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Abstract. A brief explanation of perfect hash function search is presented followed by an in- 
formal analysis of the problem. 

1. I.N~~DIJCTION 

Given a set of N keys and a hash table of size r 2 N. a perfect hash function maps the 
keys into unique hash table addresses. The hash table loading factor &Fj is the ratio of the 
number of keys to the table size N/r. A minimal perfect hush function maps N keys into N 
contiguous locations for a LF of one. Weiderhold [I] distinguishes deterministic and proba- 
bilistic direct access methods. Perfect hash functions are deterministic and do not permit 
collisions, thus guaranteeing single probe retrieval. 

Perfect hash functions are difficult to find, even when almost minimal solutions are 
accepted. Knuth [2] estimates that only one in 10 million functions is a perfect hash function 
for mapping the 31 most frequently used English words into 41 addresses. Cichelli [3] devised 
an algorithm for computing machine independent, minimal perfect hash functions of the form: 

hash value = hash key length + associated value of the key’sfirst letter 
+ associated value of the keys last letter 

Cichelli’s machine independent hash function algorithm incorporates a two-stage ordering 
procedure for keys which effectively reduces the the size of the search for associated values but 
excessive computation is still required to find hash functions for sets of more than 40 keys. 
Cichelli’s method is also limited since two keys with the same fust and last letters and the 
same length are not permitted. 

2. CICHELLI’S ALGORITHM 

The following is an outline of Cichelli’s perfect hash function algorithm. 

Algorithm 0 
step1 : 

step2: 

step3: 

step4: 

compare each key against the rest. If two keys have the same first and last letters 
and the same length, report conflict and stop; otherwise continue. 
order the keys by non-increasing sum of frequencies of occurrence of first and last 
letters. 
reorder the keys from the beginning of the list so that if a key has fust and last 
letters which have appeared previously in the list, then that key is placed next in 
the list. 
add one word at a time to the solution, checking for hash value conflicts at each 
step. If a conflict occurs, go back to the previous word and vary its associated 
values until it is placed in the hash table successfully, then add the next word. 

We now give an informal analysis of the complexity of Cichelli’s algorithm. 
step1 : 

step2: 

as formulated here, this is an O(N2) computation. The same check can be made by 
isolating and sorting the first and last letter for each key, then sorting the N keys 
into lexicographical order on these sets of isolated letters. We can then make one 
pass through the keys comparing neighboring keys for matching groups of isolated 
letters. The cost of this procedure would then be dominated by the cost of the 
lexicographical sort, which can be done in time proportional to N log2 N. 
this initial ordering tallies the frequency of occurrence of first and last letters, which 
requires one pass over the N keys. A second pass is then made to calculate the sum 
of frequencies of each key. Sorting the keys into decending order of this sum, the 
dominant cost of this step, requires time proportional to N log2 N. 

Typeset by A&-T@ 

257 



288 N. CERCONE, M. KRAUSE 

srep3: the second ordering is an O(N*) heuristic. As each key is added to the new ordering, 
the remaining keys in the old ordering are scanned to decide which, if any, of them 
now have their hash values determined. This may require (N-l)*(N-2)/2 operations. 

srep4: despite the tendency of the two orderings to reduce the search, for most sets of keys, 
the backtracking phase of this algorithm is the most expensive. An average case 
complexity measure is difficult to calculate; Simon and I&lane [4] estimate an 
average search to include about one-half the total search space, giving a casual 
estimate of O(m*/2), where m is the size of the domain of values for each letter and 
s is the number of letters which occur in first or last position. 

Cichelli’s algorithm uses key length and the first and last letters (without regard to letter 
position) as the hash identifier. The number of keys which can be distinguished is restricted to 
P*CH(A,2) where P is the maximum key length, CH is the familiar choose function, and A 
is the cardinality of the alphabet. Integer assignment values are found using a simple 
backtracking process. Cichelli proposes no method of choosing a value of m, the size of the 
domain of associated letter values. This is an important parameter of the problem since m is 
the branching factor of the backtrack search tree. 

