Performance Evaluation of
Lock-free Data Structures on
GPUs

http://lwww.cse.litk.ac.in/~mainakc/lockfree.html

Prabhakar Misra and Mainak Chaudhuri
Indian Institute of Technology, Kanpur

Sketch

Talk in one slide

Result highlights

Related work

Lock-free data structures
CUDA implementation
Evaluation methodology
Empirical results
Summary

Sketch

» Talk in one slide

» Result highlights
 Related work
 Lock-free data structures
» CUDA implementation
 Evaluation methodology
« Empirical results

« Summary

Talk in One Slide

» Locks are expensive in GPUs
— Thousands of threads cause high contention

 Lock-free data structures offer a possible
way to implement irregular computations on
GPUs

— Support for dynamically changing pointer-linked
data structures is important in many applications

 Large body of existing research on lock-free
data structures for traditional multiprocessors

 This is the first detailed study to explore
lock-free linear lists, hash tables, skip lists,
and priority queues on CUDA-enabled GPUs

Result highlights

» Significant speedup on Tesla C2070 (Fermi
GF100) over 24-core server execution
« Maximum speedup
— 7.4x for linear lists
— 11.3x for hash tables
— 30.7x for skip list
— 30.8x for priority queue
 Lock-free hash table shows best scalability

for a wide range of operation mixes and key
ranges

— Throughput ranges from 20.8 MOPS to 98.9
MOPS

Sketch

 Talk in one slide

 Result highlights

» Related work
 Lock-free data structures
» CUDA implementation
 Evaluation methodology
« Empirical results

« Summary

Related work

Our lock-free linear list implementation
follows a variation of the Harris-Michael
construction

Our hash table implementation leverages the
linear list implementation

Our lock-free skip list construction is due to
Herlihy, Lev, and Shavit

We follow the construction due to Lotan and
Shavit for our lock-free priority queue
implementation

More related works are discussed in the
paper

Sketch

 Talk in one slide

 Result highlights

« Related work

» Lock-free data structures
» CUDA implementation
 Evaluation methodology
« Empirical results

« Summary

Lock-free data structures

 Linear lists, hash tables, skip lists, priority
queues
— Important computation building blocks
— We implement a set using these data structures
— Lock-free and wait-free operations on the set

— Lock-free operation: infinitely often some
instance of this operation finishes in finite
number of steps

— Wait-free operation: every instance of this
operation finishes in finite number of steps

— Correctness criteria: linearizable (except priority
queue, which is quiescently consistent)

« See paper for definition

Lock-free linear list
« Implemented using a sorted singly linked list

» Supported ops: add, delete, search

— Add(x) returns 0 if x is already in the set;
otherwise adds x at sorted position and returns 1

— Delete(x) returns 0 if x is not in the set;
otherwise removes x from the set and returns 1

— Search(x) returns 0 or 1 if x is not found or
found in the set

— Add and delete are lock-free
— Search is wait-free (just walks the list)
— Delete only logically deletes a node by marking it

— Subsequent add and delete operations physically
remove the logically deleted nodes

Lock-free linear list: add(x)
CAS on Mark+next

/

Mark+next (32 bits)

The Mark bit is the least significant bit of the aligned
32-bit next field
« Needed for logical deletion

Lock-free linear list: Physical delete
CAS on Mark+next

Mark+next (32 bits)

Delete(x) logically marks a node. Subsequent add or
delete physically deletes it when walking the list.

Lock-free hash table
 Leverages lock-free linear list construction
— Implemented as a single linear list

— An array of pointers stores the starting point
(head node) of each bucket

— The head node of each bucket stores a special
key

— Add, delete, and search operations on a bucket
start at the head node of that bucket

— Number of buckets is constant and fixed at the
time of CUDA kernel launch

« Supports the same three operations as lock-
free linear list

Lock-free hash table

Delete(22): 22 mod 4 = 2

Skip list
A skip list is a hierarchy of linear lists

— Keys present in level n+1 form a subset of the
keys present in level n

— Given that a key is present in level n, there is a
probability p of finding the key in level n+1

— When a new key is inserted, the maximum level
up to which this key can be present is decided by
a random number r with expected value 1/(1-p)
* A skip list offers expected logarithmic search
complexity

