
Lecture 9
CSE 260 – Parallel Computation

(Fall 2015)
Scott B. Baden

Performance modeling
Further improvements to matrix

multiplication

Today’s lecture

•  Performance modeling
•  An improved matrix multiply

Scott B. Baden / CSE 260, UCSD / Fall '15 3

Performance modeling
•  Given N, application flop rate, and peak

rates of the hardware
u  Determine if app is compute bound or

communication bound
u  Predict performance of unblocked algorithm and

account for discrepancy with observation
•  The naïve algorithm

u  N3 multiply-adds
u  Without tiling, algorithm loads N3 doubles

precision words@ 8 bytes/word (we ignore C)
•  The hardware

u  One GPU of the K80 can perform 832 MADs /
cycle and transfer 240 GB/sec

u  Processor clock runs at 823.5 MHz
Scott B. Baden / CSE 260, UCSD / Fall '15 4

5

Tesla Kepler K80/K20m (GK 210/110)
•  Sorken has device capability 3.7, Stampede has 3.5

u  11¼ (5) GB device memory (frame buffer)@ 240 (208) GB/s
u  1.5MB (1.25MB) shared L2 Cache (by all SMXs)
u  13 SMXs (2496 cores) on Sorken and Stampede

•  Sorken’s K80 (GK210 GPU) has more registers and larger shared memory
per device than Stampede’s K20m (GK110 GPU)

u  192 SP cores, 64 DP cores, 32 SFUs, 32 Load/Store units
u  Each scalar core: fused multiply adder, truncates intermediate result
u  112K (64KB) on-chip memory configurable as scratchpad memory + L1 cache
u  128K (64K) x 32-bit registers up to 255/thread
u  1 FMA /cycle = 2 flops/cycle/ DP core*64 DP/SMX*13 SMX = 1664 flops/cyc

@823.5 MHz (705.5 MHz) = 2.74 TFLOPS per GPU (1.17)

Nvidia

Scott B. Baden / CSE 260, UCSD / Fall '15 5

Analysis
•  Based on work to be done, data to be

moved, and hardware performance
u  Predicted data motion time: 89 milliseconds
u  Predicted computation time: 195 microseconds
u  The application is communication bound

•  The measured running time: 227ms
(118GFlops)

•  Why did we run about twice as slow?

Scott B. Baden / CSE 260, UCSD / Fall '15 6

Do memory accesses coalesce?

Courtesy DavidKirk/NVIDIA and Wen-mei Hwu/UIUC

Scott B. Baden / CSE 260, UCSD / Fall '15 7

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

M

N

P

tx

C

B

A

int I = by*blockDim.y + ty;
int J = bx*blockDim.x + tx;
int N = blockDim.y*gridDim.y;
if ((I < N) && (J < N)){
 float _c = 0;
 for (k = 0; k < N; k++) {
 double a = A[I * N + k];
 double b = B[k * N + J];
 _c += a * b;
 }
 C[I * N + J] = _c;
 }

Do memory accesses coalesce?

Courtesy DavidKirk/NVIDIA and Wen-mei Hwu/UIUC

Scott B. Baden / CSE 260, UCSD / Fall '15 8

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

M

N

P

tx

C

B

A

int I = by*blockDim.y + ty;
int J = bx*blockDim.x + tx;
int N = blockDim.y*gridDim.y;
if ((I < N) && (J < N)){
 float _c = 0;
 for (k = 0; k < N; k++) {
 double a = A[I * N + k];
 double b = B[k * N + J];
 _c += a * b;
 }
 C[I * N + J] = _c;
 }

Tiled algorithm
• Running time: 104 ms (259 GF): ~x2 faster
• Reduces memory traffic by at least x2
• Why not x32, the reuse factor

realized with shared memory?
• How many times do we load each value?

Scott B. Baden / CSE 260, UCSD / Fall '15 9

A

B

C Csub

TW

N N

TW TW

bx

tx
01 bsize-1 2

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

T
W

T

W

T

W

N

N
 • Coalesced accesses cached in L2

(1.5MB all SMXs), not in L1
• A block consumes 8MB

in each of 13 SMXs
(and 2 blocks/SMX)

• Each thread uses 30
registers (30K/block)

• There are many
registers to spare!

