Parallel Depth-First Search on a DAG

1

2

Divyanshu Talwar* Viraj Parimi

12015028

22015068

Course Project - GPU Computing, Winter 2018

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG

@ Problem Definition

© Computational Complexity

© Problem Subdivisions
@ Pre-Order and Post-Order Time
@ DAG to Directed Tree

@ Analysis of the Problem

© Performance Comparision Plan

@ Deliverables

Parallel Depth-First Search on a DAG

Divyanshu Talwar, Viraj Parimi

Outline

@ Problem Definition

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Sear

Problem Definition

o Let a graph G = (V, E), be defined by its vertex V = {1,2,..,n} and
edges E = {(i1, /1), (i2,/2); - (im, Jm)} sets, with |V| = n and
|E| = m.

Graph G=(V,E)

Figure: 1

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG

Problem Definition

o Let a graph G = (V, E), be defined by its vertex V = {1,2,..,n} and
edges E = {(i1, /1), (i2,/2); - (im, Jm)} sets, with |V| = n and
|E| = m.

@ Lexicographic Depth-First Search (DFS) traversal problem requires
computation of parent information , pre-order (start time) and
post-order (end time) for every node in G.

Graph G=(V,E)

e node = {a b c.de, [}
o‘e pre-order = {0,1,4,5,2, 3}

‘ post-order = {5,2,4.3,1,0}

o o parent = {f.a,a.c b e}
Figure: 2

Figure: 1

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG

Outline

© Computational Complexity

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG

Computational Complexity

@ DFS traversal - in a general sense - is P-complete where class P,
typically consists of all the "tractable” problems for a sequential
computer.

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG

Computational Complexity

@ DFS traversal - in a general sense - is P-complete where class P,
typically consists of all the "tractable” problems for a sequential
computer.

e DF'S for DAGs € NC class, where the class NC (for "Nick's Class") is
the set of decision problems decidable in poly-logarithmic (O(log®n)
for some constant «) time on a parallel computer with a polynomial
number of processors.

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG

Outline

© Problem Subdivisions
@ Pre-Order and Post-Order Time
@ DAG to Directed Tree

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG

Outline

© Problem Subdivisions
@ Pre-Order and Post-Order Time
@ DAG to Directed Tree

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG

Problem Subdivisions
Pre-Order and Post-Order Time

Definition 1

Let ¢, and ¢, denote the number of nodes reachable under and including
node p, where if a sub-graph is reachable from k multiple parents then its
nodes are counted once and k times, respectively.

@ For example, in Fig. 1 we have (; = 7 and ¢, = 6, because we double
counted the node f in the former case.

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG

Problem Subdivisions
Pre-Order and Post-Order Time

Definition 1

Let ¢, and ¢, denote the number of nodes reachable under and including
node p, where if a sub-graph is reachable from k multiple parents then its
nodes are counted once and k times, respectively.

@ For example, in Fig. 1 we have (; = 7 and ¢, = 6, because we double
counted the node f in the former case.

@ Also, notice the recursive relationship :

=1+ G

i€C,

where C,, is ordered set of children of p.

Parallel Depth-First Search on a DAG

Divyanshu Talwar, Viraj Parimi

Problem Subdivision
Pre-Order and Post-Order Time

Definition 2

Let {; where | is an index of exclusive prefix sum list, of the list ¢;, where i

€ Cp.
G= > G

i<liceC,

o For example, in Fig. 1 we have {, = 0 and (. = 3.

Definition 3

Let us define a directed tree (DT) to be a DAG, where every node has a
single parent.

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG 10 / 26

Problem Subdivision

Pre-Order and Post-Order Time

Algorithm Sub-Graph Size (bottom-up traversal)

1: Imitialize all sub-graph sizes to 0.

2: Find leafs and insert them into queue Q).

3: while @ # {(} do

4 for node i € () do in parallel

5 Let P; be a set of parents of i and queue C = {{}}

6: for node p € P, do in parallel

7 Mark p outgoing edge (p. 1) as visited

8: Insert p into ' if all outgoing edges are visited
9: end for

10: end for

11: for node p € € do in parallel

12: Let €y be an ordered set of children of node p

13: Compute a prefix-sum on (), obtaining (,
(use lexicographic ordering of elements in)

14: end for

15: Set queue () = C for the next iteration

16: end while

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG

Problem Subdivision

Pre-Order and Post-Order Time

@ Notice that for DT, the sub-graph size at node p = (p.

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG

Problem Subdivision

Pre-Order and Post-Order Time

@ Notice that for DT, the sub-graph size at node p = (p.

