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Abstract. We propose a novel algorithm based on random graphs to
construct minimal perfect hash functions h. For a set of n keys, our
algorithm outputs h in expected time O(n). The evaluation of h(x) re-
quires two memory accesses for any key x and the description of h takes
up 1.15n words. This improves the space requirement to 55% of a previ-
ous minimal perfect hashing scheme due to Czech, Havas and Majewski.
A simple heuristic further reduces the space requirement to 0.93n words,
at the expense of a slightly worse constant in the time complexity. Large
scale experimental results are presented.

1 Introduction

Suppose U is a universe of keys. Let h : U → M be a hash function that maps
the keys from U to a given interval of integers M = [0,m−1] = {0, 1, . . . ,m−1}.
Let S ⊆ U be a set of n keys from U . Given a key x ∈ S, the hash function h
computes an integer in [0,m − 1] for the storage or retrieval of x in a hash
table. Hashing methods for non-static sets of keys can be used to construct data
structures storing S and supporting membership queries “x ∈ S?” in expected
time O(1). However, they involve a certain amount of wasted space owing to
unused locations in the table and waisted time to resolve collisions when two
keys are hashed to the same table location.

For static sets of keys it is possible to compute a function to find any key in a
table in one probe; such hash functions are called perfect. Given a set of keys S,
we shall say that a hash function h : U → M is a perfect hash function for S
if h is an injection on S, that is, there are no collisions among the keys in S:
if x and y are in S and x �= y, then h(x) �= h(y). Since no collisions occur, each
key can be retrieved from the table with a single probe. If m = n, that is, the
table has the same size as S, then h is a minimal perfect hash function. Minimal
perfect hash functions totally avoid the problem of wasted space and time.
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Minimal perfect hash functions are widely used for memory efficient storage
and fast retrieval of items from static sets, such as words in natural languages,
reserved words in programming languages or interactive systems, universal re-
source locations (URLs) in Web search engines, or item sets in data mining
techniques.

The aim of this paper is to describe a new way of constructing minimal perfect
hash functions. Our algorithm shares several features with the one due to Czech,
Havas and Majewski [4]. In particular, our algorithm is also based on the gen-
eration of random graphs G = (V,E), where E is in one-to-one correspondence
with the key set S for which we wish to generate the hash function. The two
main differences between our algorithm and theirs are as follows: (i) we generate
random graphs G = (V,E) with |V | = cn and |E| = |S| = n, where c = 1.15, and
hence G contains cycles with high probability, while they generate acyclic ran-
dom graphs G = (V,E) with |V | = cn and |E| = |S| = n, with a greater number
of vertices: |V | ≥ 2.09n; (ii) they generate order preserving minimal perfect hash
functions while our algorithm does not preserve order (a perfect hash function
h is order preserving if the keys in S are arranged in some given order and h
preserves this order in the hash table). Thus, our algorithm improves the space
requirement at the expense of generating functions that are not order preserving.

Our algorithm is efficient and may be tuned to yield a function h with a very
economical description. As the algorithm in [4], our algorithm produces h in O(n)
expected time for a set of n keys. The description of h requires 1.15n computer
words, and evaluating h(x) requires two accesses to an array of 1.15n integers.
We further derive a heuristic that improves the space requirement from 1.15n
words down to 0.93n words. Our scheme is very practical: to generate a minimal
perfect hash function for a collection of 100 million universe resource locations
(URLs), each 63 bytes long on average, our algorithm running on a commodity
PC takes 811 seconds on average.

2 Related Work

Czech, Havas and Majewski [5] provide a comprehensive survey of the most
important theoretical results on perfect hashing. In the following, we review
some of those results.

Fredman, Komlós and Szemerédi [10] showed that it is possible to construct
space efficient perfect hash functions that can be evaluated in constant time
with table sizes that are linear in the number of keys: m = O(n). In their
model of computation, an element of the universe U fits into one machine word,
and arithmetic operations and memory accesses have unit cost. Randomized
algorithms in the FKS model can construct a perfect hash function in expected
time O(n): this is the case of our algorithm and the works in [4, 14].

