
Monotone Minimal Perfect Hashing:
Searching a Sorted Table with O(1) Accesses

Djamal Belazzougui∗ Paolo Boldi† Rasmus Pagh‡ Sebastiano Vigna†

Abstract
A minimal perfect hash function maps a set S of n keys into
the set { 0, 1, . . . , n − 1 } bijectively. Classical results state
that minimal perfect hashing is possible in constant time us-
ing a structure occupying space close to the lower bound
of log e bits per element. Here we consider the problem of
monotone minimal perfect hashing, in which the bijection is
required to preserve the lexicographical ordering of the keys.
A monotone minimal perfect hash function can be seen as a
very weak form of index that provides ranking just on the
set S (and answers randomly outside of S). Our goal is to
minimise the description size of the hash function: we show
that, for a set S of n elements out of a universe of 2w ele-
ments, O(n log log w) bits are sufficient to hash monotoni-
cally with evaluation time O(log w). Alternatively, we can
get space O(n log w) bits with O(1) query time. Both of
these data structures improve a straightforward construction
with O(n log w) space and O(log w) query time. As a con-
sequence, it is possible to search a sorted table with O(1)

accesses to the table (using additional O(n log log w) bits).
Our results are based on a structure (of independent interest)
that represents a trie in a very compact way, but admits er-
rors. As a further application of the same structure, we show
how to compute the predecessor (in the sorted order of S) of
an arbitrary element, using O(1) accesses in expectation and
an index of O(n log w) bits, improving the trivial result of
O(nw) bits. This implies an efficient index for searching a
blocked memory.

1 Introduction
This paper addresses a series of problems that lie at the con-
fluence of two streams of research: the study of minimal per-
fect hash functions, and the analysis of indexing structures.
A minimal perfect hash functions maps bijectively a set S
of n keys into the set { 0, 1, . . . , n − 1 }. The construction of
such functions has been widely studied in the last years, lead-
ing to fundamental theoretical results such as [12, 13, 15].

From an application-oriented viewpoint, order-
preserving minimal perfect hash functions have been used to

∗Institut National d’Informatique, Oued Smar, Algiers, Algeria
†Università degli Studi di Milano, Italy
‡IT University of Copenhagen, Denmark

retrieve the position of a key in a given list of keys [11, 20].
We start from the observation that all existing techniques
for this task assume that keys can be provided in any order,
incurring an unavoidable �(n log n) lower bound on the
number of bits required to store the function. However,
very frequently the keys to be hashed are sorted in their
intrinsic (i.e., lexicographical) order. This is typically the
case of dictionaries of search engines, list of URLs of web
graphs, etc. We call the problem of mapping each key of a
lexicographically sorted set to its ordinal position monotone
minimal perfect hashing. This problem has received, to
the best of our knowledge, no attention in the literature.
However, as we will shortly explain, it is tightly connected
with other classical problems. It is, in a way, a very weak
form of ranking: for instance, partial ranking on a set S is
given by a function that returns the lexicographical position
of an element x of S, but returns −1 if x is not in S. Instead,
a monotone minimal perfect hash function is allowed to
return any result on elements not in S.

In a classical paper, Yao [27] showed that if one uses
no extra space in addition to a table of n > 2 keys from
an ordered universe u, and if u is sufficiently large, any
organization of the table requires log(n + 1) worst case
search time. In particular, sorting the table yields the best
possible search time. The lower bound holds even if we
are interested only in membership queries (“is x in the table
or not?”), and it extends to more general data structures
allowing pointers and repeated keys in nO(1) space. A
number of researchers have investigated the amount of extra
space needed to break Yao’s lower bound, using hashing
techniques to provide membership queries with O(1) table
accesses [9, 10, 25]. However, these schemes do not support
range queries (“Which are the keys in the range [` . . r]?”)
beyond the trivial reduction to membership queries that
requires linear time in the size of the range.

Here we consider the scenario where the table is sorted,
and ask the question: What is the space usage of index
structures that make it possible to search the table using O(1)

accesses in expectation? We consider two kinds of search for
a key x :

1. Membership searches where we must find the position
of x in the table, or report that x is not in the table, and

2. Predecessor searches where we must return the position

of the largest key not greater than x .

The second type immediately implies efficient range queries:
Find the predecessor of ` and scan the table until a key
greater than r is found. This kind of scanning is very efficient
on disks, as well as modern blocked memory architectures.
Indeed, several recent papers on range queries propose to
keep keys in a sorted table (with gaps), rather than in a
normal search tree, exactly for this reason [24, 2, 1]. (We
note that these papers are concerned with the dynamic case
where the key set is changing, while we consider only the
static case.)

The first type of search allows point queries, but also
range queries of a special kind: If we know some element
in the range, its position can be found in O(1) accesses,
after which reporting all elements in the range is trivial. This
may be relevant for example in database applications, where
referential integrity constraints ensure that the elements in
one relation also exist in another relation.

Our results. Suppose that our universe has size 2w,
and n ≥ log w. Without loss of generality we assume that
w is a power of two (if not, round it up). Our model of
computation is a unit-cost word RAM with word size w. We
describe a monotone minimal perfect hash function of size
O(n log log w) bits and query time O(log w), and one of size
O(n log w) bits and constant query time. In both cases, this
implies that we can find an element in a sorted table using
just one access to the table. Both constructions are based on
novel ways of separating a set of keys into O(n/k) ordered
groups of size O(k). This improves on the space and time,
respectively, of the classic solution that stores every k-th key
explicitly in a predecessor data structure (e.g. [26]). It is
known that �(n) bits is a lower bound, even when the set is
not required to be stored in sorted order [21], so these results
are (at least) close to best possible.

