
Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Perfect Hash Families in Polynomial Time

Charles J. Colbourn1

1School of Computing, Informatics, and Decision Systems Engineering
Arizona State University

October 2010

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Perfect Hash Families
Definition

I A perfect hash family PHF(N; k , v , t) is an N × k
array on v symbols, in which in every N × t subarray,
at least one row consists of distinct symbols.

I The smallest N for which a PHF(N; k , v , t) exists is
the perfect hash family number, denoted
PHFN(k , v , t).

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Perfect Hash Families
Example PHF(6; 12, 3, 3)



0 1 2 2 1 2 2 0 1 1 0 0
0 2 1 0 2 2 2 1 0 1 2 1
1 0 0 2 2 2 1 1 2 1 0 2
2 0 1 1 2 0 2 0 1 1 2 1
2 0 2 1 2 1 0 2 2 1 1 0
2 0 1 2 1 1 2 2 0 1 2 1



Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Perfect Hash Families
Example PHF(6; 12, 3, 3)



↓ ↓ ↓
0 1 2 2 1 2 2 0 1 1 0 0
0 2 1 0 2 2 2 1 0 1 2 1
1 0 0 2 2 2 1 1 2 1 0 2
2 0 1 1 2 0 2 0 1 1 2 1
2 0 2 1 2 1 0 2 2 1 1 0
2 0 1 2 1 1 2 2 0 1 2 1



Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Perfect Hash Families

I It is “well known” that, for fixed v and t , PHFN(k , v , t)
grows like log k (see Mehlhorn 82, Fredman-Komlos
84, Blackburn-Wild 98, for example).

I But constructing specific PHFs remains challenging!
I Why am I (and why should you be) interested?

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Covering Array. Definition

I Let N, k , t , and v be positive integers.
I Let C be an N × k array with entries from an alphabet

Σ of size v ; we typically take Σ = {0, . . . , v − 1}.
I When (ν1, . . . , νt) is a t-tuple with νi ∈ Σ for 1 ≤ i ≤ t ,

(c1, . . . , ct) is a tuple of t column indices
(ci ∈ {1, . . . , k}), and ci 6= cj whenever νi 6= νj , the
t-tuple {(ci , νi) : 1 ≤ i ≤ t} is a t-way interaction.

I The array covers the t-way interaction
{(ci , νi) : 1 ≤ i ≤ t} if, in at least one row ρ of C, the
entry in row ρ and column ci is νi for 1 ≤ i ≤ t .

I Array C is a covering array CA(N; t , k , v) of strength t
when every t-way interaction is covered.

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Covering Array. Definition

I Let N, k , t , and v be positive integers.
I Let C be an N × k array with entries from an alphabet

Σ of size v ; we typically take Σ = {0, . . . , v − 1}.
I When (ν1, . . . , νt) is a t-tuple with νi ∈ Σ for 1 ≤ i ≤ t ,

(c1, . . . , ct) is a tuple of t column indices
(ci ∈ {1, . . . , k}), and ci 6= cj whenever νi 6= νj , the
t-tuple {(ci , νi) : 1 ≤ i ≤ t} is a t-way interaction.

I The array covers the t-way interaction
{(ci , νi) : 1 ≤ i ≤ t} if, in at least one row ρ of C, the
entry in row ρ and column ci is νi for 1 ≤ i ≤ t .

I Array C is a covering array CA(N; t , k , v) of strength t
when every t-way interaction is covered.

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Covering Array. Definition

I Let N, k , t , and v be positive integers.
I Let C be an N × k array with entries from an alphabet

Σ of size v ; we typically take Σ = {0, . . . , v − 1}.
I When (ν1, . . . , νt) is a t-tuple with νi ∈ Σ for 1 ≤ i ≤ t ,

(c1, . . . , ct) is a tuple of t column indices
(ci ∈ {1, . . . , k}), and ci 6= cj whenever νi 6= νj , the
t-tuple {(ci , νi) : 1 ≤ i ≤ t} is a t-way interaction.

I The array covers the t-way interaction
{(ci , νi) : 1 ≤ i ≤ t} if, in at least one row ρ of C, the
entry in row ρ and column ci is νi for 1 ≤ i ≤ t .

I Array C is a covering array CA(N; t , k , v) of strength t
when every t-way interaction is covered.

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Covering Array
CA(13;3,10,2)

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 0 0 1
1 0 1 1 0 1 0 1 0 0
1 0 0 0 1 1 1 0 0 0
0 1 1 0 0 1 0 0 1 0
0 0 1 0 1 0 1 1 1 0
1 1 0 1 0 0 1 0 1 0
0 0 0 1 1 1 0 0 1 1
0 0 1 1 0 0 1 0 0 1
0 1 0 1 1 0 0 1 0 0
1 0 0 0 0 0 0 1 1 1
0 1 0 0 0 1 1 1 0 1

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Covering Array
Motivation Software interaction testing

I Construct a large software system by combining
software, hardware, and network components each
intended to perform some simple function.

I Even when each component operates ‘correctly’,
interactions among selections for components may
cause faults.

I Columns are components or factors; selections of
particular components are levels for the factors.

