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While still primarily a research project, transactional memory shows 
promise for making parallel programming easier.
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With the speed of individual cores no longer increas-
ing at the rate we came to love over the past decades, 
programmers have to look for other ways to increase 
the speed of our ever-more-complicated applica-
tions. The functionality provided by the CPU 
manufacturers is an increased number of 
execution units, or CPU cores.

To use these extra cores, programs 
must be parallelized. Multiple paths of 
execution have to work together to 
complete the tasks the program has 
to perform, and as much of that 
work as possible has to happen 
concurrently. Only then is 
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it possible to speed up the program (i.e., reduce the total 
runtime). Amdahl’s law expresses this as:
        

1__________   
(1-P) + P/S

Here P is the fraction of the program that can be parallel-
ized, and S is the number of execution units.

SYNCHRONIZATION PROBLEMS
This is the theory. Making it a reality is another issue. 
Simply writing a normal program by itself is a problem, 
as can be seen in the relentless stream of bug fixes avail-
able for programs. Trying to split a program into multiple 
pieces that can be executed in parallel adds a whole 
dimension of additional problems:
• Unless the program consists of multiple independent 
pieces from the onset and should have been written as 
separate programs in the first place, the individual pieces 
have to collaborate. This usually takes the form of sharing 
data in memory or on secondary storage.
• Write access to shared data cannot happen in an uncon-
trolled fashion. Allowing a program to see an inconsis-
tent, and hence unexpected, state must be avoided at all 
times. This is a problem if the state is represented by the 
content of multiple memory locations. Processors are not 
able to modify an arbitrary number (in most cases not 
even two) of independent memory locations atomically.
• To deal with multiple memory locations, “traditional” 
parallel programming has had to resort to synchroniza-
tion. With the help of mutex (mutual exclusion) direc-
tives, a program can ensure that it is alone in executing 
an operation protected by the mutex object. If all read or 
write accesses to the protected state are performed while 
holding the mutex lock, it is guaranteed that the program 
will never see an inconsistent state. Today’s program-
ming environments (e.g., POSIX) allow for an arbitrary 
number of mutexes to coexist, and there are special types 
of mutexes that allow for multiple readers to gain access 
concurrently. The latter is allowed since read accesses do 

not change the state. These mechanisms allow for reason-
able scalability if used correctly.
• Locking mutexes open a whole new can of worms, 
though. Using a single program-wide mutex would in 
most cases dramatically hurt program performance by 
decreasing the portion of the program that can run in 
parallel (P in the formula). Using more mutexes increases 
not only P, but also the overhead associated with locking 
and unlocking the mutexes. This is especially problem-
atic if, as it should be, the critical regions are only lightly 
contended. Dealing with multiple mutexes also means 
the potential for deadlocks exists. Deadlocks happen 
if overlapping mutexes are locked by multiple threads 
in a different order. This is a mistake that happens all 
too easily. Often the use of mutexes is hidden in library 
functions and not immediately visible, complicating the 
whole issue.

THE PROGRAMMER’S DILEMMA 
The programmer is caught between two problems:
• Increasing the part of the program that can be executed 
in parallel (P).
• Increasing the complexity of the program code and 
therefore the potential for problems.

An incorrectly functioning program can run as fast as 
you can make it run, but it will still be useless. Therefore, 
the parallelization must go only so far as not to introduce 
problems of the second kind. How much parallelism this 
is depends on the experience and knowledge of the pro-
grammer. Over the years many projects have been devel-
oped that try to automatically catch problems related to 
locking. None is succeeding in solving the problem for 
programs of sizes that appear in the real world. Static 
analysis is costly and complex. Dynamic analysis has to 
depend on heuristics and on the quality of the test cases.

