Parallel Depth-First Search for Directed
ip Acyclic Graphs

Divyanshu Talwar (2015028), Viraj Parimi (2015068)

Advisor: Dr. Ojaswa Sharma
Introduction Results

* Letagraph G=(V, E), be defined by its vertex V = {1, 2,
..,n}and edge E ={(i1, j1), (i2, j2), ..,(im, jm)} sets, with .
|V | =nand |E| = m. The sequential lexicographic
Depth-First Search (DFS) algorithm was proposed in [4].

* The DFS traversal problem requires us to compute :
parent information, pre-order (start time) and _
post-order (end time) for every node in G.

* The sequential DFS algorithm[4], in itself, is not at all

Speed Up vs. Number of nodes

\ lteration O

6 484482 710146 7733823 11548846 18318144

parallelizable. o Number of nades

* In this work, we aim to implement parallel-DFS | . o
algorithm proposed in [2] [3] and report the it’s { 7} terationi serfalvs Parallel Execution Time S
speed-up. (using [1] dataset). test case B Paralel DFS (sec

= { } tterationn renre
Parallel DFS Algorithm . o

The algorithm is subdivided into 3 components : DAG to _

Datasets

germany_osm

hugebubbles-
00

DT conversion, subgraph size calculation, and pre and post

. . . Transform DAG to DT
order calculation; where in each execution of component

0 0.2 04 0.6 0.8

aids in solving the DFS problem. The GPU kernels : i Thiva)
implemented in the CUDA program are as follows : .
e Table 1. Sample DIMACS graphs/adjacency matrices
1. dag_to_dt - It converts a given DAG to a DT. Since, for 0 e Compute sub-graph
computing the parent information one needs to have E ::::a:::: . - ‘21 .
only one parent per node. This algorithm computes the . 5 J hugebubbles-00 | 18318144 | 30144175 | 3 | 6724
parent part of the DFS problem. {7} lerstion f12010 484482 | 1270757 | 121 | 105
2 b h si Th lsorithms t th hi o ca2010 710146 | 1880571 [119 | 125
. subgraph_size - . e algori | ms raversgs e grapnin post-oder great-britain_os | 7733823 | 8523976 (7 | 7076
a top-down fashion computing the prefix sum values of £} toratonn germany_osm | 11548846 | 12793527 | 12 | 8890
the zeta values of the nodes, which are used in 5 G SR e s
calculating the pre and post order of the nodes.. (b) (d)
: . D Number of nodes | DFS Parallel DFS Speed U
3. pre_post_order - This takes the zeta prefix sum values A te;t‘::e:e —5 o.o(osle i 5005 = o
as input to compute the pre (discovery time) and post f12010 484482 0.018 0.014 1.285
_ . ca2010 710146 0.025 0.021 1.190
(flﬂlSh tlme) Order Of the nOdeS' great-britain_os 7733823 0.259 0.1984 1.756
. . . germany_osm 11548846 0.451 0.286 1.305
The final algorithm, solves the DFS problem by calculating] hugebubblcs-00 e — o e
it’s three subproblems. This parallel DFS algorithm is
proven to be work-efficient. c
. : : + Iteration O References
O ptlmlzatlons [1] UF Sparse Matrix Collection. 2015.
1. Path pruning. ! .] ZEtii:r{]/lwww.use.ufl.edu/research/sparse/matrlces/l|st_by_d|men5|
2. CU.DA Strea_ms for asynchronous .memory transfer. { | } e s [2] Maxim Naumov, Alysson Vrielink, and Michael Garland. 2017.
3. Inline functions for faster execution. S Parallel Depth-First Search for Directed Acyclic Graphs. NVIDIA
4. Use of pinned memory. ; Technical
5. Use of arithmetic shift operators. £} teratonn [3] Maxim Naumov, Alysson Vriglink, and MinhaeI Garland. 2017.
6. Structure of Arrays vs Array of Structures for storing the Parallel Depth-First Search for Directed Acyclic Graphs. In -
dataset in CSC format (c) proceedings of the Seventh Workshop on Irregular Applications:
. ' Architectures and Algorithms (IA3 ’17). NVIDIA, Santa Clara, CA,
7. EXter_]S'Vely used __constant_memory (where-ever Figure 1: Task Dependency Graphs for (a) Subgraph size calculation,, (b) pre-post Article 4.
possible). order, (c) DAG to DT conversion, and (d) final algorithms. [4] R. E. Tarjan. 1972. Depth-first Search and Linear Graph

Algorithms. (SIAM J. Comput. 1). Article 7, 146-160 pages