The main tool in the more space efficient solution for
membership search is an approximate trie representation that
allows us to store a set S of n keys in space O(n log w)

so that for every element y its rank relative to S can be
approximately determined in the following sense: The data
structure returns a set of two integers in { 0, 1, . . . , n } such
that with probability 1 − 1/w one of them is the position of
the predecessor of y. The data structure is an approximate
version of a new van Emde Boas tree-like data structure
that we call z-fast trie (named after its relationship to y-fast
tries [26]).

We believe that our approximate trie result is of indepen-
dent interest, and could potentially find applications in set-
tings where the two possible predecessors could be searched
in parallel (e.g. in hardware solutions for routing, and in B-
trees on parallel disk systems.) We also show a lower bound
implying that the approximate trie representation is close to
optimal in the following sense: Every data structure that de-
termines the correct rank of each element in the universe with

probability more than 1/2 must use space close to the space
required for storing S itself. Our data structure allows the
rank to be determined with probability slightly below 1/2.

An implementation of the data structures presented in
this paper is distributed under the Gnu LGPL as part of
the Sux4J project (http://sux4j.dsi.unimi.it/). We
study carefully the implementation problems and the practi-
cal behaviour of our algorithms in a forthcoming paper.

Related work. Mehlhorn [21] showed that minimal
perfect hashing requires space 2(n + log w) bits. The lower
bound holds even in the more general case where the range
of the function is of size O(n) rather than exactly n, and h is
required to be injective. A succinct data structure represent-
ing a minimal perfect hash function, with O(1) evaluation
time, was constructed by Hagerup and Tholey [15].

Schmidt and Siegel [25] considered a generalization of
perfect hashing where the hash function h returns a set of at
most k values from {0, . . . , n − 1}. The requirement is that
there should exist a matching between S and {0, . . . , n − 1}
such that every key x ∈ S is matched to an element of
h(x). For constant k this still requires �(n) bits of space.
Specifically, upper and lower bounds of O(ne−k

+log log m)

and �((n/k2)e−k
+ log log m) bits were shown.

Mairson [18, 19] considered a related generalization of
minimal perfect hashing where the range is split into “pages”
of size k, and the k possible positions for a key are always
the positions of a single page. In other words, at most k
keys of S should map to a single page. Mairson showed
that 2(n log(k)/k) bits are necessary and sufficient for this
problem. Allowing pages that have only �(k) keys on
average does not help: Also in this case there is a lower
bound of �(n log(k)/k) [19]. All these results are for the
case where n is not bounded by a function of k; indeed, for
k = ω(log n) a “paged” perfect hash function requires only
O(log n + log w) bits of space.

Fiat el al. [10] considered searching of a table that may
be organized as any permutation of S. They showed that
O(log n + log w) bits of additional storage are sufficient to
achieve constant-time membership search. A subset of the
authors [9] later showed, by a nonconstructive argument, that
in theory O(log w) additional bits is sufficient. These meth-
ods make use of the fact that information can be encoded as
permutations of elements, which is not possible in our set-
ting.

2 Definitions, notation, tools

Sets and integers. We use von Neumann’s definition and
notation for natural numbers: n = { 0, 1, . . . , n − 1 }. We
thus freely write f : m → n for a function from the first
m natural numbers to the first n natural numbers. We do
the same with real numbers, with a slight abuse of notation,
understanding a ceiling operator.

In the following, we will always assume that a universe

s0 0001001000000 s3 0010011000000 s6 0010011010100 s9 0010011110110
s1 0010010101100 s4 0010011001000 s7 0010011010101 s10 0100100010000
s2 0010010101110 s5 0010011010010 s8 0010011010110

Figure 1: A toy example: S = {s0, . . . , s10} is divided into three buckets of size three (except for the last one that contains
just two elements), whose delimiters D = {s2, s5, s8} appear in boldface.

u = 2w is fixed. The set u has a natural order which
corresponds to the string lexicographical order of the w-bit
left-zero-padded binary representation. We assume, for sake
of simplicity, that w is a power of two.

Given S ⊆ u with |S| = n, and given m, an m-bucket
hash function for S is any function h : S → m. We say
that h is perfect iff it is injective; h is minimal perfect iff it
is injective and n = m; h is monotone iff x ≤ y implies
h(x) ≤ h(y) for all x, y ∈ S.

Rank and select. We will make extensive use of the
two basic blocks of several succinct data structures—rank
and select. Given a bit array (or bit string) b ∈ { 0, 1 }n ,
whose positions are numbered starting from 0, rankb(p) is
the number of ones up to position p, exclusive (0 ≤ p ≤ n),
whereas selectb(r) is the position of the r -th one in b, with
bits numbered starting from 0 (0 ≤ r < rankb(n)). These
operations can be performed in constant time on a string of
n bits using additional o(n) bits [16, 6]. When b is obvious
from the context we shall omit the subscript.

Storing functions. In the rest of the paper will fre-
quently need to associate values to a key set S; more pre-
cisely, we will need to store statically an r -bit function
f : S → 2r . This problem has recently received renewed
attention [8, 5, 23]. However, for the purposes of this paper
we resort to the classical solution, which is to store a mini-
mal perfect hash function on S and use the resulting value to
index a table. Using for example the perfect hash function of
Hagerup and Tholey [15], we are able to store an r -bit func-
tion in rn + O(n + log w) bits with constant-time access.

Bucketing. We now discuss here briefly a general ap-
proach to monotone minimal perfect hashing that we will
use in this paper and that will be referred to as bucketing.
The same idea has been widely used for non-monotone per-
fect hashing, and its extension proves to be fruitful.

