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ABSTRACT
Perfect hash functions can potentially be used to compress
data in connection with a variety of data management tasks.
Though there has been considerable work on how to con-
struct good perfect hash functions, there is a gap between
theory and practice among all previous methods on min-
imal perfect hashing. On one side, there are good the-
oretical results without experimentally proven practicality
for large key sets. On the other side, there are the the-
oretically analyzed time and space usage algorithms that
assume that truly random hash functions are available for
free, which is an unrealistic assumption. In this paper we
attempt to bridge this gap between theory and practice, us-
ing a number of techniques from the literature to obtain a
novel scheme that is theoretically well-understood and at the
same time achieves an order-of-magnitude increase in per-
formance compared to previous “practical” methods. This
improvement comes from a combination of a novel, theo-
retically optimal perfect hashing scheme that greatly sim-
plifies previous methods, and the fact that our algorithm is
designed to make good use of the memory hierarchy. We
demonstrate the scalability of our algorithm by considering
a set of over one billion URLs from the World Wide Web of
average length 64, for which we construct a minimal perfect
hash function on a commodity PC in a little more than 1
hour. Our scheme produces minimal perfect hash functions
using slightly more than 3 bits per key. For perfect hash
functions in the range {0, . . . , 2n− 1} the space usage drops
to just over 2 bits per key (i.e., one bit more than optimal
for representing the key). This is significantly below of what
has been achieved previously for very large values of n.

1. INTRODUCTION
Some types of databases are updated only rarely, typically
by periodic batch updates. This is true, for example, for
most data warehousing applications (see [32] for more ex-
amples and discussion). In such scenarios it is possible to
improve query performance by creating very compact rep-
resentations of keys by minimal perfect hash functions. In

applications where the set of keys is fixed for a long period
of time the construction of a minimal perfect hash function
can be done as part of the preprocessing phase. For exam-
ple, On-Line Analytical Processing (OLAP) applications use
extensive preprocessing of data to allow very fast evaluation
of certain types of queries.

Perfect hashing is a space-efficient way of creating compact
representation for a static set S of n keys. For applications
with successful searches, the representation of a key x ∈ S
is simply the value h(x), where h is a perfect hash function
for the set S of values considered. The word “perfect” refers
to the fact that the function will map the elements of S to
unique values (is identity preserving). Minimal perfect hash
function (MPHF) produces values that are integers in the
range [0, n − 1], which is the smallest possible range. It is
known that O(n) bits suffice to store a minimal perfect hash
function, and there are theoretical results that use around
1.4427n bits, asymptotically for large n [17].

We now present some examples where minimal perfect hash
functions have successfully been applied to:

• A perfect hash function can be used to implement a
data structure with the same functionality as a Bloom
filter [27]. In many applications where a set S of ele-
ments is to be stored, it is acceptable to include in the
set some false positives1 with a small probability by
storing a signature for each perfect hash value. This
data structure requires around 30% less space usage
when compared with Bloom filters, plus the space for
the perfect hash function. Bloom filters have applica-
tions in distributed databases and data mining (asso-
ciation rule mining [7, 8]).

• Perfect hash functions have also been used to speed up
the partitioned hash-join algorithm presented in [25].
By using a perfect hash function to reduce the targeted
hash-bucket size from 4 tuples to just 1 tuple they
have avoided following the bucket-chain during hash-
lookups that causes too many cache and translation
lookaside buffer (TLB) misses.

• Suppose there is a composite foreign key to a table
T of size n. Then the size of the key needed in T
will typically be larger than log n. For example, sup-
pose tuples of R contain geographical coordinates that

1False positives are elements that appear to be in S but are
not.
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are used as foreign key references. Replacing the co-
ordinates with a surrogate key may be a bad choice
if common queries on R involve conditions on the co-
ordinates, as a join would be required to retrieve the
coordinates. In general, if we have a natural foreign
key that carries information relevant for queries, we
can avoid the cost of additionally storing a surrogate
key.

The perfect hash function used depends on the set S of dis-
tinct attribute values that occur. It is known that maintain-
ing a perfect hash function dynamically under insertions into
S is only possible using space that is super-linear in n [11].
However, in this paper we consider the case where S is fixed,
and construction of a perfect hash function can be done as
part of the preprocessing of data (e.g., in a data warehouse).
To the best of our knowledge, previously suggested perfect
hashing methods have not been even close to a space usage
of 1.4427n bits for realistic data sizes. Second, all previous
methods suffer from either an incomplete theoretical under-
standing (so there is no guarantee that it works well on a
given data set) or seems impractical due to a very intricate
and time-consuming evaluation procedure.

In this paper we present a scalable algorithm that produces
minimal perfect hash functions using slightly more than 3
bits per key. Also, if we are happy with values in the range
{0, . . . , 2n − 1} (i.e., using one bit more than optimal for
representing the surrogate key) the space usage drops to
just over 2 bits per key. This is significantly below of what
has been achieved previously for imaginable values of n. We
demonstrate the scalability of our algorithm by considering
a set of over one billion strings (URLs from the world wide
web of average length 64), for which we construct a minimal
perfect hash function on a commodity PC in a little more
than 1 hour. This is an order of magnitude faster than
previous methods. If we use the range {0, . . . , 2n − 1}, the
space for the perfect hash function is less than 324 MB,
and we still get hash values that can be represented in a
32 bit word. Thus we believe our MPHF method might
be quite useful for a number of current and practical data
management problems.

2. NOTATION
Suppose U is a universe of keys of size u. Let h : U → M be
a hash function that maps the keys from U to a given interval
of integers M = [0, m − 1] = {0, 1, . . . , m − 1}. Let S ⊆ U
be a set of n keys from U , where n ≪ u. Given a key x ∈ S,
the hash function h computes an integer in [0, m − 1]. A
perfect hash function (PHF) maps a set S of n keys from U
into a set of m integer numbers without collisions, where m
is greater than or equal to n. If m is equal to n, the function
is called minimal (MPHF).

3. RELATED WORK
There is a gap between theory and practice among minimal
perfect hashing methods. On one side, there are good theo-
retical results without experimentally proven practicality for
large key sets. We will argue below that these methods are
indeed not practical. On the other side, there are two cat-
egories of practical algorithms: the theoretically analyzed
time and space usage algorithms that assume truly random

hash functions for their methods, which is an unrealistic as-
sumption, and the algorithms that present only empirical
evidences. The aim of this section is to discuss the existent
gap among these three types of algorithms available in the
literature.

3.1 Theoretical results
In this section we review some of the most important theo-
retical results on minimal perfect hashing. For a complete
survey until 1997 refer to Czech, Havas and Majewski [10].

Fredman, Komlós and Szemerédi [15] proved, using a count-
ing argument, that at least n log e+ log log u−O(log n) bits
are required to represent a MPHF, provided that u ≥ n2+

for some  > 0 (an easier proof was given by Radhakrish-
nan [30]). Mehlhorn [26] has made this bound almost tight
by providing an algorithm that constructs a MPHF that can
be represented with at most n log e+log log u+O(log n) bits.
However, his algorithm is far away from practice because its
construction and evaluation time is exponential on n (i.e.,

nθ(nenu log u)).

