
PageRank as a Function of the Damping Factor∗

Paolo Boldi Massimo Santini Sebastiano Vigna
DSI, Università degli Studi di Milano

Abstract

PageRank is defined as the stationary state of a Markov chain. The chain is obtained by perturb-
ing the transition matrix induced by a web graph with a damping factor α that spreads uniformly
part of the rank. The choice of α is eminently empirical, and in most cases the original suggestion
α = 0.85 by Brin and Page is still used. Recently, however, the behaviour of PageRank with
respect to changes in α was discovered to be useful in link-spam detection [21]. Moreover, an
analytical justification of the value chosen for α is still missing. In this paper, we give the first
mathematical analysis of PageRank when α changes. In particular, we show that, contrarily to
popular belief, for real-world graphs values of α close to 1 do not give a more meaningful ranking.
Then, we give closed-form formulae for PageRank derivatives of any order, and an extension of the
Power Method that approximates them with convergence O

(
tkαt) for the k-th derivative. Finally,

we show a tight connection between iterated computation and analytical behaviour by proving that
the k-th iteration of the Power Method gives exactly the PageRank value obtained using a Maclau-
rin polynomial of degree k. The latter result paves the way towards the application of analytical
methods to the study of PageRank.

1 Introduction
PageRank [17] is one of the most important ranking techniques used in today’s search engines. Not
only is PageRank a simple, robust and reliable way to measure the importance of web pages [3], but
it is also computationally advantageous with respect to other ranking techniques in that it is query
independent, and content independent. Otherwise said, it can be computed offline using only the web
graph1 structure and then used later, as users submit queries to the search engine, typically aggregated
with other, query-dependent rankings [4, 12, 16].

One suggestive way to describe the idea behind PageRank is as follows: consider a random surfer
that starts from a random page, and at every time chooses the next page by clicking on one of the
links in the current page (selected uniformly at random among the links present in the page). As a
first approximation, we could define the rank of a page as the fraction of time that the surfer spent on
that page on the average. Clearly, important pages (i.e., pages that happen to be linked by many other
pages, or by few important ones) will be visited more often, which justifies the definition. However,
we also allow the surfer to restart with probability 1 − α from another node chosen randomly and
uniformly, instead of following a link.

As remarked in [5], a significant part of the current knowledge about PageRank is scattered
through the research laboratories of large search engines, and its analysis “has remained largely in
the realm of trade secrets and economic competition”. As the authors of the aforementioned paper,
however, we believe that a scientific and detailed study of PageRank is essential to our understanding
of the web, and we hope this paper can be a contribution in such program.
∗This work has been partially supported by a “Finanziamento per grandi e mega attrezzature scientifiche” of the Università

degli Studi di Milano and by the MIUR COFIN Project “Linguaggi formali e automi”.
1The web graph is the directed graph whose nodes are URLs and whose arcs correspond to hyperlinks.

1

PageRank is defined formally as the stationary distribution of a stochastic process whose states
are the nodes of the web graph. The process itself is obtained by combining the normalised adjacency
matrix of the web graph (with some patches for nodes without outlinks that will be discussed later)
with a trivial uniform process that is needed to make the combination irreducible and aperiodic,
so that the stationary distribution is well defined. The combination depends on a damping factor
α ∈ 0, 1), which will play a major rôle in this paper. When α is 0, the web-graph part of the process
is annihilated, resulting in the trivial uniform process. As α goes to 1, the web part becomes more
and more important.

The problem of choosing α was curiously overlooked in the first papers about PageRank: yet, not
only PageRank changes significantly when α is modified [19, 18], but also the relative ordering of
nodes determined by PageRank can be radically different [14]. The original value suggested by Brin
and Page (α = 0.85) is the most common choice.

Intuitively, 1 − α is an amount of ranking that we agree to give uniformly at each page. This
amount will be then funneled through the outlinks of the node. A common form of link spamming
funnels carefully this amount towards a single page, giving it a preposterously great importance.

It is natural to wonder what is the best value of the damping factor, if such a thing exists. In a
way, when α gets close to 1 the Markov process is closer to the “ideal” one, which would somehow
suggest that α should be chosen as close to 1 as possible. This observation is not new, but it has some
naivety in it.

The first issue is of computational nature: PageRank is traditionally computed using variants of
the Power Method. The number of iterations required for this method to converge grows with α, and
moreover more and more numerical precision is required as α gets closer to 1.

But there is an even more fundamental reason not to choose a value of α too close to 1: we shall
prove in Section 3 that when α goes to 1 PageRank gets concentrated in the recurrent states, which
correspond essentially to the nodes whose strongly connected components have no passage toward
other components. This phenomenon gives a null PageRank to all the pages in the core component,
something that is difficult to explain and that is contrary to common sense. In other words, in real-
word web graphs the rank of all important nodes (in particular, all nodes of the core component) goes
to 0 as α goes to 1.

Thus, PageRank oscillates between a meaningless uniform distribution (α = 0) and a meaningless
distribution concentrated mostly in irrelevant nodes (α = 1). As a result, both for choosing the correct
damping factor and for detecting link spamming, being able to describe the behaviour of PageRank
when α changes is essential. Recently, indeed, a sophisticated form of link-spam detection has been
based on the study of the value of PageRank with respect to α [21].

To proceed further in this direction, it is essential that we have at our disposal analytical tools that
describe this behaviour. To this purpose, we shall provide closed-form formulae for the derivatives
of any order of PageRank with respect to α, and an iterative algorithm (an extension of the power
method) that approximates them.