Skip list

Keys are kept sorted at the lowest-level list

— Head and tail nodes maintain the smallest and
largest keys

Upper-level lists provide probabilistic short-

cuts into the lower-level lists leading to an

expected logarithmic search time

Lock-free skip list

 Leverages lock-free linear list implementation

» Additional complications in linking up or
removing multiple nodes in different lists

— Not possible to make multiple Mark+next field
modifications atomic using single-word CAS

— Depending on the traversal path of Add and
Delete some middle level node of a marked key
may get physically removed while leaving the
other levels unchanged: violates the subset

property

Lock-free skip list

Add is made linearizable by adding a key
bottom-up

Delete is made linearizable by logically
marking the levels of the key to be deleted
top-down

A key is defined to be present in the set if it
IS found unmarked in the lowest-level list

Two major performance bottlenecks

— Large number of CAS operations

— Complex code structure leading to significant
volume of control flow divergences

Lock-free priority queue

« Supports two operations on the underlying
set: Add and DeleteMin

 Leverages lock-free skip list due to its
logarithmic search complexity guarantee

— Makes the Add operation to have expected
logarithmic time

— DeleteMin walks the lowest-level list until an
unmarked key is found, which it marks logically
using CAS and calls Delete of skip list on that key

* New performance bottleneck

— Heavy contention near the head due to
concurrent DeleteMin operations

Sketch

 Talk in one slide

 Result highlights
 Related work
 Lock-free data structures
» CUDA implementation
 Evaluation methodology
« Empirical results

« Summary

CUDA implementation
Extensive use of atomicCAS

All data structures use a generic node class
— All of them build on the basic linear list

Large number of nodes are pre-allocated
— Pointers to these are stored in an array
— A global index points to the next free node

— An Add operation executes an atomicInc on this
index and uses the node pointed to by the
pointer at the returned index

Deleted nodes are not reused

— Requires an implementation of an elaborate
solution to the ABA problem

— Left to future research

Sketch

 Talk in one slide

 Result highlights
 Related work
 Lock-free data structures
» CUDA implementation

» Evaluation methodology
« Empirical results

« Summary

Evaluation methodology

« Experiments are done on two platforms

— Tesla C2070 card featuring one GF100 Fermi GPU

» 14 streaming multiprocessors (SM), each having 32
CUDA cores; thread blocks map to SMs

« 1.15 GHz core frequency and 1.49 GHz memory
frequency

« 48 KB shared memory and 16 KB L1 cache per thread
block; 768 KB globally shared L2 cache

— Quad processor SMP, each processor having six
cores (Intel X7460 CPU) running at 2.66 GHz
« 16 MB L3 cache shared by six cores in each processor

 Lock-free implementations use POSIX threads and rely
on x86 cmpxchg instruction for realizing the
atomicCAS primitive

Evaluation methodology
 Each data structure is evaluated on

— A range of integer keys [0, 100), [0, 1000), [O,
10000), and [0, 100000)

« Keys are generated uniformly at random from the
range; these are input arguments to the operations

— Two different mixes of supported operations
— Different number of operations ranging from
10000 to 100000 in steps of 10000

« Number of thread blocks and threads per
block for the CUDA kernel are optimized

— In most cases, the number of thread blocks is
such that each thread carries out one operation

— 64 threads per block for linear list and 512
threads per block for the rest

Evaluation methodology
For evaluation on CPU, thread count that
offers the best performance is picked
— 24 threads do not always offer the best
In summary, each experiment shows results

using the best performance on the GPU as
well as on the CPU

Lock-free hash table uses ten thousand
buckets
Lock-free skip list uses p=0.5 and 32 levels

— Lock-free priority queue leverages the lock-free
skip list that uses the same parameters

Sketch

 Talk in one slide

 Result highlights
 Related work
 Lock-free data structures
» CUDA implementation
 Evaluation methodology
» Empirical results

« Summary

Lock-free linear list

GPU speedup over CPU
O =N W 2 00 O N @

[0, 100) [0, 1000) [0, 10000) [0, 100000)
No major difference between search-heavy and add/delete-heavy op strings

o ~<— Best speedup=7.3...]