Schmidt and A. Siegel [31] have proposed the first algo-
rithm for constructing a MPHF with constant evaluation
time and description size O(n+log log u) bits. Nevertheless,
the scheme is hard to implement and the constants associ-
ated with the MPHF storage are prohibitive. For a set of n
keys, at least 29n bits are used, which means that the space
usage is similar in practice to schemes using n log n bits.

More recently, Hagerup and Tholey [17] have come up with
the best theoretical result we know of. The MPHF ob-
tained can be evaluated in O(1) time and stored in n log e+
log log u + O(n(log log n)2/ log n + log log log u) bits. The
construction time is O(n + log log u) using O(n) computer
words of the Fredman, Komlós and Szemerédi [16] model
of computation. In this model, also called the Word RAM
model, an element of the universe U fits into one machine
word, and arithmetic operations and memory accesses have
unit cost. In spite of its theoretical importance, the Hagerup
and Tholey [17] algorithm is not practical as well, as it
emphasizes asymptotic space complexity only. (It is also
very complicated to implement, but we will not go into
that.) For n < 2150 the scheme is not even defined, as
it relies on splitting the key set into buckets of size n̂ ≤
log n/(21 log log n). Even if we fix this by letting the bucket
size be at least 1, then for n < 2300 buckets of size one will
be used, which means that the space usage will be at least
(3 log log n + log 7) n bits. For a set of a billion keys, this
is more than 17 bits per element. Since 2300 exceeds the
number of atoms in the known universe, it is safe to con-
clude that the Hagerup-Tholey algorithm will not be space
efficient in practical situations.

3.2 Practical results assuming full random-
ness

Let us now describe the main practical results analyzed with
the unrealistic assumption that truly random hash functions
are available for free.

Fox et al. [14] created the first scheme with good average-
case performance for large datasets, i.e., n ≈ 106. They have
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designed two algorithms, the first one generates a MPHF
that can be evaluated in O(1) time and stored in O(n log n)
bits. The second algorithm uses quadratic hashing and
adds branching based on a table of binary values to get
a MPHF that can be evaluated in O(1) time and stored
in c(n + 1/ log n) bits. They argued that c would be typ-
ically lower than 5, however, it is clear from their exper-
imentation that c grows with n and they did not discuss
this. They claimed that their algorithms would run in lin-
ear time, but, it is shown in [10, Section 6.7] that the al-
gorithms have exponential running times in the worst case,
although the worst case has small probability of occurring.
Fox, Chen and Heath [13] improved the above result to
get a function that can be stored in cn bits. The method
uses four truly random hash functions h10 : S → [0, n − 1],
h11 : [0, p1 − 1] → [0, p2 − 1], h12 : [p1, n − 1] → [p2, b − 1]
and h20 : S × {0, 1} → [0, n − 1] to construct a MPHF that
has the following form:

h(x) = (h20(x, d) + g(i(x))) mod n

i(x) =

(

h11 ◦ h10(x) if h10(x) < p1

h12 ◦ h10(x) otherwise.

where p1 = 0.6n and p2 = 0.3n were experimentally deter-
mined, and ⌈b = cn/(log n+1)⌉. Again c is only established
for small values of n. It could very well be that c grows
with n. So, the limitation of the three algorithms is that no
guarantee on the size of the resulting MPHF is provided.

The family of algorithms proposed by Czech et al [24] uses
the same assumption to construct order preserving MPHF.
A perfect hash function h is order preserving if the keys
in S are arranged in some given order and h preserves this
order in the hash table. The method uses two truly ran-
dom hash functions h1(x) : S → cn and h2(x) : S → cn to
generate MPHFs in the following form: h(x) = (g[h1(x)] +
g[h2(x)] mod n where c > 2. The resulting MPHFs can be
evaluated in O(1) time and stored in O(n log n) bits (that
is optimal for an order preserving MPHF). The resulting
MPHF is generated in expected O(n) time. Botelho, Ko-
hayakawa and Ziviani [5] improved the space requirement at
the expense of generating functions in the same form that
are not order preserving. Their algorithm is also linear on
n, but runs faster than the ones by Czech et al [24] and the
resulting MPHF are stored using half of the space because
c ∈ [0.93, 1.15]. However, the resulting MPHFs still need
O(n log n) bits to be stored.

Since the space requirements for truly random hash func-
tions makes them unsuitable for implementation, one has
to settle for a more realistic setup. The first step in this
direction was given by Pagh [28]. He proposed a family of
randomized algorithms for constructing MPHFs of the form
h(x) = (f(x) + d[g(x)]) mod n, where f and g are chosen
from a family of universal hash functions and d is a set of
displacement values to resolve collisions that are caused by
the function f . Pagh identified a set of conditions concern-
ing f and g and showed that if these conditions are satisfied,
then a minimal perfect hash function can be computed in
expected time O(n) and stored in (2 + ǫ)n log n bits.

Dietzfelbinger and Hagerup [12] improved the algorithm pro-
posed in [28], reducing from (2 + ǫ)n log n to (1 + ǫ)n log n
the number of bits required to store the function, but in
their approach f and g must be chosen from a class of hash
functions that meet additional requirements.

3.3 Empirical results
In this section we discuss results that present only empirical
evidences for specific applications. Lefebvre and Hoppe [23]
have recently designed MPHFs that require up to 7 bits per
key to be stored and are tailored to represent sparse spatial
data. In the same trend, Chang, Lin and Chou [7, 8] have
designed MPHFs tailored for mining association rules and
traversal patterns in data mining techniques.

3.4 Differences between our results and pre-
vious results

In this work we propose an algorithm that is theoretically
well-understood and achieves an order-of-magnitude increase
in the performance on a commodity PC compared to previ-
ous “practical” methods. To the best of our knowledge our
algorithm is the first one that demonstrates the capability
of generating MPHFs for sets in the order of billions of keys,
and the generated functions require less than 4 bits per key
to be stored. This increases one order of magnitude in the
size of the greatest key set for which a MPHF was obtained
in the literature [5]. This improvement comes mainly from
the fact that our method is designed to make good use of the
memory hierarchy. We need O(N) computer words, where
N ≪ n, for the construction process. Notice that both space
usage for representing the MPHF and the construction time
are carefully proven. Additionally, our scheme is much sim-
pler than previous theoretical well-founded schemes.

4. THE ALGORITHM
Our algorithm uses the well-known idea of partitioning the
key set into a number of small sets2 (called “buckets”) using
a hash function h0. Let Bi = {x ∈ S | h0(x) = i} denote

the ith bucket. If we define offset[i] =
Pi−1

j=0 |Bi| and let pi

denote a MPHF for Bi then clearly

p(x) = pi(x) + offset[h0(x)] (1)

is a MPHF for the whole set S. Thus, the problem is reduced
to computing and storing the offset array, as well as the
MPHF for each bucket.