Definition 4

Let a path from root r to node p be an ordered set of nodes
Brp=1{r,i,i,..,ik—1,p} where k is the depth of the node p.

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG

Problem Subdivision

Pre-Order and Post-Order Time

@ Notice that for DT, the sub-graph size at node p = (p.

Definition 4

Let a path from root r to node p be an ordered set of nodes
Brp=1{r,i,i,..,ik—1,p} where k is the depth of the node p.

Let (; be the sub-graph size for node i in a DT and (| be the
corresponding prefix-sum value. Then,

preorder(p) =k + 1, (1)

postorder(p) = (¢, — 1)+ 7p (2)
where mr,p = {r’ i17 i2, o0g ik_l, p} and, Tp = Z/E(‘Bnp C/

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG 12 / 26

Problem Subdivision

Pre-Order and Post-Order Time

Algorithm Pre- and Post-Order (top-down traversal)

1: Initialize pre and post-order of every node to ().
2: Find roots and insert them into queune ().

3: while Q # {{}} do

4: for node p € (do in parallel

5: Let pre = pre-order(p)

6: Let post= post-order(p)

T Let C}, be a set of children of p and queue P = {{}}
8: for node i € Cy, do in parallel

9: Set pre-order(i) = pre + ET,

10: Set post-order(i)= post+ Ei

11 Mark ¢ incoming edge (p, i) as visited

12: Insert ¢ into P if all incoming edges are visited
13: end for

14: Set pre-order(p) = pre + depth(p)

15: Set post-order(p)= post+ (,

16: end for
17: Set queue Q = P for the next iteration
1&: end while

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG

Outline

© Problem Subdivisions
@ Pre-Order and Post-Order Time
@ DAG to Directed Tree

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG 14 / 26

Problem Subdivision
DAG to Directed Tree

Definition 5

Let B, p = {r, i, i, .., ik—1,p} and Q, , = {r, j1, 2, .., jk—1, P} be two
paths of potentially different length to node p. We say that path B has
the first lexicographically smallest node and denote it by

PBep < Qup (3)

when during the pair-wise comparison of the elements in the two paths
going from left-to-right the path ., has the lexicographically smallest
element in the first mismatch.

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG 15 / 26

Problem Subdivision
DAG to Directed Tree

Let B, p = {r, i, i, .., ik—1,p} and Q, , = {r, j1, 2, .., jk—1, P} be two
paths of potentially different length to node p. We say that path B has
the first lexicographically smallest node and denote it by

PBep < Qup (3)

when during the pair-wise comparison of the elements in the two paths
going from left-to-right the path ., has the lexicographically smallest
element in the first mismatch.)

For example, in Fig. 1 the two paths to node f are
PBep = [a, b, e, f]
Qcp =[a,c,d, f]

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG 15 / 26

Problem Subdivision
DAG to Directed Tree

Let mr,p — {r) ila i27 oy ik—17 P} and Qr,p — {r).j17.j27 "7.jk—1) p} be two
paths of potentially different length to node p. If B, , < Q,, then P, is
the path taken by DFS traversal.

Divyanshu Talwar, Viraj Parimi

Parallel Depth-First Search on a DAG 16 / 26

Problem Subdivision
DAG to Directed Tree

Let mr,p — {I’, ila i27 oy ik—17 P} and Qr,p — {r).jl7.j27 "7.jk—1) p} be two
paths of potentially different length to node p. If B, , < Q,, then P, is
the path taken by DFS traversal.

Let & be the set of all paths from root r to node p. The DFS traversal
takes

Pep = Qmmq5 Dro (4)

Divyanshu Talwar, Viraj Parimi

Parallel Depth-First Search on a DAG

Problem Subdivision

DAG to Directed Tree

Algorithm “ompute DFS-Parent by Comparing Path (top-down traversal)

1: Initialize path to {#} and parent to —1 for every node.
2: Find roots and insert them into queue ().

3: while # {0} do

4 for node p € @ do in parallel

5 Let C,, be a set of children of p and queue P = {0}

6: for node i € () do in parallel
T Let the existing path be 9, ;
8: Let the new path be P, ;
(B,; is a concatenation of path to p & node 1)
9 if P, <9,; then
10: Set O =Prs
11: Set parent(i) = p
12: end if
13: Mark i incoming edge (p, i) as visited
14: Insert ¢ into P if all incoming edges are visited
15: end for

16: end for
17: Set queue Q = P for the next iteration
2: end while

=

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG

Outline

@ Analysis of the Problem

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG

Analysis of the Problem

The aforementioned parallel algorithm to compute the DFS traversal of a
DAG is work-efficient.
o Parallel prefix-sum can be computed in O(logn), by doing O(n) work.
@ The parallel sorting can be computed in O(logn), by doing O(nlogn)
work.