We have found that the time required to find a perfect hash function using this method 
varies greatly, depending less on the number of keys in the problem set than on the relation- 
ships among keys in terms of shared letters, Krause [S]. Because Cichelli’s algorithm relies on 
a relatively uninformed exhaustive search of the solution space, the cost of finding a solution 
can be quite high. This, in turn, limits the maximum size of the problem sets to which the 
algorithm can be applied. 

We next present an informal analysis of the nature of the problem. This analysis leads to 
some methods for overcoming the limitations of Cichelli’s strategy while permitting us to re- 
tain its benefits. 

. 
3.AN INF~~~MALANALYSISOFTHEPR~B~~~ 

We identify four subproblems: (1) choosing a set of formal properties of the keys to be 
used in the hashing ftlnction; (2) choosing a method of searching the space of possible 
solutions; (3) ordering the search variables to improve the performance of the search method; 
and (4) finding ways of enforcing a reasonable degree of minimality of the solution. 

Choosing Hash Identifiers 
Akey is identified to be a sequence of length no greater than P, made up of symbols from 

alphabet A. We assume that A has a lexicographical ordering defined on it. T, a space of 
possible keys, is determined by a given P and A. If T = card 

T=AP+AP-l + crb 
and A = card(A), then 

. . . + A = pi A’ (llilp) = A*(A -l)/(A-1) = @(A’) 
as A becomes large. When A becomes arbitrarily large, the limit of A&A-l) approaches 1, 
reducing the resultant factor Ap-1 to Ap. Thus T grows at a rate polynomial in A and ex: 
ponential in P. For example, consider A = the 26 lower case Roman letters and P=6; T=x26l 
= 3.2* lo*. 

Left0 Order in Keys 
The number of keys which can be distinguished when the set of properties which are used 

as hash identifiers are not ordered is given by the expression CH(A+i-1.1). (l<i<P), where 
CH(n,m) is the familiar choose function, defined as CH(n,m) = n!/(m!*(n-m)!). If A=26 and 
P=6, then the size of the key space is 

CH(A+i-l,l), (l%P) = CH(26,1)+CH(27,2)+...+CH(31,6) = 906,091 - 9*105. 
Compare this number with 3.2* lo8 distinguishable keys for the same values of A and P when 
the order of occurrence is taken into account. Without ordering, only about one in 350 keys in 
this example key space can be distinguished. 
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Hash Identifiers 
We propose Algorithm I to incorporate a procedure which automatically chooses, for each 

subset of keys of the same length, the smallest set of letter positions which distinguishes each 
key, when the order of occurrence of letters within a key is disregarded [5]. Since each letter has 
one associated value regardless of its position of occurrence, a key’s hash address is determined 
by the combination of letters in chosen positions. The number of different (unordered) subsets 
of letters is much smaller than the key space with the same maximum length, so the number 
of subsets of the key space which can be processed via Algorithm 1 is restricted. To keep the 
search for, and subsequent use of, a perfect hash function as simple as possible, we select the 
smallest subset of P letter positions in keys of length P which distinguish each of the given 
keys. The limit on the number of keys which can be distinguished using only one letter 
position is A. It may be possible to distinguish up to A2 keys with two chosen letter 
positions, but only if ab#ba. In algorithm 1 this distinction is not made, which reduces the 
number of different keys which can be recognized by this method to A(A-I)/2 when two letter 
positions are chosen. 

Algorithm 3, called algorithm cbk in [6]. relies interactively on human judgment to 
choose a set of charac-teristics for the hash function. It also takes into account the position of 
occurrence of letters and thus has the greatest possible discriminatory power. 

