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Depth-First Search (DFS) is a common algorithm, often used as a building block for topological sort, connectivity and planarity

testing, among many other applications. We will be implementing the work-efficient parallel algorithm for the DFS traversal of

directed acyclic graphs (DAGs) as proposed in [2][3]. We will be reporting the speedup of this parallel algorithm (in comparison

with the serial implementation).
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1 INTRODUCTION
Let a graphG = (V ,E), be defined by its vertexV = {1, 2, ..,n} and edge E = {(i1, j1), (i2, j2), .., (im , jm)} sets, with
|V | = n and |E | =m. The sequential lexicographic Depth-First Search (DFS) algorithm was proposed in [4].

The (DFS) traversal problem requires us to compute : parent information , pre-order (start time) and post-order

(end time) for every node in G, see 1.

2 LITERATURE SURVEY
The lexicographical DFS problem can be can be subdivided into two major sets of algorithms:

(1) Finding the Pre-order (start time) and the Post-order (end time) for every node in the Graph G.
(2) Conversion from a DAG to a Directed Tree (DT).

Before we proceed to discuss on how the paper [3] suggests to find the pre-order and post-order, we need to

establish some math.

Definition 1. Let ςp and ζp denote the number of nodes reachable under and including node p, where if a

sub-graph is reachable from k multiple parents then its nodes are counted once and k times, respectively.

Lemma 1. For a DT, where each node has a single parent, ςp = ζp is simply the sub-graph size, while for a DAG we
have ζp ≥ ςp .

For example, in Fig. 1 we have ζa = 7 and ςa = 6, because we double counted the node f in the former case.

Notice that the aforementioned lemma follows directly form the definition of a DT.
Also, the following recursive relationship could be observed :

ζp = 1 +
∑
i ∈Cp

ζi

where Cp is ordered set of children of p.
It so seems that it’s easy to compute ζp (recursive relation), compared to ςp can be expensive to compute [3].

Let
˜ζl where l is an index of exclusive prefix sum list, of the list ζi , where i ∈ Cp .

˜ζl =
∑

i<l,i ∈Cp

ζi

Having established that, the values of ζp can be computed for a DT or DAG by traversing the graph bottom-up,

from leafs to roots, as shown in Algorithm 1.
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Fig. 1. Graph and associated DFS relationships

Algorithm 1 Sub-Graph Size (bottom-up traversal)

1: Initialize all sub-graph sizes to 0.

2: Find leafs and insert them into queue Q .
3: while Q , {ϕ} do
4: for node i ∈ Q do in parallel
5: Let Pi be set of parents of i and queue C = {ϕ}
6: for node p ∈ Pi do in parallel
7: Mark p outgoing edge (p, i) as visited
8: Insert p into C if all outgoing edges are visited

9: end for
10: end for
11: for node p ∈ C do in parallel
12: Let Cp be an ordered set of children of node p
13: Compute a prefix-sum on Cp , obtaining ζp (use lexicographic ordering of elements in Cp )

14: end for
15: Set Q = C for the next iteration

16: end while

Having computed ζp and
˜ζp for each node p in the graph Ghe paper now expresses the pre and post-order

times as their functions.

Theorem 1. Let ζi be the sub-graph size for node i in a DT and ˜ζl be the corresponding prefix-sum value. Then,

preorder(p) = k + τp (1)

postorder(p) = (ζp − 1) + τp (2)

where Pr,p = {r , i1, i2, .., ik−1,p} and, τp =
∑
l ∈Pr ,p

˜ζl

Corollary 1. Let a path from root r to node p be an ordered set of nodes Pi,p = {r , i1, . . . , ik−1,p}. Then, τp can
be obtained recursively

τp = τik−1 +
˜ζp (3)

The above algorithm works well when the input is a DT. So, we now discuss how to convert any DAG to a DT.
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Algorithm 2 Pre- and Post-Order (top-down traversal)

1: Initialize pre and post-order of every node to 0.

