
PLWAH+: A Bitmap Index Compressing Scheme
based on PLWAH

Jiahui Chang, Zhen Chen*,
Wenxun Zheng, Yuhao Wen, Junwei Cao

Research Institute of Information Technology,
Tsinghua University

Tsinghua National Lab for Information Science and
Technologies (TNList), Beijing, China

zhenchen@tsinghua.edu.cn
changjh13@mails.tsinghua.edu.cn

Wen-Liang Huang
China Unicom Groups Labs

China Unicom Groups
Beijing, China

wlhuang@chinaunicom.cn

ABSTRACT
Archiving of the Internet traffic is essential for analyzing network
events in the field of network security and network forensics. The
bitmap index is widely used to achieve fast searching in archival
traffic data requiring a large storage space. As current state-of-art,
WAH, PLWAH and COMPAX are proposed for compressing
bitmap indexes. In this paper, a new bitmap index compression
scheme, named PLWAH+ (Position List Word Aligned Hybrid
Plus), is introduced, based on PLWAH. With less storage
consumption, PLWAH+ is more suitable for indexing in large-
scale and high-speed network traffic.

Categories and Subject Descriptors
E.4 [Coding and Information Theory]: Data compaction and
compression; C.2.3 [Network Operations]: Network monitoring.

Keywords
Internet traffic, bitmap coding, bitmap index, data retrieval, traffic
analysis, traffic forensic.

1. INTRODUCTION
Indexing is the core technology underlying answering queries

on a large-scale archival data. Bitmap index is designed for quick
retrieval of archival Internet traffic data. A bitmap index example
is shown in Table 1.

Bitmap indexing uses a bit vector to indicate the certain values
of the index, which was firstly proposed by P. O’Neil in the
design of Model 204 commercial database. [6-7]

Table 1 An example of the Bitmap index

RowID column Bitmap

=1 =2 =3 =4

1 1 1 0 0 0

2 2 0 1 0 0

3 4 0 0 0 1

4 3 0 0 1 0

5 2 0 1 0 0

6 4 0 0 0 1

The technologies used in Bitmap index database includes
bitmap indexing [4], bitmap compression and classification.
Currently, the state-of-art bitmap index compression algorithms
are BBC [1], WAH [3], PLWAH [2], COMPAX [8], SECOPAX
[9] etc.

Based on the observation of the result of the WAH performance,
this paper improves upon existing work by offering a lossless
bitmap compression technique that outperforms PLWAH on both
storage and performance perspective. Especially, we propose the
PLWAH+ (Position List Word Aligned Hybrid Plus) bitmap
compression scheme.

2. PLWAH+ CODING SCHEME
2.1 Definitions for Chunks

In PLWAH+ compression scheme, a bit vector is divided into
chunks of 31 bits to ensure they are fit into the L1 cache. At first,
we will classify each chunk into different types. Types for a chunk
are defined as below:

0-Filled Chunk: If the 31 bits of a chunk are all ‘0’, we call the
chunk 0-Filled Chunk.

1-Filled Chunk: If the 31 bits of a chunk are all ‘1’, we call the
chunk 1-Filled Chunk.

Literal Chunk: If a chunk cannot be classified into 0-Filled
Chunk or 1-Filled Chunk, it is called a Literal Chunk.

Dirty Bit: If only a few bits in a Literal Chunk are different
from Filled Chunk, they are all called Dirty Bit. Furthermore, they
can be divided into 1-Dirty Bit (1 bit) and 0-Dirty Bit (0 bit).

NI Chunk: If a Chunk is a Literal Chunk with less than 4 Dirty
Bit, it is called a NI Chunk. The NI Chunk can be divided into
two parts as follows:

NI-0 Chunk: If a Chunk is nearly identical to the ‘0’ sequence
with less than 4 1-Dirty Bits, it is called a NI-0 Chunk.

NI-1 Chunk: If a Chunk is nearly identical to the ‘1’ sequence
with less than 4 0-Dirty Bits, it is called a NI-1 Chunk.

2.2 Definitions for Codewords
After the categorization of the chunks, we begin to encode the

bitmap roughly into the codewords as shown below:

0-Fill: If there are some continuous 0-Filled Chunks, replace
them with a 0-Fill codeword which indicates the number of the
replaced chunks.

