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Introduction Results

* Letagraph G=(V, E), be defined by its vertex V = {1, 2,
..,n}and edge E ={(i1, j1), (i2, j2), ..,(im, jm)} sets, with .
|V | =nand |E| = m. The sequential lexicographic
Depth-First Search (DFS) algorithm was proposed in [4].

* The DFS traversal problem requires us to compute :
parent information, pre-order (start time) and _
post-order (end time) for every node in G.

* The sequential DFS algorithm[4], in itself, is not at all
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The algorithm is subdivided into 3 components : DAG to _
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aids in solving the DFS problem. The GPU kernels : i Thiva )
implemented in the CUDA program are as follows : .
e Table 1. Sample DIMACS graphs/adjacency matrices
1. dag_to_dt - It converts a given DAG to a DT. Since, for 0 e Compute sub-graph
computing the parent information one needs to have E ::::a:::: . - ‘21 .
only one parent per node. This algorithm computes the . 5 J hugebubbles-00 | 18318144 | 30144175 | 3 | 6724
parent part of the DFS problem. {7} lerstion f12010 484482 | 1270757 | 121 | 105
2 b h si Th lsorithms t th hi o ca2010 710146 | 1880571 [ 119 | 125
. subgraph_size - . e algori | ms raversgs e grapnin post-oder great-britain_os | 7733823 | 8523976 (7 | 7076
a top-down fashion computing the prefix sum values of £} toratonn germany_osm | 11548846 | 12793527 | 12 | 8890
the zeta values of the nodes, which are used in 5 G SR e s
calculating the pre and post order of the nodes.. (b) (d)
: . D Number of nodes | DFS Parallel DFS Speed U
3. pre_post_order - This takes the zeta prefix sum values A te;t‘::e:e —5 o.o(osle i 5005 = o
as input to compute the pre (discovery time) and post f12010 484482 0.018 0.014 1.285
_ . ca2010 710146 0.025 0.021 1.190
(flﬂlSh tlme) Order Of the nOdeS' great-britain_os 7733823 0.259 0.1984 1.756
. . . germany_osm 11548846 0.451 0.286 1.305
The final algorithm, solves the DFS problem by calculating ] hugebubblcs-00 e — o e
it’s three subproblems. This parallel DFS algorithm is
proven to be work-efficient. c
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