Suppose you want to build a minimal perfect monotone
hash function for a set S; you start with:

• a monotone hash function d : S → m mapping S to a
space of m buckets, called the distributor;

• for each i ∈ m, a monotone minimal perfect hash
function gi on d−1(i);

• a function s : m → n such that s(i) =
∑

j<i |d
−1(j)|

for each i ∈ m.

Then, the function h : S → n defined by h(x) = s(d(x)) +

gd(x)(x) is a monotone minimal perfect hash function for

S. The idea behind bucketing is that the distributor will
consume little space (as we do not require minimality or
perfection), and that the functions hashing monotonically
each element in its bucket will consume little space if the
bucket size is small enough. If the sets d−1(i) are all of the
same size, the function s can of course be omitted.

3 Bucketing with longest common prefixes
Our first monotone minimal perfect hash function (which
will also be used as a building block in the rest of the paper)
is based on longest common prefixes. This technique has the
advantage of requiring just the evaluation of a fixed number
of hash functions; on the other hand, it has the highest
memory occupancy among the algorithms we discuss.

We use the bucketing approach described in Section 2.
Let b be a positive integer, and divide the set S into buckets of
size b preserving order. In other words, let B0, B1, . . . , Bm−1
be the unique partition of S such that m = dn/be, |Bi | = b
for all i = 0, . . . , m − 2 and, if x ∈ Bi and y ∈ Bj with
i < j , then x < y. We start with a simple lemma:

LEMMA 3.1. For i = 0, . . . , m − 1, let pi be the longest
common prefix of Bi . Then all the pi ’s are distinct.

Proof. Suppose by contradiction that two longest common
prefixes pi and pj for Bi and Bj , where j > i , are equal. If
either |Bi | = 1 or |Bj | = 1 the two prefixes are obviously
distinct. Otherwise, we examine the first and last keys of
bucket i . Let p = pi = pj ; we know that the last key
of bucket i will begin with the string p1 and first key of
bucket j will being with p0; that is because we know that
the two keys necessarily differ in the bit immediately after
the longest common prefix and last key is lexicographically
larger than first key. Now since the bucket j has the same
longest common prefix, its first key also begins with the
string p0. This will mean that the first key of bucket j is
lexicographically smaller than last key of bucket i (which
begins with p1), leading to a contradiction.

Thus, we will represent each bucket by the longest
common prefix of its strings. To associate with each string
the longest common prefix of the respective bucket, we
simply store a function d0 : S → w that assigns, to
each x ∈ S, the length of the longest common prefix of
the bucket containing x . Then, we store a function d1 :

{ p0, p1, . . . , pm−1 } → m mapping pi to i .

s0 2 s4 8 s8 11
s1 2 s5 8 s9 1
s2 2 s6 11 s10 1
s3 8 s7 11

00 0
00100110 1
00100110101 2
0 3

(a) (b)

Figure 2: Bucketing with least common prefix for the set S
of Figure 1: (a) d0 maps each element x of S to the length
of the least common prefix of the bucket to which x belongs;
(b) d1 maps each least common prefix to the bucket index.

To compute d(x) for a given x ∈ S, we first apply d0
obtaining the length ` of the longest common prefix of its
bucket; from ` can compute the prefix (which is made of the
first ` bits of x), and finally, applying d1, we obtain d(x).
Figure 2 displays the functions d0 and d1 for the example of
Figure 1 when b = 3.

The function d0 requires O(n log w) bits, whereas d1
requires O((n/b) log(n/b) + log w) bits; all gi s together
require O(n log b + log w) bits. By choosing b = log n
we thus obtain a space bound of O(n(log log n + log w)) =

O(n log w) bits, and evaluation is clearly constant time. We
have shown the following.

THEOREM 3.1. There is a monotone minimal perfect hash
function that occupies O(n log w) bits and answers queries
in constant time.

4 Bucketing by relative ranking
In search for a better space bound, we note that an obvious
approach to the bucketing problem is by ranking. Given a
set of strings X , a ranking data structure provides, for each
string s ∈ u, the number of strings in X that are smaller
than s, that is, |{ x ∈ X | x < s }|. Consider the set D of
delimiters, which is made of the lexicographically last string
of each bucket. Clearly, the rank of an arbitrary string with
respect to D is exactly the index of its bucket.

For instance, a trivial way to obtain such rank informa-
tion is to build a compacted trie [17] containing the strings in
D (see Figure 3). Much more sophisticated data structures
are obviously available today (e.g., [14]), but they all fail to
meet their purpose in our case: They occupy too much space,
and we do not really need to rank all possible strings: we just
need to rank strings in S. We call this problem the relative
ranking problem: given sets D ⊆ S ⊆ u, we want to rank a
string s w.r.t. D under the condition that s belongs to S.

The idea we use to solve this problem is to mimick the
behaviour of a trie-based distributor: all we need to know is,
for each node and for each key, which is the last node reached
during a search (the exit node), what behaviour is exhibited
at the exit node (exit on the left or right), and finally what is
the rank associated to a given exit node and exit behaviour
(e.g., the number of leaves on the left of, or on the left of and

0 001001

s
s

s8s5

2s

s9

10

0 1

010101110

10 10

3
4

s6
s7

s1

10ss

Figure 3: The standard compacted trie built from the set D
of Figure 1. This data structure can be used to rank arbitrary
elements of the universe with respect to D: when the trie
is visited with an element not in D, the visit will terminate
at an exit node, determining that the given element is to the
left (i.e., smaller than) or to the right (i.e., larger than) all the
leaves that descend from that node. The picture shows, for
each element of S, the node where the visit would end.

under, a given node). As we will see, this information can be
coded in very little space.