GPU speedup over CPU
O = N W & 00 O N @

[0, 100) [0, 1000) [0, 10000) [0, 100000)

Lock-free hashl table

12

10

GPU speedup over CPU

o N Ok~ O

[0, 100) [0, 1000) [0, 10000) [0, 100000)

Consistent speedup across all key Basgspesalipp=iites
12 | | |

Op mix: [40, 40, 20] — 10K Ops 1l[ilK Ops

GPU speedup over CPU

[0, 100) [0, 1000) [0, 10000) [0, 100000)

GPU speedup over CPU
= =< PN NN W
A 0N O O B 00N

o

2 I I I
S el ST . Op mix: [40,40,20] _
o 28
D 24 - \Bestspeedup=30.7 -------------------------------- -
S 20 g L E [.
5 16 Around 4x speedup T
% 12— - - BB LI [e Qe —
S s—HEmme il B A TN -
& 4 S
0 -..Illl !_!

Lock-free skip list

] Op mix: [20,20,60] |

10K Ops. .. . 1 D'O}Ops __ |

-/ 9l - 10

o | [T anBl=lnm._l'.i..._ﬁﬁgez " """""""""" :
[0, 100) [0, 1000) [0, 10000) [0, 100000)

biitl igeati cpderiivpad s rgakidy rrmgastong syt harsysod AAdtriops

[0, 100)

[0, 1000) [0, 10000) [0, 100000)

Lock-free priority queue

32 I

T D8l OP"VQ 20L
O

o Add%” ™ DeleteMin %0
2 el m Il 10KOps 100K Ops.
el

@

S ol J --
o N | Y . 1.0

o — 1 """"""""""""
T | || (o . A

| e] e [B
[0, 100) [0, 1000) [0, 10000) [0, 100000)

Trends are simi

ar to skip list: speedup increases with Add %

GPU speedup over CPU

[0, 100)

[0, 1000)

[0, 10000) [0, 100000)

Hash table vs. linear list

2 2
550 80 -
S 200 L Hash Table (CPU)
B B T e
= 450 = 50 100K Ops .. |
S 400 - @
QO (h]
£ 350 £ 50 1
o 300 o
© 250 ® 40
£ 200 = 30
© 150 © 20}
o 100t |- o
3 50} 3 101
E 0 3 0
= 20, 20, 60] 40, 40, 20] 2 [20, 20, 60] [40, 40, 20]

The data are shown for the largest key range

% On GPU, the hash table is 36x to 538x faster than linear list
% On CPU, the hash table is only 8x to 54x faster than linear list
% GPU exposes more concurrency in the lock-free hash table

Skip list vs. linear list

= 5

O [SkipList(GPU) [T © 10 skip List (CPU)
® »

2 gl = gf

S 14 OPS 100K Ops S

S qol b - =

o 10 il o

2 s 2

g 5 :

S 4 -

g 2 E

$ 0 @

2 20, 20, 60] 40, 40, 20] 3 20, 20, 60] (40, 40, 20]

% On GPU, the skip list is 2x to 20x faster than linear list
% GPU still exposes more concurrency than CPU for skip list
% Hash table shows far better scalability than skip list

Throughput of hash table

« Hash table is the best performing data
structure among the four we have evaluated

— For the largest key range, on a search-heavy op
mix [20, 20, 60], the throughput ranges from
28.6 MOPS to 98.9 MOPS on the GPU

— For an add/delete-heavy op mix [40, 40, 20], the
throughput range is 20.8 MOPS to 72.0 MOPS

* Nearly 100 MOPS on a search-heavy op mix

Sketch

 Talk in one slide

 Result highlights
 Related work
 Lock-free data structures
» CUDA implementation
 Evaluation methodology
« Empirical results
»Summary

Summary

* First detailed evaluation of four lock-free
data structures on CUDA-enabled GPU

» All four data structures offer moderate to
high speedup on small to medium key
ranges compared to CPU implementations

 Benefits are low for large key ranges in linear
lists, skip lists, and priority queues

— Primarily due to CAS overhead and complex
control flow in skip lists and priority queues

« Hash tables offer consistently good speedup
on arbitrary key ranges and op mixes

— Nearly 100 MOPS throughput for search-heavy
op mixes and more than 11x speedup over CPU

Summary

 Further improvement requires two key
architectural innovations in GPUs
— Fast atomics and high synchronization

throughput
 Helpful for all kinds of scalable implementations

— Reduction in control flow divergence overhead

 Helpful for complex lock-free constructions such as
skip lists and priority queues

http://www.cse.iitk.ac.in/~mainakc/lockfree.html