Many methods for generating minimal perfect hash functions use a mapping,
ordering and searching (MOS) approach, a description coined by Fox, Chen and
Heath [9]. In the MOS approach, the construction of a minimal perfect hash func-
tion is accomplished in three steps. First, the mapping step transforms the key
set from the original universe to a new universe. Second, the ordering step places
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the keys in a sequential order that determines the order in which hash values are
assigned to keys. Third, the searching step attempts to assign hash values to the
keys. Our algorithm and the algorithm presented in [4] use the MOS approach.

Pagh [14] proposed a family of randomized algorithms for constructing mini-
mal perfect hash functions. The form of the resulting function is h(x) = (f(x)+
dg(x)) mod n, where f and g are universal hash functions and d is a set of dis-
placement values to resolve collisions that are caused by the function f . Pagh
identified a set of conditions concerning f and g and showed that if these con-
ditions are satisfied, then a minimal perfect hash function can be computed in
expected time O(n) and stored in (2 + ε)n computer words. Dietzfelbinger and
Hagerup [6] improved [14], reducing from (2 + ε)n to (1 + ε)n the number of
computer words required to store the function, but in their approach f and g
must be chosen from a class of hash functions that meet additional requirements.
Differently from the works in [14, 6], our algorithm uses two universal hash func-
tions h1 and h2 randomly selected from a class of universal hash functions that
do not need to meet any additional requirements.

The work in [4] presents an efficient and practical algorithm for generat-
ing order preserving minimal perfect hash functions. Their method involves the
generation of acyclic random graphs G = (V,E) with |V | = cn and |E| = n,
with c ≥ 2.09. They showed that an order preserving minimal perfect hash
function can be found in optimal time if G is acyclic. To generate an acyclic
graph, two vertices h1(x) and h2(x) are computed for each key x ∈ S. Thus,
each set S has a corresponding graph G = (V,E), where V = {0, 1, . . . , t} and
E =

{{h1(x), h2(x)} : x ∈ S
}
. In order to guarantee the acyclicity of G, the algo-

rithm repeatedly selects h1 and h2 from a family of universal hash functions until
the corresponding graph is acyclic. Havas et al. [11] proved that if |V (G)| = cn
and c > 2, then the probability that G is acyclic is p = e1/c

√
(c − 2)/c. For

c = 2.09, this probability is p � 0.342, and the expected number of iterations to
obtain an acyclic graph is 1/p � 2.92.

3 The Algorithm

Let us show how the minimal perfect hash function h will be constructed. We
make use of two auxiliary random functions h1 and h2 : U → V , where V =
[0, t − 1] for some suitably chosen integer t = cn, where n = |S|. We build a
random graph G = G(h1, h2) on V , whose edge set is

{{h1(x), h2(x)} : x ∈ S
}
.

There is an edge in G for each key in the set of keys S.
In what follows, we shall be interested in the 2-core of the random graph G,

that is, the maximal subgraph of G with minimal degree at least 2 (see, e.g.,
[1, 12]). Because of its importance in our context, we call the 2-core the critical
subgraph of G and denote it by Gcrit. The vertices and edges in Gcrit are said to
be critical. We let Vcrit = V (Gcrit) and Ecrit = E(Gcrit). Moreover, we let Vncrit =
V − Vcrit be the set of non-critical vertices in G. We also let Vscrit ⊆ Vcrit be
the set of all critical vertices that have at least one non-critical vertex as a
neighbour. Let Encrit = E(G) − Ecrit be the set of non-critical edges in G.
Finally, we let Gncrit = (Vncrit ∪ Vscrit, Encrit) be the non-critical subgraph of G.
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procedure GenerateMPHF (S , g)
Mapping (S , G ) ;
Ordering (G , Gcrit , Gncrit ) ;
Searching (G , Gcrit , Gncrit , g ) ;

Fig. 1. Main steps of the algorithm for constructing a minimal perfect hash function

The non-critical subgraph Gncrit corresponds to the “acyclic part” of G. We have
G = Gcrit ∪ Gncrit.

