) is 1 if a transaction i

contains item j, otherwise 0. For convenience, we also

denote the database DB as the set of all cells which are

1, i.e., DB = {(i, j) : DB[i, j] = 1}. Let T denote

the set of all transactions and I denote the set of all items

in DB. We define the hyperrectangle H as the Carte-

sian product of a transaction set T and an item set I , i.e.

H = T × I = {(i, j) : i ∈ T and j ∈ I}. Thus, the

submatrix of DB can be represented as DB[H], where H

records the element location of the submatrix. Since in our

visualization, our main target is the submatrix location in

the entire matrix, we will simply use a hyperrectangle to

represent the submatrix, and interchangeably use the terms

submatrix, submatrix pattern, and hyperrectangle.

Let P be a set of discovered and user-specified subma-

trix patterns (hyperrectangles), {H1,H2, · · · ,Hp}. Note

that these hyperrectangles may overlap with each other. We

are interested in visualizing them in a matrix representation.

Ideally, we hope all the elements of each hyperrectangle are

aggregated together so that we can tell the rough shape of

each hyperrectangle. This can also help us to visually dis-

cover their intricate relationships.

Given this, we introduce a goodness function to measure

the matrix visualization as follows.

Definition 1 (Visualization Cost) Given a database DB

with a set of hyperrectangles P , and two orders σT (the

order of transactions) and σI (the order of items), we define

the visualization cost of P = {H1 = {T1 × I1},H2 =
{T2 × I2}, · · · ,Hp = {Tp × Ip}} to be

visual cost(P, σT , σI) =
p∑

j=1

(max
tu∈Tj

σT (tu)− min
tw∈Tj

σT (tw)) +

p∑

j=1

(max
iu∈Ij

σI(iu)− min
iw∈Ij

σI(iw))

Here, for a hyperrentagle Hj , maxtu∈Tj
σT (tu) and

mintw∈Tj
σT (tw), are the last row and the first row of this

submatrix appearing in the entire matrix, respectively. Sim-

ilarly, maxiu∈Ij
σI(iu) and miniw∈Ij

σI(iw), are the last

column and the first column of Hj appearing in the entire

matrix, respectively.

Basically, we define the visualization cost of each hyper-

rectangle using the perimeter of the rectangle to enclose all

the rows and columns of the submatrix. More precisely, the

cost is the half of the perimeter. Then, we define the total

visualization of the set P as the sum of the cost of all the

hyperrectangles in P . Another reasonable goodness mea-

sure is the area of each rectangle covering the submatrix.

We choose the perimeter for technical purposes, which will

allow us to process the row order and column order inde-

pendently. The advantage of this choice will be seen more

clearly later.

The central problem of this paper is thus formulated as

follows.

Definition 2 (Matrix Optimal Visualization (MOV)

Problem) Given a database DB with a set of hyperrectan-

gle P , we would like to find the optimal orders σT and σI ,

such that visual cost(P, σT , σI) is minimized:

argminσT ,σI
visual cost(P, σT , σI)

We note Grothaus et. al [8] consider a rather similar

question to ours: to produce a two-dimensional data lay-

out for discovered overlapping biclusters of gene expres-

sion. Their method would allow repeated rows and columns

from the original matrix for display purposes. Their goal

is to seek a layout which would result in the smallest size

(in terms of area: the number of rows times the number of

columns) of the visualization matrix. They provide a heuris-

tic algorithm for this purpose. Our problem is clearly differ-

ent since we do not allow repeated rows or columns in the

matrix. We believe the redundant rows and columns would

very likely make the relationship between different overlap-

ping submatrices confusing.

1.2 Our contribution

In this paper, we make the following contributions:

1. We propose and formulate the submatrix pattern visu-

alization problem as an optimization problem.

2. We discover an interesting link between the MOV

problem and the hypergraph vertex ordering problem,

which generalizes the traditional minimal linear ar-

rangement (or graph ordering problem). We prove this

problem is NP-hard. Based on our best knowledge,

this is the first study of the hypergraph vertex ordering

problem.

3. We present a novel iterative algorithm which utilizes

existing graph ordering algorithm(s) to solve the op-

timal visualization problem. We prove our algorithm

will always converge to a local minimum.

4. We perform a detailed experimental evaluation for our

new algorithm.

2 NP-hardness and Minimal Linear Ar-

rangement Problem

In this section, we will show our Matrix Optimal Visual-

ization Problem is related to the hypergraph ordering prob-

lem, which is the generalization of the well-knownminimum

linear arrangement problem or MinLA.We will later reduce

MinLA to our problem to prove its NP-hardness.

