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Problem Definition

Let a graph G = (V ,E ), be defined by its vertex V = {1, 2, .., n} and
edges E = {(i1, j1), (i2, j2), .., (im, jm)} sets, with |V | = n and
|E | = m.

Lexicographic Depth-First Search (DFS) traversal problem requires
computation of parent information , pre-order (start time) and
post-order (end time) for every node in G .

Figure: 1

Figure: 2
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Computational Complexity

DFS traversal - in a general sense - is P-complete where class P,
typically consists of all the ”tractable” problems for a sequential
computer.

DFS for DAGs ∈ NC class, where the class NC (for ”Nick’s Class”) is
the set of decision problems decidable in poly-logarithmic (O(logαn)
for some constant α) time on a parallel computer with a polynomial
number of processors.
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Problem Subdivisions
Pre-Order and Post-Order Time

Definition 1

Let ςp and ζp denote the number of nodes reachable under and including
node p, where if a sub-graph is reachable from k multiple parents then its
nodes are counted once and k times, respectively.

For example, in Fig. 1 we have ζa = 7 and ςa = 6, because we double
counted the node f in the former case.

Also, notice the recursive relationship :

ζp = 1 +
∑
i∈Cp

ζi

where Cp is ordered set of children of p.
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Problem Subdivision
Pre-Order and Post-Order Time

Definition 2

Let ζ̃l where l is an index of exclusive prefix sum list, of the list ζi , where i
∈ Cp.

ζ̃l =
∑

i<l ,i∈Cp

ζi

For example, in Fig. 1 we have ζ̃b = 0 and ζ̃c = 3.

Definition 3

Let us define a directed tree (DT) to be a DAG, where every node has a
single parent.
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Problem Subdivision
Pre-Order and Post-Order Time
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Problem Subdivision
Pre-Order and Post-Order Time

Notice that for DT, the sub-graph size at node p = ζp.

Definition 4

Let a path from root r to node p be an ordered set of nodes
Pr ,p = {r , i1, i2, .., ik−1, p}, where k is the depth of the node p.

Theorem

Let ζi be the sub-graph size for node i in a DT and ζ̃l be the
corresponding prefix-sum value. Then,

preorder(p) = k + τp (1)

postorder(p) = (ζp − 1) + τp (2)

where Pr ,p = {r , i1, i2, .., ik−1, p} and, τp =
∑

l∈Pr,p
ζl
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Problem Subdivision
Pre-Order and Post-Order Time
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Problem Subdivision
DAG to Directed Tree

Definition 5

Let Pr ,p = {r , i1, i2, .., ik−1, p} and Qr ,p = {r , j1, j2, .., jk−1, p} be two
paths of potentially different length to node p. We say that path P has
the first lexicographically smallest node and denote it by

Pr,p < Qr,p (3)

when during the pair-wise comparison of the elements in the two paths
going from left-to-right the path Pr,p has the lexicographically smallest
element in the first mismatch.

For example, in Fig. 1 the two paths to node f are

Pr,p = [a, b, e, f ]

Qr,p = [a, c , d , f ]
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Problem Subdivision
DAG to Directed Tree

Theorem

Let Pr ,p = {r , i1, i2, .., ik−1, p} and Qr ,p = {r , j1, j2, .., jk−1, p} be two
paths of potentially different length to node p. If Pr ,p < Qr ,p then Pr,p is
the path taken by DFS traversal.

Corollary

Let G be the set of all paths from root r to node p. The DFS traversal
takes

Pr,p = min
Qr,p∈G

Qr ,p (4)
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DAG to Directed Tree
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Analysis of the Problem

The aforementioned parallel algorithm to compute the DFS traversal of a
DAG is work-efficient.

Parallel prefix-sum can be computed in O(logn), by doing O(n) work.
The parallel sorting can be computed in O(logn), by doing O(nlogn)
work.

Lemma 1

Let n = min(n1, n2), then identifying the first left-to-right pair of digits in
two sequences of n1 and n2 numbers can be performed in O(logn) steps,
by doing O(n) work.

Lemma 2

The queue can be implemented such that parallel insertion and extraction
of n numbers, can be performed in O(logn) and O(1) steps, respectively.
Also, the algorithm performs O(n) work.
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Analysis of the Problem

Theorem

Alg.2 takes O(η(logd + logk)) steps and performs O(m + n) total work to
traverse a DAG. The number of processors t ≤ m + n actively doing work
varies at each step of the algorithm. Here η is the length of longest path
in DAG, d is maximum degree in DAG and k is the maximum number of
elements inserted into a queue.

Theorem

Alg.3 takes O(ηlogk) steps and performs O(n) total work to traverse a
DAG. The number of processors t ≤ n actively doing work varies at each
step of the algorithm. Here η is the length of longest path in DAG and k
is the maximum number of elements inserted into a queue.
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Analysis of the Problem

Theorem

Alg.4 takes O(η(logη + logk)) steps and performs O(ηm + n) total work
to traverse a DAG. The number of processors t ≤ ηd + n actively doing
work varies at each step of the algorithm. Here η is the length of longest
path in DAG, d is maximum degree in DAG and k is the maximum
number of elements inserted into a queue.

Corollary

Path based DFS takes O(η(logd + logk + logη)) steps and performs
O(m + n + ηm) total work to traverse a DAG. The number of processors
t ≤ m + n + ηd actively doing work varies at each step of the algorithm.
Here η is the length of longest path in DAG and k is the maximum
number of elements inserted into a queue.
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Performance Comparision Plan

Since, there aren’t any existing codes available, thus, we would be
comparing our implementation with a serial implementation of DFS
traversal.

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG 23 / 26



Outline

1 Problem Definition

2 Computational Complexity

3 Problem Subdivisions

4 Analysis of the Problem

5 Performance Comparision Plan

6 Deliverables

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG 24 / 26



Deliverables

One

Serial Implementation
Parents

Two

Pre-order and Post-order Time Calculations

Three
Optimizations

Path Pruning
Path Compression
Path Data Structure (as mentioned in the paper).
SSSP based DFS (if time permits)
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