We then construct a suitable labelling g : V → Z of the vertices of G: we
chooseg(v) foreachv ∈ V (G) insuchawaythath(x) = g(h1(x))+g(h2(x))(x ∈ S)
is a minimal perfect hash function for S. We will see later on that this labelling g
can be found in linear time if the number of edges in Gcrit is at most 1

2 |E(G)|.
Figure 1 presents a pseudo code for the algorithm. The procedure Gener-

ateMPHF (S, g) receives as input the set of keys S and produces the labelling g.
The method uses a mapping, ordering and searching approach. We now describe
each step.

3.1 Mapping Step

The procedure Mapping (S, G) receives as input the set of keys S and generates
the random graph G = G(h1, h2), by generating two auxiliary functions h1,
h2 : U → [0, t − 1].

The functions h1 and h2 are constructed as follows. We impose some upper
bound L on the lengths of the keys in S. To define hj (j = 1,2), we generate
an L × Σ table of random integers tablej . For a key x ∈ S of length |x| ≤ L
and j ∈ {1, 2}, we let

hj(x) =
(∑|x|

i=1 tablej [i, x[i]]
)

mod t.

The random graph G = G(h1, h2) has vertex set V = [0, t − 1] and edge set{{h1(x), h2(x)} : x ∈ S
}
. We need G to be simple, i.e., G should have neither

loops nor multiple edges. A loop occurs when h1(x) = h2(x) for some x ∈ S. We
solve this in an ad hoc manner: we simply let h2(x) = (2h1(x)+1) mod t in this
case. If we still find a loop after this, we generate another pair (h1, h2). When a
multiple edge occurs we abort and generate a new pair (h1, h2).

Analysis of the Mapping Step. We start by discussing some facts on random
graphs. Let G = (V,E) with |V | = t and |E| = n be a random graph in the
uniform model G(t, n), the model in which all the

((t
2)
n

)
graphs on V with n

edges are equiprobable. The study of G(t, n) goes back to the classical work of
Erdős and Rényi [7, 8, 13] (for a modern treatment, see [1, 12]). Let d = 2n/t
be the average degree of G. It is well known that, if d > 1, or, equivalently,
if c < 2 (recall that we have t = cn), then, almost every G contains1 a “giant”

1 As is usual in the theory of random graphs, we use the terms ‘almost every’ and
‘almost surely’ to mean ‘with probability tending to 1 as t → ∞’.



492 F.C. Botelho, Y. Kohayakawa, and N. Ziviani

component of order (1+o(1))bt, where b = 1−T/d, and 0 < T < 1 is the unique
solution to the equation Te−T = de−d. Moreover, all the other components
of G have O(log t) vertices. Also, the number of vertices in the 2-core of G (the
maximal subgraph of G with minimal degree at least 2) that do not belong to
the giant component is o(t) almost surely.

Pittel and Wormald [15] present detailed results for the 2-core of the giant
component of the random graph G. Since tablej (j ∈ {1, 2}) are random, G =
G(h1, h2) is a random graph. In what follows, we work under the hypothesis
that G = G(h1, h2) is drawn from G(t, n). Thus, following [15], the number of
vertices of Gcrit is

|V (Gcrit)| = (1 + o(1))(1 − T )bt (1)

almost surely. Moreover, the number of edges in this 2-core is

|E(Gcrit)| = (1 + o(1))
(
(1 − T )b + b(d + T − 2)/2

)
t (2)

almost surely. Let dcrit = 2|E(Gcrit)|/|V (Gcrit)| be the average degree of Gcrit.
We are interested in the case in which dcrit is a constant.

As mentioned before, for us to find the labelling g : V → Z of the vertices
of G = G(h1, h2) in linear time, we require that |E(Gcrit)| ≤ 1

2 |E(G)| = 1
2 |S| =

n/2. The crucial step now is to determine the value of c (in t = cn) to obtain a
random graph G = Gcrit ∪ Gncrit with |E(Gcrit)| ≤ 1

2 |E(G)|.
Table 3.1 gives some values for |V (Gcrit)| and |E(Gcrit)| using Eqs (1) and (2).

