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Abstract. The construction of perfect hash functions is a well-studied
topic. In this paper, this concept is generalized with the following defi-
nition. We say that a family of functions from [n] to [k] is a δ-balanced
(n, k)-family of perfect hash functions if for every S ⊆ [n], |S| = k, the
number of functions that are 1-1 on S is between T/δ and δT for some
constant T > 0. The standard definition of a family of perfect hash func-
tions requires that there will be at least one function that is 1-1 on S, for
each S of size k. In the new notion of balanced families, we require the
number of 1-1 functions to be almost the same (taking δ to be close to
1) for every such S. Our main result is that for any constant δ > 1, a δ-
balanced (n, k)-family of perfect hash functions of size 2O(k log log k) log n
can be constructed in time 2O(k log log k)n log n. Using the technique of
color-coding we can apply our explicit constructions to devise approxi-
mation algorithms for various counting problems in graphs. In particular,
we exhibit a deterministic polynomial time algorithm for approximating
both the number of simple paths of length k and the number of simple
cycles of size k for any k ≤ O( log n

log log log n
) in a graph with n vertices. The

approximation is up to any fixed desirable relative error.

Keywords: approximate counting of subgraphs, color-coding, perfect
hashing.

1 Introduction

This paper deals with explicit constructions of balanced families of perfect hash
functions. The topic of perfect hash functions has been widely studied under
the more general framework of k-restriction problems (see, e.g., [3],[13]). These
problems have an existential nature of requiring a set of conditions to hold at
least once for any choice of k elements out of the problem domain. We gener-
alize the definition of perfect hash functions, and introduce a new, simple, and
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yet useful notion which we call balanced families of perfect hash functions. The
purpose of our new definition is to incorporate more structure into the construc-
tions. Our explicit constructions together with the method of color-coding from
[5] are applied for problems of approximating the number of times that some
fixed subgraph appears within a large graph. We focus on counting simple paths
and simple cycles. Recently, the method of color-coding has found interesting ap-
plications in computational biology ([17],[18],[19],[12]), specifically in detecting
signaling pathways within protein interaction. This problem is formalized using
an undirected edge-weighted graph, where the task is to find a minimum weight
path of length k. The application of our results in this case is for approximating
deterministically the number of minimum weight paths of length k.

Perfect Hash Functions. An (n, k)-family of perfect hash functions is a family
of functions from [n] to [k] such that for every S ⊆ [n], |S| = k, there exists a
function in the family that is 1-1 on S. There is an extensive literature dealing
with explicit constructions of perfect hash functions. The construction described
in [5] (following [11] and [16]) is of size 2O(k) log n. The best known explicit
construction is of size ekkO(log k) log n, which closely matches the known lower
bound of Ω(ek log n/

√
k) [15].

Finding and Counting Paths and Cycles. The foundations for the graph
algorithms presented in this paper have been laid in [5]. Two main randomized
algorithms are presented there, as follows. A simple directed or undirected path
of length k − 1 in a graph G = (V, E) that contains such a path can be found
in 2O(k)|E| expected time in the directed case and in 2O(k)|V | expected time in
the undirected case. A simple directed or undirected cycle of size k in a graph
G = (V, E) that contains such a cycle can be found in either 2O(k)|V ||E| or
2O(k)|V |ω expected time, where ω < 2.376 is the exponent of matrix multiplica-
tion. The derandomization of these algorithms incur an extra log |V | factor. As
for the case of even cycles, it is shown in [20] that for every fixed k ≥ 2, there is
an O(|V |2) algorithm for finding a simple cycle of size 2k in an undirected graph.
Improved algorithms for detecting given length cycles have been presented in [6]
and [21]. An interesting result from [6], related to the questions addressed in
the present paper, is an O(|V |ω) algorithm for counting the number of cycles of
size at most 7. Flum and Grohe proved that the problem of counting exactly the
number of paths and cycles of length k in both directed and undirected graphs,
parameterized by k, is #W [1]-complete [10]. Their result implies that most likely
there is no f(k) · nc-algorithm for counting the precise number of paths or cy-
cles of length k in a graph of size n for any computable function f : IN → IN
and constant c. This suggests the problem of approximating these quantities.
Arvind and Raman obtained a randomized fixed-parameter tractable algorithm
to approximately count the number of copies of a fixed subgraph with bounded
treewidth within a large graph [7]. We settle in the affirmative the open ques-
tion they raise concerning the existence of a deterministic approximate counting
algorithm for this problem. For simplicity, we give algorithms for approximately
counting paths and cycles. These results can be easily extended to the problem
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of approximately counting bounded treewidth subgraphs, combining the same
approach with the method of [5]. The main new ingredient in our deterministic
algorithms is the application of balanced families of perfect hash functions- a
combinatorial notion introduced here which, while simple, appears to be very
useful.