2.1 Hypergraph ordering and MinLA
problem

Let HG = (V,X) be a hypergraph, where V =
v1, v2, ..., vn is the set of vertices and X = x1, x2, ...xm

is the set of hyperedges. Given an order σ, the cost of a

hyperedge x ∈ X is defined as

hyperedge cost(x, σ) = (max
vj∈x

σ(vj)− min
vk∈x

σ(vk)),

and the cost of HG is defined as

hyper cost(HG,σ) =
∑

x∈X

hyperedge cost(x, σ)

=
∑

x∈X

(max
vj∈x

σ(vj)− min
vk∈x

σ(vk))

Thus, the cost of each hyperedge for a given order σ cor-

responds to the distance between the first vertex and the

last vertex in the hyperedge. For example, in figure 2(a),

the hypergraph contains four hyperedges (0, 4), (0, 2, 3, 4),
(1, 3, 5), (2, 3, 6) shown as circles. Given an order σ(0) ≺
σ(1) ≺ σ(2) ≺ σ(3) ≺ σ(4) ≺ σ(5) ≺ σ(6), the hyper-

graph cost is (4−0)+(4−0)+(5−1)+(6−2) = 16. Thus,
we define the hypergraph ordering problem as follows.

Definition 3 (Hypergraph Ordering Problem) Given a

hypergraph HG = (V,X), the hypergraph ordering

problem finds the order σ of V that can minimize

hyper cost(HG,σ):

argminσ

∑

x∈X

(max
vj∈x

σ(vj)− min
vk∈x

σ(vk))

As we will see, this problem is a generalization of the

well-known MinLA problem.

Definition 4 (Minimum Linear Arrangement Prob-

lem [9]) Given a graph G = (V,E), the minimum linear

arrangement problem finds the order σ of V that can mini-

mize the graph cost(G, σ):

∑

(i,j)∈E

|σ(vi)− σ(vj)|

Note that this problem and the hypergraph ordering prob-

lem both can be extended to the weighted version. The min-

imum linear arrangement problem (or MinLA) was orig-

nally formulated by Harper [9]. It has a lot of applications,

including VLSI design [1], graph drawing [17], modeling

of nervous activity in the cortex[15], single machine job

scheduling[2][22], and etc.

It is well known that minimum linear arrangement prob-

lem is NP-hard [6]. There are polynomial time algorithms

for computing exact solutions of MinLA for some special

graph families. But for general graphs, as of this date

the best algorithm with bounded results is an approxima-

tion algorithm with an O(logn) approximation factor [21].

However, there are quite a few heuristic algorithms for

the minimum linear arrangement problem. Among them

[10; 3; 12; 19; 18; 20; 23] turn out to be very successful.

2.2 NP-hardness of Matrix Optimal Visu-
alization Problem

We show that our matrix optimal visualization problem

can be converted to a pair of hypergraph ordering problems

in the following way: Given a database DB = (T , I) (T
is the set of all transactions and I is the set of all items)

with a set of hyperrectangles P = {H1 = {T1 × I1},H2 =
{T2×I2}, · · · ,Hp = {Tp×Ip}}, we create two hypergraphs
in the following way:

Hypergraph HG1 = (V1,X1), where V1 = T and X1 =
{T1, T2, ..., Tp}.

Hypergraph HG2 = (V2,X2), where V2 = I and X2 =
{I1, I2, ..., Ip}.

Then we have

visual cost(P, σT , σI) =
p∑

j=1

(max
tu∈Tj

σT (tu)− min
tw∈Tj

σT (tw))

+

p∑

j=1

(max
iu∈Ij

σI(iu)− min
iw∈Ij

σI(iw))

=
∑

Tj∈X1

(max
tu∈Tj

σT (tu)− min
tw∈Tj

σT (tw))

+
∑

Ij∈X2

(max
iu∈Ij

σI(iu)− min
iw∈Ij

σI(iw))

= hyper cost(HG1, σT) + hyper cost(HG2, σI)

From the definitions we can see that

hyper cost(HG1, σT) is not affected by σI and

hyper cost(HG2, σI) is not affected by σT . There-

fore, to solve our problem we can convert it into two

independent hypergraph ordering problems.

Now we are interested in effectively solving the hyper-

graph ordering problem. But unfortunately, we find it is a

NP-hard problem, as stated in the following lemma:

Lemma 1 Given a hypergraph HG = (V,X), it is NP-

hard to find an order σ such that hyper cost(HG,σ) is

minimized.

Proof:We can reduce the minimum linear arrangement

problem, which is NP hard [6], to this problem. The min-

imum linear arrangement problem can be formulated as:

(a) A hypergraph with four hyperedges (0, 4), (0, 2, 3, 4),
(1, 3, 5), (2, 3, 6)

(b) Graph converted from the hypergraph in the first while loop

(c) Graph converted from the hypergraph in the second while loop (d) Graph converted from the hypergraph in the third while loop

Figure 2. A running example of hypergraph ordering

Given a weighted graph G = (V,E), what order σ can min-

imize graph cost(G, σ) = |σ(vi)− σ(vj)| ? Note that this

is basically a special case of the hypergraph ordering prob-

lem, where each hyperedge contains only two vertices. 2

From the proof of lemma 1 one can conclude that the

minimum linear arrangement problem is a special case of

hypergraph ordering problem. There are many papers tar-

geting the minimum linear arrangement problem, with both

approximation results and heuristic results. However, ap-

plying these algorithms directly to hypergraphs do not work

and it is not clear how these algorithms can be modified to

work on the hypergraph.