For complex projects it is not possible to convert 
the whole project at once to allow for more parallelism. 
Instead, programmers iteratively add ever more fine-
grained locking. This can be a long process, and if the 
testing of the intermediate steps isn’t thorough enough, 
problems that are not caused by the most recently added 
set of changes might pop up. Also, as experience has 
shown, it is sometimes very hard to get rid of the big 
locks. For an example, look at the BKL (big kernel lock) 
discussions on the Linux kernel mailing list. The BKL was 
introduced when Linux first gained SMP (symmetric 
multiprocessing) support in the mid-90s, and we still 
haven’t gotten rid of it in 2008.
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More and more people have come to the conclusion 
that locking is the wrong approach to solving the consis-
tency issue. This is especially true for programmers who 
are not intimately familiar with all the problems of paral-
lel programming (which means almost everybody).

LOOKING ELSEWHERE 
The problem of consistency is nothing new in the world 
of computers. In fact, it has been central to the entire 
solution in one particular area: databases. A database, 
consisting of many tables with associated indexes, has 
to be updated atomically for the reason already stated: 
consistency of the data. It must not happen that one part 
of the update is performed while the rest is not. It also 
must not happen that two updates are interleaved so that 
in the end only parts of each modification are visible.

The solution in the database world is transactions. 
Database programmers explicitly declare which data-
base operations belong to a transaction. The operations 
performed in the transaction can be done in an arbitrary 
order and do not actually take effect until the transaction 
is committed. If there are conflicts in the transaction (i.e., 
other operations are concurrently modifying the same 
data sets), the transaction is rolled back and has to be 
restarted.

The concept of the transaction is something that falls 
out of most programming tasks quite naturally. If all 
changes that are made as part of a transaction are made 
available atomically all at once, the order in which the 
changes are added to the transaction does not matter. 
The lack of a requirement to perform the operations in a 
particular order helps tremendously. All that is needed is 
to remember to modify the data sets always as part of a 
transaction and not in a quick-and-dirty, direct way.

TRANSACTIONAL MEMORY 
The concept of transactions can be transferred to memory 
operations performed in programs as well. One could of 
course regard the in-memory data a program keeps as 
tables corresponding to those in databases, and then just 
implement the same functionality. This is rather limiting, 
though, since it forces programmers to dramatically alter 
the way they are writing programs, and systems program-
ming cannot live with such restrictions. 

Fortunately, this is not needed. The concept of TM 
(transactional memory) has been defined without this 
restriction. Maurice Herlihy and J. Eliot B. Moss in their 
1993 paper1 describe a hardware implementation that 
can be implemented on top of existing cache coherency 
protocols reasonably easily.2 

The description in the paper is generic. First, there is 
no need to require that transactional memory be imple-
mented in hardware, exclusively or even in part. For the 
purpose mentioned in the paper’s title (lock-free data 
structures), hardware support is likely going to be a must. 
But this is not true in general, as we will see shortly. Sec-
ond, the description must be transferred to today’s avail-
able hardware. This includes implementation details such 
as the possible reuse of the cache coherency protocol and 
the granularity of the transactions, which most likely will 
not be a single word but instead a cache line.

Hardware support for TM will itself be mostly interest-
ing for the implementation of lock-free data structures. 
To implement, for example, the insert of a new element 
into a double-linked list without locking, four pointers 
have to be updated atomically. These pointers are found 

in three list elements, which means that it is not possible 
to implement this using simple atomic operations. HTM 
(hardware TM) provides a means to implement atomic 
operations operating on more than one memory word. To 
provide more general support for transactional memory 
beyond atomic data structures, software support is 
needed. For example, any hardware implementation will 
limit the size of a transaction. These limits might be too 
low for nontrivial programs or they might differ among 
implementations. Software can and must complete the 
HTM support to extend the reach of the TM implementa-
tion meant to be used for general programming.

This has been taken a step further. Because today’s 
hardware is mostly lacking in HTM support, STM  

Software can and must complete 
the  HTM support to extend the reach 

of the TM implementation meant
 to be used for general programming.
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(software TM) is what most research projects are using 
today. With STM-based solutions it is possible to pro-
vide interfaces to TM functionality, which later could 
be implemented in hybrid TM implementations, using 
hardware if possible. This allows programmers to write 
programs using the simplifications TM provides even 
without HTM support in the hardware.