Balanced Families of Perfect Hash Functions. We say that a family of
functions from [n] to [k] is a δ-balanced (n, k)-family of perfect hash functions
if for every S ⊆ [n], |S| = k, the number of functions that are 1-1 on S is
between T/δ and δT for some constant T > 0. Balanced families of perfect
hash functions are a natural generalization of the usual concept of perfect hash
functions. To assist with our explicit constructions, we define also the even more
generalized notion of balanced splitters. (See section 2 for the definition. This is
a generalization of an ordinary splitter defined in [15].)

Our Results. The main focus of the paper is on explicit constructions of bal-
anced families of perfect hash functions and their applications. First, we give
non-constructive upper bounds on the size of different types of balanced split-
ters. Then, we compare these bounds with those achieved by constructive al-
gorithms. Our main result is an explicit construction, for every 1 < δ ≤ 2,
of a δ-balanced (n, k)-family of perfect hash functions of size 2O(k log log k)(δ −
1)−O(log k) log n. The running time of the procedure that provides the construc-
tion is 2O(k log log k)(δ − 1)−O(log k)n logn + (δ − 1)−O(k/ log k).

Constructions of balanced families of perfect hash functions can be applied
to various counting problems in graphs. In particular, we describe deterministic
algorithms that approximate the number of times that a small subgraph appears
within a large graph. The approximation is always up to some multiplicative
factor, that can be made arbitrarily close to 1. For any 1 < δ ≤ 2, the number of
simple paths of length k − 1 in a graph G = (V, E) can be approximated up to
a multiplicative factor of δ in time 2O(k log log k)(δ − 1)−O(log k)|E| log |V | + (δ −
1)−O(k/ log k). The number of simple cycles of size k can be approximated up to a
multiplicative factor of δ in time 2O(k log log k)(δ − 1)−O(log k)|E||V | log |V | + (δ −
1)−O(k/ log k).

Techniques. We use probabilistic arguments in order to prove the existence of
different types of small size balanced splitters (whose precise definition is given
in the next section). To construct a balanced splitter, a natural randomized al-
gorithm is to choose a large enough number of independent random functions.
We show that in some cases, the method of conditional probabilities, when ap-
plied on a proper choice of a potential function, can derandomize this process
in an efficient way. Constructions of small probability spaces that admit k-wise
independent random variables are also a natural tool for achieving good split-
ting properties. The use of error correcting codes is shown to be useful when we
want to find a family of functions from [n] to [l], where l is much bigger than
k2, such that for every S ⊆ [n], |S| = k, almost all of the functions should be
1-1 on S. Balanced splitters can be composed in different ways and our main
construction is achieved by composing three types of splitters. We apply the
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explicit constructions of balanced families of perfect hash functions together
with the color-coding technique to get our approximate counting algorithms.

2 Balanced Families of Perfect Hash Functions

In this section we formally define the new notions of balanced families of perfect
hash functions and balanced splitters. Here are a few basics first. Denote by [n]
the set {1, . . . , n}. For any k, 1 ≤ k ≤ n, the family of k-sized subsets of [n] is
denoted by

([n]
k

)
. We denote by k mod l the unique integer 0 ≤ r < l for which

k = ql + r, for some integer q. We now introduce the new notion of balanced
families of perfect hash functions.