The theoretical value for c is around 1.152, which is remarkably close to the
empirical results presented in Table 3.1. In this table, generated from real data,
the probability P|E(Gcrit)| that |E(Gcrit)| ≤ 1

2 |E(G)| tends to 0 when c < 1.15 and
it tends to 1 when c ≥ 1.15 and n increases. We found this match between the
empirical and the theoretical results most pleasant, and this is why we consider
that this random graph, conditioned on being simple, strongly resembles the
random graph from the uniform model G(t, n).

We now briefly argue that the expected number of iterations to obtain a
simple graph G = G(h1, h2) is constant for t = cn and c = 1.15. Let p be the
probability of generating a random graph G without loops and without multiple
edges. If p is bounded from below by some positive constant, then we are done,
because the expected number of iterations to obtain such a graph is then 1/p =
O(1). To estimate p, we estimate the probability of obtaining n distinct objects
when we independently draw n objects from a universe of cardinality

(
t
2

)
=

Table 1. Determining the c value theoretically

d T b |V (Gcrit)| |E(Gcrit)| c

1.734 0.510 0.706 0.399n 0.498n 1.153
1.736 0.509 0.707 0.400n 0.500n 1.152
1.738 0.508 0.708 0.401n 0.501n 1.151
1.739 0.508 0.708 0.401n 0.501n 1.150
1.740 0.507 0.709 0.401n 0.502n 1.149
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Table 2. Probability P|Ecrit| that |E(Gcrit)| ≤ n/2 for different c values and different
number of keys for a collections of URLs

c URLs (n)

103 104 105 106 2 × 106 3 × 106 4 × 106

1.13 0.22 0.02 0.00 0.00 0.00 0.00 0.00
1.14 0.35 0.15 0.00 0.00 0.00 0.00 0.00
1.15 0.46 0.55 0.65 0.87 0.95 0.97 1.00
1.16 0.67 0.90 1.00 1.00 1.00 1.00 1.00
1.17 0.82 0.99 1.00 1.00 1.00 1.00 1.00

(
cn
2

) ∼ c2n2/2, with replacement. This latter probability is about e−(n
2)/(t

2) for

large n. As e−(n
2)/(t

2) → e−1/c2
> 0 as n → ∞, the expected number of iterations

is e1/c2
= 2.13 (recall c = 1.15). As the expected number of iterations is O(1),

the mapping step takes O(n) time.

3.2 Ordering Step

The procedure Ordering (G, Gcrit, Gncrit) receives as input the graph G and
partitions G into the two subgraphs Gcrit and Gncrit, so that G = Gcrit ∪Gncrit.
For that, the procedure iteratively remove all vertices of degree 1 until done.

Figure 2(a) presents a sample graph with 9 vertices and 8 edges, where the
degree of a vertex is shown besides each vertex. Applying the ordering step in this
graph, the 5-vertex graph showed in Figure 2(b) is obtained. All vertices with
degree 0 are non-critical vertices and the others are critical vertices. In order to
determine the vertices in Vscrit we collect all vertices v ∈ V (Gcrit) with at least
one vertex u that is in Adj(v) and in V (Gncrit), as the vertex 8 in Figure 2(b).

Analysis of the Ordering Step. The time complexity of the ordering step is
O(|V (G)|) (see [5]). As |V (G)| = t = cn, the ordering step takes O(n) time.

3.3 Searching Step

In the searching step, the key part is the perfect assignment problem: find g :
V (G) → Z such that the function h : E(G) → Z defined by

h(e) = g(a) + g(b) (e = {a, b}) (3)

d:2

d:5

d:2

d:2

d:1

d:2d:2

d:0

d:0

a) d:2

d:4

d:2

d:0

d:0

d:2d:2

d:0

d:0

b)

6

7 0

1

2

34

5

8

6

7 0

34

5

8

2

1

Fig. 2. Ordering step for a graph with 9 vertices and 8 edges
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is a bijection from E(G) to [0, n−1] (recall n = |S| = |E(G)|). We are interested
in a labelling g : V → Z of the vertices of the graph G = G(h1, h2) with the prop-
erty that if x and y are keys in S, then g(h1(x))+g(h2(x)) �= g(h1(y))+g(h2(y));
that is, if we associate to each edge the sum of the labels on its endpoints,
then these values should be all distinct. Moreover, we require that all the sums
g(h1(x)) + g(h2(x)) (x ∈ S) fall between 0 and |E(G)| − 1 = n − 1, so that we
have a bijection between S and [0, n − 1].