I Rows are tests or runs.
I Every t-way interaction is tested in at least one run!
I The sparsity of effects...

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Perfect Hash Families
The First Connection

Theorem
If a PHF(s; k ,m, t) and a CA(N; t ,m, v) both exist then a
CA(sN; t , k , v) exists.

I B = (bij) is an s × k array on m symbols forming a
PHF(s; k ,m, t).

I A = (aij) is an N ×m array on v symbols forming a
CA(N; t ,m, v).

I Produce an sN × k array C = (cij) as follows. For
each 1 ≤ i ≤ s, 1 ≤ j ≤ N, and 1 ≤ ` ≤ k , set
c(i−1)N+j,` = aj,bi,` .

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Perfect Hash Families
Methods

I A number of methods construct PHFs:
I Direct methods: From codes, orthogonal arrays, finite

geometries, modular sequences of integers, no three
in arithmetic progression, algebraic curves.

I Recursive methods: “Cut-and-paste”, column
replacement techniques.

I Probabilistic methods: Select an array at random,
and if there are enough rows, it “works” with high
probability.

I Computational methods: Random, greedy, local
optimization, or metaheuristic search such as
simulated annealing, tabu search, genetic
algorithms, ...

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Perfect Hash Families
Methods

I A number of methods construct PHFs:
I Direct methods: From codes, orthogonal arrays, finite

geometries, modular sequences of integers, no three
in arithmetic progression, algebraic curves.

I Recursive methods: “Cut-and-paste”, column
replacement techniques.

I Probabilistic methods: Select an array at random,
and if there are enough rows, it “works” with high
probability.

I Computational methods: Random, greedy, local
optimization, or metaheuristic search such as
simulated annealing, tabu search, genetic
algorithms, ...

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Perfect Hash Families
Methods and Limitations

I But there remains a big problem...
I Direct methods appear to apply for a very limited set

of parameters.
I Recursive methods require very good ‘small’

ingredients, and appear to work well only when the
strength is ‘small’.

I Probabilistic methods ensure the existence of the
PHF but do not typically give us the actual array.

I Computational methods, when sophisticated, do not
seem fast enough; and when naive, do not seem to
yield results competitive with the direct techniques.

I We need to construct PHFs explicitly.

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Perfect Hash Families
Methods and Limitations

I But there remains a big problem...
I Direct methods appear to apply for a very limited set

of parameters.
I Recursive methods require very good ‘small’

ingredients, and appear to work well only when the
strength is ‘small’.

I Probabilistic methods ensure the existence of the
PHF but do not typically give us the actual array.

I Computational methods, when sophisticated, do not
seem fast enough; and when naive, do not seem to
yield results competitive with the direct techniques.

I We need to construct PHFs explicitly.

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Perfect Hash Families
Methods and Limitations

I But there remains a big problem...
I Direct methods appear to apply for a very limited set

of parameters.
I Recursive methods require very good ‘small’

ingredients, and appear to work well only when the
strength is ‘small’.

I Probabilistic methods ensure the existence of the
PHF but do not typically give us the actual array.

I Computational methods, when sophisticated, do not
seem fast enough; and when naive, do not seem to
yield results competitive with the direct techniques.

I We need to construct PHFs explicitly.

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

A Random Method

I Choose an array from {1, . . . , v}N×k uniformly at
random.

I For any set of t columns, the probability that it is not

separated is
(

1−
Qt

i=1 v+1−i
v t

)N
.

I So the expected number of sets of t columns not

separated is
(k

t

) (
1−

Qt
i=1 v+1−i

v t

)N
.

I When this expected number is less than 1, some
array has all sets of t columns separated!

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

A Random Method

I Fix t independent of n.

I Take logarithms of
(k

t

) (
1−

Qt
i=1 v+1−i

v t

)N
< 1 to get

N > ct log k

for a constant c depending only on t and v .

I This shows us the right growth rate for PHFN(k , v , t).

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Derandomizing
The Stein-Lovász Method

I Instead of generating the array at random
{1, . . . , v}N×k , generate one row at a time at random
from {1, . . . , v}k .

I After ρ rows have been generated, keep track of the
number of sets of t columns separated so far.

I For an as-yet-unseparated set of columns, what is
the probability that the next row chosen separates it?

I Because the row is selected at random, this is justQt
i=1 v+1−i

v t .

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Derandomizing
The Stein-Lovász Method

I Now count in two ways all possible ways to choose a
row and a t-set of columns separated by that row for
the first time. Suppose that the number of t-sets not
yet separated is σ.

I First, if the expected number of t-sets separated by a
row is ψ then the number of (row,separated column)
pairs is ψvk .

I Secondly, for any specific t-set T that is not yet
separated, the number of rows separating it is
vk−t ∏t

i=1 v + 1− i , so the number of (row,separated
column) pairs is σvk−t ∏t

i=1 v + 1− i .

I So ψ =
Qt

i=1 v+1−i
v t σ.

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Derandomizing
The Stein-Lovász Method

I So in every row, if σ t-sets of columns were not yet
separated before the row, the expected number still
not separated after the row is

σ −
∏t

i=1 v + 1− i
v t σ =

v t −
∏t

i=1 v + 1− i
v t σ.