Figure 1 illustrates the two steps of the algorithm: the par-
titioning step and the searching step. The partitioning step
takes a key set S and uses a hash function h0 to partition S
into 2b buckets. The searching step generates a MPHF pi

for each bucket i, 0 ≤ i ≤ 2b − 1 and computes the offset ar-
ray. From now on the algorithm used to compute the MPHF
of each bucket is referred to as internal algorithm and the
whole scheme is referred to as external algorithm.

We will choose h0 such that it has values in {0, 1}b, for some
integer b. Since the offset array holds 2b entries of at least
log n bits we want 2b to be less than around n/ log n, making
the space used for the offset array negligible. On the other
hand, to allow efficient implementation of the functions pi

we impose an upper bound ℓ on the size of any bucket. We
will describe later how to choose h0 such that this upper
bound holds.

2Used in e.g. the perfect hash function constructions of
Schmidt and Siegel [31] and Hagerup and Tholey [17], for
suitable definition of “small”.
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Figure 1: Main steps of our algorithm

To create the MPHFs pi we could choose from a number
of alternatives, emphasizing either space usage, construc-
tion time, or evaluation time. We show that all methods
based on the assumption of truly random hash functions
can be made to work, with explicit and provably good hash
functions. For the experiments we have implemented the
algorithm described in Section 4.2. Since this computation
is done on a small set, we can expect nearly all memory ac-
cesses to be “cache hits”. We believe that this is the main
reason why our method performs better than previous ones
that access memory in a more “random” fashion.

We consider the situation in which the set of all keys may
not fit in the internal memory and has to be written on disk.
Our external algorithm first scans the list of keys and com-
putes the hash function values that will be needed later on
in the algorithm. These values will (with high probability)
distinguish all keys, so we can discard the original keys. It
is well known that hash values of at least 2 log n bits are
required to make this work. Thus, for sets of a billion keys
or more we cannot expect the list of hash values to fit in the
internal memory of a standard PC.

To form the buckets we sort the hash values of the keys
according to the value of h0. Since we are interested in
scalability to large key sets, this is done using an implemen-
tation of an external memory mergesort [22]. If the merge
sort works in two phases, which is the case for all reasonable
parameters, the total work on the disk consists of reading
the keys, plus writing and reading the hash function values
once. Since the h0 hash values are relatively small (less than
15 decimal digits) we can use radix sort to do the internal
memory sorting.

The detailed description of the external algorithm is pre-
sented in Section 4.1. The presentation of the internal al-
gorithm used to compute the MPHF of each bucket is pre-
sented in Section 4.2. The internal algorithm uses two hash
functions hi1 and hi2 to compute a MPHF pi. These hash
functions as well as the hash function h0 used in the parti-
tioning step of the external algorithm are described in Sec-
tion 4.3.

4.1 The external algorithm
In this section we are going to present the implementation
of the two-step external memory based algorithm and the

values of the parameters related to the algorithm. The al-
gorithm is essentially a two-phase multi-way merge sort with
some nuances to make it work in linear time.

The partitioning step performs two important tasks. First,
the variable-length keys are mapped to 128-bit strings by
using the linear hash function h′ presented in Section 4.3.
That is, the variable-length key set S is mapped to a fixed-
length key set F . Second, the set S of n keys is partitioned
into 2b buckets, where b is a suitable parameter chosen to
guarantee that each bucket has at most ℓ = 256 keys with
high probability (see Section 4.3). We have two reasons for
choosing ℓ = 256. The first one is to keep the buckets size
small enough to be represented by 8-bit integers. The sec-
ond one is to allow the memory accesses during the MPHF
evaluation to be done in the cache most of the time. Figure 2
presents the partitioning step algorithm.

◮ Let β be the size in bytes of the fixed-length key
set F

◮ Let µ be the size in bytes of an a priori reserved
internal memory area

◮ Let N = ⌈β/µ⌉ be the number of key blocks that
will be read from disk into an internal memory area

1. for j = 1 to N do
1.1 Read a key block Sj from disk (one at a time)

and store h′(x), for each x ∈ Sj , into Bj ,
where |Bj | = µ

1.2 Cluster Bj into 2b buckets using an indirect radix
sort algorithm that takes h0(x) for x ∈ Sj as
sorting key(i.e, the b most significant bits of h′(x))

1.3 Dump Bj to the disk into File j

Figure 2: Partitioning step

The critical point in Figure 2 that allows the partitioning
step to work in linear time is the internal sorting algorithm.
We have two reasons to choose radix sort. First, it sorts
each key block Bj in linear time, since keys are short integer
numbers (less than 15 decimal digits). Second, it just needs
O(|Bj |) words of extra memory so that we can control the
memory usage independently of the number of keys in S.

At this point one could ask: why not to use the well known
replacement selection algorithm to build files larger than the
internal memory area size? The reason is that the radix sort
algorithm sorts a block Bj in time O(|Bj |) while the replace-
ment selection algorithm requires O(|Bj | log |Bj |). We have
tried out both versions and the one using the radix sort algo-
rithm outperforms the other. A worthwhile optimization we
have used is the last run optimization proposed by Larson
and Graefe [22]. That is, the last block is kept in memory
instead of dumping it to disk to be read again in the second
step of the algorithm.

Figure 3(a) shows a logical view of the 2b buckets gener-
ated in the partitioning step. In reality, the 128-bit strings
belonging to each bucket are distributed among many files,
as depicted in Figure 3(b). In the example of Figure 3(b),
the 128-bit strings in bucket 0 appear in files 1 and N , the
128-bit strings in bucket 1 appear in files 1, 2 and N , and
so on.
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0 1 2

Buckets Logical View

2b
− 1

Figure 3: Situation of the buckets at the end of the
partitioning step: (a) Logical view (b) Physical view

This scattering of the 128-bit strings in the buckets could
generate a performance problem because of the potential
number of seeks needed to read the 128-bit strings in each
bucket from the N files on disk during the second step. But,
as we show later on in Section 5.3, the number of seeks can
be kept small using buffering techniques.

The searching step is responsible for generating a MPHF
for each bucket and for computing the offset array. Figure 4
presents the searching step algorithm. Statement 1 of Fig-

◮ Let H be a minimum heap of size N , where the
order relation in H is given by
i = x[96, 127] >> (32 − b) for x ∈ F

1. for j = 1 to N do { Heap construction }
1.1 Read the first 128-bit string x from File j on disk
1.2 Insert (i, j, x) in H

2. for i = 0 to 2b − 1 do
2.1 Read bucket Bi from disk driven by heap H
2.2 Generate a MPHF for bucket Bi

2.3 offset [i + 1] = offset [i] + |Bi|
2.4 Write the description of MPHFi and offset [i]

to the disk

Figure 4: Searching step

ure 4 constructs the heap H of size N . This is well known
to be linear on N . The order relation in H is given by the
bucket address i (i.e., the b most significant bits of x ∈ F ).
Statement 2 has two important steps. In statement 2.1, a
bucket is read from disk, as described below. In statement
2.2, a MPHF is generated for each bucket Bi using the in-
ternal memory based algorithm presented in Section 4.2. In
statement 2.3, the next entry of the offset array is computed.
Finally, statement 2.4 writes the description of MPHFi and
offset [i] to disk. Note that to compute offset [i + 1] we just
need the current bucket size and offset [i]. So, we just need
to maintain two entries of vector offset in memory all the
time.