4.1 A probabilistic trie. In this section, we introduce a
Monte-Carlo randomized data structure representing very
compactly a trie with errors. To explain how this structure
works, let us first introduce some notation and definitions
related to compacted tries.

Notation for compacted tries. Consider the com-
pacted trie built for the set D ⊆ u; the string represented
by a node α is defined as the longest common prefix of all
keys that are stored in the subtree rooted at α. Note that the
association between nodes and strings is bijective: thus, we
shall indifferently say that a string is represented by a node,
or that the node represents the string. The skip interval of a
node α representing the string p is defined as follows:

• if α is the root, the skip interval of α is [0 . . |p|);

• otherwise, the skip interval of α is [|q| . . |p|), where q
is the string represented by the parent of α.

The path leading to node α is defined as ε for the root, and as
p0 and p1 for the left and right child of a node representing
p, respectively. Note that the path leading to α is always a
prefix of the string represented by α.

The main idea behind a z-fast trie is that, instead of
representing explicitly a binary tree structure containing
compacted paths, we will provide, given an input x , the
longest string p represented by an internal node of the trie
that is a prefix of x . The string p will be represented by the
parent of the exit node of x . At that point, by inspecting the
bit of x of index |p|, we shall be able to determine the edge
leading to the exit node of x . The aim of this section is to
show the following theorem.

T
0010 → 〈6, h(001001)〉

00100110 → 〈10, h(0010011010)〉

P b
0010010000000 1
0010011000000 0
0010011010000 1
0010011010100 1
0010011011000 0
0010100000000 0

Figure 4: The data making up a probabilistic z-fast trie
based on the delimiter set D of Figure 1, and the associated
ranking structure described in the proof of Theorem 4.2.
Above, the map T , representing (just) the internal nodes of
the compacted trie shown in Figure 3. Below, the set P and
the associated bit vector.

THEOREM 4.1. Consider the compacted trie for the set
D ⊆ u, |D| = m; there exists a probabilistic data structure
that, given an x ∈ u, will return with error probability ε the
(length of) the string p represented by the unique internal
node with the following properties:

• p is a prefix of x;

• for every other string q represented by an internal node,
if q is a prefix of x, then |q| < |p|.

The structure requires O(m(log w+ log(1/ε))) bits of space
and has query time O(log w).

The 2-fattest number in a nonempty interval of positive
integers is the number in the interval whose binary represen-
tation has the highest number of trailing zeros.1 To describe
the probabilistic trie, we need some simple properties of 2-
fattest numbers.

LEMMA 4.1. Given an interval [x . . y] of strictly positive
integers:

1. Let i be the maximal number such that there exists an
integer b satisfying 2i b ∈ [x, y]. Then b is unique, and
the number 2i b is the 2-fattest number in [x . . y].

2. If y − x < 2i , there exists at most a single value b such
that 2i b ∈ [x . . y].

3. If i is such that [x . . y] does not contain any value of
the form 2i b, then y − x + 1 ≤ 2i

− 1 and the interval
may contain at most one single value of the form 2i−1b.

1We remark the fact that the 2-fattest number in the interval (x . . y] is
y &−1� MSB(x ⊕ y).

Proof. We only prove (1), the other statements being trivial.
Suppose that we have two distinct a and b with b > a
satisfying conditions 2i a ∈ [x . . y] and 2i b ∈ [x . . y]. Since
a and b are both odd, there is some c such that a ≤ 2c ≤ b.
So we have 2i+1c ∈ [x . . y], contradicting the definition of
i .

A probabilistic z-fast trie is given by a function T (see
Section 2) providing the following mapping: for every node
α of the compacted trie built on D, let p be the string
represented by α, [α` . . αr) the skip interval of α, and f
the 2-fattest number in (α` . . αr] (note the change); if the
interval is empty, which can happen only at the root, we set
f = 0. Then, T maps the prefix of p of length f to the
following data (see Figure 4):

1. the length of p (log w bits);

2. a signature of p of length log log w + log(1/ε) com-
puted using universal hashing [3].

The above function uses O(m(log w + log(1/ε))) bits. We
call the exact version, where the “signature” is the identity
function, a z-fast trie.2

The data structure is queried as in Algorithm 1. The
idea is to do a kind of binary search for the point where x
exits the trie. Instead of testing against the arithmetic mean
of the interval endpoints as in a traditional binary search, we
test against the 2-fattest number in the interval (fat binary
search). This ensures that T contains information to guide
the search in a suitable way. We use the prefix q of x
whose length is the 2-fattest number in the search interval
as an input to T . If q is a prefix of a key in S we check
whether there is a longer prefix matching x , corresponding
to the branching node below q. If both these conditions are
satisfied we update the lower bound `, otherwise (assuming
there is no false match on the signature) we may correctly
update the upper bound r .

For instance, when querying the structure shown in
Figure 4 with the string s1 of Figure 1 we would first
compute T (00100101), as the 2-fattest number in (0 . . 13) is
8. Assuming that the signature correctly identifies our query
as a failure, we would try again with T (0010), and this time
the signature would match, telling us that the parent of the
exit node of s1 represents the string 001001. By adding a
further bit of s1, we would conclude that 0010010 is the path
leading to the exit node of s1

To determine the correctness and complexity of the
algorithm, we first need some lemmata:

2We remark that for the purposes of this paper it is sufficient to build a
(probabilistic) z-fast trie only on internal nodes (leaves are necessary only
for membership test in D, which we do not need). This simplification is
tacitly applied in the rest of the paper.