3 Algorithms

In this section, we propose a novel scheme to tackle the

hypergraph ordering problem. Note that this would directly

provide a solution for the matrix optimal visualization prob-

lem based on the discussion in Subsection 2.2. Our basic

idea is to build a bridge between the hypergraph ordering

problem and the minimum linear arrangement problem. Our

algorithm can employ any (approximated or heuristic) algo-

rithm for the minimum linear arrangement problem to solve

the hypergraph ordering problem.

At a high level, our algorithm works as follows. First, we

transform a hypergraph HG = (V,X) based on an order σ

into a graph G = (V,E) which has the same set of vertices

as HG. Specifically, the graph G is a weighed undirected

graph. Recall that given an order σ, the cost of a weighed

graph G is defined as

graph cost(G, σ) =
∑

wi,j |σ(vi)− σ(vj)|

For example, in figure 2(b), given an order σ(0) ≺ σ(1) ≺
σ(2) ≺ σ(3) ≺ σ(4) ≺ σ(5) ≺ σ(6), the graph cost is

1 ∗ |4− 0|+ 1 ∗ |2− 0|+ 2 ∗ |3− 2|+ 1 ∗ |4− 3|+ 1 ∗ |6−
3|+ 1 ∗ |5− 3|+ 1 ∗ |3− 1| = 16. The cost of a subgraph
of G, for example a path in G, can be defined the same way

as the cost of G. Second, we apply a MinLA algorithm on

G to find a good order σ′. Third, we convert hypergraph

HG into another graph G′ based on the new order σ′. Then

we apply the MinLA algorithm on G′ again and repeat these

steps until we find a good enough order for HG, or there is

no improvement.

Algorithm 1 formally describes this strategy. Note that

our algorithm can start with any order σ. A detailed example

is available in section 3.1.

Algorithm 1 Hyper Ordering (Hypergraph HG, Order σ)

1: old hyper cost←MAXIMUM NUMBER

2: new hyper cost←MINIMUM NUMBER

3: σ′ ← σ

4: while old hyper cost > new hyper cost do

5: σ ← σ′;

6: old hyper cost ← hypercost(HG,σ);{hypercost

returns the cost of hypergraph HG with order σ.}
7: Transform hypergraph HG based on the order σ into

G;

8: σ′ ← MinLA(G); {graph cost(G, σ′) ≤
graph cost(G, σ)}

9: new hyper cost← hyper cost(HG,σ′);
10: end while

Given this, we can see the critical question in the entire

algorithm is what kind of graph the hypergraph should be

converted to so that we can keep improving the cost of hy-

pergraph ordering. In this paper we describe three kinds of

interesting conversions which have such nice properties.

3.1 Converting hyperedge into path

To materialize step 7 of algorithm 1, our first strategy is

to convert each hyperedge in HG = (V,X) into a path in

G = (V,E). We will show by both analytical and empirical

studies that this conversion is effective. The algorithm turns

each hyperedge in HG into an unweighted path (passing

each vertex in the hyperedge exactly once in the order of

σ). Let’s call it hyperedge-path. The weight of an edge

in G is the number of hyperedge-paths it belongs to. This

conversion implies that the cost of graph G is the sum of the

cost of each hyperedge-path, i.e.

hyper cost(HG,σ) =
∑

x∈X

graph cost(px, σ)

where px is a hyperedge-path corresponding to x ∈ X . Al-

gorithm 2 formally describes the conversion.

Algorithm 2 Hyper to Graph Path (Hypergraph HG, Or-

der σ)

1: Create a graph G;{Let wi,j be the weight of the edge

connecting vertex i to vertex j. Initially for any i, j,

wi,j == 0, which means they are disconnected.}
2: for all x ∈ X do

3: sort vertices in x according to their ranking in σ, i.e.,

σx1
≺ σx2

· · · ≺ σxk
;

4: for i = 1 to k − 1 do

5: wxi,xi+1
← wxi,xi+1

+ 1;
6: end for

7: end for

A running example of Algorithm 2 which is employed by

Algorithm 1 in step 7:

Figure 2(a) is a hypergraph with four hyperedges:

(0, 4), (0, 2, 3, 4), (1, 3, 5), (2, 3, 6). Initially the order is

σ(0) ≺ σ(1) ≺ σ(2) ≺ σ(3) ≺ σ(4) ≺ σ(5) ≺ σ(6)
and hyper cost(HG,σ) = 16. In the first while loop of

algorithm 1, the hypergraph HG is converted to a graph

by algorithm 2 as shown in figure 2(b). Then in step 8 of

algorithm 1 we call some minimum linear arrangement al-

gorithm and get an improved order σ = {0, 4, 2, 3, 1, 5, 6}.
Thus graph cost(G, σ) = 13 and hyper cost(HG,σ) =
10.

Based on σ(0) ≺ σ(4) ≺ σ(2) ≺ σ(3) ≺ σ(1) ≺
σ(5) ≺ σ(6), the hypergraph HG is converted to a graph

in figure 2(c) in the second while loop of algorithm 1,

and the steps in algorithm 1 are repeated. Figure 2(d)

shows the graph generated in the third while loop and in

that loop we get no improvement in reducing hypergraph

cost. Thus algorithm 1 stops and the final order is σ(0) ≺
σ(4) ≺ σ(2) ≺ σ(3) ≺ σ(6) ≺ σ(1) ≺ σ(5) and

hyper cost(HG,σ) = 9.

