

Per Cpu operations in the Linux
Kernel

● Christoph Lameter

The percpu subsystem has recently undergone some
major changes that in some cases allow to avoid
using expensive atomic instructions and substitute
"percpu" atomic operations instead.

Percpu synchronization

Global state

Cpu1
state

Cpu2
state

Cpu3
state

Cpu4
state

Cpu5
state

Cpu6
state

Percpu state

Percpu
operations

Global locks
Bouncing Cachelines
Scalability issues

Cacheline use per cpu
No bouncing
Cpu stability issues
(irq, preemption)

Kernel examples

● Percpu counters (vm statistics f.e, network
statistics etc)

● Page allocator
● Slab allocators
● Various VFS components (buffer_heads,

counters)
● Irq tracking
● Rcu infrastructure
● Profiling, ftrace etc

What are per cpu accesses

● Operations on data that is for use by a specific
processor.

● OS keeps an instance of each variable for each
processor.

● Per cpu accesses must relocate addresses to point
to the right variable for this processor.

● Per cpu data is fast since cacheline bouncing does
not occur.

● Per cpu variables can be effectively cached by the
processor

Per cpu ”atomicity”
● Concurrency issues exist but only on a single processor.

● In a preemptible environment the scheduler can give the
processor to a different cpu (the currently executing code
is interrupted)

● Interrupts can cause execution of different code.

● An ”atomic” access is therefore an operation that is not
subject to hardware interrupts.

● Ordering is not an issue since the view of a single cpu of
the memory is guaranteed to be consistent.

● Percpu rmw instructions can avoid having to disable
interrupts and/or preemption.

Example: this_cpu_inc(mycounter);

➔ DECLARE_PER_CPU(mycounter, int)
➔ this_cpu_inc(mycounter)
● There are NR_CPUS instances of mycounters.
● this_cpu_inc increments the one for the current

processor.
● this_cpu_inc creates an instruction that guarantees

the load and the store of the integer occur on the
same processor. In many cases the processor has
such instructions.

Open coded variant

● DECLARE_PER_CPU(int, mycounter);
● int cpu;
● preempt_disable();
● cpu = smp_processor_id();
● per_cpu(mycounter, cpu) += 1;
● preempt_enable();

Code comparison

● inc gs%:var ● Call preempt_disable()
● Call

smp_processor_id()
● Calculate per cpu

pointer address.
● Increment variable at

that address.
● Call preempt_enable()

Simple per cpu operations

● this_cpu operations work on variables not on
pointers.

● this_cpu_load
● this_cpu_store
● this_cpu_inc
● this_cpu_add
● this_cpu_dec

Static per cpu declarations

● DECLARE_PER_CPU
● DEFINE_PER_CPU
● Address can be directly put into the inc

instruction.
● No register use.

Dynamic per cpu allocations

● alloc_percpu()
● Reserves memory in per cpu system areas.
● Returns a ”percpu” pointer.
● Pointer cannot be directly dereferenced. It must

first be relocated to a per cpu area using
this_cpu_ptr() or per_cpu_ptr().

Incremented fields in dynamically
allocated per cpu data

● Fields can be directly specified.
● Assume that p is a percpu pointer to struct structx

with an int y in it.
● A percpu pointer can be obtained using either

– alloc_percpu()

– Or & operator on a static per cpu variable

● Then the int y can be incremented using;
– this_cpu_inc(structx->y)

Cmpxchg support

● Cmpxchg is useful to avoid disabling interrupts
and preemption to update a value.

● Vm statistics use that

cmpxchg_double support
● cmpxchg_double can do atomic operations on a

two wordsize variable
● Used by slub for pointer list management.

– One word contains the pointer

– Second word is a ticket number to be able to
check if there was an operation in between.

● Must be emulated on ancient early AMD64
machines that did not have that instructions.

● Only effective on x86. Other arches have to
fallback to a some code that simulates the action.

Slub fastpath use of
cmpxchg_double

● Use of the ticket number to serialize pointer list
operations.

● Avoids interupt disable and thereby cuts the cycle
count in half.

● Barrier() instead of smp_read/write_barriers.
● Instruction placement matters.
● The issue is that the processor may interrupt after

each instruction.

Future endeavors

● Page allocator fastpath

● VFS?

● Restructuring of other subsystems to offload from global state
to a local per cpu state

● Operate with per node state to avoid cross socket scalability
issues (common l3 cache contention is less of a problem).

● ”Segmentation” of the system to varying degrees in order to
avoid locking overhead.

● Dedicated ”servers” in kernel space to avoid cacheline
pollution.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