The most surprising consequence, easily derived from our formulae, is that the vectors computed
during the PageRank computation for any α ∈ (0, 1) can be used to approximate PageRank for every
other α ∈ (0, 1). This happens because the k-th coefficient of the Maclaurin series for PageRank can
be easily computed during the k-th iteration of the Power Method. This allows to study easily the
behaviour of PageRank for any node storing a minimal amount of data.2

2Free Java code implementing all the algorithms described in this paper will be available for download at
http://law.dsi.unimi.it/.

2

2 Basic definitions
Let G be the adjacency matrix of a directed graph of N nodes (identified hereafter with the numbers
from 0 to N − 1). A node is terminal if it does not have outlinks, except possibly for loops (or,
equivalently, if all arcs incident on the node are incoming). If we want to be specific about the
presence of a loop, we shall use the terms looped and loopless3.

We note that usually G is preprocessed before building the corresponding Markov chain. Com-
mon processing includes removal of all loops (as nodes should not give authoritativeness to them-
selves) and thresholding the number of links coming from pages of the same domain (to reduce the
effect of link spamming).

If no loopless terminal nodes are present (note that after the preprocessing sketched above they
will be the only kind of terminal nodes), we can just normalise uniformly to 1 the row-sums of G
by multiplying it by D−1, the inverse of the diagonal degree matrix. However, D is not invertible if
loopless terminal nodes are present. The classical way to handle this situation consists in substituting
them with nodes that have one outgoing arc toward every node (including the node itself. In other
words, in G rows of zeroes are substituted with rows of ones.

Let Ḡ be the (adjacency matrix of the) resulting graph, and D̄ be the diagonal matrix of the
outdegrees of Ḡ (i.e., di i is the number of ones on the i-th row of Ḡ). Let also 1 be the vector4 of all
1’s, and v be any personalisation vector (a vector whose elements are all non-negative and sum to 1,
which is used to bias PageRank w.r.t. a selected set of trusted pages).

We are providing a toy example in the Appendix that will guide the reader through the paper. In
Table 5, the example graph G and its modified version Ḡ are presented.

In the rest of the paper, we shall use the matrices defined in Figure 1; some of them are functions
of the damping factor α ∈ 0, 1), and we will use a notation reflecting this fact. Note that Q(α) is
well defined for all α ∈ 0, 1), as (I − αP) is known to be invertible [20].

P = D̄−1Ḡ

A(α) = αP + (1− α)1T v
C(α) = I − αP

Q(α) = PC(α)−1

Figure 1: Basic PageRank definitions.

The PageRank vector r(α) is defined as the dominant eigenvector of A(α); more precisely, as the
only vector summing to 1 such that r(α)A(α) = r(α). Noting that r(α)1T = 1, we get

r(α)
(
αP + (1− α)1T v

) = r(α)
αr(α)P + (1− α)v = r(α)

(1− α)v = r(α)(I − αP),

which yields the following closed formula for PageRank:

r(α) = (1− α)vC(α)−1. (1)

3In PageRank-related literature, loopless terminal nodes are more commonly known as dangling nodes; the same kind of
node is often called a sink in graph-theoretic literature. Our choice avoids the usage of ambiguous terms that have been given
different meanings in different papers.

4All vectors in this paper are row vectors.

3

This is Lemma 3 of [8], albeit in the original statement of this lemma the factor 1 − α is missing,
probably due to an oversight. Note that (1) can be written as

r(α) = (1− α)v
∞∑

t=0

(αP)t ,

which makes the dependence of PageRank on incoming paths very explicit.
The reader can see the PageRank vector in Figure 7 (the preference vector v is the uniform vector).

PageRank is represented as a function of α in Figure 8.

3 General Behaviour
In this section, we shall discuss the general behaviour of PageRank as a function of the damping
factor α, considering in particular what happens when α gets close to 1.

Recall that P (the row-normalised adjacency matrix) is a Markov chain, but in general it is neither
aperiodic nor irreducible. Usually, though, in all practical cases P will be aperiodic, but reducible.
In this paper, we shall assume that P is indeed aperiodic.

Introducing the damping factor has the consequence of obtaining an aperiodic irreducible chain.
Indeed, for all α ∈ 0, 1, A(α) is a Markov chain; moreover, if α < 1, A(α) is irreducible and
aperiodic. Hence, A(α) admits a unique limit distribution r(α).

3.1 Choosing the damping factor
Clearly, r(α) is a rational (vector) function of α: usually, though, one looks at r(α) only for a specific
value of α. All algorithms to compute PageRank actually compute (or, more precisely, provide an
estimate of) r(α) for some α that you plug in it, and it is by now an established use to choose α = 0.85.
This choice was indeed proposed by Brin and Page [17], and it is rumored that Google itself uses this
value; it seems that the rankings obtained with this choice are very natural and satisfactory for the
users.

Many authors had tried to devise a more thorough a posteriori justification for 0.85. It is easy to
get convinced that choosing a small value for α is not appropriate, because too much weight would be
given to the “uniform” part of A(α): indeed, as we remarked in the introduction, A(0) is the uniform
matrix and r(0) is the uniform distribution.