SHOW ME THE PROBLEM 
To convince the reader that TM is worth all the trouble, 
let’s look at a little example. This is not meant to reflect 
realistic code but instead illustrates problems that can 
happen in real code:  

long counter1;
long counter2;
time_t timestamp1;
time_t timestamp2;

void f1_1(long *r, time_t *t) {
  *t = timestamp1;
  *r = counter1++;
}

void f2_2(long *r, time_t *t) {
  *t = timestamp2;
  *r = counter2++;
}

void w1_2(long *r, time_t *t) {
  *r = counter1++;
  if (*r & 1)
    *t = timestamp2;
}

void w2_1(long *r, time_t *t) {
  *r = counter2++;
  if (*r & 1)
    *t = timestamp1;
}

Assume this code has to be made thread-safe. This 
means that multiple threads can concurrently execute 
any of the functions and that doing so must not produce 
any invalid result. The latter is defined here as return 
counter and timestamp values that don’t belong together.

It is certainly possible to define one single mutex 
lock and require that this mutex be taken in each of the 
four functions. Verifying that this would generate the 
expected results is easy, but the performance is potentially 
far from optimal.

Assume that most of the time only the functions f1_1 
and f2_2 are used. In this case there would never be any 
conflict between callers of these functions: callers of f1_1 
and f2_2 could peacefully coexist. This means that using 
one single lock slows down the code unnecessarily.

So, then, use two locks. But how to define them? 
The semantics would have to be in the one case “when 
counter1 and timestamp1 are used” and “when coun-
ter2 and timestamp2 are used,” respectively. This might 
work for f1_1 and f2_2, but it won’t work for the other 
two functions. Here the pairs counter1/timestamp2 and 
counter2/timestamp1 are used together. So we have to go 
yet another level down and assign a separate lock to each 
of the variables.

Assuming we would do this, we could easily be 
tempted to write something like this (only two functions 
are mentioned here; the other two are mirror images):

void f1_1(long *r, time_t *t) {
  lock(l_timestamp1);
  lock(l_counter1);

  *t = timestamp1;
  *r = counter1++;
}

void w1_2(long *r, time_t *t) {
  lock(l_counter1);

  *r = counter1++;
  if (*r & 1) {
    lock(l_timestamp1);
    *t = timestamp2;
    unlock(l_timestamp1);
  }

  unlock(l_counter1);
}
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The code for w1_2 in this example is wrong. We can-
not delay getting the l_timestamp1 lock because it might 
produce inconsistent results. Even though it might be 
slower, we always have to get the lock:
 
void w1_2(long *r, time_t *t) {
  lock(l_counter1);
  lock(l_timestamp1);

  *r = counter1++;
  if (*r & 1) {
    *t = timestamp2;

  unlock(l_timestamp1);
  unlock(l_counter1);
}

It’s a simple change, but the result is also wrong. Now 
we try to lock the required locks in w1_2 in a different 
order from f1_1. This potentially will lead to deadlocks. In 
this simple example it is easy to see that this is the case, 
but with just slightly more complicated code it is a very 
common occurrence.

What this example shows is: (1) it is easy to get into a 
situation where many separate mutex locks are  needed to 
allow for enough parallelism; and (2) using all the mutex 
locks correctly is quite complicated by itself.

As can be expected from the theme of this article, TM 
will be able to help us in this and many other situations.

REWRITTEN USING TM
The previous example could be rewritten using TM. In the 
following example we are using nonstandard extensions 
to C that in one form or another might appear in a TM-
enabled compiler. The extensions are easy to explain.

void f1_1(long *r, time_t *t) {
  tm_atomic {
    *t = timestamp1;
    *r = counter1++;
  }
}

void f2_2(long *r, time_t *t) {
  tm_atomic {
    *t = timestamp2;
    *r = counter2++;
  }
}

void w1_2(long *r, time_t *t) {
  tm_atomic {
    *r = counter1++;
    if (*r & 1)
      *t = timestamp2;
  }
}

void w2_1(long *r, time_t *t) {
  tm_atomic {
    *r = counter2++;
    if (*r & 1)
      *t = timestamp1;
  }
}

All we have done in this case is enclose the operations 
within a block called tm_atomic. The tm_atomic keyword 
indicates that all the instructions in the following block 
are part of a transaction. For each of the memory accesses, 
the compiler could generate code as listed below. Calling 
functions is a challenge since the called functions also 
have to be transaction-aware. Therefore, it is potentially 
necessary to provide two versions of the compiled func-
tion: one with and one without support for transactions. 
In case any of the transitively called functions uses a 
tm_atomic block by itself, nesting has to be handled. The 
following is one way of doing this:
1.  Check whether the same memory location is part of 

another transaction.
2.  If yes, abort the current transaction.
3.  If no, record that the current transaction referenced the 

memory location so that step 2 in other transactions 
can find it.

