
Performance Evaluation of

Lock-free Data Structures on

GPUs

http://www.cse.iitk.ac.in/~mainakc/lockfree.html

Prabhakar Misra and Mainak Chaudhuri

Indian Institute of Technology, Kanpur

Sketch

• Talk in one slide

• Result highlights

• Related work

• Lock-free data structures

• CUDA implementation

• Evaluation methodology

• Empirical results

• Summary

Sketch

➢Talk in one slide

➢Result highlights

• Related work

• Lock-free data structures

• CUDA implementation

• Evaluation methodology

• Empirical results

• Summary

Talk in One Slide
• Locks are expensive in GPUs

– Thousands of threads cause high contention

• Lock-free data structures offer a possible
way to implement irregular computations on
GPUs
– Support for dynamically changing pointer-linked

data structures is important in many applications

• Large body of existing research on lock-free
data structures for traditional multiprocessors

• This is the first detailed study to explore
lock-free linear lists, hash tables, skip lists,
and priority queues on CUDA-enabled GPUs

Result highlights
• Significant speedup on Tesla C2070 (Fermi

GF100) over 24-core server execution

• Maximum speedup
– 7.4x for linear lists

– 11.3x for hash tables

– 30.7x for skip list

– 30.8x for priority queue

• Lock-free hash table shows best scalability
for a wide range of operation mixes and key
ranges
– Throughput ranges from 20.8 MOPS to 98.9

MOPS

Sketch

• Talk in one slide

• Result highlights

➢Related work

• Lock-free data structures

• CUDA implementation

• Evaluation methodology

• Empirical results

• Summary

Related work
• Our lock-free linear list implementation

follows a variation of the Harris-Michael
construction

• Our hash table implementation leverages the
linear list implementation

• Our lock-free skip list construction is due to
Herlihy, Lev, and Shavit

• We follow the construction due to Lotan and
Shavit for our lock-free priority queue
implementation

• More related works are discussed in the
paper

Sketch

• Talk in one slide

• Result highlights

• Related work

➢Lock-free data structures

• CUDA implementation

• Evaluation methodology

• Empirical results

• Summary

Lock-free data structures
• Linear lists, hash tables, skip lists, priority

queues
– Important computation building blocks

– We implement a set using these data structures

– Lock-free and wait-free operations on the set

– Lock-free operation: infinitely often some
instance of this operation finishes in finite
number of steps

– Wait-free operation: every instance of this
operation finishes in finite number of steps

– Correctness criteria: linearizable (except priority
queue, which is quiescently consistent)
• See paper for definition

Lock-free linear list
• Implemented using a sorted singly linked list

• Supported ops: add, delete, search
– Add(x) returns 0 if x is already in the set;

otherwise adds x at sorted position and returns 1

– Delete(x) returns 0 if x is not in the set;
otherwise removes x from the set and returns 1

– Search(x) returns 0 or 1 if x is not found or
found in the set

– Add and delete are lock-free

– Search is wait-free (just walks the list)

– Delete only logically deletes a node by marking it

– Subsequent add and delete operations physically
remove the logically deleted nodes

Lock-free linear list: add(x)

<x <x >=x

x
Mark+next (32 bits)

CAS on Mark+next

The Mark bit is the least significant bit of the aligned
32-bit next field

• Needed for logical deletion

Lock-free linear list: Physical delete

Mark+next (32 bits)

CAS on Mark+next

Delete(x) logically marks a node. Subsequent add or
delete physically deletes it when walking the list.

Lock-free hash table
• Leverages lock-free linear list construction

– Implemented as a single linear list

– An array of pointers stores the starting point
(head node) of each bucket

– The head node of each bucket stores a special
key

– Add, delete, and search operations on a bucket
start at the head node of that bucket

– Number of buckets is constant and fixed at the
time of CUDA kernel launch

• Supports the same three operations as lock-
free linear list

Lock-free hash table

964 9 2 22 91

Delete(22): 22 mod 4 = 2

0

1

2

3

Skip list
• A skip list is a hierarchy of linear lists

– Keys present in level n+1 form a subset of the
keys present in level n

– Given that a key is present in level n, there is a
probability p of finding the key in level n+1

– When a new key is inserted, the maximum level
up to which this key can be present is decided by
a random number r with expected value 1/(1-p)

• A skip list offers expected logarithmic search
complexity

Skip list

• Keys are kept sorted at the lowest-level list
– Head and tail nodes maintain the smallest and

largest keys

• Upper-level lists provide probabilistic short-
cuts into the lower-level lists leading to an
expected logarithmic search time

m 0 3 6 7 9 13 16 23 M

0

1

2

3

Lock-free skip list

• Leverages lock-free linear list implementation

• Additional complications in linking up or
removing multiple nodes in different lists

– Not possible to make multiple Mark+next field
modifications atomic using single-word CAS

– Depending on the traversal path of Add and
Delete some middle level node of a marked key
may get physically removed while leaving the
other levels unchanged: violates the subset
property

Lock-free skip list

• Add is made linearizable by adding a key
bottom-up

• Delete is made linearizable by logically
marking the levels of the key to be deleted
top-down

• A key is defined to be present in the set if it
is found unmarked in the lowest-level list

• Two major performance bottlenecks

– Large number of CAS operations

– Complex code structure leading to significant
volume of control flow divergences