Conversely, as α → 1−, the matrix A(α) tends to P: this fact seems to suggest that choosing
α close to 1 should give a “truer” or “better” PageRank: this is a widely diffused opinion (as we
shall see, most probably a misconception). In any case, as we remarked in the introduction there are
some computational obstacles to choosing a value of α too close to 1. The Power Method converges
more and more slowly [9] as α → 1−, a fact that also influences the other methods used to compute
PageRank (which are, after all, variants of the Power Method [17, 7, 6, 15, 11, 10]). Indeed, the
number of iterations required could in general be bounded using the separation between the first and
the second eigenvalue, but unfortunately the separation can be abysmally small if α = 1, making
this technique not applicable. Moreover, if α is large the computation of PageRank may become
numerically ill-conditioned (essentially for the same reason [8]).

3.2 Getting close to 1
Even disregarding the problems discussed above, we shall provide convincing reasons that make it
inadvisable to use a value of α close to 1.

4

First observe that, since r(α) is a rational (coordinatewise) bounded function defined on 0, 1), the
limit

r∗ = lim
α→1−

r(α)

exists (the reader can see the vector r∗ for our example in the caption of Figure 7).
It is easy to see that r∗ is actually one of the limit distributions of P (because limα→1− A(α) = P).

There are some natural questions about r∗ that we want to address:

• can we somehow characterise the properties of r∗?

• what makes r∗ different from the other (infinitely many, if P is reducible) limit distributions of
P?

The first question is the most interesting, because it is about what happens to PageRank when
α→ 1−; in a sense, fortunately, it is also the easiest to answer.

Before doing this, recall some basic definitions and facts about Markov chains.

• Given two states x and y, we say that x leads to y iff there is some m > 0 such that there is a
non-zero probability to go from x to y in m steps.

• A state x is transient iff there is a state y such that x leads to y but y does not lead to x . A state
is recurrent iff it is not transient.

• In every limit distribution p of an aperiodic Markov chain, if px > 0 then x is recurrent [20].

Let us now introduce some graph-theoretical notation. Let G be a graph.

• Given a node x of G, we write xG for the (strongly connected) component of G containing x .

• The component graph of G is a graph whose nodes are the components of G, with an arc from
xG to yG iff there are nodes x ′ ∈ xG and y′ ∈ yG such that there is an arc from x ′ to y′ in G.
The component graph is acyclic, apart for the possible presence of loops.

• If x , y are two nodes of G, we write x ÃG y iff there is a nonempty directed path from x to y
in G (by nonempty we mean that the path should contain at least one arc).

Clearly, a node is recurrent in P iff x Ḡ is terminal; otherwise said, x is recurrent (in the Markov
chain P) iff x ÃḠ y implies y ÃḠ x as well. Note that nodes with just a loop are recurrent (and
their component is looped, too).

We now turn to our characterisation theorem, which identifies recurrent states on the basis of G,
rather than Ḡ. The essence of the theorem is that, for what concerns recurrent states, the difference
between G and Ḡ is not significant, unless there are no looped terminal nodes among the components
of G. The latter case, however, is as pathological as periodicity in a large web graph.

Theorem 1 Let G and P be defined as above. Then:

1. if G has a component that is looped and terminal (in the component graph), then a node is
recurrent for P iff its component is looped and terminal; hence, given any limit distribution p
for P, px > 0 implies that x is a node of G whose component is looped and terminal;

2. if G does not contain a component that is looped and terminal, then every node is recurrent.

5

Proof. Note that x ÃḠ y means that there is a nonempty path from x to y in Ḡ. Such a path can be
decomposed into a sequence of (possibly empty) paths in G, from x = x0 to a loopless terminal node
y0, from a node x1 to a loopless terminal node y1, . . . , from a node xk to yk = y. Moreover, either
k > 0, or the only path (a path from x to y in G) contains at least one arc.

For case (1), let x be contained in a looped terminal component, and suppose that x ÃḠ y. By the
observation above, this path in Ḡ can be decomposed into a sequence of paths of G towards loopless
terminal nodes, plus a final path to y: but from x you cannot reach a loopless terminal node of G
(because x is contained in a looped terminal component), so the path is simply a nonempty path of G,
i.e., x ÃG y. But then y is in the same component as x , so y ÃG x as well, and we obtain the result.
For the converse, suppose that x is not in a looped terminal component: we will show that there is a
y such that x ÃḠ y but not y ÃḠ x . We distinguish two cases:

• suppose that there is a looped terminal component that can be reached from xG in the compo-
nent graph of G; let y be any node in such component. Clearly x ÃG y, and hence x ÃḠ y,
but y ÃḠ x does not hold (from y you can only reach nodes of yG both in G and in Ḡ);

• otherwise, suppose that there is a loopless terminal y such that x ÃG y (or x = y if x itself
is terminal); let z be any node in a looped terminal component G: now x ÃḠ z (you first go
from x to y and then you “jump” to z), but from z you cannot reach x (because x is not in the
same component).

For case (2), take any two nodes x and y of G. In the component graph of G there will be two
terminal components x ′G and y′G that are reachable from xG and yG , respectively. Both are, by
hypothesis, loopless. In other words, there are two terminal nodes x ′ and y′ such that x ÃG x ′ (or
x = x ′) and y ÃG y′ (or y = y′). This means that x ÃḠ y and vice versa, unless x = y (and both
are terminal), in which case again both x ÃḠ y and vice versa.

The statement of the previous theorem may seem a bit unfathomable. The essence, however,
could be stated as follows: except for strongly connected graphs, or graphs all whose terminal com-
ponents are trivial and loopless, the recurrent nodes are exactly those whose component is looped and
terminal. These nodes are often called rank sinks, as they absorb all the rank circulating through the
graph.