Algorithm 1 Querying the probabilistic z-fast trie (repre-
sented by the function T).

input x ∈ u
i ← dlog we − 1
`, r ← 0, w

while r − ` > 1 do
if ∃b such that 2i b ∈ (` . . r) then

{2i b is the 2-fattest number in (` . . r)}
q ← prefix of x of length 2i b
〈g, s〉 ← T (q)

if g ≤ |x | and s is the signature of the prefix of x of
length g then

`← g {Move from (` . . r) to (g . . r)}
else

r ← 2i b {Move from (` . . r) to (` . . 2i b)}
end if

end if
i ← i − 1

end while
return `

LEMMA 4.2. The following invariants hold before and after
each iteration of the loop in Algorithm 1:

1. There exists at most a single b such that 2i b ∈ (` . . r).

2. There exists no b such that 2i+1b ∈ (` . . r).

3. The length of the interval (` . . r) is less than 2i .

Proof. (1) Initially, when i = log w − 1 we have (` . . r) =

(0 . . w), and this interval contains a single value of the form
2i b, that is w/2. Now after some iteration suppose that we
have at most a single b such that 2i b ∈ (` . . r). We have two
cases:

• There is no b such that 2i b ∈ (` . . r). Then, the
interval remains unchanged and, by Lemma 4.1 (3), it
will contain at most a single value of the form 2i−1b.

• There is a single b such that 2i b ∈ (` . . r). The interval
may be updated in two ways: either we set the interval
to (g . . r) for some g ≥ 2i b or we set the interval to
(` . . 2i b). In both cases, the new interval will no longer
contain 2i b. By invariant 3. of Lemma 4.1, the new
interval will contain at most a single value of the form
2i−1b.

(2) Initially this is obviously true as the interval (0 . . w)

does not contain any value of the form bw. By (1), at the
beginning of the iteration there was at most a single value
of the form 2 j b in the interval (` . . r) and this single value is
clearly eliminated from the interval at the end of the iteration.
(3) By the same argument as in (1) the interval will not
contain a value of the form 2i b. Applying Lemma 4.1 (3)
we deduce that length of interval is at most 2i−1.

The third invariant implies that the algorithm terminates
when i = 0. Since i is initially log w − 1 (an integer) and
decreases by 1 in each iteration the algorithm never performs
more than log w − 1 iterations.3

LEMMA 4.3. Let X = { x0 = ε, x1, . . . , xt }, where x1, x2,
. . . , xt are the strings represented by nodes of the trie that
are prefixes of x, ordered by increasing length. Suppose
that there are no false positives in signature comparison (i.e.,
suppose that two matching signatures on two strings always
imply equality of the two strings). Let (` . . r) the interval
maintained by the algorithm. Before and after each iteration
the following invariant is satisfied: ` = |x j | for some j , and
` ≤ |xt | < r .

Proof. We note that the invariant is trivially true at the start,
as the initial interval is (0 . . w). By Lemma 4.1 and 4.2 (1),
at each step either we do nothing or we pick the 2-fattest
number g ∈ (` . . r), and change interval. We have two cases
(we follow the notation of Algorithm 1):

• If T (q) gives a positive result, we change our current
interval to (g . . r). We know that there is at least a string
of length g that is a prefix of x , so certainly g = |x j | for
some j , and g ≤ |xt |, and the invariant is preserved.

• If T (q) gives a negative result, we know for sure that
no prefix of x longer than 2i b − 1 can be represented
by a node of the trie: otherwise, 2i b would belong
to the skip interval [α` . . αr) of a node α representing
some element of X , and (α` . . αr] would be entirely
contained in (` . . r) (as ` = |x j | for some j , and
|xt | < r). Thus, 2i b, being 2-fattest in (` . . r), would
be a fortiori 2-fattest in (α` . . αr], and T (q) would have
returned a positive result—a contradiction.

Thus, the algorithm is correct if there are no false
positives, because at the end ` = |xt |. We now show that
it fails with probability bounded by ε. Since we store T
using perfect hashing, the signature returned by T is the
signature of some string p that is in the domain on which
T is defined. Therefore the probability of a false match
is 2− log log w−log(1/ε)

= ε/ log w. The algorithm makes at
most log w signature comparisons, so we conclude that the
combined probability of having one or more false positives
is bounded by ε. This concludes the proof of Theorem 4.1.

Variable-length keys Our algorithm works even for
variable-length keys. However, care must be taken to get the
best possible query time dependency on the key length. The
problem is that hashing a key of l bits takes time O(1+ l/w)

3We remark that given the invariants established by Lemma 4.2 the test
for the existence of a b such that 2i b ∈ (` . . r) can be replaced by the
constant-time test (1� i) & ` 6= (1� i) & (r − 1).

if done naively. Our solution is to start each query by com-
puting an O(log n)-bit hash value for each word-aligned pre-
fix of the query key. This can be done in time O(1 + l/w)

using an incremental hashing method, for instance the one
in [7, Section 5]. With high probability there will be no col-
lisions. Using the precomputed table, subsequent hash func-
tion evaluations can be done in constant time, meaning that
the search itself uses time O(log l).

4.2 Ranking with errors using a probabilistic trie. Us-
ing a probabilistic trie we can show that

THEOREM 4.2. Let D ⊆ u (with |D| = m) and ε > 0.
There exists a data structure that for every x ∈ u returns
with error probability ε a pair of integers 〈i, j〉, one of which
is the rank of x in D (i.e., |{ t ∈ D | t < x }| ∈ { i, j }). The
data structure uses O(m(log w + log(1/ε))) bits of space
and has query time O(log w).