The procedure Searching (G, Gcrit, Gncrit, g) receives as input G, Gcrit, Gncrit

and finds a suitable log2 |V (G)| + 1 bit value for each vertex v ∈ V (G), stored
in the array g. This step is first performed for the vertices in the critical sub-
graph Gcrit of G (the 2-core of G) and then it is performed for the vertices in
Gncrit (the non-critical subgraph of G that contains the “acyclic part” of G).
The reason the assignment of the g values is first performed on the vertices
in Gcrit is to resolve reassignments as early as possible (such reassignments are
consequences of the cycles in Gcrit and are depicted hereinafter).

Assignment of Values to Critical Vertices. The labels g(v) (v ∈ V (Gcrit))
are assigned in increasing order following a greedy strategy where the critical ver-
tices v are considered one at a time, according to a breadth-first search on Gcrit.
If a candidate value x for g(v) is forbidden because setting g(v) = x would create
two edges with the same sum, we try x + 1 for g(v). This fact is referred to as a
reassignment.

Let AE be the set of addresses assigned to edges in E(Gcrit). Initially AE = ∅.
Let x be a candidate value for g(v). Initially x = 0. Considering the subgraph
Gcrit in Figure 2(b), a step by step example of the assignment of values to vertices
in Gcrit is presented in Figure 3. Initially, a vertex v is chosen, the assignment
g(v) = x is made and x is set to x + 1. For example, suppose that vertex 8 in
Figure 3(a) is chosen, the assignment g(8) = 0 is made and x is set to 1.

In Figure 3(b), following the adjacency list of vertex 8, the unassigned vertex
0 is reached. At this point, we collect in the temporary variable Y all adjacencies
of vertex 0 that have been assigned an x value, and Y = {8}. Next, for all u ∈ Y ,
we check if g(u) + x �∈ AE . Since g(8) + 1 = 1 �∈ AE , then g(0) is set to 1, x
is incremented by 1 (now x = 2) and AE = AE ∪ {1} = {1}. Next, vertex 3 is
reached, g(3) is set to 2, x is set to 3 and AE = AE ∪{2} = {1, 2}. Next, vertex 4

b) c) d)a) 7 0

34

8

7 0

34

8

7 0

34

8

7 0

34

8 g:0

g:1g:4 5

4

3 2

1

5 g:2g:3

g:0

g:1g:5 6

5

3 2

1

5 g:2g:3

g:0

g:1g:6 7

6

3 2

1

5 g:2g:3

g:0

Fig. 3. Example of the assignment of values to critical vertices
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is reached and Y = {3, 8}. Since g(3)+3 = 5 �∈ AE and g(8)+3 = 3 �∈ AE , then
g(4) is set to 3, x is set to 4 and AE = AE∪{3, 5} = {1, 2, 3, 5}. Finally, vertex 7 is
reached and Y = {0, 8}. Since g(0)+4 = 5 ∈ AE , x is incremented by 1 and set to
5, as depicted in Figure 3(c). Since g(8)+5 = 5 ∈ AE , x is again incremented by
1 and set to 6, as depicted in Figure 3(d). These two reassignments are indicated
by the arrows in Figure 3. Since g(0) + 6 = 7 �∈ AE and g(8) + 6 = 6 �∈ AE ,
then g(7) is set to 6 and AE = AE ∪ {6, 7} = {1, 2, 3, 5, 6, 7}. This finishes the
algorithm.

Assignment of Values to Non- ritical Vertices. As Gncrit is acyclic, we
can impose the order in which addresses are associated with edges in Gncrit, mak-
ing this step simple to solve by a standard depth first search algorithm. There-
fore, in the assignment of values to vertices in Gncrit we benefit from the unused
addresses in the gaps left by the assignment of values to vertices in Gcrit. For
that, we start the depth-first search from the vertices in Vscrit because the g val-
ues for these critical vertices have already been assigned and cannot be changed.