As we remarked, a real-world graph will certainly contain at least one looped terminal component,
so the first statement of the theorem will hold. This means that most nodes x will be such that
r∗x = 0. In particular, this will be true of all the nodes in the core component [13]: this result is
somehow surprising, because it means that many important Web pages (that are contained in the core
component) will have rank 0 in the limit (see, for instance, node 0 in our example).

This is a rather convincing justification that, contradicting the common beliefs, choosing α too
close to 1 does not provide any good PageRank. Rather, PageRank becomes “sensible” somewhere
in between 0 and 1.

As far as the second question is concerned, we provide a

Conjecture 1 r∗ is the limit distribution of P when the starting distribution is uniform, that is,

lim
α→1−

r(α) = lim
n→∞

1
N

Pn .

Note that the conjecture is trivial when P is irreducible, because in that case P has but one stationary
distribution.

4 Derivatives
The reader should by now be convinced that the behaviour of PageRank with respect to the damping
factor is nonobvious: r(α) should be considered a function of α, and studied as such.

6

The standard tool for understanding changes in a real function is the analysis of its derivatives.
Correspondingly, we are going to provide mathematical support for this analysis.

4.1 Exact formulae
The main objective of this section is providing exact formulae for the derivatives of r(−). Define
r′(α), r′′(α), . . . , r(k)(α) as the first, second, . . . , k-th derivative of r(α) with respect to α.

We start by providing the basic relations between these vector functions:

Theorem 2 The following identities hold:

1. r′(α) = (r(α)P − v)C(α)−1;

2. for all k > 0, r(k+1)(α) = (k + 1)r(k)(α)PC(α)−1.

Proof. Multiplying (1) by C(α) and differentiating memberwise:

r(α)C ′(α)+ r′(α)C(α) = −v (2)
r′(α)C(α) = −r(α)C ′(α)− v (3)
r′(α)C(α) = r(α)P − v. (4)

Since C(α) is invertible:
r′(α) = (r(α)P − v)C(α)−1.

Moreover, differentiating once more (4), we obtain:

r′(α)C ′(α)+ r′′(α)C(α) = r′(α)P
r′′(α)C(α) = r′(α)P − r′(α)C ′(α)
r′′(α)C(α) = r′(α)P + r′(α)P

hence
r′′(α) = 2r′(α)PC(α)−1,

which accounts for the base case (k = 1) of an induction for the second statement. For the inductive
step, again multiplying by C(α) and differentiating memberwise:

r(k+2)(α)C(α)+ r(k+1)(α)C ′(α) = (k + 1)r(k+1)(α)P

r(k+2)(α)C(α) = r(k+1)(α)
[
(k + 1)P − C ′(α)

]

and the thesis follows easily.

We can reformulate the statement concerning the first-order derivative as follows:

Corollary 1 The following identity holds:

r′(α) = r(α)
(

Q(α)− 1
1− α I

)
.

Proof. From Theorem 2, we obtain r′(α) = r(α)PC(α)−1− vC(α)−1. Using (1) we can rewrite this
as r(α)PC(α)−1 − 1

1−α r(α), hence the result.

Moreover, we can explicitly write a closed formula for the generic derivative:

7

Corollary 2 For every k > 0

r(k)(α) = k (r(α)P − v)C(α)−1 Q(α)k−1

or, equivalently,

r(k)(α) = k r(α)
(

Q(α)− 1
1− α I

)
Q(α)k−1.

Proof. Just proceed from Theorem 2 by iterate substitution, and finally apply Corollary 1.

4.2 Approximating the derivatives
The formulae obtained in Section 4.1 do not lead directly to an effective algorithm that computes
derivatives: even assuming that the exact value of r(α) is available, to obtain the derivatives one
should invert C(α) (see Theorem 2), a heavy (in fact, unfeasible) computational task. However,
in this section we shall provide a way to obtain simultaneous approximations for PageRank and its
derivatives for a given value of α, and we will show how these approximations converge to the desired
vectors.

The simplest and most important algorithm that computes PageRank [17] is an application of the
Power Method; the algorithm computes a sequence of vectors v0, v1, . . . where v0 = v and vk+1 =
vk A(α). This sequence of vectors converges to r(α), and convergence speed depends on α; more
precisely, the difference in norm between the k-th iterate and the exact value is O

(
αk). In practice,

the algorithm provides good approximation quickly: in the original paper [17] the authors state that
40 to 50 iterations are enough on reasonable data sets; of course, more sophisticated approaches have
been proposed in the literature to reduce the number of iterations and/or the amount of computation
needed at each iteration [17, 7, 6, 15, 11, 10], but they are basically all variants of the Power Method.

The reader can see the first few iterates of the Power Method applied to our example in Figure 1.
We are going to present a modified version of the basic algorithm that will compute PageRank

and its derivatives up to (any desired) index K , and to do this it will use K + 1 vectors. In other
words, it will build K + 1 vector sequences: the sequence s(0)0 (α), s(0)1 (α), . . . , s(0)t (α), . . . will be
used to approximate r(α) (and will be defined exactly as in the classical PageRank algorithm); the
sequence s(1)0 (α), s(1)1 (α), . . . , s(1)t (α), . . . will be used to approximate r′(α); and so on. Note that
the sequence s(k)0 (α), s(k)1 (α), . . . , s(k)t (α), . . . will not, in general, converge to r(k)(α) per se; rather,
there will be an associated sequence q(k)0 (α), q(k)1 (α), . . . , q(k)t (α), . . . based on it, that will actually
converge to the desired derivative.