2: Find roots and insert them into queue Q .
3: while Q , {ϕ} do
4: for node p ∈ Q do in parallel
5: Let pre = pre-order(p) and post = post-order(p)
6: Let Cp be a set of children of p and queue P = {ϕ}
7: for node i ∈ Cp do in parallel
8: Set pre-order(i) = pre +

˜ζi
9: Set post-order(i) = pre +

˜ζi
10: Mark i incoming edge (p, i) as visited
11: Insert i into P if all incoming edges are visited

12: end for
13: Set pre-order(p) = pre + depth(p)

14: Set post-order(p) = post + (ζp − 1)

15: end for
16: Set Q = P for the next iteration

17: end while

Definition 2. Let Pr,p = {r , i1, i2, .., ik−1,p} and Qr,p = {r , j1, j2, .., jk−1,p} be two paths of potentially different

length to node p. We say that path P has the first lexicographically smallest node and denote it by

Pr,p < Qr,p (4)

when during the pair-wise comparison of the elements in the two paths going from left-to-right the path Pr,p has

the lexicographically smallest element in the first mismatch.

For example, in Fig. 1 the two paths to node f are

Pr,p = [a,b, e, f ]

Qr,p = [a, c,d, f ]

Clearly Pr,p = [a,b, e, f ] ≤ Qr,p = [a, c,d, f ] as b ≤ c lexicographically.

Theorem 2. Let Pr,p = {r , i1, i2, .., ik−1,p} and Qr,p = {r , j1, j2, .., jk−1,p} be two paths of potentially different
length to node p. If Pr,p < Qr,p then Pr,p is the path taken by DFS traversal.

Putting it all together, the parallel DFS algorithm can be written as Algorithm 4.

3 ANALYSIS

3.1 Complexity Analysis
The following definitions, lemmas and theorems establish the fact that the aforementioned algorithm is a

work-efficient one.

Definition 3. Let ki be the number of elements inserted into the queue at iteration i and k = maxi ki in
Algorithms 1-3.

Definition 4. Let di denote the degree of node i and d = maxi di denote the maximum degree in DAG.

Definition 5. Let δi denote the minimum depth of node i and δ = maxi δi denote the diameter in a DAG.
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Algorithm 3 Compute DFS-Parent using Path (top-down traversal)

1: Initialize path to {ϕ} and parent to -1 for every node.

2: Find roots and insert them into queue Q .
3: while Q , {ϕ} do
4: for node p ∈ Q do in parallel
5: Let Cp be a set of children of p and queue P = {ϕ}
6: for node i ∈ Cp do in parallel
7: Let Qr,i be existing and Pr,i be a new path. (Pr,i is a concatenation of path to p and node i)
8: if thenPr,i ≤ Qr,i
9: Set Qr,i = Pr,i
10: Set parent(i) = p
11: end if
12: Mark i incoming edge (p, i) as visited
13: Insert i into P if all incoming edges are visited

14: end for
15: end for
16: Set Q = P for the next iteration

17: end while

Algorithm 4 Parallel DFS (Path)

1: Let graph G = (V ,E) and its adjacency matrix A
2: Run Algorithm 3

3: Run Algorithm 1

4: Run Algorithm 2

5: Resulting in parent, pre- and post-order for every node in G

Definition 6. Let ηi denote the maximum depth of node i and η = maxi ηi denote the length of the longest path

in a DAG.

Lemma 2. The parallel prefixsum of n numbers, can be computed in O(loдn) steps. Also, the algorithm performs
O(n) work

Lemma 3. Let n =min(n1,n2), then identifying the first left-to-right pair of digits in two sequences of n1 and n2
numbers can be performed in O(loдn) steps, by doing O(n) work.

Lemma 4. The queue can be implemented such that parallel insertion and extraction of n numbers, can be performed
in O(loдn) and O(1) steps, respectively. Also, the algorithm performs O(n) work.