Proof. We build a probabilistic z-fast trie on D, and define
a set P that, for each string p corresponding to an inter-
nal node in the compacted trie for D, contains the follow-
ing bit strings of length w: p00w−|p|−1, p10w−|p|−1 and
p10w−|p|−1

+0|p|10w−|p|−1 (the latter only if p 6= 111 · · · 1;
plus denotes the standard arithmetic operator). We build a
constant-time monotone minimal perfect hash function f
on P (see Section 3), and we consider a bit vector b of
|P| = O(m) elements, endowed with a ranking structure,
that has a bit set at position f (x) for each x ∈ P that leads
to a leaf.

We note that, under this arrangement, if p is the
string represented by an internal node α, by ranking
f (p00w−|p|−1) in b we obtain the number of elements of
D smaller than every string starting with p0; by ranking
f (p10w−|p|−1) we obtain the number of elements of D
smaller than every string starting with p1; by ranking
p10w−|p|−1

+ 0|p|10w−|p|−1 we obtain the the num-
ber of elements of D that start with p1 or are smaller
than p1. Thus, to return the correct result for an input
x ∈ u, we proceed as follows: we query the proba-
bilistic trie, obtaining (the length of) a string p. Then,
we examine the bit of x of index |p|: if it is zero, we
return 〈rankb(f (p00w−|p|−1)), rankb(f (p10w−|p|))〉;
if it is one, but p 6= 111 · · · 1, we return
〈rankb(f (p10w−|p|−1)), rankb(f (p10w−|p|−1

+

0|p|10w−|p|−1))〉; otherwise, we return
〈rankb(f (p10w−|p|−1)), m〉. In each case, the first or
the second answer are correct if x exits on the left or right,
respectively, of α.

Continuing our example, once we know that 0010010
is the path leading to the exit node of s1, by ranking the
positions f (0010010000000) and f (0010011000000) we
would know that the correct ranking for s1 is either 0 or 1.

4.3 A lower bound for ranking with errors. Theo-
rem 4.2 can be interpreted as claiming that there exists
a data structure that is able to rank with respect to a set
of m elements with success probability 1/2 − ε, requiring
O(m(log w + log(1/ε))) bits of space and time O(log w).
This should be compared with the following lower bound:

THEOREM 4.3. Let D ⊆ u with |D| = m ≤ 2w/3 and
ε < 1/2 − �(1). Every probabilistic data structure that
ranks D (i.e., that given x ∈ u computes |{s ∈ D | s < x}|)
with error probability bounded by ε requires in expectation
at least

�

(
m log(2w/m)

1+ log(w)/ log(1/ε)

)
bits .

Proof. For sake of simplicity, assume that 1w
6∈ D. Suppose

you have a probabilistic data structure A that ranks D with
error probability ε < 1/2 − �(1) and using s bits; let
δ = 1/(2ε)− 1 and k be the smallest integer satisfying(

e1+δ

(1+ δ)1+δ

)εk

<
1

2w
.

Now, build a new data structure B that uses k independent
instances of A , and ranks D by using a majority criterion (if
more than k/2 instances give the same output, B produces
that output; otherwise, it produces a random value). By
Chernoff bounds, B has an error probability bounded by
1/(2w): indeed, letting X be the number of instances that
fail

P[B fails] ≤ P[X > k/2] = P[X > k(1+ δ)ε]

<

(
ek(1+δ)−1

k(1+ δ)k(1+δ)

)ε

≤

(
e1+δ

(1+ δ)(1+δ)

)εk

<
1

2w
.

Given any i , we can use B to compute the element
xi ∈ D whose rank in D is i : we proceed with a binary
search on u = 2w, that requires at most w steps. Since at
every step the probability of error is less than 1/(2w), with
probability at least 1/2 we will compute the correct element
xi . Let D′ be the set of elements obtained in this way, as
i ranges from 0 to m − 1: since for every i the probability
that we obtain the correct element is 1/2 or more, we have
|D ∩ D′| ≥ m/2 in expectation.

The data structure B occupies ks bits, and implicitly
encodes D′. With m additional bits (storing, for each i ,
whether xi was correctly found or not), we can get D∩D′. To
obtain D from this we must store the set D\D′ (that contains
m/2 elements in expectation), requiring no more than mw/2
bits for its description. So we use

ks + mw/2+ O(m)

bits to represent D; since, by Kolmogorov complexity, D
requires m log(2w/m) + O(m) = mw − m log m + O(m)

bits to be represented, and k = O(1+ log1/ε w), we have (in
expectation)

s ≥
1
k

(mw

2
− m log m + O(m)

)
=

m
2k

(w − 2 log m + O(m)) .

Since 2w
≥ m3, that is w ≥ 3 log m, we have w− 2 log m ≥

w/2+ 3/2 log m − 2 log m = 1/2(w − log m) so

s ≥
m
4k

(w − log m + O(m)) = �

(
m log(2w/m)

1+ log(w)/ log(1/ε)

)
.

If we want the error probability to be, say, ε ≤ 1/w, we
must essentially use m log(2w/m) bits, that is, the number of
bits that are necessary to specify D. The same is true if we
want constant error probability, up to a log w multiplicative
factor.

This result should be contrasted with the famous re-
sult of Bloom about the existence of a Monte-Carlo data
structure for membership (with one-sided error) requir-
ing O(m log(1/ε)) bits, with a compression factor of
2(log(u/m)/ log(1/ε)).

5 A relative trie
The probabilistic trie of Theorem 4.1 has some probability
of failing to retrieve the correct node; this can be avoided
if we know for sure that the structure is only queried for
keys in a prescribed set S ⊇ D: we speak in this case of
a relative trie. To implement a relative trie, we first solve
the relative membership problem: given sets E ⊆ S ⊆ u,
provide a succinct data structure that answers queries about
membership in E in constant time, where the answer is
guaranteed to be correct only for keys is in S.