The vector sequences are defined in Figure 2. Note that only the K + 1 vectors s(k)t (α) (0 ≤ k ≤
K) need to be stored, whereas q(k)t (α) are only defined for convenience, and can be implemented, for
example, as a function.

Our first result is about convergence of the first-order derivative.5

Theorem 3 limt→∞ q(1)t (α) = r′(α), and the difference in norm is O
(
tαt), that is:

∥∥∥q(1)t (α)− r′(α)
∥∥∥ = O

(
tαt) as t →∞.

5We do not assume a particular norm—all our proofs are correct with any p-norm. We just note that ‖S‖1 = 1 for any
stochastic S (as we use row vectors), and so

∥∥P t∥∥
p is bounded by a constant that depends on P’s size, but not on P’s elements

or on t .

8

s(0)0 (α) = v

s(0)t+1(α) = s(0)t (α)A(α)

s(k+1)
0 (α) = q(k)0 (α)

s(k+1)
t+1 (α) = αs(k+1)

t (α)P + q(k)t (α)P

q(0)t (α) = s(0)t (α)

q(1)t (α) = s(1)t (α)− 1
1− α s(0)t (α)

q(k)t (α) = ks(k)t (α) for all k ≥ 2.

Figure 2: Basic definitions for the approximation algorithm.

Proof. Recall that
∥∥∥q(0)t (α)− r(α)

∥∥∥ = O
(
αt), since the second eigenvalue of A(α) is at most α [9].

An easy proof by induction shows that for all t

s(1)t (α) = v(αP)t +
t−1∑

s=0

q(0)t−s−1(α)(αP)s P,

so

q(1)t (α) = v(αP)t +
t−1∑

s=0

q(0)t−s−1(α)(αP)s P − 1
1− αq(0)t (α).

Now, by Corollary 1, we have:

r′(α) = r(α)
(

Q(α)− 1
1− α I

)
.

Since

Q(α) = PC(α)−1 = P(I − αP)−1 =
∞∑

s=0

(αP)s P,

we have

r′(α) =
∞∑

s=0

r(α)(αP)s P − 1
1− α r(α).

Hence, we can bound the convergence rate as follows:

∥∥∥r′(α)− q(1)t (α)

∥∥∥ ≤
∥∥∥
∞∑

s=t

r(α)(αP)s P
∥∥∥+

+
∥∥∥

t−1∑

s=0

(
r(α)− q(0)t−s−1(α)

)
(αP)s P

∥∥∥+

1
1− α

∥∥∥r(α)− q(0)t (α)

∥∥∥+
∥∥v(αP)t

∥∥ .

9

We provide an upper bound for each of the summands above. As far as the first summand is con-
cerned, recall that

∑∞
t=n X t = (I − X)−1 Xn (whenever the first series converges). Thus,

∥∥∥
∞∑

s=t

r(α)(αP)s P
∥∥∥ ≤

∥∥∥(I − αP)−1
∥∥∥ ·
∥∥(αP)t

∥∥ · ‖r(α)P‖ ,

and the first summand is O
(
αt). The second summand can be bounded as follows:

∥∥∥
t−1∑

s=0

(
r(α)− q(0)t−s−1(α)

)
(αP)s P

∥∥∥ = O
(
αt)∥∥∥

t−1∑

s=0

Ps+1
∥∥∥ = O

(
αt) t−1∑

s=0

O(1) = O
(
tαt).

The third and the fourth summands are both O
(
αt). All summands are thus O

(
tαt)—hence the

result.

As far as the other derivatives are concerned, we have:

Theorem 4 For every k > 1, limt→∞ q(k)t (α) = r(k)(α), and the difference in norm is O
(
tkαt).

Proof. First of all, by induction on k and t , one can prove that

s(k)t (α) = (k − 1)
α

α − 1
v(αP)t +

t−1∑

s=0

q(k−1)
t−s−1(α)(αP)s P,

for all k > 1 and all t . The base case t = 0 is trivial (by an easy induction on all k > 1), whereas the
case k = 2 can be obtained by induction on t using Theorem 3, noting that the rule for computing
q(1)t (α) is a special case. The inductive step is then obtained using the rule that defines s(k+1)

t+1 (α).
Now, recalling that (from Theorem 2)

r(k)(α) = kr(k−1)(α)PC(α)−1 = k
∞∑

s=0

r(k−1)(α)(αP)s P,

we have

∥∥∥r(k)(α)− q(k)t (α)

∥∥∥ =
∥∥∥k
∞∑

s=0

r(k−1)(α)(αP)s P − ks(k)t (α)

∥∥∥ ≤

k
∥∥∥
∞∑

s=t

r(k−1)(α)(αP)s P
∥∥∥+ k

α

1− α
∥∥v(αP)t

∥∥+

+ k
∥∥∥

t−1∑

s=0

(
r(k−1)(α)− q(k−1)

t−s−1(α)
)
(αP)s P

∥∥∥.

The result follows along the lines of the last part of the proof of Theorem 3.

We remark two important points that deserve further analysis. First of all, the big-oh notation
hides a number of constants independent of t . However, when k is large or α very close to 1 these
constants may become important. Second, we did not give a detailed evaluation of the numerical
precision that is necessary to perform these computations.

10

4.3 Implementation of the algorithm
The results of the previous section can be used to modify the classical PageRank algorithm, based on
the Power Method, so to compute an approximation of the derivatives of PageRank up to a certain
index.