Definition 1. Suppose that 1 ≤ k ≤ n and δ ≥ 1. We say that a family of
functions from [n] to [k] is a δ-balanced (n, k)-family of perfect hash functions
if there exists a constant real number T > 0, such that for every S ∈

([n]
k

)
, the

number of functions that are 1-1 on S, which we denote by inj(S), satisfies the
relation T/δ ≤ inj(S) ≤ δT .

The following definition generalizes both the last definition and the definition of
a splitter from [15].

Definition 2. Suppose that 1 ≤ k ≤ n and δ ≥ 1, and let H be a family of
functions from [n] to [l]. For a set S ∈

([n]
k

)
we denote by split(S) the number of

functions h ∈ H that split S into equal-sized parts h−1(j)
⋂

S, j = 1, . . . , l. In
case l does not divide k we separate between two cases. If k ≤ l, then split(S)
is defined to be the number of functions that are 1-1 on S. Otherwise, k > l
and we require the first k mod l parts to be of size �k/l	 and the remaining
parts to be of size 
k/l�. We say that H is a δ-balanced (n, k, l)-splitter if there
exists a constant real number T > 0, such that for every S ∈

([n]
k

)
we have

T/δ ≤ split(S) ≤ δT .

The definitions of balanced families of perfect hash functions and balanced split-
ters given above enable us to state the following easy composition lemmas.

Lemma 1. For any k < l, let H be an explicit δ-balanced (n, k, l)-splitter of
size N and let G be an explicit γ-balanced (l, k)-family of perfect hash functions
of size M . We can use H and G to get an explicit δγ-balanced (n, k)-family of
perfect hash functions of size NM .

Proof. We compose every function of H with every function of G and get the
needed result. �


Lemma 2. For any k > l, let H be an explicit δ-balanced (n, k, l)-splitter of
size N . For every j, j = 1, . . . , l, let Gj be an explicit γj-balanced (n, kj)-family
of perfect hash functions of size Mj, where kj = �k/l	 for every j ≤ k mod l
and kj = 
k/l� otherwise. We can use these constructions to get an explicit
(δ

∏l
j=1 γj)-balanced (n, k)-family of perfect hash functions of size N

∏l
j=1 Mj.
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Proof. We divide the set [k] into l disjoint intervals I1, . . . , Il, where the size of
Ij is kj for every j = 1, . . . , l. We think of Gj as a family of functions from [n] to
Ij . For every combination of h ∈ H and gj ∈ Gj , j = 1, . . . , l, we create a new
function that maps an element x ∈ [n] to gh(x)(x). �


3 Probabilistic Constructions

We will use the following two claims: a variant of the Chernoff bound (c.f., e.g.,
[4]) and Robbins’ formula [9] (a tight version of Stirling’s formula).

Claim. Let Y be the sum of mutually independent indicator random variables,
μ = E[Y ]. For all 1 ≤ δ ≤ 2,

Pr[
μ

δ
≤ Y ≤ δμ] > 1 − 2e−(δ−1)2μ/8.

Claim. For every integer n ≥ 1,
√

2πnn+1/2e−n+1/(12n+1) < n! <
√

2πnn+1/2e−n+1/(12n).

Now we state the results for δ-balanced (n, k, l)-splitters of the three types: k = l,
k < l and k > l.

Theorem 1. For any 1 < δ ≤ 2, there exists a δ-balanced (n, k)-family of perfect
hash functions of size O( ek

√
k log n

(δ−1)2 ).