Theorem 3. Algorithm 1 takes O(η(loдd + loдk)) steps and performs O(m + n) total work to traverse a DAG. The
number of processors t ≤ m + n actively doing work varies at each step of the algorithm. Here η is the length of
longest path in DAG, d is maximum degree in DAG and k is the maximum number of elements inserted into a queue.

Theorem 4. Algorithm 2 takes O(ηloдk) steps and performs O(n) total work to traverse a DAG. The number of
processors t ≤ n actively doing work varies at each step of the algorithm. Here η is the length of longest path in DAG
and k is the maximum number of elements inserted into a queue.
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Theorem 5. Algorithm 3 takes O(η(loдη + loдk)) steps and performs O(ηm + n) total work to traverse a DAG.
The number of processors t ≤ ηd + n actively doing work varies at each step of the algorithm. Here η is the length of
longest path in DAG, d is maximum degree in DAG and k is the maximum number of elements inserted into a queue.

Corollary 2. Path based DFS takes O(η(loдd + loдk + loдη)) steps and performs O(m + n + ηm) total work to
traverse a DAG. The number of processors t ≤ m + n + ηd actively doing work varies at each step of the algorithm.
Here η is the length of longest path in DAG, k is the maximum number of elements inserted into a queue and d is
maximum degree in DAG.

Notice that in practice ηm → m because the data structure for storing the path detects the same "parent"

block during comparisons, which implicitly eliminates additional work. Also, recall that d,k,η ≤ n in a DAG and

therefore the Path-based algorithm takes no more than O(ηloдn) steps and performs O(m + n) total work.

3.2 Parallel Analysis
The Algorithms 1, 2 and 3 spawn multiple threads wherever do in parallel is mentioned. Apart from this the

prefix sum calculation in line 13 of Algorithm 1 will also run in parallel.

3.2.1 Task Dependency Graphs. We subdivide the dependency graph of the parallel DFS traversal algorithm
into three meta-tasks : the Algorithms 1, 2 and 3, and attach their dependency graphs separately.

(1) Algorithm 1 - Figure 4
(a) Level A - In this level, the sole task is to initialize all sub-graph sizes to 0 and finding the leaf nodes and

initializing the queue Q with them.

(b) Level B - All tasks in this level execute parallely for all the elements of Q , where in each task Bi involves
initialization of the queue C accessing the parent list of the node (Pi ). Notice that, there will be |Q | = q
tasks in this level.

(c) Level C - All tasks in this level execute parallely for all the parents of the ith node initialized in Bi where
in each task Ci involves marking the edges between the parent and it’s child as visited; then, enqueuing

the parents which have all their outgoing edges marked as visited into a queueC . Notice that, the number

of tasks in this level will be |Pi | ∗ |Q |.

(d) Level D - Wait for all the tasks in level C to finish updating the list C , for further computation.

(e) Level E - Wait for all the tasks in level B to finish their execution.

(f) Level F - All tasks in this level execute parallely for all the elements p of the list C accessing it’s children

(Cp ). Each meta-task in this level Fi represents the dependency graph of the exclusive parallel-prefix sum

(as discussed in the class). Notice that, the number of tasks in this level will be |C |.
(g) Level G - Wait for all the tasks in level E to finish their execution. Then, reinitialize Q as C .
This block is repeated for every iteration of the outer while loop of the Algorithm 1 which is executed

maximum η (defined 6) number of times.

(2) Algorithm 2 - Figure 5
(a) Level A - In this level, the sole task is to initialize all sub-graph sizes to 0 and finding the root nodes and

initializing the queue Q with them.

(b) Level B - All tasks in this level execute parallely for all the elements of Q , where in each task Bi involves
initialization of preorder, postorder and accessing children (Cp ) of the node p. Notice that, there will
be |Q | = q tasks in this level.