The algorithm uses a vector s−,− where the first index represents the derivative index (from 0 to
K , inclusive, where K is the highest derivative order to be computed) and the second index represents
the node. In other words, at step t the vector sk,− represents s(k)t (α). The vector q(k)t (α) is not itself
represented as a vector, but rather it is implemented by the procedure q().

The procedure init() initialises the vector s−,−, whereas step() computes the vector for the next
iteration (the new vector is indicated by s′−,−).

The stopping criterion can be decided in many ways: for example, at each step, the norms of
the differences between each derivative and the derivative at the previous step are computed, and the
iteration is stopped if all such norms are below a certain threshold.

procedure q(k, i)
if k=0 then return s0, i ;
else if k=1 then return s1, i − s0, i/(1− α);
else return k · sk, i ;

procedure init()
for i :=0, 1, . . . , N − 1 do

s0, i :=vi ;
for k:=1, . . . , K do

sk, i :=q(k − 1, i);
end for

end for

procedure step()
for i :=0, 1, . . . , N − 1 do

for k:=0, 1, . . . , K do
s′k, i = 0;

end for
end for
for i :=0, 1, . . . , N − 1 do

d:=outdegree of node i ;
for all successors j of i do

s′0, j :=s′0, j + α + q(0, i)/d;
for k:= 1, 2, . . . , K do

s′k, j :=s′k, j + (αsk, i + q(k − 1, i))/d;
end for

end for
end for

procedure computePageRankAndDerivatives()
init();
do step(); while not stopping condition;

5 Maclaurin series
The rational function r(−) can be expressed using its Maclaurin series (e.g., the Taylor series about
0); let us denote by tn(α) the n-th degree Maclaurin polynomial of r(−) evaluated in α.

11

Clearly, Maclaurin polynomials offer an appealing way to study PageRank in relation to α. To
obtain an explicit formula for tn(α), just recall from Corollary 2 that r(k)(0) = k r(0)(Q(0) −
I)Q(0)k−1. Since r(0) = v and Q(0) = P , we have, for all k > 0,

r(k)(0) = k v(P − I)Pk−1.

Now, since tn(α) =
∑n

k=0(1/k)αkr(k)(0), we have

tn(α) = v
(

I +
n∑

k=1

αk(Pk − Pk−1)
)
.

Two important problems face us now: first of all, how to compute tn(α); second, how to choose n.
Both problems will be solved by a surprisingly simple relationship between Maclaurin polynomials
and the Power Method that will be proved in this section. To obtain our main result, we will need the
following:

Lemma 1 Let C be a set of square matrices of the same size, and R ∈ C such that for every M ∈ C
we have M R = R. Then for all M ∈ C , λ ∈ R and for all n we have

(λM + (1− λ)R)n = λn Mn + (1− λ)
n−1∑

k=0

λk RMk .

or, equivalently,

(λM + (1− λ)R)n = λn Mn + R(I − λn Mn−1)+ R
n−1∑

k=1

λk(Mk − Mk−1).

Proof. By an easy induction. The first statement is trivial for n = 0. If we multiply both members by
λM + (1− λ)R on the right we have

(λM + (1− λ)R)n+1 =

λn+1 Mn+1 + (1− λ)
n−1∑

k=0

λk+1 RMk+1 + λn(1− λ)R+

+ (1− λ)2
n−1∑

k=0

λk R =

= λn+1 Mn+1 + (1− λ)
n−1∑

k=0

λk+1 RMk+1 + λn(1− λ)R+

+ (1− λ)2 1− λn

1− λ R =

= λn+1 Mn+1 + (1− λ)
n∑

k=0

λk RMk .

The second statement can be then proved by expanding the summation and collecting monomials
according to the powers of λ.

Of course, the last result can be easily restated in any R-algebra.
We can now come to the main result of this section, which equates analytic approximation (the

degree of the Maclaurin polynomial) with computational approximation (the number of iterations of
the Power Method):

12

Theorem 5 The n-th approximation of PageRank computed by the Power Method with damping fac-
tor α coincides with the n-th degree Maclaurin polynomial of PageRank evaluated in α. In other
words, vA(α)n = tn(α).

Proof. Apply Lemma 1 to the case when M = P , R = 1T v and λ = α. We have:

A(α)n = αn Pn + 1T v− αn1T vPn−1 + 1T v
n−1∑

k=1

αk(Pk − Pk−1),

hence

q(0)n (α) = vA(α)n = αnvPn + v− αnvPn−1 + v
n−1∑

k=1

αk(Pk − Pk−1) =

= v+ v
n−1∑

k=1

αk(Pk − Pk−1) = tn(α).

As a consequence:

Corollary 3 The difference between the k-th and the (k − 1)-th approximation of PageRank (as
computed by the Power Method), divided by αk , is the k-th coefficient6 of the Maclaurin series of
PageRank.

The previous corollary is apparently innocuous. However, as a consequence the data obtained
computing PageRank for a given α can be used to compute immediately PageRank for any other α,
obtaining the result of the Power Method after the same number of iterations. Indeed, by saving the
Maclaurin coefficients during the computation of PageRank with a specific α it is possible to study the
behaviour of PageRank when α varies. Even more is true, of course: using standard series derivation
techniques, one can approximate the k-th derivative (lowering of course by k the approximating poly-
nomial). Note, however, that the algorithm presented in Section 4.3 provides values of the derivatives
for a specific α with a precision guarantee.