To show the effectiveness of algorithm 1 combining with

algorithm 2, we have theorem 1 showing that the cost of

HG is always decreasing unless there is no improvement of

cost reduction.

Theorem 1 Assuming algorithm 1 calls algorithm 2 in step

7, then hyper cost(HG,σ′) ≤ hyper cost(HG,σ) at the
end of each while loop in algorithm 1.

Proof:To prove this theorem, we will refer to lemma 2 and

lemma 3, which are proved subsequently. First, by lemma 2

we have

hyper cost(HG,σ) = graph cost(G, σ) (∗)

Second, by calling a MinLA algorithm in step 8 of algo-

rithm 1 1, we have

graph cost(G, σ′) ≤ graph cost(G, σ) (∗∗)

Finally, Lemma 3 implies

hyper cost(HG,σ′) ≤ graph cost(G, σ′) (∗ ∗ ∗)

Combining (∗), (∗∗) and (∗ ∗ ∗), we prove this theorem. 2

Note that all of these steps are within one while loop. In

the next iteration, a new graph G will be produced from the

hypergraph HG using the newly generated order σ′. Thus,

we can see the hypergraph order will keep improving in

terms of the hyper cost until no improvement is possible.

Lemma 2 The graph G generated by algorithm 2 has

the same cost as hypergraph HG = (V,X), i.e.

hyper cost(HG,σ) = graph cost(G, σ).

Proof:For a hyperedge x ∈ X in HG where |x| = k and xi

is the ith vertex in x, its corresponding hyperedge-path in G

contains edge xixi+1 where 1 ≤ i ≤ k − 1 and σ(xi) ≺
σ(xi+1). Therefore, we have

graph cost(G, σ)

=
∑

x∈X

∑

i=1 to k−1

(σ(xi+1)− σ(xi))

=
∑

x∈X

(σ(xk)− σ(x1))

=
∑

x∈X

(max
vj∈x

σ(vj)− min
vk∈x

σ(vk))

= hyper cost(HG,σ)

2

Lemma 3 Given an order σ, the cost of a hyperedge x ∈
X of hypergraph HG = (V,X) is no more than the

cost of a hamiltonian path p with the vertex set x, i.e.

hyperedge cost(x, σ) ≤ graph cost(p, σ).

1The MinLA algorithm can always produce a order which is better than

or equal to the default order, and therefore, we apply σ as the default order

Proof:Given a hamiltonian path p with vertex set Vp and

order σ, we sort Vp according to the vertex order σ. Then

we can build a set of intervals such that every two adjacent

vertices in Vp defines an interval. We claim that the hamilto-

nian path p′ made up of these intervals is the minimum-cost

hamiltonian path for Vp and σ. This is because any such

interval must be covered by an edge in p, otherwise p is dis-

connected, a contradiction. Therefore, the cost of p′ is no

more than p. Considering p is an arbitrary hamiltonian path,

we prove p′ is the minimum-cost hamiltonian path for Vp

and σ. From the definition of a hyperedge cost, one can con-

clude the cost of a hyperedge x with σ is exactly the cost of

its corresponding hyperedge-path, which has the same cost

as the minimum-cost hamiltonian path with vertex set x and

order σ. Thus the lemma is proved. 2

For example, in Figure 3 let’s assume σ(2) ≺ σ(4) ≺
σ(5) ≺ σ(6) ≺ σ(9). Then the hyperedge-path (or

minimum-cost hamiltonian path) is 2−4−5−6−9, which
has cost 7. For an arbitrary hamiltonian path 2−5−4−6−9,
its cost is 9, greater than 7.

Figure 3. Hyperedge-path and an arbitrary

hamiltonian path, where σ(2) ≺ σ(4) ≺ σ(5) ≺
σ(6) ≺ σ(9).

3.2 Converting hyperedge into cycle or
multi cycles

In this subsection, we will go beyond the path conversion

for a hyperedge. We will show another type of transforma-

tion: converting the hypergraph into a cycle or multicycle.

Converting a hyperedge into a cycle is similar to convert-

ing a hyperedge into a path. Algorithm 3 formally describes

this conversion. It turns each hyperedge in HG into an un-

weighted cycle by passing each vertex in the hyperedge ex-

actly once in the order of σ and return to the starting vertex.

Let’s name it hyperedge-cycle. The weight of an edge in G

is the number of hyperedge-cycles it belongs to. This con-

version implies that the cost of graph G is the sum of the

cost of each hyperedge-cycle, i.e. hyper cost(HG,σ) =∑
x∈X graph cost(cx, σ) where cx is a hyperedge-cycle

corresponding to x ∈ X .

Similar theorem and lemmas hold for hyperedge to cycle

conversion and we list them below. Proofs are similar and

due to space constraints, we omitted them in this paper.

Theorem 2 Assuming algorithm 1 calls algorithm 3 in step

7, then hyper cost(HG,σ′) ≤ hyper cost(HG,σ) at the
end of each while loop in algorithm 1.