Proof. (sketch) Set p = k!/kk and M = � 8(k ln n+1)
p(δ−1)2 	. We choose M independent

random functions. For a specific set S ∈
([n]

k

)
, the expected number of functions

that are 1-1 on S is exactly pM . By the Chernoff bound, the probability that
for at least one set S ∈

([n]
k

)
, the number of functions that are 1-1 on S will not

be as needed is at most
(

n

k

)
2e−(δ−1)2pM/8 ≤ 2

(
n

k

)
e−(k ln n+1) < 1. �


Theorem 2. For any k < l and 1 < δ ≤ 2, there exists a δ-balanced (n, k, l)-

splitter of size O( ek2/lk log n
(δ−1)2 ).

Proof. (sketch) We set p = l!
(l−k)!lk and M = � 8(k ln n+1)

p(δ−1)2 	. Using Robbins’ for-
mula, we get

1
p

≤ ek+1/12(1 − k

l
)l−k+1/2 ≤ ek+1/12e−

k
l (l−k+1/2) = e

k2−k/2
l +1/12.

We choose M independent random functions and proceed as in the proof of
Theorem 1. �
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For the case k > l, the probabilistic arguments from [15] can be generalized to
prove existence of balanced (n, k, l)-splitters. Here we focus on the special case
of balanced (n, k, 2)-splitters, which will be of interest later.

Theorem 3. For any k ≥ 2 and 1 < δ ≤ 2, there exists a δ-balanced (n, k, 2)-
splitter of size O(k

√
k log n

(δ−1)2 ).

Proof. (sketch) Set M = � 8(k lnn+1)
p(δ−1)2 	, where p denotes the probability to get the

needed split in a random function. If follows easily from Robbins’ formula that
1/p = O(

√
k). We choose M independent random functions and proceed as in

the proof of Theorem 1. �


4 Explicit Constructions

In this paper, we use the term explicit construction for an algorithm that lists all
the elements of the required family of functions in time which is polynomial in
the total size of the functions. For a discussion on other definitions for this term,
the reader is referred to [15]. We state our results for δ-balanced (n, k, l)-splitters
of the three types: k = l, k < l and k > l.

Theorem 4. For any 1 < δ ≤ 2, a δ-balanced (n, k)-family of perfect hash
functions of size O( ek

√
k log n

(δ−1)2 ) can be constructed deterministically within time
(
n
k

)
ekkO(1)n log n

(δ−1)2 .

Proof. We set p = k!/kk and M = � 16(k ln n+1)
p(δ−1)2 	. Denote λ = (δ − 1)/4, so

obviously 0 < λ ≤ 1/4. Consider a choice of M independent random functions
from [n] to [k]. This choice will be derandomized in the course of the algorithm.
For every S ∈

([n]
k

)
, we define XS =

∑M
i=1 XS,i, where XS,i is the indicator

random variable that is equal to 1 iff the ith function is 1-1 on S. Consider the
following potential function:

Φ =
∑

S∈([n]
k )

eλ(XS−pM) + eλ(pM−XS).

Its expectation can be calculated as follows:

E[Φ] =
(

n

k

)
(e−λpM

M∏

i=1

E[eλXS,i ] + eλpM
M∏

i=1

E[e−λXS,i ]) =

=
(

n

k

)
(e−λpM [peλ + (1 − p)]M + eλpM [pe−λ + (1 − p)]M ).

We now give an upper bound for E[Φ]. Since 1 + u ≤ eu for all u and e−u ≤
1 −u + u2/2 for all u ≥ 0, we get that pe−λ + (1 − p) ≤ ep(e−λ−1) ≤ ep(−λ+λ2/2).
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Define ε = eλ − 1, that is λ = ln(1 + ε). Thus peλ + (1 − p) = 1 + εp ≤ eεp. This
implies that

E[Φ] ≤ nk((
eε

1 + ε
)pM + eλ2pM/2).

Since eu ≤ 1 + u + u2 for all 0 ≤ u ≤ 1, we have that eε

1+ε = eeλ−1−λ ≤ eλ2
. We

conclude that
E[Φ] ≤ 2nkeλ2pM ≤ e2(k ln n+1).