The algorithm to read bucket Bi from disk is presented in
Figure 5. Bucket Bi is distributed among many files and
the heap H is used to drive a multiway merge operation.
Statement 1.1 extracts and removes triple (i, j, x) from H ,
where i is a minimum value in H . Statement 1.2 inserts x in
bucket Bi. Statement 1.3 performs a seek operation in File

j on disk for the first read operation and reads sequentially
all 128-bit strings x ∈ F that have the same index i and
inserts them all in bucket Bi. Finally, statement 1.4 inserts
in H the triple (i′, j, x′), where x′ ∈ F is the first 128-bit
string read from File j (in statement 1.3) that does not have
the same bucket address as the previous keys.

1. while bucket Bi is not full do
1.1 Remove (i, j, x) from H
1.2 Insert x into bucket Bi

1.3 Read sequentially all 128-bit strings from File j
that have the same i and insert them into Bi

1.4 Insert the triple (i′, j, x′) in H , where x′ is
the first 128-bit string read from File j that
does not have the same bucket index i

Figure 5: Reading a bucket

It is not difficult to see from this presentation of the search-
ing step that it runs in linear time. To achieve this con-
clusion we use O(N) computer words to allow the merge
operation to be performed in one pass through each file. In
addition, it is also important to observe that:

1. 2b < n
log n

(see Section 4.3),

2. N ≪ n (e.g., see Table 6 in Section 5.3) and

3. the internal algorithm runs in linear time, as shown in
Section 4.2.

In conclusion, our algorithm takes O(n) time because both
the partitioning and the searching steps run in O(n) time.
The space required for constructing the resulting MPHF is
O(N) computer words because the memory usage in the
partitioning step does not depend on the number of keys
in S and, in the searching step, the internal algorithm is
applied to problems of size up to 256. All together makes
our algorithm the first one that demonstrates the capability
of generating MPHFs for sets in the order of billions of keys.

4.2 The internal algorithm
We now describe the internal algorithm, a simple and space-
optimal way of constructing a minimal perfect hash function
for a set S of n elements. We assume that we can create and
access two truly random hash functions f0 and f1, mapping
elements of U to {0, . . . , τ − 1}, where τ ≥ (1+ ǫ)n for some
constant ǫ > 0. We consider the bipartite graph G with
vertex set V = {0, . . . , 2τ −1} and edge set E = {{f0(x), τ +
f1(x)} | x ∈ S}. From the theory of random graphs [4,
18] we know that G is acyclic with probability Ω(1), i.e,

Pr = e1/c
p

(c − 2)/c, where c = 2(1 + ǫ). Thus, in an
expected constant number of attempts we can find f0 and f1

such that G is acyclic. In fact, this has been used in previous
MPHF constructions [24], but we will proceed differently to
achieve a space usage of O(n) bits rather than O(n log n)
bits.

The data structure for the MPHF consists of two arrays of
2τ bits, T1 and T2. The space usage for this is 4(1 + ǫ)n
bits. We will use T1 to associate a bit with every vertex
of G. For every connected component of G, which is a tree
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by choice of f0 and f1, we choose an arbitrary root node
v0 in {0, . . . , τ − 1}. Then, for a given non-isolated vertex
v of G we can speak of its distance dv to the root of its
component. We let T1[v] = 1 if dv mod 4 ∈ {1, 2}, and
T1[v] = 0 otherwise. If v is an isolated vertex, we let T1[v] =
0. It is easy to implement the initialization of T1 in linear
time by using a depth-first search algorithm. Now consider
the following perfect hash function:

φ(x) =

(

f0(x) if T1[f0(x)] ⊕ T1[τ + f1(x)] = 0

τ + f1(x) otherwise.

(Again we denote exclusive-or by ⊕.) Now we will argue that
the function φ is 1-1 on S. An element x ∈ S corresponds
to the edge e = {f0(x), τ + f1(x)} in G. We argue that φ(x)
equals the vertex in e that is furthest away from the root
of the tree in which e is part: This is clearly true for edges
containing the root element, and the value of T1[f0(x)] ⊕
T1[τ + f1(x)] changes at each step on a root-to-leaf path, as
it should. Thus, φ is 1-1 on S.

T2 is used to map down to the interval {0, . . . , n− 1} rather
than {0, . . . , 2τ − 1}. Specifically, we use T2 to store the set
φ(S) (indicating elements in the set by 1s). Note that T2

can also be computed in linear time. For a set Y of integers,
let rankY (x) = |{y ∈ Y | y < x}|. Then the following is a
minimal perfect hash function for S:

h(x) = rankφ(S)(φ(x))

We need to specify how to compute the rank function, where
the set is represented as a bit vector T2. Note that comput-
ing rank(i) corresponds to counting the number of 1s in T2

in positions 0, . . . , i − 1. This is a well-studied primitive in
succinct data structures, and it is known that it is possible
to compute a rank in constant time, by using o(τ ) additional
space, see e.g. [29].

For completeness, we describe a practical variant that uses
ετ additional bits of space, where ε can be chosen as any
positive number. The evaluation time is O(1/ε). Conceptu-
ally, the scheme is very simple: Store explicitly the rank of
every κth index, where κ = ⌊log(τ )/ε⌋. To compute rank(i)
we look up the rank of the largest precomputed index j ≤ i,
and count the number of 1s from position j to i − 1. To
do this in time O(1/ε) we use a lookup table that allows us
to count the number of 1s in Ω(log τ ) bits in constant time.

Such a lookup table takes τΩ(1) space. Note that if, as in this
paper, we have many MPHFs, they can all share a lookup
table that may be larger than each individual MPHF, to
reduce the constant in the rank computation.

4.2.1 Improving the space
We now sketch a way of improving the space to just over
3 bits per key, adding a little complication to the scheme.
We can notice that the contents of T1 and T2 are not inde-
pendent. Specifically, there can be a non-zero bit in T1[i]
only if T2[i] = 1. We can create a compressed representa-
tion T ′

1 that uses only n bits and enables us to compute any
bit of T1 in constant time. First of all, if T2[i] = 0 we can
conclude that T1[i] = 0. We want to initialize T ′

1 such that
T1[i] = T ′

1[rankφ(S)(i)] whenever T2[i] = 1, i.e., i ∈ φ(S).
This is possible since rankφ(S)(i) is 1-1 on elements in φ(S).
In conclusion, we can replace T1 by T ′

1 and reduce the space
usage to 2(1 + ε)τ + n bits. It is easy to note that T ′

1 can
be computed in linear time as well.

4.2.2 The parameters choice for the internal algo-
rithm

The first parameter we are going to discuss is that ǫ respon-
sible for allowing us to construct an acyclic random graph
with high probability. We have set ǫ to 0.045 in order to
get a probability of approximately 0.33 of generating a ran-
dom graph with no cycles. As a consequence the expected
number of iterations to generate an acyclic graph is approx-
imately 3, which comes from 1/Pr.