Lemma 4 The graph G generated by algorithm 3

has twice the same cost as hypergraph HG, i.e.

hyper cost(HG,σ) = 1
2 × graph cost(G, σ).

Algorithm 3 Hyper to Graph Cycle (Hypergraph HG, Or-

der σ)

1: Create a graph G;{Let wi,j be the weight of the edge

connecting vertex i to vertex j. Initially for any i, j,

wi,j == 0.}
2: for all x ∈ X do

3: sort vertices in x according to their ranking in σ, i.e.,

σx1
≺ σx2

· · · ≺ σxk
;

4: for i = 1 to k − 1 do

5: wxi,xi+1
← wxi,xi+1

+ 1;
6: end for

7: wx1,xk
← wx1,xk

+ 1;
8: end for

Lemma 5 Given an order σ, the cost of an hyperedge

x of hypergraph HG = (V,X) is no more than 1
2

cost of a hamiltonian cycle c with the vertex set x, i.e.

hyperedge cost(x, σ) ≤ 1
2graph cost(c, σ).

Although for a hyperedge x, its corresponding

hyperedge-cycle c contains only one more edge than its cor-

responding hyperedge-path p, c embodies richer informa-

tion than p. In section 4, we show that hyperedge to cycle

conversion is practically more efficient than hyperedge to

path conversion.

Figure 4. σ(2) ≺ σ(4) ≺ σ(5) ≺ σ(6). (a) is a

valid cycle. (b) is not a valid cycle because
interval 4− 5 is covered by four edges.

A natural extension of the hyperedge to cycle conver-

sion is converting a hyperedge into multi cycles. We would

convert each hyperedge in HG into d valid cycles in G.

A valid cycle should satisfy two conditions: (1) It passes

each vertex in the hyperedge exactly once and return to

the starting vertex, i.e. it is a hamiltonian cycle. (2) Ex-

actly two of its edges contain an interval σiσi+1. See fig-

ure 4 for a valid cycle and invalid cycle. From the pre-

vious analysis, one can conclude that we can generate a

graph G from a hypergraph HG and an order σ such that

hyper cost(HG,σ) = 1
d
× graph cost(G, σ) for some d.

Similar theorem (as to theorem 1 or 2) and lemmas (as to

lemma 2,3 or lemma 4,5) also hold for the hyperedge to

multi cycles conversion.

Now we are interested in exploring the extreme case:

What is the maximum number of valid cycles a hyperedge

in HG can be converted to? How effective is this hyperedge

to max valid cycles conversion in solving our problem?

To understand this hyperedge to max valid cycles con-

version, let’s first see a simple example: For a hyperedge

x = {2, 4, 5, 6} with order σ(2) ≺ σ(4) ≺ σ(5) ≺ σ(6),
we can have maximally 4 valid cycles, as shown in figure 5.

Figure 5. A hyperedge of 4 vertices has 4

valid cycles.

By combinatorial analysis, we have the following lemma

for an arbitrary hyperedge with n vertices:

Lemma 6 Given a hyperedge of k vertices with order σ,

(1) the number of valid cycles containing edge σiσj is

max(1, 2k−j−2)×max(1, 2i−1), and (2) the total number

of valid cycles is 2k−2.

Therefore, we can use algorithm 4 to convert a hyper-

graph HG with σ into a graph G, by converting each hyper-

edge into a maximum number of valid cycles. In section 4,

we will study empirically how effective this conversion is.

Algorithm 4 Hyper to Graph Max Multicycle (Hyper-

graph HG, Order σ)

1: Create a graph G;{Let wi,j be the weight of the edge

connecting vertex i to vertex j. Initially for any i, j,

wi,j == 0.}
2: for all x ∈ X do

3: sort vertices in x according to their ranking in σ, i.e.,

σx1
≺ σx2

· · · ≺ σxk
;

4: for i← 1 to k − 1 do

5: for j ← i + 1 to k do

6: a← max(1, 2k−j−2);
7: b← max(1, 2i−1);
8: wi,j ← ab;

9: end for

10: end for

11: end for

3.3 Worst Case Time Complexities

In algorithm 1 either the hypergraph cost is reduced in

each while loop or the while loop terminates. Therefore

the maximum number of while loops are the initial cost of

the hypergraph, which is no more than |V ||X|. Algorithm 1

also calls two other functions. The first function converts the

hypergraph into a graph. To do this conversion, algorithm

2 and algorithm 3 takes O(|X||V |) time, and algorithm 4

Datasets I T Avg. Len. |DB| density

mushroom 119 8,124 23.0 186,852 dense

retail 16,470 88,162 10.3 908,576 sparse

kosarak 41,270 990,002 8.1 8,019,015 very sparse

BMS-WebView-1 497 59,602 2.5 149,639 very sparse

T40I10D100K 942 100,000 39.6 3,960,507 sparse

Table 1. dataset characteristics

takes O(|X||V |2) time. In addition, it takes O(|X||V |d)
time if a hyperedge is converted into d arbitrary valid cy-

cles. The second function solves the minimum linear ar-

rangement problem and its running time depends on what

the minimum linear arrangement algorithm it is.