Considering the subgraph Gncrit in Figure 2(b), a step by step example of the
assignment of values to vertices in Gncrit is presented in Figure 4. Figure 4(a)
presents the initial state of the algorithm. The critical vertex 8 is the only one
that has non-critical neighbours. In the example presented in Figure 3, the ad-
dresses {0, 4} were not used. So, taking the first unused address 0 and the vertex
1, which is reached from the vertex 8, g(1) is set to 0 − g(8) = 0, as shown in
Figure 4(b). The only vertex that is reached from vertex 1 is vertex 2, so taking
the unused address 4 we set g(2) to 4 − g(1) = 4, as shown in Figure 4(c). This
process is repeated until the UnAssignedAddresses list becomes empty.

Analysis of the Searching Step. We shall demonstrate that (i) the maximum
value assigned to an edge is at most n−1 (that is, we generate a minimal perfect
hash function), and (ii) the perfect assignment problem (determination of g)
can be solved in expected time O(n) if the number of edges in Gcrit is at most
1
2 |E(G)|.

We focus on the analysis of the assignment of values to critical vertices be-
cause the assignment of values to non-critical vertices can be solved in linear
time by a depth first search algorithm.

We now define certain complexity measures. Let I(v) be the number of times
a candidate value x for g(v) is incremented. Let Nt be the total number of times

0 4 4

g:0

UnAssignedAddresses

g:0

0

UnAssignedAddresses

g:0

0

UnAssignedAddresses

g:0 g:4

g:0g:0c)g:0b)a)
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Fig. 4. Example of the assignment of values to non-critical vertices
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that candidate values x are incremented. Thus, we have Nt =
∑

I(v), where the
sum is over all v ∈ V (Gcrit).

For simplicity, we shall suppose that Gcrit, the 2-core of G, is connected.2

The fact that every edge is either a tree edge or a back edge (see, e.g., [3]) then
implies the following.

Theorem 1. The number of back edges Nbedges of G = Gcrit ∪ Gncrit is given
by Nbedges = |E(Gcrit)| − |V (Gcrit)| + 1. �


Our next result concerns the maximal value Amax assigned to an edge e ∈
E(Gcrit) after the assignment of g values to critical vertices.

Theorem 2. We have Amax ≤ 2|V (Gcrit)| − 3 + 2Nt.

Proof. (Sketch) The assignment of g values to critical vertices starts from 0, and
each edge e receives the label h(e) as given by Eq. (3). The g value for each vertex
v in V (Gcrit) is assigned only once. A little thought shows that maxv g(v) ≤
|V (Gcrit)| − 1 + Nt, where the maximum is taken over all vertices v in V (Gcrit).
Moreover, two distinct vertices get distinct g values. Hence, Amax ≤ (|V (Gcrit)|−
1 + Nt) + (|V (Gcrit)| − 2 + Nt) ≤ 2|V (Gcrit)| − 3 + 2Nt, as required. �


Maximal Value Assigned to an Edge. In this section we present the fol-
lowing conjecture.

Conjecture 1. For a random graph G with |E(Gcrit)| ≤ n/2 and |V (G)| = 1.15n,
it is always possible to generate a minimal perfect hash function because the
maximal value Amax assigned to an edge e ∈ E(Gcrit) is at most n − 1.

Let us assume for the moment that Nt ≤ Nbedges. Then, from Theorems 1
and 2, we have Amax ≤ 2|V (Gcrit)| − 3 + 2Nt ≤ 2|V (Gcrit)| − 3 + 2Nbedges ≤
2|V (Gcrit)|−3+2(|E(Gcrit)|−|V (Gcrit)|+1) ≤ 2|E(Gcrit)|−1. As by hypothesis
|E(Gcrit)| ≤ n/2, we have Amax ≤ n − 1, as required.

In the mathematical analysis of our algorithm, what is left open is a single
problem: prove that Nt ≤ Nbedges.3

We now show experimental evidence that Nt ≤ Nbedges. Considering Eqs (1)
and (2), the expected values for |V (Gcrit)| and |E(Gcrit)| for c = 1.15 are 0.401n
and 0.501n, respectively. From Theorem 1, Nbedges = 0.501n − 0.401n + 1 =
0.1n + 1. Table 3 presents the maximal value of Nt obtained during 10,000
executions of the algorithm for different sizes of S. The maximal value of Nt

was always smaller than Nbedges = 0.1n + 1 and tends to 0.059n for n ≥
1,000,000.