4.  Depending on whether it is a read or write access, 
either (a) load the value of the memory location if the 
variable has not yet been modified or load it from the 
local storage in case it was already modified, or (b) 
write it into a local storage for the variable.
Step 3 can fall away if the transaction previously 

accessed the same memory location. For step 2 there 
are alternatives. Instead of aborting immediately, the 
transaction can be performed to the end and then the 
changes undone. This is called the lazy abort/lazy commit 
method, as opposed to the eager/eager method found 
in typical database transactions (described earlier in this 
article). 

What is needed now is a definition of the work that is 
done when the end of the tm_atomic block is reached 
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(i.e., the transaction is committed). This work can be 
described as follows:
1.  If the current transaction has been aborted, reset all 

internal state, delay for some short period, then retry, 
executing the whole block.

2.  Store all the values of the memory locations modified 
in the transaction for which the new values are placed 
in local storage.

3.  Reset the information about the memory locations 
being part of a transaction.
The description is simple enough; the real problem is 

implementing everything efficiently. Before we discuss 
this, let’s take a brief look at whether all this is correct 
and fulfills all the requirements.

CORRECTNESS AND FIDELITY 
Assuming a correct implementation (of course), we are 
able to determine whether a memory location is currently 
used as part of another implementation. It does not mat-
ter whether this means read or write access. Therefore, it 
is easy to see that we are not ever producing inconsistent 
results. Only if all the memory accesses inside the tm_
atomic block succeed and the transaction is not aborted 
will the transaction be committed. This means, however, 
that as far as memory access is concerned, the thread is 
completely alone. We have reduced the code back to the 
initial code without locks, which obviously is correct.

The only remaining question about correctness is: 
will the threads using this TM technology really termi-
nate if they are constantly aborting each other? Showing 
this is certainly theoretically possible, but in this article 
it should be sufficient to point at a similar problem. In 
IP-based networking (unlike token-ring networks) all the 
connected machines could start sending out data at the 
same time. If more than one machine sends data, a con-
flict arises. This conflict is automatically detected and the 
sending attempt is restarted after a short waiting period. 
IP defines an exponential backup algorithm that the 
network stacks have to implement. Given that we live in 
a world dominated by IP-based networks, this approach 

must work fine. The results can be directly transferred 
over to the problem of TM. 

One other question remains. Earlier we rejected the 
solution of using a single lock because it would prevent 
the concurrent execution of f1_1 and f2_2. How does it 
look here? As can easily be seen, the set of memory loca-
tions used for the two functions is disjunct. This means 
that the set of memory locations in the transactions in 
f1_1 and f2_2 is also disjunct, and therefore the checks for 
concurrent memory uses in f1_1 will never cause an abort 
because of the execution of f2_2 and vice versa. Thus, it is 
indeed trivially possible to solve the issue using TM.

Add to this the concise way of describing transactions, 
and it should be obvious why TM is so attractive.

WHERE IS TM TODAY?
Before everybody gets too excited about the prospects 
of TM, we should remember that it is still very much a 
topic of research. First implementations are becoming 
available, but we still have much to learn. The VELOX 
project (http://www.velox-project.eu/), for example, has 
as its goal a comprehensive analysis of all the places in an 
operating system where TM technology can be used. This 
extends from lock-free data structures in the operating-
system kernel to high-level uses in the application server. 
The analysis includes TM with and without hardware 
support.

The VELOX project will also research the most useful 
semantics of the TM primitives that should be added to 
higher-level programming languages. In the previous 
example it was a simple tm_atomic keyword. This does 
not necessarily have to be the correct form; nor do the 
semantics described need to be optimal.