(c) Level C - All tasks in this level execute parallely for all the children of the ith node initialized in Bi where
in each taskCi involves calculation of preorder and postorder, along with, marking the edges between
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the child and it’s parent as visited; then, enqueuing those children whose all incoming edges are marked

visited into queue P . Notice that, the number of tasks in this level will be |Cp | ∗ |Q |.

(d) Level D - Wait for all the tasks in level C to finish updating the list C . Then, compute the final preorder
and postorder value of the the nodes in queue Q . Notice that number of nodes in this level will be |Q |

itself.

(e) Level E - Wait for all the tasks in level D to finish their execution. Then, reinitialize Q as P .
This block is repeated for every iteration of the outer while loop of the Algorithm 2 which is executed

maximum η (defined 6) number of times.

(3) Algorithm 3 - Figure 6
(a) Level A - In this level, the sole task is to initialize all paths to {ϕ}, parents to -1 and finding the root nodes

and initializing the queue Q with them.

(b) Level B - All tasks in this level execute parallely for all the elements of Q , where in each task Bi involves
accessing children (Cp ) of the node p. Notice that, there will be |Q | = q tasks in this level.

(c) Level C - All tasks in this level execute parallely for all the children of the ith node initialized in Bi where
in each task Ci involves marking the edges between the parent and it’s child as visited; then, enqueuing

the children which have all their incoming edges marked as visited into a queue P . Each meta-task in

this level Ci represents the dependency graph of lexicographic path comparison function, which is same

as the dependency graph for parallel-prefix sum - as mentioned in Lemma 3. Notice that, the number of

tasks in this level will be |Cp | ∗ |Q |.

(d) Level D - Wait for all the tasks in level C to finish updating the list P , for further computation.

(e) Level E - Wait for all the tasks in level D to finish their execution. Then, reinitialize Q as P .
This block is repeated for every iteration of the outer while loop of the Algorithm 3 which is executed

maximum η (defined 6) number of times.

(4) Algorithm 4 - Figure 7 This is the consolidated task-dependency graph of the parallel DFS traversal,

where each meta-task represents the dependency graphs of the Algorithms mentioned within them.

4 DATA-STRUCTURES USED
4.0.1 Serial Algorithm.

•
typedef vector<int> vi;
struct compressed_sparse_column {

vi data;
vi row;
vi column;
vi index_column;

};

struct graph {
compressed_sparse_column* dataset;
int vertices;
int edges;

};
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4.0.2 Parallel Algorithm.

••
struct compressed_sparse_column {

int* data;
int* row;
int* column;
int* index_column;
int* index_row_start;
int* index_row_end;

};

struct graph {
compressed_sparse_column* dataset;
bool* roots;
bool* leaves;
bool* singletons;
int vertices;
int edges;

};

5 IMPLEMENTATION OF ALGORITHM
The datasets [1] used were available in Matrix Market Exchange Formats which were thhen converted to the

standard CSC(Compressed Sparse Column) format; which concatenates all non-zero entries of the matrix in

column major order and records the starting position for the entries of each column. In addition to the standard

CSC format we also store the window within which the parent information of a node lies, this allows us to easily

traverse and access information associated with outgoing and incoming edges.

Assuming that storing a node requires β = 4 (or 8) bytes. Then, the sequential DFS algorithm uses approximately

(m + 5n)β bytes to store the input DAG, queue, parent, pre- and post-order output arrays.

The parallel DFS algorithm only requires an additional (m + kn)β bytes for its data structures. Here, the first

term in the sum corresponds to ζ , while the last term corresponds to the path data structure storage, where k is

the block size.

After storing the data in the CSC format, we start with the actual kernel computations where we invoke all the

kernels as mentioned below.