2 The number of vertices in Gcrit outside the giant component is provably very small
for c = 1.15; see [1, 12, 15].

3 Bollobás and Pikhurko [2] have investigated a very close vertex labelling problem for
random graphs. However, their interest was on denser random graphs, and it seems
that different methods will have to be used to attack the sparser case that we are
interested in here.
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Table 3. The maximal value of Nt for different number of URLs

n Maximal value of Nt

10,000 0.067n
100,000 0.061n

1,000,000 0.059n
2,000,000 0.059n

Time Complexity. We now show that the time complexity of determining g(v)
for all critical vertices x ∈ V (Gcrit) is O(|V (Gcrit)|) = O(n). For each unassigned
vertex v, the adjacency list of v, which we call Adj(v), must be traversed to collect
the set Y of adjacent vertices that have already been assigned a value. Then, for
each vertex in Y , we check if the current candidate value x is forbidden because
setting g(v) = x would create two edges with the same endpoint sum. Finally,
the edge linking v and u, for all u ∈ Y , is associated with the address that
corresponds to the sum of its endpoints. Let dcrit = 2|E(Gcrit)|/|V (Gcrit)| be
the average degree of Gcrit, note that |Y | ≤ |Adj(v)|, and suppose for simplicity
that |Adj(v)| = O(dcrit). Then, putting all these together, we see that the time
complexity of this procedure is

C(|V (Gcrit)|) =
∑

v∈V (Gcrit)

[ |Adj(v)| + (I(v) × |Y |) + |Y |]

≤ ∑
v∈V (Gcrit)

(2 + I(v))|Adj(v)| = 4|E(Gcrit)| + O(Ntdcrit).

As dcrit = 2 × 0.501n/0.401n � 2.499 (a constant) we have O(|E(Gcrit)|) =
O(|V (Gcrit)|). Supposing that Nt ≤ Nbedges, we have, from Theorem 1, that Nt ≤
|E(Gcrit)| − |V (Gcrit)| + 1 = O(|E(Gcrit)|). We conclude that C(|V (Gcrit)|) =
O(|E(Gcrit)|) = O(|V (Gcrit)|). As |V (Gcrit)| ≤ |V (G)| and |V (G)| = cn, the
time required to determine g on the critical vertices is O(n).

4 Experimental Results

We now present some experimental results. The same experiments were run
with our algorithm and the algorithm due to Czech, Havas and Majewski [4],
referred to as the CHM algorithm. The two algorithms were implemented in the
C language and are available at http://cmph.sf.net. Our data consists of a
collection of 100 million universe resource locations (URLs) collected from the
Web. The average length of a URL in the collection is 63 bytes. All experiments
were carried out on a computer running the Linux operating system, version
2.6.7, with a 2.4 gigahertz processor and 4 gigabytes of main memory.

Table 4 presents the main characteristics of the two algorithms. The num-
ber of edges in the graph G = (V,E) is |S| = n, the number of keys in the
input set S. The number of vertices of G is equal to 1.15n and 2.09n for our
algorithm and the CHM algorithm, respectively. This measure is related to the
amount of space to store the array g. This improves the space required to store
a function in our algorithm to 55% of the space required by the CHM algorithm.
The number of critical edges is 1

2 |E(G)| and 0 for our algorithm and the CHM
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Table 4. Main characteristics of the algorithms

c |E(G)| |V (G)| = |g| |E(Gcrit)| G Order preserving

Our algorithm 1.15 n cn 0.5|E(G)| cyclic no

CHM algorithm 2.09 n cn 0 acyclic yes

algorithm, respectively. Our algorithm generates random graphs that contain
cycles with high probability and the CHM algorithm generates acyclic random
graphs. Finally, the CHM algorithm generates order preserving functions while
our algorithm does not preserve order.