Tiled Code
•  Code on page 112 (some identifier name changes)

Scott B. Baden / CSE 260, UCSD / Fall '15 10

__global__ mmpy(double *A, double *B, double *C){
 __shared__ double A[TW][TW], A[TW][TW];
 int tx = threadIdx.y, ty = threadIdx.x;
 int by = blockIdx.y, bx = blockIdx.x

 int I = by*TW + ty, J = bx*TW+tx;

 double Cij = 0;

 for (int kk=0; kk<N/TW; kk++){

 As[ty][tx] = A[I*N + kk*TW+tx];
 Bs[ty][tx] = B[(kk*TW+ty)*N + J];
 __syncthreads();
 for (int k=0; k<TW; k++)

 Cij+= As[ty][k] * Bs[k][tx];

 __syncthreads();

 C[I*N + J] = Cij;

Today’s lecture

•  Memory coalescing
•  Avoiding bank conflicts
•  Further Improvements to Matrix Multiply

Scott B. Baden / CSE 260, UCSD / Fall '15 14

10/22/15 15

How to improve matrix multiply still further
•  Follows Volkov and Demmel, SC08
•  Hide arithmetic latency using fewer threads
•  Hide memory latency using fewer threads
•  Improving performance using fewer threads

•  We can reduce number of threads through lower occupancy …
•  ..by making better use of registers we can trade locality against

parallelism

•  Code was implemented on a 1.x device so
some details will be different
(more registers on Kepler, for example)

Scott B. Baden / CSE 260, UCSD / Fall '15 15

17

Latency
•  The time required to perform an operation
•  The GK104 issues 1 instruction / cycle, the vector unit

has 8 cores (SM): 4 cycles to issue a warp
•  Instructions wait on dependencies

x = a + b; // ~20 cycles to complete
y = a + c; // independent, we start any time

•  z = x + d; // dependent, wait on x

Scott B. Baden / CSE 260, UCSD / Fall '15 17

18

Arithmetic throughput
•  The rate we perform an operation (flops/cycle)
•  Arithmetic: 1.3TFlops/sec = 480 ops/cycle
•  Memory: 177 GB/sec ~= 32x 32 bit loads per cycle

Scott B. Baden / CSE 260, UCSD / Fall '15 18

19

How do we hide latency?
•  Do something else while waiting for an operation to

complete
•  This where Little’s Law applies
•  Required parallelism depends on latency and throughput

Parallelism (threads) = latency × throughput
T = λ × p

•  Required parallelism depends on op; for single precision
u  GT200 (C1060): 24 CP * 8 cores / SM = 192 ops/SM
u  GF104 (GTX 460, Cseclass03-07): 18 CP * 48 = 864
u  GK110?

•  If we can’t realize the required parallelism
we run at less peak performance

Scott B. Baden / CSE 260, UCSD / Fall '15 19
fotosearch.com

λp

22

Thread vs instruction level parallelism
•  We are told to maximize the number of threads
•  But we can also use instruction level parallelism to boost

performance at a lower occupancy
u  See http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf

•  On GT200, 100% peak with 25% occupancy
192 ops / cycle = 8 warps / 32 max possible warps

Scott B. Baden / CSE 260, UCSD / Fall '15 22

Courtesy V. Volkov, GTC-10

24

Hiding memory latency
•  Parallelism = latency × throughput

Arithmetic: 576 ops/SM = 18CP x 32/SM/CP
Memory: 150KB = ~500CP (1100 nsec) × 150 GB/sec

•  How can we keep 150KB in flight?
u  Multiple threads: ~35,000 threads @ 4B/thread
u  Do more work/thread (increase fetches per thread)
u  Larger fetches (64 or 128 bit/thread)
u  Higher occupancy

Copy 1 float /thread, need 100% occupancy
 int indx = threadIdx.x + block * blockDim.x;
 float a0 = src[indx];
 dest[indx] = a0;

Copy 2 floats /thread, need 50% occ
float a0 = src[indx];
float a1 = src[indx+blockDim.x];
dest[indx] = a0;
dst[index+blockDim.x] = a1;
 Copy 4 floats /thread, need 25% occ

int indx = threadIdx.x + 4 * block * blockDim.x;
float a[4]; // in registers
for(i=0;i<4;i++) a[i]=src[indx+i*blockDim.x];
for(i=0;i<4;i++) dst[indx+i*blockDim.x]=a[i];

λp

Scott B. Baden / CSE 260, UCSD / Fall '15 24

10/22/15 25

Incremental improvements to matrix multiply
•  Follows V. Volkov [GTC10]
•  From the book
•  Gets 137 Gflops / sec

Scott B. Baden / CSE 260, UCSD / Fall '15 25

10/22/15 26

Two outputs / thread
•  2 outputs, double the loads

Scott B. Baden / CSE 260, UCSD / Fall '15 26

10/22/15 28

Two outputs / thread, part 2
•  ×2 flops and stores
•  341 Gflops/sec

Scott B. Baden / CSE 260, UCSD / Fall '15 28

10/22/15 29

4 outputs / thread

Scott B. Baden / CSE 260, UCSD / Fall '15 29

10/22/15 30

4 outputs / thread
•  427 Gflops/sec [w/8 output/thread → 485 Gflops/s)
•  ×2 # registers
•  50% occupancy

Scott B. Baden / CSE 260, UCSD / Fall '15 30

31

Volkov and Demmel’s SGEMM
•  Improve performance using fewer threads

u  Reducing concurrency frees up registers to trade locality
against parallelism

u  ILP to increase processor utilization

Scott B. Baden / CSE 260, UCSD / Fall '15 31

Fin