The larger is the value of ǫ, the sparser is the random graph
used and, consequently, the larger is the storage require-
ments of the resulting MPHFs and the faster is the internal
algorithm because of the greater probability of getting an
acyclic random graph. We have chosen a small value for ǫ
because we are interested in more compact functions and
the runtime of the internal algorithm is dominated by the
time spent with I/Os.

The parameter κ is left to be set by the users so that they
can trade space for evaluation time and vice-versa. In the
experiments we set κ to 128 in order to spend less space
to store the MPHF of each bucket. This means that we
store in a rank table the number of bits set to 1 before every
128th entry in the bit vector T2. As ℓ is upper bounded by
256, then at most four and typically two 8-bit integers are
required to store the rank values for each bucket.

To compute rank(i) we look up the rank of the largest pre-
computed index j ≤ i, and count the number of 1s from
position j to i − 1. To do this we use a lookup table that
allows us to count the number of 1s in 16 bits in constant
time. Therefore, to compute the number of bits set to 1 in
128 bits we need 8 lookups. Such a lookup table takes 216

bytes of space that are shared for all the buckets. We could
trade space for evaluation time by using a lookup table of
28 bytes instead. However, 216 bytes is small enough to fit
in the cache and to have constant evaluation time.

4.3 Hash functions used by the algorithms
The aim of this section is threefold. First, in Section 4.3.1,
we define the hash function h0 used to split the key set S
into 2b buckets and, the hash functions hi1 and hi2 used by
the internal algorithm to generate the MPHF of each bucket,
where 0 ≤ i ≤ 2b − 1. Second, in Section 4.3.2, we present
the implementation details of those hash functions. Third,
in Section 4.3.3, we show the conditions that parameter b
must meet so that no bucket with more than ℓ keys is created
by h0. We also show that hi1 and hi2 are truly random hash
functions for the buckets.

4.3.1 Definitions
We have made the design decision to make use of tabulation
based hash functions, which seem to be a more practical
alternative than hash functions based on integer multiplica-
tion of keys.3 We will make extensive use of the linear hash

3For example, as far as we know the best way of implement-
ing multiplication of two 64-bit integers on contemporary
machines is by “school method” reduction to 4 multiplica-
tions of 32-bit integers. Similarly, a “ mod p” operation
on the resulting 128-bit integer, where p is a 32-bit integer,
seems to require 3 multiplications of 32-bit integers and 4
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functions analyzed by Alon, Dietzfelbinger, Miltersen and
Petrank [1]. To do so we consider a key as a 0-1 vector of
length L. The variable-length strings that we consider are
conceptually made fixed length by padding with zeros at the
end, which results in a unique vector since ascii character 0
does not appear in any string.

Mathematically, h0 is a randomly chosen linear map over
GF(2) from {0, 1}L to {0, 1}b. To get an efficient implemen-
tation, we use a tabulation idea from [2] where we can get
evaluation time O(L/ log σ) by using space Lσ – see Sec-

tion 4.3.2 for implementation details. Choosing σ = nΩ(1)

we obtain evaluation time O(L/ log n). (In theory we could
get evaluation time O(L/w), where w ≥ log n is the word
length of the computer, by first hashing down to O(log n)
bits using universal hashing; however, this does not seem to
give an improvement in practice.) We choose b as small as
possible such that the maximum bucket size is bounded by
ℓ with reasonable probability (some constant close to 1). By
a result of [1] we know that

b ≤ log n − log(ℓ/ log ℓ) + O(1). (2)

For the implementation, we will experimentally determine
the smallest possible choices of b.

To define hi1 and hi2 we proceed as follows. Again use
the linear hash function of [1] to implement hash functions
y1, . . . , yk from {0, 1}L to {0, 1}r−10, where r ≫ log ℓ and k
are parameters to be determined later. Note that the range
is the set of r-bit strings ending with a 0. The purpose of
the last 0 is to ensure that we can have no collision between
yj(x1) and yj(x2) ⊕ 1, 1 ≤ j ≤ k, for any pair of elements
x1 and x2. Let p be a prime number much larger than the
size of the desired range of hi1 and hi2, which in our case
is |Bi|, and let t1, . . . , t2k be tables of 2r random values in
{0, . . . , p − 1}. We then define:

ρ(x, s, ∆) =

0

@

k
X

j=1

tj [yj(x) ⊕ ∆] + s

2k
X

j=k+1

tj [yj(x) ⊕ ∆]

1

A mod p

hi1(x) = ρ(x, si, 0) mod |Bi|

hi2(x) = ρ(x, si, 1) mod |Bi| (3)

where the symbol ⊕ denotes exclusive-or and the variable
si is specific to bucket i. To find si we choose random val-
ues from {1, . . . , p− 1} until the functions hi1 and hi2 work
with the internal algorithm of Section 4.2. It is known that
a constant fraction of the set of all functions work; in Sec-
tion 4.3.3 we will argue that this will also be the case when
the hash functions are chosen as above.

4.3.2 Implementation details
In order to implement the functions h0, y1, y2, y3, . . . , yk to
be computed at once we use a function h′ from a family
of linear hash functions over GF(2) proposed by Alon, Di-
etzfelbinger, Miltersen and Petrank [1]. The function has
the following form: h′(x) = Ax, where x ∈ S and A is a
γ × L matrix in which the elements are randomly chosen
from {0, 1}. The output is a bit string of an a priori defined
size γ. In our implementation γ = 128 bits. It is impor-
tant to realize that this is a matrix multiplication over GF
(2). The implementation can be done using a bitwise-and
operator (&) and a function f : {0, 1}γ → {0, 1} to compute
parity instead of multiplying numbers. The parity function
f(a) produces 1 as a result if a ∈ {0, 1}γ has an odd number

modulo operations on 64-bit integers.

of bits set to 1, otherwise the result is 0. For example, let
us consider L = 3 bits, γ = 3 bits, x = 110 and

A =

2

4

1 0 1
0 0 1
1 1 0

3

5 ·

The number of rows gives the required number of bits in the
output, i.e., γ = 3. The number of columns corresponds to
the value of L. Then,

h′(x) =

2

4

1 0 1
0 0 1
1 1 0

3

5

2

4

1
1
0

3

5 =

2

4

b1
b2
b3

3

5

where b1 = f(101 & 110) = 1, b2 = f(001 & 110) = 0 and
b3 = f(110 & 110) = 0.

To get a fast evaluation time, some tabulation is required.
Note that if x is short, e.g. 8 bits, we can simply tabulate
all the function values and compute h′(x) by looking up the
value h′[x] in an array h′. To make the same thing work
for longer keys, split the matrix A into parts of 8 columns
each: A = A1|A2| . . . |A⌈L/8⌉, and create a lookup table h′

i

for each submatrix. Similarly split x into parts of 8 bits,
x = x1x2 . . . x⌈L/8⌉. Now h′(x) is the exclusive-or of h′

i[xi],
for i = 1, . . . , ⌈L/8⌉. Therefore, we have set σ to 256 so
that keys of size L can be processed in chunks of log σ = 8
bits. In our URL collection the largest key has 65 bytes, i.e.,
L = 520 bits.