5.0.1 Serial Algorithm.

•• graph* read_data(string file)

• void DFS_VISIT(graph* dataset_graph, int vertex, int* color, int* parents, int* discovery_time,

int* finish_time)

• void DFS(graph* dataset_graph, int* color, int* parents, int* discovery_time, int* finish_time)

5.0.2 Parallel Algorithm.

• __host__ graph* read_data(const char* file)

• __device__ char* my_strcpy(char* dest, char* src)

• __device__ char* my_strcat(char* dest, char* src)

• __device__ int my_strcmp(char* a, char* b)

• __device__ char* my_itoa(int number, char* str)
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• __device__ int exclusive_prefix_sum(int* zeta_tilde, int* zeta)

• __global__ void calculate_exclusive_prefix_sum(bool *c, int* zeta, int *zeta_tilde, graph* dataset_graph)

• __global__ void subgraph_size(int* zeta, int* zeta_tilde, graph* dataset_graph)

• __global__ void pre_post_order(int* depth, int* zeta, int* zeta_tilde, graph* dataset_graph)

• __global__ void dag_to_dt(char **global_path, graph* dataset_graph)

• __global__ void final_kernel(int* depth, int* zeta, int* zeta_tilde, int* parent, char **global_path,

graph* dataset_graph)

The code files have been attached for further reference.

6 OPTIMIZATIONS :
We use the following techniques to optimize our CUDA code.

(1) Path pruning.

(2) CUDA streams for asynchronous memory transfer.

(3) Inline functions for faster execution.
(4) Use of pinned memory.

(5) Use of arithmetic shift operators.
(6) Used Structure of Arrays instead of Array of Structures for storing the dataset in CSC format.

(7) Extensively used __constant__ memory (where-ever possible).

7 EVALUATION
Since, there are no existing codes available for the parallel DFS traversal algorithms, we would be reporting the

speedup in comparison with the sequential DFS algorithm.

First, to check for correctness of our implementation, we would run it on some small toy-testcase. Then,

we would move on to bigger datasets (Table 1)[1] and report the running time (of both sequential and serial

implementations) and the speedup.

When necessary, we would create DAGs based on these general graphs by dropping the back edges, in other

words, only considering the lower triangular part of the adjacency matrix these graphs.

We aim to compare the following implementations based on their speed-up :

(1) The sequential DFS algorithm.

(2) The optimized version of the CUDA implementation of the parallel algorithm.

Table 1. Sample DIMACS graphs/adjacency matrices

Datasets n m d η
test_case 6 6 2 4

hugebubbles-00 18318144 30144175 3 6724

fl2010 484482 1270757 121 105

ca2010 710146 1880571 119 125

great-britain_os 7733823 8523976 7 7076

germany_osm 11548846 12793527 12 8890
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Table 2. Serial vs Parallel Execution Times

Dataset Number of nodes DFS (sec) Parallel DFS (sec) Speed Up
test_case 6 0.001 0.005 0.2

fl2010 484482 0.018 0.014 1.285

ca2010 710146 0.025 0.021 1.190

great-britain_os 7733823 0.259 0.1984 1.756

germany_osm 11548846 0.451 0.286 1.305

hugebubbles-00 18318144 0.759 0.432 1.756

8 RESULTS

Fig. 2. Variation of speed up with increase in the graph size.
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Fig. 3. Serial vs Parallel algorithms execution times.

9 CONCLUSION
We see that for smaller graphs the serial algorithm performs well, which can be due to the kernel launch, idling,

communication or resource contention overheads. For larger datasets the speed-up, generally, increases (as

evident from the graph 2).

10 DELIVERABLES

10.1 First
• Sequential Algorithm

• Conversion from a DAG to a DT

10.2 Second
• Pre-order and Post-order computation.

10.3 Third
• Optimization
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1 - Dependency Graph.jpg

Fig. 4. Task dependency graph for Algorithm 1 with explanation in Section 3.2.1
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2 - Dependency Graph.jpg

Fig. 5. Task dependency graph for Algorithm 2with explanation in Section 3.2.1
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3 - Dependency Graph.jpg

Fig. 6. Task dependency graph for Algorithm 3with explanation in Section 3.2.1
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4 - Dependency Graph.jpg

Fig. 7. Task dependency graph for Algorithm 4with explanation in Section 3.2.1
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