I To derandomize, choose the row that separates the
largest number of previously unseparated t-sets.

I Let σi be the number of as-yet-unseparated t-sets
after i rows are selected. Then σ0 =

(k
t

)
and

σi+1 ≤
v t−

Qt
i=1 v+1−i
v t σi for i > 0.

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Derandomizing
The Stein-Lovász Method

I So σm ≤
(k

t

) (v t−
Qt

i=1 v+1−i
v t

)m
.

I Solve for m in σm < 1.
I But how can we choose the ‘best’ row at each stage?

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Derandomizing
Hypergraph Colouring

I At any stage the set of t-sets remaining to distinguish
forms a t-uniform hypergraph on k vertices.

I When all remaining t-sets are to be separated by the
next row, the row must form a colouring of the k
vertices in v colours.

I Every t-set must be polychromatic (‘rainbow’),
receiving t different colours.

I The strong chromatic number is the minimum
number of colours in such a strong colouring of the
hypergraph.

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Derandomizing
Hypergraph Colouring

I But computing the strong chromatic number is
NP-hard in general...

I So although we have found a natural greedy method,
its running time remains exponential in k .

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Derandomizing
Average is Good Enough

I A simple but key observation... Our analysis did not
depend on picking the best row, just on picking one
at least as good as the average!

I But can we choose a row that is at least average?
Evidently we can compute the average, and we can
compute the number of newly separated t-sets for
any specific candidate row, so given one we could
certify that it is at least average (or that it is not).

I Generate candidate rows at random? But then we
have reintroduced randomness to the method.

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Density

I A partial row R is a vector in ({1, . . . , v} ∪ {?})k .
Think of ? as meaning ‘not yet determined’.

I We can ask: If we fill in the ? entries in R randomly,
what is the expected number of t-sets newly
separated? Call this the density for R.

I When R and R′ are partial rows, write R → R′ when
R′ is obtained from R by changing one ? to a value
from {1, . . . , v}.

I A fill sequence is a collection Rk , . . . ,R0 of partial
rows where Ri contains exactly i ? entries and
Ri → Ri−1 for 1 ≤ i ≤ k .

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Density

I Consider a fill sequence Rk → Ri−1 → · · · → R0.
I If the density of Ri−1 is at least that of Ri for

1 ≤ i ≤ k , then because
I the density of Rk is

Qt
i=1 v+1−i

v t σ, which is exactly the
average number of previously unseparated t-sets
separated by a random row, then

I the density of R0 is at least the average number of
previously unseparated t-sets separated by a
random row —

I but R0 has no ? entries, and hence its density is the
actual number of previously unseparated t-sets
separated by this row.

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Density

I So all we need to do is find a way to get Ri−1 from Ri
so that the density does not decrease, and to do this
efficiently.

I Consider Ri . Let the indices of the ? entries be free
and the remainder fixed.

I Choose one free index. There are v ways to change
the ? here to an entry.

I For each of the
(k−1

t−1

)
ways to select t − 1 other

indices, consider the t-set containing those t − 1
together with the chosen free index.

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Density

I For each way to choose a symbol to place in the free
index, determine the expectation that the t-set is
separated for the first time, conditioned on fixing the
chosen symbol in the free index.

I Then for every choice of symbol s of the free index,
form the sum δs of these conditional expectations
over all

(k−1
t−1

)
ways to select t − 1 other indices.

I Select a symbol s whose sum is at least the average!
I (Indeed if we carry out the same computation of the

sum δ? of conditional expectations by placing a ?
again in the free index, the change in density from Ri
to Ri−1 is δs − δ?, but δ? = 1

v
∑v

i=1 δi .)

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Density

I When t is fixed, the effort to make a new row that is
at least as good as average is polynomial in k .

I But beware: t is in the exponent, so for practical
reasons t had better be small, not just ‘fixed’.

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Density

I This method is greedy in its selection of rows, and
greedy in its selection of symbols within a row.

I Its efficiency results from backing off from requiring a
best row, and settling for an average one.

I We did not do this to get a method that was intended
to be practical, but here comes the surprise.

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Density in Practice

0

100

200

300

400

N
um

be
r

of
 R

ow
s

10 20 30 40 50 60
Number of Columns

Figure: PHFN(k ,5,5)

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Density in Practice

0

200

400

600

800

N
um

be
r

of
 R

ow
s

10 15 20 25 30 35 40
Number of Columns

Figure: PHFN(k ,6,6)

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Density in Practice

0

1000

2000

3000

4000

N
um

be
r

of
 R

ow
s

4 6 8 10 12 14 16 18
Log(Number of Columns)

Figure: PHFN(k ,5,5)

Perfect Hash
Families in

Polynomial Time

Charles J.
Colbourn

Perfect Hash
Families

Conclusion

I Derandomizing a greedy randomized algorithm leads
to an efficient deterministic algorithm for generating
PHFs, and

I perhaps more surprisingly, this gives the best current
general method for making them!

	Perfect Hash Families