A number of self-contained STM implementations 
are available today. One possible choice for people to 
get experience with is TinySTM (http://tinystm.org). It 
provides all the primitives needed for TM while being 
portable, small, and depending on only a few services, 
which are available on the host system.

Based on TinySTM and similar implementations, we 
will soon see language extensions such as tm_atomic 
appear in compilers. Several proprietary compilers have 
support, and the first patches for the GNU compilers are 
also available (http://www.hipeac.net/node/2419). With 
these changes it will be possible to collect experience with 
the use of TM in real-world situations to find solutions to 
the remaining issues—and there are plenty of issues left. 
Here are just a few:

Recording transactions. In the preceding explanation 
we assumed that the exact location of each memory loca-
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tion used in the transaction is recorded. This might be 
inefficient, though, especially with HTM support. Record-
ing information for every memory location would mean 
having an overhead of several words for each memory 
location used. As with CPU caches, which theoretically 
could also cache individual words, this often constitutes 
too high of a price. Instead, CPU caches today handle 
cache lines of 64 bytes at once. This would mean for a 
TM implementation that step 2 in our description would 
not have to record an additional dependency in case the 
memory location is in a block that is already recorded.

But this introduces problems as well. Assume that in 
the final example code all four variables are in the same 
block. This means that our assumption of f1_1 and f2_2 
being independently executable is wrong. This type of 
block sharing leads to high abort rates. It is related to the 
problem of false sharing, which in this case also happens 
and therefore should be corrected anyway.

These false aborts, as we might want to call them, are 
not just a performance issue, though. Unfortunate place-
ment of variables actually might lead to problems with 
them never making any progress at all because they are 
constantly inadvertently aborting each other. This can 
happen because of several different transactions going 
on concurrently that happen to touch the same cache 
memory blocks but at different addresses. If blocking is 
used, this is a problem that must be solved.

Handling aborts. Another detail described earlier is 
the way aborts are handled. What has been described is 
the so-called lazy abort/lazy commit method (lazy/lazy 
for short). Transactions continue to work even if they 
are already aborted, and the results of the transaction 
are written into the real memory location only when the 
entire transaction succeeds.

This is not the only possibility, though. Another pos-
sibility is the exact opposite: the eager/eager method. 
In this case transactions will be recognized as aborted as 
early as possible and restarted if necessary. The effect of 
store instructions will also immediately take effect. In 
this case the old value of the memory location has to be 
stored in memory local to the transaction so that, in case 
the transaction has to be aborted, the previous content 
can be restored.

There are plenty of other ways to handle the details. It 
might turn out that no one way is sufficient. Much will 
depend on the abort rate for the individual transaction. 
It could very well be that compilers and TM runtimes will 
implement multiple different ways at the same time and 
flip between them for individual transactions if this seems 
to offer an advantage.

Semantics. The semantics of the tm_atomic block (or 
whatever it will be in the end) have to be specified. It is 
necessary to integrate TM into the rest of the language 
semantics. For example, TM must be integrated with 
exception handling for C++. Other issues are the handling 
of nested TM regions and the treatment of local variables 
(they need not be part of the transaction but still have to 
be reset on abort).

Performance. Performance is also a major issue. 
Plenty of optimizations can and should be performed by 
the compiler, and all this needs research. There are also 
practical problems. If the same program code is used in 
contested and uncontested situations (e.g., in a single-
threaded program), the overhead introduced through TM 
is too high. It therefore might be necessary to generate 
two versions of each function: one with TM support and 
the other without. The TM runtime then has to make sure 
that the version without TM support is used as frequently 
as possible. Failure to the one side means loss of perfor-
mance; failure to the other side means the program will 
not run correctly.

CONCLUSION
TM promises to make parallel programming much easier. 
The concept of transaction is already present in many 
programs (from business programs to dynamic Web appli-
cations), and it has proved reasonably easy to grasp for 
programmers. We can see first implementations coming 
out now, but all are far from ready for prime time. Much 
research remains to be done. Q
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