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG 19 / 26

Analysis of the Problem

The aforementioned parallel algorithm to compute the DFS traversal of a
DAG is work-efficient.
o Parallel prefix-sum can be computed in O(logn), by doing O(n) work.
@ The parallel sorting can be computed in O(logn), by doing O(nlogn)
work.

Let n = min(ny, n2), then identifying the first left-to-right pair of digits in
two sequences of n; and np, numbers can be performed in O(logn) steps,
by doing O(n) work.

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG 19 / 26

Analysis of the Problem

The aforementioned parallel algorithm to compute the DFS traversal of a
DAG is work-efficient.
o Parallel prefix-sum can be computed in O(logn), by doing O(n) work.
@ The parallel sorting can be computed in O(logn), by doing O(nlogn)
work.

Let n = min(ny, n2), then identifying the first left-to-right pair of digits in
two sequences of n; and np, numbers can be performed in O(logn) steps,
by doing O(n) work.

The queue can be implemented such that parallel insertion and extraction
of n numbers, can be performed in O(logn) and O(1) steps, respectively.
Also, the algorithm performs O(n) work.

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG 19 / 26

Analysis of the Problem

Alg.2 takes O(n(logd + logk)) steps and performs O(m + n) total work to
traverse a DAG. The number of processors t < m + n actively doing work
varies at each step of the algorithm. Here 7 is the length of longest path
in DAG, d is maximum degree in DAG and k is the maximum number of
elements inserted into a queue.

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG 20 / 26

Analysis of the Problem

Alg.2 takes O(n(logd + logk)) steps and performs O(m + n) total work to
traverse a DAG. The number of processors t < m + n actively doing work
varies at each step of the algorithm. Here 1 is the length of longest path
in DAG, d is maximum degree in DAG and k is the maximum number of
elements inserted into a queue.

Alg.3 takes O(nlogk) steps and performs O(n) total work to traverse a
DAG. The number of processors t < n actively doing work varies at each
step of the algorithm. Here 1 is the length of longest path in DAG and k
is the maximum number of elements inserted into a queue.

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG 20 / 26

Analysis of the Problem

Alg.4 takes O(n(logn + logk)) steps and performs O(nm + n) total work
to traverse a DAG. The number of processors t < nd + n actively doing
work varies at each step of the algorithm. Here 1 is the length of longest
path in DAG, d is maximum degree in DAG and k is the maximum
number of elements inserted into a queue.

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG 21 /26

Analysis of the Problem

Alg.4 takes O(n(logn + logk)) steps and performs O(nm + n) total work
to traverse a DAG. The number of processors t < nd + n actively doing
work varies at each step of the algorithm. Here 1 is the length of longest
path in DAG, d is maximum degree in DAG and k is the maximum
number of elements inserted into a queue.

Path based DFS takes O(n(logd + logk + logn)) steps and performs
O(m + n+ nm) total work to traverse a DAG. The number of processors
t < m+ n+ nd actively doing work varies at each step of the algorithm.
Here 7 is the length of longest path in DAG and k is the maximum
number of elements inserted into a queue.

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG 21 /26

Outline

© Performance Comparision Plan

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG

Performance Comparision Plan

@ Since, there aren't any existing codes available, thus, we would be
comparing our implementation with a serial implementation of DFS
traversal.

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG 23 /26

Outline

@ Deliverables

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG

Deliverables

@ One

e Serial Implementation

e Parents
o Two

e Pre-order and Post-order Time Calculations
@ Three

o Optimizations

Path Pruning

Path Compression

Path Data Structure (as mentioned in the paper).
SSSP based DFS (if time permits)

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG

References |

[Maxim Naumov, Alysson Vrielink, and Michael Garland
Parallel Depth-First Search for Directed Acyclic Graphs
Technical Report, NVR 2017

[Maxim Naumov, Alysson Vrielink, and Michael Garland
Parallel Depth-First Search for Directed Acyclic Graphs
Presentation, GTC Presentations 2017

Divyanshu Talwar, Viraj Parimi Parallel Depth-First Search on a DAG

	Problem Definition
	Computational Complexity
	Problem Subdivisions
	Pre-Order and Post-Order Time
	DAG to Directed Tree

	Analysis of the Problem
	Performance Comparision Plan
	Deliverables
	Appendix