Conclusively, the total running time of our hypergraph

ordering algorithm (i.e. algorithm 1) is O(|X|2|V |2) +
O(|X||V |)O(MinLA) if we convert hyperedges into paths
or cycles, or O(|X|2|V |3) + O(|X||V |)O(MinLA) if we
convert each hyperedge into maximum valid cycles, or

O(|X|2|V |2d)+O(|X||V |)O(MinLA) if we convert each
hyperedge into d arbitrary valid cycles. O(MinLA) is the
time complexity of the minimum linear arrangement algo-

rithm used by algorithm 1.

4 Experimental Results

In this section, we report our experimental evaluation on

four real datasets and one synthetic dataset. All of them

are publicly available from the FIMI repository 2. The basic

characteristics of the datasets are listed in Table 1. In our ex-

periments, all hyperrectangles are generated by a submatrix

pattern ranking algorithm [27], and we apply an state-of-

the-art MinLA algorithm implemented by Safro et al. [23].

Its running time is linear to |V | + |E|, and thus, it can be

applied to very large graphs. All algorithms were imple-

mented in C++ and run on a 2.2 GHz Opteron with 2GB of

memory.

In our experimental evaluation, we are interested in the

following questions:

(1) How are the visualization effects of hyperrectangles

on different datasets?

(2) How effective are the three different conversions, i.e.

converting hyperedge into a path, a cycle, and maximum

number of valid cycles?

(3) How good is the scalability of our algorithms?

To answer these questions, we performed a list of exper-

iments, which we summarized as follows.

Group 1: We show and compare the visualization effects of

the top 10 ranked hyperrectangles on five datasets by these

three different conversions.

Group 2: We compare the visual cost(P, σT , σI) (i.e.

hyper cost(HG1, σT) + hyper cost(HG2, σI) of three

different conversions. They are the cost our algorithms try

to minimize.

Group 3: We compare the running time of our algorithms

on both small and large datasets, and on the same dataset

with different number of hyperrectangles for the scalability

study.
2http://fimi.cs.helsinki.fi/data/

4.1 Visualizing Hyperrectangles

Here, to visualize a large transactional data on a rela-

tively small matrix, we apply the random sampling tech-

nique. Specifically, we sampled 250 transactions of each

dataset, to bring the number of transactions more in line

with the number of items. This makes two dimensional vi-

sualization succinct and also saves unnecessary computa-

tional cost.

We visualize a transactional matrix in two dimensions as

follows. If a transaction i contains item j, then the corre-

sponding pixel (i, j) is black. We extract the top 10 hy-

perrectangles from each dataset, and visualize each hyper-

rectangle by drawing a minimum bounding rectangle - the

smallest rectangle that covers all of its cells - around it. The

denser (blacker) area a bounding rectangle has, the better

the reordering is. In some cases the bounding rectangle is

completely black, then it is equal to the corresponding hy-

perrectangle. Results are shown in figure 6.

For each sampled dataset, we display four figures. Fig-

ure (a) shows its appearance with original orders σT and

σI . Figure (b) shows its appearance with updated orders

by our proposed hypergraph ordering methods (using the

hyperedge to cycle conversion) for the best visualization

of these ten hyperrectangles. Figure (c) highlights the first

five hyperrectangles by zooming in and drawing a colored

rectangular boundary around each corresponding hyperrect-

angle. Figure (d) highlights the second five hyperrectan-

gles in the same way as Figure (c) does. We can see these

top 10 ranked hyperrectangles are actually relatively well-

separated for the most of the cases. In return, this suggests

there is little redundancy between these top ranked patterns.

However, as the number of hyperrectangles of interests in-

crease, we will see more overlapping among them. This is

shown in Figure 7. Due to space constraints, we only pro-

vide two examples, each showing a reordering of the top 20

hyperrectangles for the mushroom and kosarak datasets.

4.2 Visual Cost Comparison

Since the goal of our algorithm is to mini-

mize the visualization cost of a set of hyperrect-

angles, visual cost(P, σT , σI), here we report

visual cost(P, σT , σI) of sampled datasets using three

different conversions. The cost graphs in Figure 8 show the

results. Here, we vary the number of hyperrectangles from

5, 10, to 20 for each conversion.

From these results we can see that algorithm 3 (hyper-

edge to cycle) and algorithm 4 (hyperedge to max valid cy-

cles) are generally better than algorithm 2 (hyperedge to

path). But interestingly, one can also observe that algo-

rithm 3 is better than algorithm 4 in most cases (except for

T40I10D100K, see Figure 9). As we know that converting

hyperedge into one cycle and maximum valid cycles are just

two extremes. We conjecture that there may exist a number

k for a dataset such that hyperedge to k cycles conversion

would yield the lowest visualization cost. How to choose k

is an open question at this point.