THEOREM 5.1. Given sets E ⊆ S ⊆ u (with |E | = t ,
|S| = n), constant-time membership in E for elements of
S can be implemented in t log(n/t)+ O(t + log w) bits.

Proof. Our data structure is defined as follows: we store
the elements of D in a constant-time approximate member-
ship structure with error probability m/n. Concrete space-
efficient implementation consists of storing a set of signa-
tures [4] in a succinct dictionary [22] or in a hash table ac-
cording to a minimal perfect hash function for D. Both meth-
ods require m log(n/m)+ O(m + log w) bits. The expected
number of false positives in S is O(n(m/n)) = O(m). By
building the data structure an expected constant number of
times we can get a worst-case bound of O(m) false posi-
tives. Then, we store a static 1-bit function recording, for
each element of S accepted by the approximate membership
structure, whether it actually belongs to D. At query time,
we first interrogate the approximate membership structure;
should the answer be positive, we double check using the
1-bit function.

THEOREM 5.2. Consider the compacted trie for the set
D ⊆ S ⊆ u, with |D| = m and |S| = n; there exists a
data structure that, given an arbitrary key x ∈ S, will return
the (length of the) string p represented by an internal node
with the following properties:

• p is a prefix of x;

• for every string q represented by an internal node, if q
is a prefix of x, then |q| ≤ |p|.

The structure requires O(m(log(n/m)+log w)) bits of space
and has query time O(log w).

Proof. We set ε = m/n and build the probabilistic trie de-
scribed in Theorem 4.1, which will require O(m(log(n/m)+

log w)) bits. Let now E ⊆ S be the set of elements of S that
the structure misclassifies: since the data structure fails with
probability ε, the expected size of E is nε = m. Again,
this can be turned into a worst-case guarantee of O(m) by
allowing the construction time to be a random variable with
expected value O(1) times larger. We now store the set E
relatively to S, which requires m log(n/m)+ O(m + log w)

by Theorem 5.1, and store explicitly the answer for all ele-
ments of E , which requires O(m log w) bits. Then, when we
want to compute the answer for a key x ∈ S, we will first test
whether x ∈ E , and, in that case, return the stored answer;
otherwise, we query the probabilistic trie.

5.1 Relative ranking without errors. The structure de-
scribed in Theorem 5.2 makes the probabilistic trie exact, at
the expense of giving a correct result only on elements of
S. By coupling this with the ranking structure described in
the proof of Theorem 4.2, we obtain a structure that provides
(deterministically and without failures) two possible values
for the rank of an element of S. At this point, we just have
to record the subset L ⊆ S for which the first integer of the
pair is correct (i.e., essentially, which strings exit on the left).
This can be done using a relative membership data structure
(actually, even using a 1-bit function), leading to:

THEOREM 5.3. Let D ⊆ S ⊆ u (with |D| = m and |S| =
n). There exists a data structure that, for every x ∈ S, returns
the rank of x in D, requiring O(m(log(n/m)+ log w)+ n)

bits of space and providing query time O(log w).

6 Monotone hashing with O(n log log w) space
We finally show how to obtain a monotone minimal perfect
hash function using just O(n log log w) bits, and getting
query time O(log w). We follow the setup of Section 2 with
buckets of size b = log w. The relative trie on the n/ log w

delimiters will occupy just O(n) bits. Adding the space
occupancy of the functions gi (O(n log log w) bits), we have
the following

THEOREM 6.1. There is a monotone minimal perfect hash
function that occupies O(n log log w) bits of space and
answers queries in time O(log w).

7 Indexing a sorted table
The results we have proved on monotone minimal perfect
hashing imply that we can find an element in a sorted table
with just one access. In this section we provide further
results on the indexing problem.

7.1 Ranking a sorted table with O(1) accesses in ex-
pectation. Suppose we have an offline storage containing
a (sorted) set of keys S. Our goal is to rank an element x ∈ u
using an expected constant number of accesses to the set S,
and as little additional space as possible. The idea is to use
a structure providing relative ranking with respect to S with
errors, and check for errors using probes on S.

The error probability should be o(1/w), which is possi-
ble without any cost in asymptotic space usage. This means
that with probability 1− o(1/w) we obtain two possible val-
ues i and j , i < j , such that either the element of rank i − 1
or the element of rank j − 1 in S is the predecessor of x (if
i = 0 or j = 0 then x is before all strings in S). Using at
most 3 probes we can determine whether the predecessor of
x is indeed at rank i−1 or j−1: First probe the i-th element,
and depending on its relation to x probe either position i − 1
or positions { j − 1, j }. If this fails to identify the predeces-
sor, we simply perform a binary search on S which requires
log(n+ 1) = O(w) probes. Since the binary search happens
with probability o(1/w), the expected contribution of this to
the overall value is o(1).

THEOREM 7.1. Given a stored sorted table S of n elements,
there is a structure using additional O(n log w) space that
computes the rank of an element x ∈ u in S using 3 + o(1)

accesses to S in expectation.

7.2 Finding an element in blocked storage using at most
two accesses. In this case, our sorted table S is divided in
blocks of size b, and we want to find the block in which
a key x ∈ S is located reading as few blocks as possible.
As done at the start of Section 5.1, we can build a relative
trie structure on the delimiter set D (as usual, containing the
last key of each block) paired with a node-ranking structure
that will locate two possible blocks to which x might belong.
The structure will use O(n/b(log b + log w) + n/b) bits
of space, which for b = O(wc) is O((n/b) log w) (to be
compared with the information-theoretical lower bound of
�((n/b)(w − log(n/b))) bits that are necessary to store the
delimiters). After accessing the structure, we have at most
two possible candidates, and in expectation we will detect
the right one in 1.5 attempts.