The 32 most significant bits of h′(x), where x ∈ S, are
used to compute the bucket address of x, i.e., h0(x) =
h′(x)[96, 127] >> (32 − b). We use the symbol >> to de-
note the right shift of bits. The other 96 bits correspond to
y1(x), y2(x), . . . y6(x), taking k = 6. This would give r = 16,
however, to save space for storing the tables used for com-
puting hi1 and hi2, we hard coded the linear hash function
to make the most and the least significant bit of each chunk
of 16 bits equal to zero. Therefore, r = 15. This setup en-
able us to solving problems of up to 500 billion keys, which is
plenty of for all the applications we know of. If our algorithm
fails in any phase, we just restart it. As the parameters are
chosen to have success with high probability, the number of
reinitializations is O(1).

Finally, the last parameter related to the hash functions we
need to talk about is the prime number p. As p must be
much larger than the range of hi1 and hi2, then we set
it to the largest 32-bit integer that is a prime, i.e, p =
4294967291.

4.3.3 Analytical results
In this section we sketch the analysis of the hash functions
of our scheme. Note that the hash functions h0, y1, y2, . . . ,
yk have a range of b+kr bits in total. Thus, by universality
of linear hash functions [1], the probability that there exist
two keys that have the same values under all functions is at
most

`

n
2

´

/2b+kr. We will choose r such that this probability
becomes negligible. For simplicity, we assume that the zero
vector 0L is not in the set S – it is not hard to see that this
assumption is insignificant.

A direct consequence of Theorem 5 in [1] is that, assuming
b ≤ log n−log log n, the expected size of the largest bucket is
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O(n log b/2b), i.e., a factor O(log b) from the average bucket
size. This justifies the choice of b in Eq. (2), imposing the
requirement that ℓ ≥ log n log log n.

For any choice of s, we will now analyze the probability
(over the choice of y1, . . . , yk) that x 7→ ρ(x, s, 0) and x 7→
ρ(x, s, 1) map the elements of Bi uniformly and indepen-
dently to {0, . . . , p − 1}. A sufficient criterion for this is

that the sums
Pk

j=1 tj [yj(x)⊕∆] and
P2k

j=k+1 tj [yj(x)⊕∆],

∆ ∈ {0, 1}, have values that are uniform in {0, . . . , p − 1}
and independent. This is the case if for every x ∈ Bi there
exists an index jx such that neither yjx

or yjx
⊕ 1 belongs

to yjx
(Bi − {x}). Since y1, . . . , yk are universal hash func-

tions, the probability that this is not the case for a given
element x ∈ Bi is bounded by (|Bi|/2r)k ≤ (ℓ/2r)k. If we
choose, for example r = ⌈log( 3

√
nℓ)⌉ and k = 4 we have that

this probability is o(1/n). Hence, the probability that this
happens for any key in S is o(1).

Finally, we need to argue that for each bucket i it is easy to
find a value of s such that the pair hi1, hi2 is good for the
MPHF of the bucket. We know that with constant prob-
ability this is the case if the functions were truly random.
Now, as argued above, with probability 1−o(1) the functions
x 7→ ρ(x, s, 0) and x 7→ ρ(x, s, 1) are random and indepen-
dent on each bucket, for every value of s. Then, for a given
bucket and a given value of s there is a probability Ω(1)
that the pair of hash functions work for that bucket. Now,
for any ∆ ∈ {0, 1} and s 6= s′, the functions x 7→ ρ(x, s, ∆)
and x 7→ ρ(x, s′, ∆) are independent. Thus, by Chebychev’s
inequality the probability that less than a constant fraction
of the values of s work for a given bucket is O(1/p). So with
probability 1 − o(1) there is a constant fraction of “good”
choices of s in every bucket, which means that trying an ex-
pected constant number of random values for s is sufficient
in each bucket.

5. EXPERIMENTAL RESULTS
In this section we present the experimental results. We start
presenting the experimental setup. We then present the per-
formance of our algorithms considering construction time,
storage space and evaluation time as metrics for the result-
ing MPHFs. Finally, we discuss how the amount of internal
memory available affects the runtime of our two-step exter-
nal memory based algorithm.

5.1 The data and the experimental setup
The algorithms were implemented in the C language and
are available at http://www.dcc.ufmg.br/~fbotelho under
the GNU Lesser General Public License (LGPL). All experi-
ments were carried out on a computer running the Linux op-
erating system, version 2.6, with a 1 gigahertz AMD Athlon
64 Processor 3200+ and 1 gigabyte of main memory.

Our data consists of a collection of approximately 1 billion
URLs collected from the Web, each URL 64 characters long
on average. The collection is stored on disk in 60.5 gigabytes
of space.

5.2 Performance of the algorithms
We are firstly interested in verifying the claim that our two-
step external memory based algorithm runs in linear time.

Therefore, we run the algorithm for several numbers n of
keys in S. The values chosen for n were 1, 2, 4, 8, 16, 32,
64, 128, 512 and 1024 million. We limited the main mem-
ory in 512 megabytes for the experiments in order to show
that the algorithm does not need much internal memory to
generate MPHFs. The size µ of the a priori reserved inter-
nal memory area was set to 200 megabytes. In Section 5.3
we show how µ affects the runtime of the algorithm. The
parameter b (see Eq. (2)) was set to the minimum value
that gives us a maximum bucket size lower than ℓ = 256.
For each value chosen for n, the respective values for b are
13, 14, 15, 16, 17, 18, 19, 20, 22 and 23 bits.

In order to estimate the number of trials for each value of n
we use a statistical method for determining a suitable sam-
ple size (see, e.g., [19, Chapter 13]). We got that just one
trial for each n would be enough with a confidence level
of 95%. However, we made 10 trials. This number of trials
seems rather small, but, as shown below, the behavior of our
external algorithm is very stable and its runtime is almost
deterministic (i.e., the standard deviation is very small) be-
cause it is a random variable that follows a (highly concen-
trated) normal distribution.

Table 1 presents the runtime average for each n, the re-
spective standard deviations, and the respective confidence
intervals given by the average time ± the distance from av-
erage time considering a confidence level of 95%. Observing
the runtime averages we noticed that the algorithm runs in
expected linear time, as we have claimed. Better still, it
outputs the resulting MPHF faster than all practical algo-
rithms we know of, because of the following reasons. First,
the memory accesses during the generation of a MPHF for a
given bucket cause cache hits, once the problem was broken
down into problems of size up to 256. Second, at searching
step we are dealing with 16-byte (128-bit) strings instead of
64-byte URLs.

Figure 6 presents the runtime for each trial. In addition,
the solid line corresponds to a linear regression model ob-
tained from the experimental measurements. As we were
expecting the runtime for a given n has almost no variation.
The percentages of the total time spent in the partitioning
step and in the searching are approximately 49% and 51%,
respectively.