We now describe a deterministic algorithm for finding M functions, so that
E[Φ] will still obey the last upper bound. This is performed using the method of
conditional probabilities (c.f., e.g., [4], chapter 15). The algorithm will have M
phases, where each phase will consist of n steps. In step i of phase j the algorithm
will determine the ith value of the jth function. Out of the k possible values,
we greedily choose the value that will decrease E[Φ] as much as possible. We
note that at any specific step of the algorithm, the exact value of the conditional
expectation of the potential function can be easily computed in time

(
n
k

)
kO(1).

After all the M functions have been determined, every set S ∈
([n]

k

)
satisfies

the following:
eλ(XS−pM) + eλ(pM−XS) ≤ e2(k ln n+1).

This implies that

−2(k ln n + 1) ≤ λ(XS − pM) ≤ 2(k ln n + 1).

Recall that λ = (δ − 1)/4, and therefore

(1 − 8(k ln n + 1)
(δ − 1)pM

)pM ≤ XS ≤ (1 +
8(k ln n + 1)
(δ − 1)pM

)pM.

Plugging in the values of M and p we get that

(1 − δ − 1
2

)pM ≤ XS ≤ (1 +
δ − 1

2
)pM.

Using the fact that 1/u ≤ 1 − (u − 1)/2 for all 1 ≤ u ≤ 2, we get the desired
result

pM/δ ≤ XS ≤ δpM.

�


Theorem 5. For any 1 < δ ≤ 2, a δ-balanced (n, k, � 2k2

δ−1	)-splitter of size
kO(1) log n
(δ−1)O(1) can be constructed in time kO(1)n log n

(δ−1)O(1) .

Proof. Denote q = � 2k2

δ−1	. Consider an explicit construction of an error correcting
code with n codewords over alphabet [q] whose normalized Hamming distance is
at least 1 − 2

q . Such explicit codes of length O(q2 log n) exist [1]. Now let every
index of the code corresponds to a function from [n] to [q]. If we denote by M
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the length of the code, which is in fact the size of the splitter, then for every
S ∈

([n]
k

)
, the number of good splits is at least

(1 −
(

k

2

)
2
q
)M ≥ (1 − δ − 1

2
)M ≥ M/δ,

where the last inequality follows from the fact that 1 − (u − 1)/2 ≥ 1/u for all
1 ≤ u ≤ 2. �


For our next construction we use small probability spaces that support a se-
quence of almost k-size independent random variables. A sequence X1, . . . , Xn of
random Boolean variables is (ε, k)-independent if for any k positions i1 < · · · < ik
and any k bits α1, . . . , αk we have

|Pr[Xi1 = α1, . . . , Xik
= αk] − 2−k| < ε.

It is known ([14],[2],[1]) that sample spaces of size 2O(k+log 1
ε ) log n that sup-

port n random variables that are (ε, k)-independent can be constructed in time
2O(k+log 1

ε )n logn.

Theorem 6. For any k ≥ l and 1 < δ ≤ 2, a δ-balanced (n, k, l)-splitter of size
2O(k log l−log(δ−1)) log n can be constructed in time 2O(k log l−log(δ−1))n log n.

Proof. We use an explicit probability space of size 2O(k log l−log(δ−1)) log n that
supports n�log2 l	 random variables that are (ε, k�log2 l	)-independent where
ε = 2−k�log2 l�−1(δ − 1). We attach �log2 l	 random variables to each element of
[n], thereby assigning it a value from [2�log2 l�]. In case l is not a power of 2, all
elements of [2�log2 l�] − [l] can be mapped to [l] by some arbitrary fixed function.
If follows from the construction that there exists a constant T > 0 so that for
every S ∈

([n]
k

)
, the number of good splits satisfies

T

δ
≤ (1 − δ − 1

2
)T ≤ split(S) ≤ (1 +

δ − 1
2

)T ≤ δT.

�


Corollary 1. For any fixed c > 0, a (1 + c−k)-balanced (n, k, 2)-splitter of size
2O(k) log n can be constructed in time 2O(k)n logn.