1-Fill: If there are some continuous 1-Filled chunks, replace
them with a 1-Fill codeword which indicates the number of the
replaced chunks.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
ANCS’14, October 20–21, 2014, Los Angeles, CA, USA
ACM 978-1-4503-2839-5/14/10.
http://dx.doi.org/10.1145/2658260.2661777

Obviously, 0-Fill and 1-Fill are two types of Fill.

Last but not least, we do the ultimate encoding based on rough
encoding as shown below:

LF: For a continuous 2-tuple in the sequence, if the first
element is a NI Chunk and the second codeword is a Fill, this 2-
tuple is encoded into a LF codeword, including NI-0-0-Fill, NI-1-
0-Fill, NI-0-1-Fill, and NI-1-1-Fill.

FL: For a continuous-2-tuple in the sequence, if the first
element is a Fill and the second codeword is a NI Chunk, this 2-
tuple is encoded into a FL codeword, including 0-Fill-NI-0, 0-Fill-
NI-1, 1-Fill-NI-0, and 1-Fill-NI-1.

Literal: If a Literal Chunk survives after the encoding
procedure with FL and LF, it’s called a Literal codeword.

So far, the whole process of PLWAH+ compression has
finished. The result is composed of Fill, Literal, LF, and FL
codewords.

2.3 Bit-Represented CodeBook
In this section, the final result of every codeword is represented

by 4 bytes.

As for Literal, we add a ‘0’ before the 31 bits as a flag for
identifying.

And it is easy to find that a Fill word has 23 bits for storing a
counter. However, only the lowest byte will be used later in the
experiment.

In the FL and LF codewords, the first five bits which represent
first dirty bit position can’t be zero while, as is shown in Figure 1,
the second, third and fourth are flexible. So the number of the
dirty bits in the NI Chunk is no more than four. The counter of the
FL and LF words can be represented within 8 bits, corresponding
to the segment of 3,968 (128*31) bit sequence.

The details are shown in Figure 1:

Figure 1 Codebook

3. EXPERIMENT AND RESULTS
In our experiments, the network flow data from CAIDA [5] is

parsed using libpcap library, and the fields named source IP,
source port, destination IP, destination port and protocol ID are
extracted from the pcap archive, all of which are saved into a
plain text file. The row ID of that file is the same as the record ID.

The original data size is 13,581,810 multiplied by 14 bytes,
equaling to 47,536,335 Dwords (64 bits). The final compressed
files sum up to 20,516,573 Dwords. As shown in Figure 2, we can
see that the result of PLWAH+ reduces about 3% of the storage
comparing to PLWAH and the compression ratio reaches roughly
43% with about 20% reduction of the amount of the literal words.

Figure 2 Used storage in Dword (64bits)

4. CONCLUSION
In this paper, we mainly discuss the PLWAH+ which is typical

and more suitable for the modern CPU architecture. The concept
of the NI-1 chunk and the LF word which are not considered in
PLWAH makes PLWAH+ more suitable for indexing in large-
scale and high-speed streaming network data.

5. REFERENCES
[1] G. Antoshenkov, Byte-aligned bitmap compression, in:

DCC’95, p. 476, 1995.

[2] F. Deli`ege and T. B. Pedersen. Position list word aligned
hybrid: optimizing space and performance for compressed
bitmaps. EDBT ’10, 2010.

[3] Wu, Kesheng, Ekow J. Otoo, and ArieShoshani.
"Compressing bitmap indexes for faster search operations."
SSDBM’02, pp. 99-108, 2002.

[4] Van Schaik, Sebastiaan et al. "A memory efficient
reachability data structure through bit vector compression."
ACM SIGMOD’ 2011, pp.913-924, 2011.

[5] CAIDA, www.caida.org.

[6] O'Neil, Patrick E. "Model 204 architecture and
performance." High Performance Transaction Systems.
Springer Berlin Heidelberg, 39-59, 1989.

[7] O'Neil, Patrick, and DallanQuass. "Improved query
performance with variant indexes." ACM SIGMOD Record,
vol. 26, no. 2, pp. 38-49, 1997.

[8] Fusco, F., Stoecklin, M. P., and Vlachos, M. Net-fli: on-the-
fly compression, archiving and indexing of streaming
network traffic. Proceedings of the VLDB Endowment, 3(1-
2), 1382-1393, 2010.

[9] Yuhao Wen, et al., SECOMPAX A bitmap index compression
algorithm, ICCCN HotData’14, Shanghai, China, 2014.