An intriguing observation is that the runtime of the algo-
rithm is almost deterministic, in spite of the fact that it uses
as building block an algorithm with a considerable fluctua-
tion in its runtime. A given bucket i, 0 ≤ i < 2b, is a small
set of keys (at most 256 keys) and, the runtime of the build-
ing block algorithm is a random variable Xi with high fluctu-
ation (it follows a geometric distribution with mean 1/Pr ≈
3). However, the runtime Y of the searching step of our
external algorithm is given by Y =

P

0≤i<2b Xi. Under the
hypothesis that the Xi are independent and bounded, the
law of large numbers (see, e.g., [19]) implies that the ran-
dom variable Y/2b converges to a constant as n → ∞. This
explains why the runtime is almost deterministic.

The next important metric on MPHFs is the space required
to store the functions. In order to apply the internal algo-
rithm to larger sets we randomly choose f0 and f1 from the
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n (millions) 1 2 4 8 16
Average time (s) 3.34 ± 0.02 6.97 ± 0.02 14.64 ± 0.04 31.75 ± 0.49 68.98 ± 0.82
SD 0.03 0.03 0.05 0.73 1.22

n (millions) 32 64 128 512 1024
Average time (s) 142.71 ± 1.44 288.95 ± 2.65 604.70 ± 6.22 2383.08 ± 22.11 4982.97 ± 55.14
SD 2.01 3.70 8.69 28.77 51.12

Table 1: External algorithm: average time in seconds for constructing a MPHF, the standard deviation (SD),
and the confidence intervals considering a confidence level of 95%.
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Figure 6: Partitioning time and searching time ver-
sus number of keys in S for our external algorithm.
The solid line corresponds to a linear regression
model for the total time.

family of universal hash functions proposed by Thorup [33].
The internal algorithm was analyzed under the full random-
ness assumption so that universal hashing is not enough to
guarantee that it works for every key set. But it has been
the case for every key set we have applied it to. Then, we
refer to this version as heuristic internal algorithm.

Table 2 shows how many bits per key the heuristic internal
algorithm requires to store the resulting MPHFs. In our
setup the heuristic internal algorithm requires around 2.1
and 3.3 bits per key to respectively store the resulting PHFs
and MPHFs. In a PC with 1 gigabyte of main memory the
largest set we are able to generate a MPHF for is a set with
30 millions of keys, because of the sparse graph required to
generate the functions is memory demanding.

n Bits/key

PHF MPHF
104 2.13 3.37
105 2.09 3.32
106 2.09 3.32
107 2.09 3.32

Table 2: Heuristic internal algorithm: space us-
age to respectively store the resulting PHFs and
MPHFs.

The external algorithm is designed to be used when the key
set does not fit in main memory. Table 3 shows that it
can be used for constructing PHFs and MPHFs that require
approximately 2.7 and 3.8 bits per key to be stored, respec-
tively. The lookup tables used by the hash functions of the

external algorithm require a fixed storage cost of 1,847,424
bytes. This makes the external algorithm unsuitable for sets
with less than 16 million of keys.

n b
Cost in bytes to Bits/key

store lookup tables PHF MPHF
104 6 1,847,424 2.93 3.71
105 9 1,847,424 2.73 3.57
106 13 1,847,424 2.65 3.82
107 16 1,847,424 2.51 3.70
108 20 1,847,424 2.80 4.02
109 23 1,847,424 2.65 3.83

Table 3: External algorithm: space usage to respec-
tively store the resulting PHFs and MPHFs.

To overcome the problem mentioned above we have imple-
mented a version of the external algorithm that uses the
pseudo random hash function proposed by Jenkins [20]. This
function was used instead of the linear hash function de-
scribed in Section 4.3.2, and instead of the two truly ran-
dom hash function of each bucket, i.e., hi1 and hi2, where
0 ≤ i < 2b. This version is, from now on, referred to as
heuristic external algorithm. The Jenkins function just loops
around the key doing bitwise operations over chunks of 12
bytes. Then, it returns the last chunk. Thus, in the map-
ping step, the key set S is mapped to F, which now contains
12-byte long strings instead of 16-byte long strings.

The Jenkins function needs just one random seed of 32 bits
to be stored instead of quite long lookup tables. Therefore,
there is no fixed cost to store the resulting MPHFs, but two
random seeds of 32 bits are required to describe the func-
tions hi1 and hi2 of each bucket. As a consequence, the
MPHFs generation and the MPHFs efficiency at retrieval
time are faster (see Table 4 and 5). The reasons are twofold.
First, we are dealing with 12-byte strings instead of 16-byte
strings. Second, there are no large lookup tables to cause
cache misses. For example, the construction time for a set
of 1024 million keys has dropped down to 1.04 hours in the
same setup. The disadvantage of using the Jenkins function
is that there is no formal proof that it works for every key
set. That is why the hash functions we have designed in this
paper are required, even being slower. In the implementa-
tion available, the hash functions to be used can be chosen
by the user.

Table 4 presents a comparison of our methods with the
ones proposed by Pagh [28] (Hash-displace), by Botelho, Ko-
hayakawa and Ziviani [5] (BKZ), by Czech, Havas and Ma-
jewski [9] (CHM), and by Fox, Chen and Heath [13] (FCH),
considering construction time and storage space as metrics.
The form of the MPHFs generated by those methods is pre-
sented in Section 3. Notice that they are the most important
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practical results on MPHFs known in the literature. Observ-
ing the results, our heuristic internal algorithm is the best
choice for sets that can be handled in main memory and our
external algorithm is the first one that can be applied to sets
that do not fit in main memory.

Time in seconds to construct a MPHF for 2 × 106 keys

Algorithms Function Construction bits/key
type time (seconds)

Heuristic Internal PHF 12.99 ± 1.01 2.09
Algorithm MPHF 13.94 ± 1.06 3.35
External PHF 6.92 ± 0.04 2.64

Algorithm MPHF 6.98 ± 0.01 3.85

Heuristic External MPHF 4.75 ± 0.02 3.7
Algorithm

Hash-displace MPHF 46.18 ± 1.06 64.00
BKZ MPHF 8.57 ± 0.31 32.00
CHM MPHF 13.80 ± 0.70 66.88
FCH MPHF 758.66 ± 126.72 5.84

Table 4: Construction time and storage space with-
out considering the fixed cost to store lookup tables.

Finally, we show how efficient is the resulting MPHFs at
retrieval time for the methods aforementioned, which is as
important as construction time and storage space. Table 5
presents the time, in seconds, to evaluate 2 × 106 keys.
We group the BKZ and CHM methods together because
the resulting MPHFs have the same form. From the re-
sults we can conclude that our heuristic internal algorithm
generates MPHFs that are as fast to be computed as the
ones generated by the most practical methods on MPHFs.
The MPHFs generated by the external algorithm are slower.
Nevertheless, the difference is not so expressive (each key
can be evaluated in few microseconds) and the external al-
gorithm is the first efficient option for sets that do not fit in
main memory.