Setting l = k in Theorem 6, we get that a δ-balanced (n, k)-family of per-
fect hash functions of size 2O(k log k−log(δ−1)) log n can be constructed in time
2O(k log k−log(δ−1))n logn. Note that if k is small enough with respect to n, say
k = O(log n/ log log n), then for any fixed 1 < δ ≤ 2, this already gives a family
of functions of size polynomial in n. We improve upon this last result in the
following Theorem, which is our main construction.

Theorem 7. For 1 < δ ≤ 2, a δ-balanced (n, k)-family of perfect hash func-
tions of size 2O(k log log k)

(δ−1)O(log k) log n can be constructed in time 2O(k log log k)

(δ−1)O(log k) n log n+(δ−
1)−O(k/ log k). In particular, for any fixed 1 < δ ≤ 2, the size is 2O(k log log k) log n
and the time is 2O(k log log k)n log n.
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Proof. (sketch) Denote l = �log2 k	 ,δ′ = δ1/3, δ′′ = δ1/(3l), and q = � 2k2

δ′−1	. Let
H be a δ′-balanced (q, k, l)-splitter of size 2O(k log log k)(δ′ − 1)−O(1) constructed
using Theorem 6. For every j, j = 1, . . . , l, let Bj be a δ′′-balanced (q, kj)-
family of perfect hash functions of size O(ek/ log kk)(δ′′ − 1)−O(1) constructed
using Theorem 4, where kj = �k/l	 for every j ≤ k mod l and kj = 
k/l�
otherwise. Using Lemma 2 for composing H and {Bj}l

j=1, we get a δ′2-balanced
(q, k)-family D′ of perfect hash functions.

Now let D′′ be a δ′-balanced (n, k, q)-splitter of size kO(1)(δ′ − 1)−O(1) log n
constructed using Theorem 5. Using Lemma 1 for composing D′ and D′′, we
get a δ-balanced (n, k)-family of perfect hash functions, as needed. Note that for
calculating the size of each Bj , we use the fact that eu/2 ≤ 1 + u ≤ eu for all
0 ≤ u ≤ 1, and get the following:

δ′′ − 1 = (1 + (δ − 1))
1
3l − 1 ≥ e

δ−1
6l − 1 ≥ δ − 1

6l
.

The time needed to construct each Bj is 2O(k)(δ′ −1)−O(k/ log k). The 2O(k) term
is omitted in the final result, as it is negligible in respect to the other terms. �


5 Approximate Counting of Paths and Cycles

We now state what it means for an algorithm to approximate a counting problem.

Definition 3. We say that an algorithms approximates a counting problem by
a multiplicative factor δ ≥ 1 if for every input x, the output ALG(x) of the
algorithm satisfies N(x)/δ ≤ ALG(x) ≤ δN(x), where N(x) is the exact output
of the counting problem for input x.

The technique of color-coding is used for approximate counting of paths and
cycles. Let G = (V, E) be a directed or undirected graph. In our algorithms
we will use constructions of balanced (|V |, k)-families of perfect hash functions.
Each such function defines a coloring of the vertices of the graph. A path is said
to be colorful if each vertex on it is colored by a distinct color. Our goal is to
count the exact number of colorful paths in each of these colorings.

Theorem 8. For any 1 < δ ≤ 2, the number of simple (directed or undirected)
paths of length k − 1 in a (directed or undirected) graph G = (V, E) can be
approximated up to a multiplicative factor of δ in time 2O(k log log k)

(δ−1)O(log k) |E| log |V | +

(δ − 1)−O(k/ log k).

Proof. (sketch) We use the δ-balanced (|V |, k)-family of perfect hash functions
constructed using Theorem 7. Each function of the family defines a coloring of
the vertices in k colors. We know that there exists a constant T > 0, so that
for each set S ⊆ V of k vertices, the number of functions that are 1-1 on S is
between T/δ and δT . The exact value of T can be easily calculated in all of our
explicit constructions.