(a) mushroom hyperrects 1-10 (b) mushroom hyperrects 11-20

(c) kosarak hyperrects 1-10 (d) kosarak hyperrects 11-20

Figure 7. experimental results reordering
20 hyperrectangles (hyperrectangles best

viewed in color)

 0

 50

 100

 150

 200

 250

 300

5 10 20 5 10 20 5 10 20

c
o
s
t

 path cycle maxvalidcycles

item ordering
transaction ordering

(a) T40I10D100K cost

 0

 5

 10

 15

 20

 25

5 10 20 5 10 20 5 10 20

ti
m

e
 (

s
e
c
)

 path cycle maxvalidcycles

minla
hyperrectangle order

(b) T40I10D100K runtime

Figure 9. Cost and runtime (cont’d from Fig. 8)

4.3 Running time

From the analysis of section 3.3, our methods have a

worst case polynomial time complexity. In experiments

we find the while loop of the algorithms finishes in only

a few rounds. Thus in practice our algorithms (not counting

MinLA) finish in a reasonable time, approximately linear

to |V ||X|. The runtime graphs of Figure 8 show the run-

ning time related to three different conversions on different

datasets. In our algorithms we call the MinLA algorithm

many times to get an improved graph order. We distinguish

the running time of our algorithm with the running time

of MinLA (in multiple times) of [23] in figure 8. We can

see that in most cases the running time of our algorithms is

almost negligible in comparison with MinLA of [23] with

only one exception, the kosarak dataset. We believe this is

due to its unusually high number of unique items, which is

much higher than other datasets. In addition, the running

time of our algorithms remains almost constant when the

number of hyperrectanges increases.

(a) mushroom unordered (b) mushroom reordered (c) mushroom hyperrects 1-5 (d) mushroom hyperrects 6-10

(e) retail unordered (f) retail reordered (g) retail hyperrects 1-5 (h) retail hyperrects 6-10

(i) kosarak unordered (j) kosarak ordered (k) kosarak hyperrects 1-5 (l) kosarak hyperrects 6-10

(m) BMS-WebView-1 unordered (n) BMS-WebView-1 reordered (o) BMS-WebView-1 hyperrects 1-

5

(p) BMS-WebView-1 hyperrects 6-

10

(q) T40I10D100K unordered (r) T40I10D100K reordered (s) T40I10D100K hyperrects 1-5 (t) T40I10D100K hyperrects 6-10

Figure 6. experimental results (hyperrectangles best viewed in color)

 0

 200

 400

 600

 800

 1000

 1200

 1400

5 10 20 5 10 20 5 10 20

c
o
s
t

 path cycle maxvalidcycles

item ordering
transaction ordering

(a) mushroom cost

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 10 20 5 10 20 5 10 20

ti
m

e
 (

s
e
c
)

 path cycle maxvalidcycles

minla
hyperrectangle order

(b) mushroom runtime

 0

 200

 400

 600

 800

 1000

 1200

 1400

5 10 20 5 10 20 5 10 20

c
o
s
t

 path cycle maxvalidcycles

item ordering
transaction ordering

(c) retail cost

 0

 5

 10

 15

 20

 25

 30

5 10 20 5 10 20 5 10 20

ti
m

e
 (

s
e
c
)

 path cycle maxvalidcycles

minla
hyperrectangle order

(d) retail runtime

 0

 50

 100

 150

 200

 250

 300

 350

5 10 20 5 10 20 5 10 20

c
o
s
t

 path cycle maxvalidcycles

item ordering
transaction ordering

(e) kosarak cost

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

5 10 20 5 10 20 5 10 20

ti
m

e
 (

s
e
c
)

 path cycle maxvalidcycles

minla
hyperrectangle order

(f) kosarak runtime

 0

 20

 40

 60

 80

 100

 120

 140

5 10 20 5 10 20 5 10 20

c
o
s
t

 path cycle maxvalidcycles

item ordering
transaction ordering

(g) BMS-WebView-1 cost

 0

 2

 4

 6

 8

 10

 12

5 10 20 5 10 20 5 10 20

ti
m

e
 (

s
e
c
)

 path cycle maxvalidcycles

minla
hyperrectangle order

(h) BMS-WebView-1 runtime

Figure 8. Cost and runtime by solution type (path / cycle / multipath) and num hyperrectangles (5 / 10
/ 20)

5 Conclusions

In this work, we study a new variant of matrix visualiza-

tion: given a set of submatrix patterns, how to reorder rows

and columns so that a goodness function based on the en-

closing rectangles for these submatrices can be minimized.

We found an interesting link from this visualization prob-

lem to a well-known graph theoretical problem: the minimal

linear arrangement (MinLA) problem. We have proposed

an interesting algorithm framework to solve this problem.

Empirically, we believe our algorithm can serve as a fun-

damental technique for many visual data mining tasks. For

instance, our method can be incorporated into an interactive

visualization environment to allow users to focus on differ-

ent parts of the data and patterns. Theoretically, we intro-

duce a generalization of the MinLA problem for the hyper-

graphs. There are many open problems of this generaliza-

tion. For instance, how can we construct an approximate

algorithm with nontrivial bound? Finally, many existing al-

gorithms for the MinLA problem need to be revisited for the

new generalized problem setting.

6 Acknowledgments

The authors would like to thank Ilya Safro for providing

the Minimum Linear Arrangement source code and help on

experimental setup.

References

[1] D. Adolphson and T. C. Hu. Optimal linear ordering. SIAM Journal on Applied

Mathematics, 25(3):403–423, 1973.