Table 5 presents time measurements. All times are in seconds. The table
entries are averages over 50 trials. The column labelled Ni gives the number of
iterations to generate the random graph G in the mapping step of the algorithms.
The next columns give the running times for the mapping plus ordering steps
together and the searching step for each algorithm. The last column gives the
percentage gain of our algorithm over the CHM algorithm.

Table 5. Time measurements for our algorithm and the CHM algorithm

n Our algorithm CHM algorithm Gain

Ni Map+Ord Search Total Ni Map+Ord Search Total
(%)

6,250,000 2.20 33.09 10.48 43.57 2.90 62.26 6.76 69.02 58
12,500,000 2.00 63.26 23.04 86.30 2.60 117.99 14.94 132.92 54
25,000,000 2.00 130.79 51.55 182.34 2.80 262.05 33.68 295.73 62
100,000,000 2.07 567.47 243.13 810.60 2.80 1,131.06 157.23 1,288.29 59

The mapping step of the new algorithm is faster because the expected num-
ber of iterations in the mapping step to generate G are 2.13 and 2.92 for our
algorithm and the CHM algorithm, respectively. The graph G generated by our
algorithm has 1.15n vertices, against 2.09n for the CHM algorithm. These two
facts make our algorithm faster in the mapping step. The ordering step of our
algorithm is approximately equal to the time to check if G is acyclic for the
CHM algorithm. The searching step of the CHM algorithm is faster, but the
total time of our algorithm is, on average, approximately 58% faster than the
CHM algorithm.

The experimental results fully backs the theoretical results. It is important
to notice the times for the searching step: for both algorithms they are not the
dominant times, and the experimental results clearly show a linear behavior for
the searching step.

We now present a heuristic that reduces the space requirement to any given
value between 1.15n words and 0.93n words. The heuristic reuses, when possible,
the set of x values that caused reassignments, just before trying x + 1 (see
Section 3.3). The lower limit c = 0.93 was obtained experimentally. We generate
10,000 random graphs for each size n (n = 105, 5 × 105, 106, 2 × 106). With
c = 0.93 we were always able to generate h, but with c = 0.92 we never succeeded.
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Decreasing the value of c leads to an increase in the number of iterations to
generate G. For example, for c = 1 and c = 0.93, the analytical expected number
of iterations are 2.72 and 3.17, respectively (for n = 12,500,000, the number of
iterations are 2.78 for c = 1 and 3.04 for c = 0.93). Table 6 presents the total
times to construct a function for n = 12,500,000, with an increase from 86.31
seconds for c = 1.15 (see Table 5) to 101.74 seconds for c = 1 and to 102.19
seconds for c = 0.93.

Table 6. Time measurements for our tuned algorithm with c = 1.00 and c = 0.93

n Our algorithm c = 1.00 Our algorithm c = 0.93

Ni Map+Ord Search Total Ni Map+Ord Search Total
12,500,000 2.78 76.68 25.06 101.74 3.04 76.39 25.80 102.19

We compared our algorithm with the ones proposed by Pagh [14] and Diet-
zfelbinger and Hagerup [6], respectively. The authors sent to us their source code.
In their implementation the set of keys is a set of random integers. We modified
our implementation to generate our h from a set of random integers in order to
make a fair comparison. For a set of 106 random integers, the times to generate
a minimal perfect hash function were 2.7s, 4s and 4.5s for our algorithm, Pagh’s
algorithm and Dietzfelbinger and Hagerup’s algorithm, respectively. Thus, our
algorithm was 48% faster than Pagh’s algorithm and 67% faster than Dietzfel-
binger and Hagerup’s algorithm, on average. This gain was maintained for sets
with different sizes. Our algorithm needs kn (k ∈ [0.93, 1.15]) words to store the
resulting function, while Pagh’s algorithm needs kn (k > 2) words and Dietzfel-
binger and Hagerup’s algorithm needs kn (k ∈ [1.13, 1.15]) words. The time to
generate the functions is inversely proportional to the value of k.

5 Conclusion

We have presented a practical method for constructing minimal perfect hash
functions for static sets that is efficient and may be tuned to yield a function
with a very economical description.
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8. P. Erdős and A. Rényi. On the evolution of random graphs. Magyar Tud. Akad.
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