444 N. Alon and S. Gutner

For each coloring, we use a dynamic programming approach in order to cal-
culate the exact number of colorful paths. We do this in k phases. In the ith
phase, for each vertex v ∈ V and for each subset C ⊆ {1, . . . , k} of i colors, we
calculate the number of colorful paths of length i − 1 that end at v and use the
colors of C. To do so, for every edge (u, v) ∈ E, we check whether it can be the
last edge of a colorful path of length i−1 ending at either u or v. Its contribution
to the number of paths of length i − 1 is calculated using our knowledge on the
number of paths of length i − 2. The initialization of phase 1 is easy and after
performing phase k we know the exact number of paths of length k − 1 that end
at each vertex v ∈ V . The time to process each coloring is therefore 2O(k)|E|.

We sum the results over all colorings and all ending vertices v ∈ V . The result
is divided by T . In case the graph is undirected ,we further divide by 2. This is
guaranteed to be the needed approximation. �

Theorem 9. For any 1 < δ ≤ 2, the number of simple (directed or undirected)
cycles of size k in a (directed or undirected) graph G = (V, E) can be approxi-
mated up to a multiplicative factor of δ in time 2O(k log log k)

(δ−1)O(log k) |E||V | log |V | + (δ −
1)−O(k/ log k).

Proof. (sketch) We use the δ-balanced (|V |, k)-family of perfect hash functions
constructed using Theorem 7. For every set S of k vertices, the number of func-
tions that are 1-1 on S is between T/δ and δT . Every function defines a coloring
and for each such coloring we proceed as follows. For every vertex s ∈ V we run
the algorithm described in the proof of Theorem 8 in order to calculate for each
vertex v ∈ V the exact number of colorful paths of length k − 1 from s to v.
In case there is an edge (v, s) that completes a cycle, we add the result to our
count.

We sum the results over all the colorings and all pairs of vertices s and v as
described above. The result is divided by kT . In case the graph is undirected,
we further divide by 2. The needed approximation is achieved. �

Corollary 2. For any constant c > 0, there is a deterministic polynomial time
algorithm for approximating both the number of simple paths of length k and
the number of simple cycles of size k for every k ≤ O( log n

log log log n ) in a graph
with n vertices, where the approximation is up to a multiplicative factor of 1 +
(ln lnn)−c ln ln n.

6 Concluding Remarks

– An interesting open problem is whether for every fixed δ > 1, there ex-
ists an explicit δ-balanced (n, k)-family of perfect hash functions of size
2O(k) log n. The key ingredient needed is an improved construction of bal-
anced (n, k, 2)-splitters. Such splitters can be applied successively to get the
balanced (n, k, �log2 k	)-splitter needed in Theorem 7. It seems that the con-
structions presented in [2] could be good candidates for balanced (n, k, 2)-
splitters, although the Fourier analysis in this case (along the lines of [8])
seems elusive.
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– Other algorithms from [5] can be generalized to deal with counting problems.
In particular it is possible to combine our approach here with the ideas of
[5] based on fast matrix multiplication in order to approximate the num-
ber of cycles of a given length. Given a forest F on k vertices, the number
of subgraphs of G isomorphic to F can be approximated using a recursive
algorithm similar to the one in [5]. For a weighted graph, we can approxi-
mate, for example, both the number of minimum (maximum) weight paths
of length k−1 and the number of minimum (maximum) weight cycles of size
k. Finally, all the results can be readily extended from paths and cycles to
arbitrary small subgraphs of bounded tree-width. We omit the details.

– In the definition of a balanced (n, k)-family of perfect hash functions, there
is some constant T > 0, such that for every S ⊆ [n], |S| = k, the number
of functions that are 1-1 on S is close to T . We note that the value of T
need not be equal to the expected number of 1-1 functions on a set of size
k, for the case that the functions were chosen independently according to
a uniform distribution. For example, the value of T in the construction of
Theorem 7 is not even asymptotically equal to what one would expect in a
uniform distribution.
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