Assignment of Associated Letter Values 

An efficient search of integer assignment of values to letters which map the keys into the 
hash table is necessary to find an acceptable solution in reasonable time. If we view the search 
space as a tree, as shown in Figure I, there is a path of polynomial cost from the root (initial 
state of search) to each of an exponential number of possible solutions. In Figure 1, we have a 
set of three keys (N=3), two letters from chosen positions (s=2) and a maximum associated 
values of two (m=3, M=[0,1,23). The number of different assignments of integers to letters is 
ms, the number of leaf nodes in the tree. At tree depth one, the letter ‘a’ is assigned a value 
which determines the hash address of the key ‘aa’. At depth two, the assignment of a value to ‘b 
determines the hash addresses of the keys ‘bb’ and ‘ab’. The problem is to find a path which 
leads to an acceptable solution while generating as little as possible of the search tree, i.e., a 
classical backtrack search. 

Small search space where the set of $eys is (aa,ab,bb), L=2, M=N=3, and the letters are ordered 
ca,bx The leaf nodes are the ms3 4 possible combinations of associated values. Minimal 
solutions are cO,l>, cl,O>, 4,2>, and c2,1>, non-minimal ones are <0,2> and <2,0x 

Figure 1. Small example of the search space. 

Importance of Variable Ordering 
For perfect hash function search, the criterion for backtracking, call it predicate Q, can be 

defined as: given an assignment of values <xl ,...,xn> to the variables <al....,an>, define 
Q(xl ,...,xn) = False if there exist kil kj, izj, in K such that for both keys, all 

letters in chosen positions are in cal,...,a,> and H(Ki)=H(Kj). 
= True otherwise. 

When Q(q ,...,xn) is True, then <xl ,...,xn> represents a perfect hash function for the subset of 
keys in K for which H now has a value (those for which all letters in selected positions have 
been assigned a value). The backtrack condition Q(x 1 ,...,xn) demands that no two keys have the 
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same hash address. In order to test the predicate efficiently we keep an array of possible hash 
addresses where we record which addresses are occupied by keys whose chosen letters have been 
assigned values previously. When no letter values have been assigned, Q is vacuously true. 
Suppose that Q(x1 ,...,xi_l) is satisfied: extending the solution to Q(xl,...,xi_l,xi) involves 
two steps: (1) a value Xi is assigned to ai; and (2) the set of “new” keys, whose hash addresses 
are dependent on letters which are all found in al,..., ai must have their hash addresses ~akulated 

and compared with the present state of the hash table. If we let di denote the number of keys for 
which ai is the last chosen letter to be assigned a value, then each ordering of the letters will, 
in general, produce a different vector of values cdl,...,ds>. The sum of these di, llils, is N, 
the number of keys in the problem set. If we assign unit cost to generating the next trial value 
for a variable, then the cost of generating the entire tree is the number of nodes in the tree. 

The number of nodes in a complete tree with depth s and branching factor m is the sum of 
the number of nodes at each level in the tree, where the root is at level 0: 

C = Cmi, IS&s , = m*(ms-l)/(m-1) = O(mS+l) = O(mS) as m + infinity 
In our appl?%ion, s is the number of letters to be assigned values and m represents the number 
of values in the domain of each variable, M=[O...m-11. 

The choice of m is therefore critical since the size of the domain from which associated 
values are chosen determines the branching factor of the search tree. If m is set too small, there 
may be no solution to the problem set: if we set m’s value high enough, say infinity, we are 
assured a solution exists, there is little reason to expect that a minimal solution will be the 
first one found. In practice we have obtained impressive results by setting m to N although we 
know of no analytic method of determining the optimal value for m given a set of keys. 

In order to determine whether the current partial solution satisfies Q, one must perform dj 
‘th tests at each attempt to extend the solution to the J letter. We can assign to each node at 

depth j a cost of dj+l, the cost of generating the next value for aj plus dj times the (unit) cost 
of testin 
tree is Lg 

the hash address. If j is defined as dj+l, then the cost of visiting every node in the 
(cj*mJ)v l<j;i<s, which we consider the weighted cost tree lJ4’Cl-J. Each ordering of 

the variables determines a (possibly different) value of WCT; we consider that ordering of the 
variables which give the minimum WCT as the best ordering. 