Lock-free priority queue

• Supports two operations on the underlying
set: Add and DeleteMin

• Leverages lock-free skip list due to its
logarithmic search complexity guarantee
– Makes the Add operation to have expected

logarithmic time

– DeleteMin walks the lowest-level list until an
unmarked key is found, which it marks logically
using CAS and calls Delete of skip list on that key

• New performance bottleneck
– Heavy contention near the head due to

concurrent DeleteMin operations

Sketch

• Talk in one slide

• Result highlights

• Related work

• Lock-free data structures

➢CUDA implementation

• Evaluation methodology

• Empirical results

• Summary

CUDA implementation
• Extensive use of atomicCAS

• All data structures use a generic node class
– All of them build on the basic linear list

• Large number of nodes are pre-allocated
– Pointers to these are stored in an array

– A global index points to the next free node

– An Add operation executes an atomicInc on this
index and uses the node pointed to by the
pointer at the returned index

• Deleted nodes are not reused
– Requires an implementation of an elaborate

solution to the ABA problem

– Left to future research

Sketch

• Talk in one slide

• Result highlights

• Related work

• Lock-free data structures

• CUDA implementation

➢Evaluation methodology

• Empirical results

• Summary

Evaluation methodology

• Experiments are done on two platforms
– Tesla C2070 card featuring one GF100 Fermi GPU

• 14 streaming multiprocessors (SM), each having 32
CUDA cores; thread blocks map to SMs

• 1.15 GHz core frequency and 1.49 GHz memory
frequency

• 48 KB shared memory and 16 KB L1 cache per thread
block; 768 KB globally shared L2 cache

– Quad processor SMP, each processor having six
cores (Intel X7460 CPU) running at 2.66 GHz
• 16 MB L3 cache shared by six cores in each processor

• Lock-free implementations use POSIX threads and rely
on x86 cmpxchg instruction for realizing the
atomicCAS primitive

Evaluation methodology
• Each data structure is evaluated on

– A range of integer keys [0, 100), [0, 1000), [0,
10000), and [0, 100000)
• Keys are generated uniformly at random from the

range; these are input arguments to the operations

– Two different mixes of supported operations

– Different number of operations ranging from
10000 to 100000 in steps of 10000

• Number of thread blocks and threads per
block for the CUDA kernel are optimized
– In most cases, the number of thread blocks is

such that each thread carries out one operation

– 64 threads per block for linear list and 512
threads per block for the rest

Evaluation methodology
• For evaluation on CPU, thread count that

offers the best performance is picked

– 24 threads do not always offer the best

• In summary, each experiment shows results
using the best performance on the GPU as
well as on the CPU

• Lock-free hash table uses ten thousand
buckets

• Lock-free skip list uses p=0.5 and 32 levels

– Lock-free priority queue leverages the lock-free
skip list that uses the same parameters

Sketch

• Talk in one slide

• Result highlights

• Related work

• Lock-free data structures

• CUDA implementation

• Evaluation methodology

➢Empirical results

• Summary

Lock-free linear list

Add % Delete % Search %

No major difference between search-heavy and add/delete-heavy op strings

Best performance on small key ranges and larger op counts

Best speedup=7.3

Lock-free hash table

Consistent speedup across all key ranges and op mixesBest speedup = 11.3

Lock-free skip list

Speedup drops with increasing key rangeFor identical key range, speedup improves with no. of Add opsStill good speedup at large key range for Add-heavy op strings

Around 4x speedup

Best speedup=30.7

Lock-free priority queue

Add % DeleteMin %

Trends are similar to skip list: speedup increases with Add %

Best speedup=30.8

Hash table vs. linear list

The data are shown for the largest key range

❖ On GPU, the hash table is 36x to 538x faster than linear list

❖ On CPU, the hash table is only 8x to 54x faster than linear list

❖ GPU exposes more concurrency in the lock-free hash table

Skip list vs. linear list

❖ On GPU, the skip list is 2x to 20x faster than linear list

❖ GPU still exposes more concurrency than CPU for skip list

❖ Hash table shows far better scalability than skip list

Throughput of hash table

• Hash table is the best performing data
structure among the four we have evaluated

– For the largest key range, on a search-heavy op
mix [20, 20, 60], the throughput ranges from
28.6 MOPS to 98.9 MOPS on the GPU

– For an add/delete-heavy op mix [40, 40, 20], the
throughput range is 20.8 MOPS to 72.0 MOPS

• Nearly 100 MOPS on a search-heavy op mix

Sketch

• Talk in one slide

• Result highlights

• Related work

• Lock-free data structures

• CUDA implementation

• Evaluation methodology

• Empirical results

➢Summary

Summary
• First detailed evaluation of four lock-free

data structures on CUDA-enabled GPU

• All four data structures offer moderate to
high speedup on small to medium key
ranges compared to CPU implementations

• Benefits are low for large key ranges in linear
lists, skip lists, and priority queues
– Primarily due to CAS overhead and complex

control flow in skip lists and priority queues

• Hash tables offer consistently good speedup
on arbitrary key ranges and op mixes
– Nearly 100 MOPS throughput for search-heavy

op mixes and more than 11x speedup over CPU

Summary

• Further improvement requires two key
architectural innovations in GPUs

– Fast atomics and high synchronization
throughput

• Helpful for all kinds of scalable implementations

– Reduction in control flow divergence overhead

• Helpful for complex lock-free constructions such as
skip lists and priority queues

http://www.cse.iitk.ac.in/~mainakc/lockfree.html

Thank you