We propose the name Bee-tree for an external memory

search tree that uses probabilistic tries to guide searches. For
some parameters, Bee-trees have depth that is asymptotically
smaller than normal B-trees.

References

[1] M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A locality-
preserving cache-oblivious dynamic dictionary. J. Algo-
rithms, 53(2):115–136, 2004.

[2] G. S. Brodal, R. Fagerberg, and R. Jacob. Cache oblivious
search trees via binary trees of small height. In Proceedings
of the 13th Annual ACM-SIAM Symposium On Discrete Math-
ematics (SODA-02), pages 39–48, New York, Jan. 6–8 2002.
ACM Press.

[3] J. L. Carter and M. N. Wegman. Universal classes of hash
functions. J. Comput. Syst. Sci., 18:143–154, 1979.

[4] L. Carter, R. Floyd, J. Gill, G. Markowsky, and M. Wegman.
Exact and approximate membership testers. In Proceedings
of Symposium on Theory of Computation (STOC ’78), pages
59–65. ACM Press, 1978.

[5] D. Charles and K. Chellapilla. Bloomier filters: A second
look. In Proc. ESA 2008, 2008.

[6] D. R. Clark and J. I. Munro. Efficient suffix trees on secondary
storage (extended abstract). In SODA, pages 383–391, 1996.

[7] M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger. Poly-
nomial hash functions are reliable (extended abstract). In 19th
International Colloquium on Automata, Languages and Pro-
gramming (ICALP ’92), volume 623 of Lecture Notes in Com-
puter Science, pages 235–246. Springer, 1992.

[8] M. Dietzfelbinger and R. Pagh. Succinct data structures for
retrieval and approximate membership (extended abstract).
In L. Aceto, I. Damgård, L. A. Goldberg, M. M. Halldórs-
son, A. Ingólfsdóttir, and I. Walukiewicz, editors, Automata,
Languages and Programming, 35th International Colloquium,
ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceed-
ings, Part I: Tack A: Algorithms, Automata, Complexity, and
Games, volume 5125 of Lecture Notes in Computer Science,
pages 385–396. Springer, 2008.

[9] A. Fiat and M. Naor. Implicit O(1) probe search. SIAM
Journal of Computing, 22(1):1–10, 1993.

[10] A. Fiat, M. Naor, J. P. Schmidt, and A. Siegel. Nonoblivious
hashing. Journal of the ACM, 39(4):764–782, 1992.

[11] E. A. Fox, Q. F. Chen, A. M. Daoud, and L. S. Heath. Order-
preserving minimal perfect hash functions and information
retrieval. ACM Trans. Inf. Sys., 9(3):281–308, 1991.

[12] M. L. Fredman and J. Komlós. On the size of separating
systems and families of perfect hash functions. SIAM J.
Algebraic Discrete Methods, 5(1):61–68, 1984.

[13] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a
sparse table with O(1) worst case access time. J. Assoc.
Comput. Mach., 31(3):538–544, July 1984.

[14] A. Gupta, W.-K. Hon, R. Shah, and J. S. Vitter. Compressed
data structures: Dictionaries and data-aware measures. Theo-
ret. Comput. Sci., 387(3):313–331, 2007.

[15] T. Hagerup and T. Tholey. Efficient minimal perfect hash-
ing in nearly minimal space. In Proceedings of the 18th
Symposium on Theoretical Aspects of Computer Science

(STACS ’01), volume 2010 of Lecture Notes in Computer Sci-
ence, pages 317–326. Springer–Verlag, 2001.

[16] G. Jacobson. Space-efficient static trees and graphs. In In
Proc 30th Annual Symposium on Foundations of Computer
Science, pages 549–554, 1989.

[17] D. E. Knuth. Sorting and Searching, volume 3 of The Art
of Computer Programming. Addison-Wesley, second edition,
1997.

[18] H. G. Mairson. The program complexity of searching a ta-
ble. In 24th Annual Symposium on Foundations of Computer
Science, pages 40–47, Tucson, Arizona, 7–9 Nov. 1983. IEEE.

[19] H. G. Mairson. The effect of table expansion on the program
complexity of perfect hash functions. BIT, 32(3):430–440,
Sept. 1992.

[20] B. S. Majewski, N. C. Wormald, G. Havas, and Z. J. Czech.
A family of perfect hashing methods. Comput. J., 39(6):547–
554, 1996.

[21] K. Mehlhorn. On the program size of perfect and universal
hash functions. In 23th Annual Symposium on Foundations
of Computer Science (FOCS 1982), pages 170–175, Chicago,
Illinois, USA, 1982. IEEE.

[22] R. Pagh. Low redundancy in static dictionaries with constant
query time. SIAM J. Comput., 31(2):353–363, 2001.

[23] E. Porat. An optimal bloom filter replacement based on
matrix solving, 2008. arXiv:0804.1845v1.

[24] V. Raman. Locality preserving dictionaries: theory & ap-
plication to clustering in databases. In PODS ’99: Proceed-
ings of the eighteenth ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems, pages 337–345,
New York, NY, USA, 1999. ACM.

[25] J. P. Schmidt and A. Siegel. The spatial complexity of obliv-
ious k-probe hash functions. SIAM Journal of Computing,
19(5):775–786, 1990.

[26] D. E. Willard. Log-logarithmic worst-case range queries are
possible in space theta(n). Inf. Process. Lett., 17(2):81–84,
1983.

[27] A. C.-C. Yao. Should tables be sorted? J. Assoc. Comput.
Mach., 28(3):615–628, 1981.