Ordering Search Variables 
Given s search variables al ,...,as, what is the best ordering. Consider the permutation 

B=cal,...+> and define D(B)=cdl ,...,d,> to give the number of keys di whose hash addresses 
are newly determined when ai is assigned a value. Let C(B)=ccl.....cs> be D(B) with one added 
to each di so that Ci is the cost of visiting any node at level i in the tree. We regard C(B) as, a 
vector of coefficients for the series of mi terms, l<ils, which make up the WCT = (ci*m’), 
llils , = co + cl*m + . . . + cs*ms. The initial term, with CO defined to be one (unit time 
expense), is the cost of generating the root node of the search tree. Note the m factor in each of 
the terms in the total cost is growing exponentially with its distance from the root. 

Examining WCT convinces us that we want the smallest possible values assigned to the 
coefficients in the order cs. cs_l ,..., c2, cl, where cs is as small as possible and cl is as large 
as possible. We cannot have dscl, since at least one key has the last letter in the ordering as its 
last letter to be assigned a value. The best we can find is a letter as which has a frequency count 
of one so that it can be the determining value of only one key, giving cs a value of two. 

We can show that ms is larger than the sum of the remaining terms in the polynomial 
which describes the size of the search tree [5]. Since ms will contribute most of the cost of the 
tree, its coefficient in the WCT must be the smallest which occurs in any of the s! possible 
permutations of the variables. We therefore want to find a key which has at least one unique 
letter occurrence since it is only such a letter which can come last in the ordering and still place 
a single key in the hash table. 

A heuristic ordering strategy for the letters based on this observation would order the letters 
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by frequency in non-increasing order, so that al would have the highest frequency of occurrence 
and as would have the lowest. We find that this arrangement tends to occur when we first order 
the keys by sum of letter frequencies, then from each key choose the letters which have not 
occurred before in decreasing order of frequency of occurrence. The second ordering has the effect 
of making the coefficients of the m factors of the cost equation increase for the smaller factors 
and decrease for the larger m factors. 

The optimal ordering of the search variables, Bmin=<al, az,..., as>, is that for which the 
WCT is a minimum. If we were to generate all s! permutations of the letters, we would find 
that the optimal ordering is that for which D(B), and therefore C(B), has the largest 
lexicographical sort value. 

We can approach the optimal ordering by examining far fewer than s! permutations. This 
is accomplished by refining the second ordering, as suggested by Slingerland and Waugh [71, 
such that “each sublist of words which have equal frequency counts be ordered such that the 
words that will have the greatest second ordering effect, that is, words that will ‘expose’ the 
most words from the rest of the list, occur first”. This is explained by our model, since at each 
stage in the reordering process, we select the next key whose new letter will determine the 
greatest number of hash addresses among those keys which have the highest current sum of 
frequencies. This strategy tends to increase the coefficients of small m factors and thus decrease 
the coefficients of large m factors, which, in turn, reduces the WCT. 

Note that the WCT indicates only the size of the tree we are searching; it is a measure of 
the worst case complexity when we seek only one acceptable solution. The greatest value of 
the backtracking approach is that if we test the validity of all partial solutions, when we find 
that a partial solution <xl ,.,.,xi> does not satisfy Q, we can prune the subtree which has Xi as 
its root and avoid generating, for a value rejected at level i, c ml, lsjjls-1, full and partial 
solutions which have cx 1, x2,..., 

z Ccl+j 

xi> as an initial segment. The cost of this rejected subtree is 
*ml), lljls-1. Fortunately, the frequency of occurrence of a letter ai is an excellent 

heuristic value for predicting how likely it is that ai occurs in a key which may collide with 
other keys. 

In general, we may conclude that any polynomial-cost analysis that can be performed 
dynamically in the depth-first search which allows us to exclude from consideration values in 
the domain of a search variable will be worth pursuing since an exponentially-growing subtree 
will be pruned for each potential value we eliminate, 

4. POSTSCRIPT 

Remember, the ideal backtrack search is one that never backtracks. In order to achieve that 
level of performance, the search must be organized in such a way that a choice made at any 
stage of the search is known to be ultimately acceptable. We presented such a strategy in [5]. 
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