
  

Per Cpu operations in the Linux 
Kernel

● Christoph Lameter

The percpu subsystem has recently undergone some 
major changes that in some cases allow to avoid 
using expensive atomic instructions and substitute 
"percpu" atomic operations instead.
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Kernel examples

● Percpu counters (vm statistics f.e, network 
statistics etc)

● Page allocator
● Slab allocators
● Various VFS components (buffer_heads, 

counters)
● Irq tracking
● Rcu infrastructure
● Profiling, ftrace etc



  

What are per cpu accesses

● Operations on data that is for use by a specific 
processor.

● OS keeps an instance of each variable for each 
processor.

● Per cpu accesses must relocate addresses to point 
to the right variable for this processor.

● Per cpu data is fast since cacheline bouncing does 
not occur.

● Per cpu variables can be effectively cached by the 
processor



  

Per cpu ”atomicity”
● Concurrency issues exist but only on a single processor.

● In a preemptible environment the scheduler can give the 
processor to a different cpu (the currently executing code 
is interrupted)

● Interrupts can cause execution of different code.

● An ”atomic” access is therefore an operation that is not 
subject to hardware interrupts.

● Ordering is not an issue since the view of a single cpu of 
the memory is guaranteed to be consistent.

● Percpu rmw instructions can avoid having to disable 
interrupts and/or preemption.



  

Example: this_cpu_inc(mycounter);

➔ DECLARE_PER_CPU(mycounter, int)
➔ this_cpu_inc(mycounter)
● There are NR_CPUS instances of mycounters.
● this_cpu_inc increments the one for the current 

processor.
● this_cpu_inc creates an instruction that guarantees 

the load and the store of the integer occur on the 
same processor. In many cases the processor has 
such instructions.



  

Open coded variant

● DECLARE_PER_CPU(int, mycounter);
● int cpu;
● preempt_disable();
● cpu = smp_processor_id();
● per_cpu(mycounter, cpu) += 1;
● preempt_enable();



  

Code comparison

● inc gs%:var ● Call preempt_disable()
● Call 

smp_processor_id()
● Calculate per cpu 

pointer address.
● Increment variable at 

that address.
● Call preempt_enable()



  

Simple per cpu operations

● this_cpu operations work on variables not on 
pointers.

● this_cpu_load
● this_cpu_store
● this_cpu_inc
● this_cpu_add
● this_cpu_dec



  

Static per cpu declarations

● DECLARE_PER_CPU
● DEFINE_PER_CPU
● Address can be directly put into the inc 

instruction.
● No register use.



  

Dynamic per cpu allocations

● alloc_percpu()
● Reserves memory in per cpu system areas.
● Returns a ”percpu” pointer. 
● Pointer cannot be directly dereferenced. It must 

first be relocated to a per cpu area using 
this_cpu_ptr() or per_cpu_ptr().



  

Incremented fields in dynamically 
allocated per cpu data

● Fields can be directly specified.
● Assume that p is a percpu pointer to struct structx 

with an int y in it.
● A percpu pointer can be obtained using either

– alloc_percpu()

– Or & operator on a static per cpu variable

● Then the int y can be incremented using;
– this_cpu_inc(structx->y)



  

Cmpxchg support

● Cmpxchg is useful to avoid disabling interrupts 
and preemption to update a value.

● Vm statistics use that



  

cmpxchg_double support
● cmpxchg_double can do atomic operations on a 

two wordsize variable
● Used by slub for pointer list management.

– One word contains the pointer

– Second word is a ticket number to be able to 
check if there was an operation in between.

● Must be emulated on ancient early AMD64 
machines that did not have that instructions.

● Only effective on x86. Other arches have to 
fallback to a some code that simulates the action.



  

Slub fastpath use of 
cmpxchg_double

● Use of the ticket number to serialize pointer list 
operations.

● Avoids interupt disable and thereby cuts the cycle 
count in half.

● Barrier() instead of smp_read/write_barriers.
● Instruction placement matters.
● The issue is that the processor may interrupt after 

each instruction.



  

Future endeavors

● Page allocator fastpath

● VFS?

● Restructuring of other subsystems to offload from global state 
to a local per cpu state

● Operate with per node state to avoid cross socket scalability 
issues (common l3 cache contention is less of a problem).

● ”Segmentation” of the system to varying degrees in order to 
avoid locking overhead.

● Dedicated ”servers” in kernel space to avoid cacheline 
pollution.
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