Time in seconds to evaluate 2 × 106 keys

key length (bytes) Function 8 16 32 64 128
type

Heuristic Internal PHF 0.41 0.55 0.79 1.29 2.39
Algorithm MPHF 0.85 0.99 1.23 1.73 2.74
External PHF 2.05 2.31 2.84 3.99 7.22

Algorithm MPHF 2.55 2.83 3.38 4.63 8.18

Heuristic External MPHF 1.19 1.35 1.59 2.11 3.34
Algorithm

Hash-displace MPHF 0.56 0.69 0.93 1.44 2.54
BKZ/CHM MPHF 0.61 0.74 0.98 1.48 2.58

FCH MPHF 0.58 0.72 0.96 1.46 2.56

Table 5: Evaluation time.

It is important to emphasize that the BKZ, CHM and FCH
methods were analyzed under the full randomness assump-
tion as well as our heuristic internal algorithm. Therefore,
our external algorithm is the first one that has experimen-
tally proven practicality for large key sets and has both space
usage for representing the resulting functions and the con-
struction time carefully proven. Additionally, it is the fastest
algorithm for constructing the functions and the resulting
functions are much simpler than the ones generated by pre-
vious theoretical well-founded schemes so that they can be
used in practice. Also, it considerably improves the first step
given by Pagh with his hash and displace method [28].

5.3 Controlling disk accesses
In order to bring down the number of seek operations on
disk we benefit from the fact that our external algorithm
leaves almost all main memory available to be used as disk
I/O buffer. In this section we evaluate how much the pa-
rameter µ affects the runtime of our external algorithm. For
that we fixed n in approximately 1 billion of URLs, set the
main memory of the machine used for the experiments to
1 gigabyte and used µ equal to 100, 200, 300, 400 and 500
megabytes.

In order to amortize the number of seeks performed we use
a buffering technique [21]. We create a buffer j of size � =
µ/N for each file j, where 1 ≤ j ≤ N . Every time a read
operation is requested to file j and the data is not found
in the jth buffer, � bytes are read from file j to buffer j.
Hence, the number of seeks performed in the worst case
is given by β/� (remember that β is the size in bytes of
the fixed-length key set F ). For that we have made the
pessimistic assumption that one seek happens every time
buffer j is filled in. Thus, the number of seeks performed
in the worst case is 16n/�, since after the partitioning step
we are dealing with 128-bit (16-byte) strings instead of 64-
byte URLs, on average. Therefore, the number of seeks is
linear on n and amortized by �. It is important to emphasize
that the operating system uses techniques to diminish the
number of seeks and the average seek time. This makes the
amortization factor to be greater than � in practice.

Table 6 presents the number of files N , the buffer size used
for all files, the number of seeks in the worst case considering
the pessimistic assumption aforementioned, and the time to
generate a (minimal)PHF for approximately 1 billion of keys
as a function of the amount of internal memory available.
Observing Table 6 we noticed that the time spent in the
construction decreases as the value of µ increases. However,
for µ > 400, the variation on the time is not as significant
as for µ ≤ 400. This can be explained by the fact that
the kernel 2.6 I/O scheduler of Linux has smart policies for
avoiding seeks and diminishing the average seek time (see
http://www.linuxjournal.com/article/6931).

µ (MB) 100 200 300 400 500
N (files) 245 99 63 46 36� (in KB) 418 2, 069 4, 877 8, 905 14, 223
β/� 151, 768 30, 662 13, 008 7, 124 4, 461
Time (hours) 1.58 1.37 1.33 1.32 1.32

Table 6: Influence of the internal memory area size
(µ) in our external algorithm runtime.

6. CONCLUDING REMARKS
This paper has presented two novel algorithms for construct-
ing PHFs and MPHFs and three implementations of the al-
gorithms. The implementations in the C language are avail-
able at http://anonymous under the GNU Lesser General
Public License (LGPL).

The first algorithm, referred to as internal algorithm, as-
sumes that two truly random hash functions f0 and f1 are
available for free so that a PHF or a MPHF can be con-
structed from the acyclic random graph induced by f0 and
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f1. The full randomness assumption is not realistic because
each truly random hash functions would require at least
n log n bits to be stored, which is memory demanding.

In order to compare the internal algorithm with the most im-
portant practical results on MPHFs that consider the same
assumption (see Section 3) we have chosen the required hash
functions from the family of universal hash functions pro-
posed by Thorup [33]. As universal hash functions are not
enough to guarantee that the algorithm would work for ev-
ery key set, then we have referred to this version of the
algorithm as heuristic internal algorithm.

The heuristic internal algorithm outperforms all previous
methods considering the storage space required for the re-
sulting functions. The resulting PHFs and MPHFs require
approximately 2.1 and 3.3 bits per key to be stored, respec-
tively. Better still, the resulting functions are almost as fast
to be computed and generated as the ones coming from pre-
vious methods known in the literature. Tables 2, 4 and 5
summarize the experimental results.

The second algorithm, referred to as external algorithm,
contains, as a component, a provably good implementa-
tion of the internal memory algorithm. This means that
the two hash functions hi1 and hi2 (see Eq. (3)) used in-
stead of f0 and f1 behave as truly random hash functions
(see Section 4.3.3). The resulting PHFs and MPHFs re-
quire approximately 2.7 and 3.8 bits per key to be stored
and are generated faster than the ones generated by all pre-
vious methods (including our heuristic internal algorithm).
The external algorithm is the first one that has experimen-
tally proven practicality for sets in the order of billions of
keys and has time and space usage carefully analyzed with-
out unrealistic assumptions. As a consequence, the external
algorithm will work for every key set.

The resulting functions of the external algorithm are ap-
proximately four times slower than the ones generated by
our heuristic internal algorithm and by all previous practi-
cal methods (see Table 5). The reason is that to compute
the involved hash functions we need to access lookup tables
that do not fit in the cache. To overcome this problem, at
the expense of losing the guarantee that it works for every
key set, we have proposed a heuristic version of the exter-
nal algorithm that uses a very efficient pseudo random hash
function proposed by Jenkins [20]. The resulting functions
require the same storage space, are now less than two times
slower to be computed and are still faster to be generated.

Besides the data management applications for minimal per-
fect hash functions described in Section 1, the external algo-
rithm will be very useful for the information retrieval com-
munity as well. Search engines are nowadays indexing tens
of billions of pages and the work with huge collections is
becoming a daily task. For instance, the simple assignment
of number identifiers to web pages of a collection can be a
challenging task. While traditional databases simply cannot
handle more traffic once the working set of URLs does not
fit in main memory anymore [32], the external algorithm we
propose here to construct MPHFs can easily scale to bil-
lions of entries. Also, algorithms like PageRank [6], which
uses the web link structure to derive a measure of popularity

for Web pages, operates on the web graph. At construction
time of the graph, the URLs must be mapped to integers
that will be used to label the vertices. For the same reason,
the WebGraph research group [3] would also benefit from a
MPHF for sets in the order of billions of URLs to scale and
to improve the storage requirements of their algorithms on
Graph compression.
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