The first few coefficients of the Maclaurin polynomial for our example are shown in Figure 2.

6 Experimental results
Figure 3 illustrates from an experimental viewpoint the convergence speed theorems of Section 4.2.
We computed PageRank and its derivatives up to index four (inclusive) and we plotted the difference,
in L2-norm (we used for the computation a small, 325 557-nodes graph of the sites of the Italian
CNR), between two successive iterates during the first 70 iterations; for every derivative we also
show the upper bounds proved in Theorems 3 and 4. Note that there is a transient irregular behaviour
due to the constants hidden in the proofs.

Figure 4 shows the convergence of Maclaurin polynomials toward the actual PageRank behaviour
for a chosen node. Finally, in Figure 9 we display the approximation obtained with a 100-degree
Maclaurin polynomial. We choose four nodes with different behaviours (monotonic increasing/decreasing,
unimodal concave/convex) to show that the approximation is excellent in all these cases. For this ex-
periment we used a 41 291 594-nodes snapshot of the Italian web gathered by UbiCrawler [1] and
indexed by WebGraph [2].

6The coefficients are vectors, because we are approximating a vector function.

13

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70

0

1

2

3

4

Figure 3: The convergence speed in the computation of derivatives up to order 4 (the label is the order
of the derivative).

 5e-09

 1e-08

 1.5e-08

 2e-08

 2.5e-08

 3e-08

 3.5e-08

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

10

20

30

40

50

100

Figure 4: Approximating r(α) for a specific node (cross-shaped points) using Maclaurin polynomials
of different degrees (shown in the legend).

14

7 Conclusions
We have presented a number of results which outline the first analytic study of PageRank when the
damping factor changes. While our results are mainly theoretical in nature, they provide efficient
ways to study the global behaviour of PageRank, and dispel a few myths (in particular, about the
significance of PageRank when α gets close to 1).

A last point that is worth being noted is that our algorithm to obtain the Maclaurin polynomials
for PageRank may be used to determine new forms of ranking; for example, one may define the total
rank of a page x as

∫ 1
0 rx (α) dα. This quantity (the area under the PageRank curve of node x) is

independent from α, and induces interesting rankings that will be studied in a forthcoming paper.

References
[1] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. Ubicrawler: A scalable

fully distributed web crawler. Software: Practice & Experience, 34(8):711–726, 2004.

[2] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression techniques. In
Proc. of the Thirteenth International World Wide Web Conference, pages 595–601, Manhattan,
USA, 2004. ACM Press.

[3] Soumen Chakrabarti, Byron Dom, David Gibson, Jon Kleinberg, S. Ravi Kumar, Prabhakar
Raghavan, Sridhar Rajagopalan, and Andrew Tomkins. Hypersearching the web. Scientific
American, June 1999.

[4] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and Richard A.
Harshman. Indexing by latent semantic analysis. Journal of the American Society of Information
Science, 41(6):391–407, 1990.

[5] Nadav Eiron, Kevin S. McCurley, and John A. Tomlin. Ranking the web frontier. In Proceedings
of the thirteenth international conference on World–Wide Web, pages 309–318. ACM Press,
2004.

[6] Gene H. Golub and Chen Greif. Arnoldi-type algorithms for computing stationary distribution
vectors, with application to PageRank. Technical Report SCCM-04-15, Stanford University
Technical Report, 2004.

[7] Taher Haveliwala. Efficient computation of PageRank. Technical report, Stanford University
Technical Report, October 1999.

[8] Taher Haveliwala and Sepandar Kamvar. The condition number of the PageRank problem.
Technical Report 36, Stanford University Technical Report, June 2003.

[9] Taher Haveliwala and Sepandar Kamvar. The second eigenvalue of the Google matrix. Technical
Report 20, Stanford University Technical Report, March 2003.

[10] Sepandar Kamvar, Taher Haveliwala, Christopher Manning, and Gene Golub. Exploiting the
block structure of the web for computing PageRank. Technical Report 17, Stanford University
Technical Report, March 2003.

[11] Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Manning, and Gene H. Golub. Ex-
trapolation methods for accelerating PageRank computations. In Proceedings of the twelfth
international conference on World Wide Web, pages 261–270. ACM Press, 2003.

15

[12] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM,
46(5):604–632, September 1999.

[13] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, D. Sivakumar, Andrew Tompkins, and
Eli Upfal. The Web as a graph. In PODS ’00: Proceedings of the nineteenth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 1–10. ACM Press, 2000.

[14] Amy N. Langville and Carl D. Meyer. Deeper inside PageRank. Internet Mathematics,
1(3):355–400, 2004.

[15] Chris Pan-Chi Lee, Gene H. Golub, and Stefanos A. Zenios. A fast two-stage algorithm for
computing PageRank and its extensions. Technical report, Stanford University Technical Re-
port, 2004.

[16] Ronny Lempel and Shlomo Moran. SALSA: the stochastic approach for link-structure analysis.
ACM Trans. Inf. Syst., 19(2):131–160, 2001.

[17] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank citation
ranking: Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project, Stanford University, Stanford, CA, USA, 1998.

[18] Luca Pretto. A theoretical analysis of google’s PageRank. In Proceedings of the Ninth Sympo-
sium on String Processing and Information Retrieval, pages 131–144, 2002.

[19] Luca Pretto. A theoretical approach to link analysis algorithms, 2002. PhD Thesis.

[20] Eugene Seneta. Non-Negative Matrices and Markov Chains. Springer Series in Statistics.
Springer-Verlag, 1981.

