
Lecture 9 
CSE 260 – Parallel Computation 

(Fall 2015) 
Scott B. Baden 

Performance modeling 
Further improvements to matrix 

multiplication 



Today’s lecture 
 
•  Performance modeling 
•  An improved matrix multiply 
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Performance modeling 
•  Given N, application flop rate, and peak 

rates of the hardware 
u  Determine if app is compute bound or 

communication bound 
u  Predict performance of unblocked algorithm and 

account for discrepancy with observation 
•  The naïve algorithm 

u  N3 multiply-adds 
u  Without tiling, algorithm loads N3 doubles 

precision words@ 8 bytes/word (we ignore C) 
•  The hardware 

u  One GPU of the K80 can perform 832 MADs / 
cycle and transfer 240 GB/sec 

u  Processor clock runs at 823.5 MHz 
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Tesla Kepler K80/K20m (GK 210/110) 
•  Sorken has device capability 3.7, Stampede has 3.5 

u  11¼ (5) GB device memory (frame buffer)@ 240 (208) GB/s 
u  1.5MB (1.25MB) shared L2 Cache (by all SMXs) 
u  13 SMXs (2496 cores) on Sorken and Stampede 

•  Sorken’s K80 (GK210 GPU) has more registers and larger shared memory 
per device than Stampede’s K20m (GK110 GPU) 

u  192 SP cores, 64 DP cores, 32 SFUs, 32 Load/Store units 
u  Each scalar core: fused multiply adder, truncates intermediate result  
u  112K (64KB) on-chip memory configurable as scratchpad  memory + L1 cache 
u  128K (64K) x 32-bit registers up to 255/thread 
u  1 FMA /cycle = 2 flops/cycle/ DP core*64 DP/SMX*13 SMX = 1664 flops/cyc 

@823.5 MHz (705.5 MHz ) =  2.74 TFLOPS per GPU (1.17)  

Nvidia 
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Analysis 
•  Based on work to be done, data to be 

moved, and hardware performance 
u  Predicted data motion time: 89 milliseconds 
u  Predicted computation time: 195 microseconds 
u  The application is communication bound 

•  The measured running time: 227ms  
(118GFlops) 

•  Why did we run about twice as slow? 
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Do memory accesses coalesce? 

Courtesy DavidKirk/NVIDIA and Wen-mei Hwu/UIUC 
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int I   =  by*blockDim.y + ty; 
int J  =  bx*blockDim.x + tx; 
int N =  blockDim.y*gridDim.y;  
if ((I < N) && (J < N)){ 
     float _c = 0; 
     for (k = 0; k < N; k++) { 
         double a = A[I * N + k]; 
         double b = B[k * N + J]; 
         _c += a * b; 
      } 
     C[I * N + J] = _c; 
   } 



Do memory accesses coalesce? 

Courtesy DavidKirk/NVIDIA and Wen-mei Hwu/UIUC 
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int I   =  by*blockDim.y + ty; 
int J  =  bx*blockDim.x + tx; 
int N =  blockDim.y*gridDim.y;  
if ((I < N) && (J < N)){ 
     float _c = 0; 
     for (k = 0; k < N; k++) { 
         double a = A[I * N + k]; 
         double b = B[k * N + J]; 
         _c += a * b; 
      } 
     C[I * N + J] = _c; 
   } 



Tiled algorithm 
• Running time: 104 ms (259 GF): ~x2 faster 
• Reduces memory traffic by at least x2 
• Why not x32, the reuse factor  

realized with shared memory? 
• How many times  do we load each value? 
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 • Coalesced accesses cached in L2 

(1.5MB all SMXs), not in L1 
• A block consumes 8MB 

in each of 13 SMXs 
(and 2 blocks/SMX) 

• Each thread uses 30  
registers (30K/block) 

• There are many 
registers to spare!  
 