[2] D. L. Adolphson. Single machine job sequencing with precedence constraints.

SIAM Journal on Computing, 6(1):40–54, 1977.

[3] R. Bar-Yehuda, G. Even, J. Feldman, and J. Naor. Computing an optimal orien-

tation of a balanced decomposition tree for linear arrangement problems. J. Graph

Algorithms Appl., 5(4), 2001.

[4] C. Brunk, J. Kelly, and R. Kohavi. Mineset: An integrated system for data ac-

cess, visual data mining, and analytical data mining,. In Proceedings of the Third

Conference on Knowledge Discovery and Data Mining (KDD-97), 1997.

[5] V. Chandola and V. Kumar. Summarization - compressing data into an informa-

tive representation. Knowl. Inf. Syst., 12(3):355–378, 2007.

[6] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified np-complete

problems. In STOC ’74: Proceedings of the sixth annual ACM symposium on

Theory of computing, pages 47–63, New York, NY, USA, 1974. ACM.

[7] A. George and J. W. Liu. Computer Solution of Large Sparse Positive Definite.

Prentice Hall Professional Technical Reference, 1981.

[8] G. Grothaus, A. Mufti, and T. Murali. Automatic layout and visualization of

biclusters. 1:1748–7188, 2006.

[9] L. H. Harper. Optimal assignments of numbers to vertices. Journal of the Society

for Industrial and Applied Mathematics, 12(1):131–135, 1964.

[10] M. Juvan and B. Mohar. Optimal linear labelings and eigenvalues of graphs.

Discrete Appl. Math., 36(2):153–168, 1992.

[11] D. A. Keim. Information visualization and visual data mining. IEEE Transac-

tions on Visualization and Computer Graphics, 08(1):1–8, 2002.

[12] Y. Koren and D. Harel. A multi-scale algorithm for the linear arrangement

problem. In WG ’02: Revised Papers from the 28th International Workshop on

Graph-Theoretic Concepts in Computer Science, pages 296–309, London, UK,

2002. Springer-Verlag.

[13] C. Krumpelman and J. Ghosh. Matching and visualization of multiple overlap-

ping clusterings of microarray data. In IEEE Symposium on Computational Intelli-

gence and Bioinformatics and Computational Biology, CIBCB’07, pages 121–126,

2007.

[14] S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data

analysis: A survey. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 1(1):24–45,

2004.

[15] G. Mitchison and R. Durbin. Optimal numberings of an n n array. SIAM J.

Algebraic Discrete Methods, 7(4):571–582, 1986.

[16] C. Mueller, B. Martin, and A. Lumsdaine. A comparison of vertex ordering

algorithms for large graph visualization. In APVIS, pages 141–148, 2007.

[17] J. Pach, F. Shahrokhi, and M. Szegedy. Applications of the crossing number. In

SCG ’94: Proceedings of the tenth annual symposium on Computational geome-

try, pages 198–202, New York, NY, USA, 1994. ACM.

[18] J. Petit. Combining spectral sequencing and parallel simulated annealing for

the minla problem. Parallel Processing Letters, 13(1):77–91, 2003.

[19] J. Petit. Experiments on the minimum linear arrangement problem. ACM Jour-

nal of Experimental Algorithms, 8, 2003.

[20] T. Poranen. A genetic hillclimbing algorithm for the optimal linear arrangement

problem. Fundam. Inf., 68(4):333–356, 2005.

[21] S. Rao and A. W. Richa. New approximation techniques for some ordering

problems. In SODA ’98: Proceedings of the ninth annual ACM-SIAM symposium

on Discrete algorithms, pages 211–218, Philadelphia, PA, USA, 1998. Society for

Industrial and Applied Mathematics.

[22] R. Ravi, A. Agrawal, and P. N. Klein. Ordering problems approximated: Single-

processor scheduling and interval graph completion. In ICALP ’91: Proceedings

of the 18th International Colloquium on Automata, Languages and Programming,

pages 751–762, London, UK, 1991. Springer-Verlag.

[23] I. Safro, D. Ron, and A. Brandt. Graph minimum linear arrangement by multi-

level weighted edge contractions. J. Algorithms, 60(1):24–41, 2006.

[24] A. Strehl and J. Ghosh. Relationship-based clustering and visualization for

high-dimensional data mining. INFORMS J. on Computing, 15(2):208–230, 2003.

[25] E. Vityaev and B. Kovalerchuk. Inverse visualization in data mining, 2002.

[26] J. Wang and G. Karypis. On efficiently summarizing categorical databases.

Knowl. Inf. Syst., 9(1):19–37, 2006.

[27] Y. Xiang, R. Jin, D. Fuhry, and F. F. Dragan. Succinct summarization of transac-

tional databases: an overlapped hyperrectangle scheme. In KDD, pages 758–766,

2008.

[28] K. Zhao, B. Liu, T. M. Tirpak, and W. Xiao. A visual data mining framework

for convenient identification of useful knowledge. In ICDM ’05: Proceedings of

the Fifth IEEE International Conference on Data Mining, pages 530–537, 2005.