[21] Hui Zhang, Ashish Goel, Ramesh Govindan, Kahn Mason, and Benjamin Van Roy. Making
eigenvector-based reputation systems robust to collusion. In Stefano Leonardi, editor, Proceed-
ings WAW 2004, number 3243 in LNCS, pages 92–104. Springer-Verlag, 2004.

Appendix: An example
To clarify the discussion of the previous section, we provide a full example in Figure 5. Node 4 is
the only terminal node of the graph, but nodes 4 and 5 belong to a looped terminal component (see
Figure 6). Correspondingly, Figure 8 shows that PageRank for nodes 4 and 5 grows, whereas for all
other nodes goes to 0 as α→ 1−. Note, however, the maximum attained by node 0 at α ≈ 0.7.

0 1

2

3

6 7 8 9

4 5

0 1

2

3

6 7 8 9

54

Figure 5: A graph with n = 10 nodes and its modified version.

16

6 7 8 9

0 1

2

3

54

0, 1, 2,

6, 7, 8, 9

3

4, 5

Figure 6: The components of the graph in Figure 5 and the corresponding component graph. The
dashed line in the component graph gathers components that are merged in Ḡ. In both G and Ḡ the
only terminal component is { 4, 5 }.

Step Approximation
0 〈0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100〉
1 〈0.415, 0.049, 0.075, 0.075, 0.113, 0.070, 0.049, 0.049, 0.049, 0.049〉
2 〈0.232, 0.100, 0.051, 0.062, 0.078, 0.072, 0.100, 0.100, 0.100, 0.100〉
3 〈0.391, 0.066, 0.070, 0.049, 0.097, 0.056, 0.066, 0.066, 0.066, 0.066〉
4 〈0.283, 0.093, 0.054, 0.056, 0.076, 0.063, 0.093, 0.093, 0.093, 0.093〉

Table 1: The approximations computed in the first iterations of the Power Method (with α = 0.85).

r(α) =
〈
−5

(−1+ α)
(
α2 + 18α + 4

)

8α4 + α3 − 170α2 − 20α + 200
,−2

(−1+ α)
(

10+ 2α + α2
)

8α4 + α3 − 170α2 − 20α + 200
, 2

(−1+ α)
(

7α2 − 5α − 10
)

8α4 + α3 − 170α2 − 20α + 200
,

(−1+ α)
(

11α2 + 8α3 − 10α − 20
)

8α4 + α3 − 170α2 − 20α + 200
,− α4 + 16α3 + 14α2 − 30α − 20

(α + 1)
(
8α4 + α3 − 170α2 − 20α + 200

) ,− 15α3 + 6α2 − 20α − 20

(α + 1)
(
8α4 + α3 − 170α2 − 20α + 200

) ,

−2
(−1+ α)

(
10+ 2α + α2

)

8α4 + α3 − 170α2 − 20α + 200
,−2

(−1+ α)
(

10+ 2α + α2
)

8α4 + α3 − 170α2 − 20α + 200
,−2

(−1+ α)
(

10+ 2α + α2
)

8α4 + α3 − 170α2 − 20α + 200
,−2

(−1+ α)
(

10+ 2α + α2
)

8α4 + α3 − 170α2 − 20α + 200

〉

Figure 7: The explicit formula for PageRank as a function of α. Its limit is limα→1− r(α) = r∗ =
〈0, 0, 0, 0, 1/2, 1/2, 0, 0, 0, 0〉.

Coefficient
α0 〈0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100, 0.100〉
α1 〈0.371,−0.058,−0.028,−0.028, 0.015,−0.034,−0.058,−0.058,−0.058,−0.058〉
α2 〈−0.253, 0.070,−0.033,−0.018,−0.048, 0.003, 0.070, 0.070, 0.070, 0.070〉
α3 〈0.260,−0.055, 0.030,−0.021, 0.032,−0.026,−0.055,−0.055,−0.055,−0.055〉
α4 〈−0.207, 0.050,−0.029, 0.013,−0.040, 0.012, 0.050, 0.050, 0.050, 0.050〉

Table 2: The coefficients of the Maclaurin series.

17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

 node 0

 node 1

 node 2

 node 3

 node 4

 node 5

 node 6

 node 7

 node 8

 node 9

Figure 8: The behaviour of the components of r(α). They all go to zero except for nodes 4 and 5—the
only nodes belonging to a terminal component. Note, however, the maximum attained by node 0 at
α ≈ 0.7.

18

 2e-08

 3e-08

 4e-08

 5e-08

 6e-08

 7e-08

 8e-08

 9e-08

 1e-07

 0 0.2 0.4 0.6 0.8 1

 8e-09

 1e-08

 1.2e-08

 1.4e-08

 1.6e-08

 1.8e-08

 2e-08

 2.2e-08

 2.4e-08

 2.6e-08

 0 0.2 0.4 0.6 0.8 1

 5e-09

 1e-08

 1.5e-08

 2e-08

 2.5e-08

 3e-08

 3.5e-08

 0 0.2 0.4 0.6 0.8 1

 1.5e-08

 2e-08

 2.5e-08

 3e-08

 3.5e-08

 4e-08

 4.5e-08

 5e-08

 5.5e-08

 0 0.2 0.4 0.6 0.8 1

Figure 9: Examples of approximations obtained using a Maclaurin polynomial of degree 100, for
nodes with different behaviours (the points were tabulated by computing PageRank explicitly with
100 regularly spaced values of α).

19