Tiled Code 
•  Code on page 112 (some identifier name changes) 
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__global__ mmpy(double *A, double *B, double *C){ 
    __shared__ double A[TW][TW], A[TW][TW]; 
    int tx = threadIdx.y,   ty = threadIdx.x; 
    int by = blockIdx.y,    bx = blockIdx.x 

    int  I = by*TW + ty,     J = bx*TW+tx; 

    double Cij  = 0; 

    for (int kk=0; kk<N/TW; kk++){ 

        As[ty][tx] = A[I*N + kk*TW+tx]; 
        Bs[ty][tx] = B[(kk*TW+ty)*N + J]; 
        __syncthreads(); 
        for (int k=0; k<TW; k++) 

           Cij+=  As[ty][k] * Bs[k][tx]; 

        __syncthreads(); 

     C[I*N + J] = Cij; 



Today’s lecture 

•  Memory coalescing  
•  Avoiding bank conflicts 
•  Further Improvements to Matrix Multiply 
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How to improve matrix multiply still further 
•  Follows Volkov and Demmel, SC08 
•  Hide arithmetic latency using fewer threads 
•  Hide memory latency  using fewer threads 
•  Improving performance using fewer threads 

•  We can reduce number of threads through lower occupancy … 
•  ..by making better use of registers we can trade locality against 

parallelism 

•  Code was implemented on a 1.x device so 
some details will be different  
(more registers on Kepler, for example) 
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Latency 
•  The time required to perform an operation 
•  The GK104 issues 1 instruction / cycle, the vector unit 

has 8 cores (SM): 4 cycles to issue a warp 
•  Instructions wait  on dependencies 

x = a + b;  // ~20 cycles to complete 
y = a + c;  // independent, we start any time 

•  z = x + d; // dependent, wait on x 
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Arithmetic throughput 
•  The rate we perform an operation (flops/cycle) 
•  Arithmetic: 1.3TFlops/sec = 480 ops/cycle 
•  Memory: 177 GB/sec ~= 32x 32 bit loads per cycle 
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How do we hide latency? 
•  Do something else while waiting for an operation to 

complete 
•  This where Little’s Law applies 
•  Required parallelism  depends on latency and throughput 

# Parallelism (threads) = latency × throughput     
T = λ × p  
 

•  Required parallelism depends on op; for single precision 
u  GT200 (C1060): 24 CP * 8 cores / SM = 192 ops/SM 
u  GF104 (GTX 460, Cseclass03-07): 18 CP  * 48   = 864 
u  GK110? 

•  If we can’t realize the required parallelism 
we run at less peak performance 
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Thread vs instruction level parallelism 
•  We are told to maximize the number of threads 
•  But we can also use instruction level parallelism to boost 

performance at a lower occupancy 
u  See http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf 

•  On GT200, 100% peak with 25% occupancy 
192 ops / cycle = 8 warps / 32 max possible warps 
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Courtesy V. Volkov, GTC-10 
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Hiding memory latency 
•  Parallelism = latency × throughput 

 
Arithmetic: 576 ops/SM = 18CP x 32/SM/CP 
Memory:    150KB          = ~500CP (1100 nsec) × 150 GB/sec 

•  How can we keep 150KB in flight? 
u  Multiple threads: ~35,000 threads @ 4B/thread 
u  Do more work/thread (increase fetches per thread) 
u  Larger fetches (64 or 128 bit/thread) 
u  Higher occupancy 

Copy 1 float /thread, need 100% occupancy 
 int indx = threadIdx.x + block * blockDim.x; 
 float a0 = src[indx]; 
 dest[indx] = a0; 

Copy 2 floats /thread, need 50% occ 
float a0 = src[indx]; 
float a1 = src[indx+blockDim.x]; 
dest[indx] = a0; 
dst[index+blockDim.x] = a1; 
 Copy 4 floats /thread, need 25% occ 

int indx = threadIdx.x + 4 * block * blockDim.x; 
float a[4];  // in registers 
for(i=0;i<4;i++) a[i]=src[indx+i*blockDim.x]; 
for(i=0;i<4;i++) dst[indx+i*blockDim.x]=a[i]; 

λp
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Incremental improvements to matrix multiply 
•  Follows V. Volkov [GTC10] 
•  From the book 
•  Gets 137 Gflops / sec 
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Two outputs / thread 
•  2 outputs, double the loads 
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Two outputs / thread, part 2 
•  ×2 flops and stores  
•  341 Gflops/sec  
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4 outputs / thread  
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4 outputs / thread  
•  427 Gflops/sec  [w/8 output/thread → 485 Gflops/s) 
•  ×2 # registers 
•  50% occupancy 
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Volkov and Demmel’s SGEMM 
•  Improve performance using fewer threads 

u  Reducing concurrency frees up registers to trade locality 
against parallelism 

u  ILP to increase processor utilization 
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