IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 10, OCTOBER 1987

1105

Performance and Reliability Analysis Using Directed
Acyclic Graphs

ROBIN A. SAHNER anp KISHOR S. TRIVEDI, MEMBER, IEEE

Abstract—A graph-based modeling technique has been developed for
the stochastic analysis of systems containing concurrency. The basis of
the technique is the use of directed acyclic graphs. These graphs rep-
resent event-precedence networks where activities may occur serially,
probabilistically, or concurrently. When a set of activities occurs con-
currently, the condition for the set of activities to complete is that a
specified number of the activities must complete. This includes the spe-
cial cases that one or all of the activities must complete. The cumulative
distribution function associated with an activity is assumed to have ex-
ponential polynomial form. Further generality is obtained by allowing
these distributions to have a mass at the origin and/or at infinity. The
distribution function for the time taken to complete the entire graph is
computed symbolically in the time parameter r. The technique allows
two or more graphs to be combined hierarchically. Applications of the
technique to the evaluation of concurrent program execution time and
to the reliability analysis of fault-tolerant systems are discussed.

Indéx Terms—Availability, directed acyclic graphs, fault-tolerance,
Markov models, performance evaluation, program performance,
reliability.

I. INTRODUCTION

RAPH-BASED models are often used to analyze

computer systems. For example, precedence graphs
are used to analyze the performance of concurrent pro-
grams [2], [18], fault-trees and reliability block diagrams
are used to analyze system reliability and availability [21],
and Markov and semi-Markov models are used for ana-
lyzing both performance and reliability/availability [25].
This paper describes a graph-based modeling technique
that is efficient and can solve a wide class of problems.
The technique includes the use of directed acyclic graphs,
fault-trees, reliability block diagrams, and acyclic Mar-
kov and semi-Markov chains. It has been implemented as
a software tool. The technique is illustrated by means of
several examples.

Graph models are commonly used to study the behavior
of systems that contain concurrency. The granularity of
activities varies from model to model. An activity may
represent a single machine instruction or it may represent
an entire process. Activities may have constant or random

Manuscript received April 30, 1985; revised February 28, 1986. This
work was supported in part by the Air Force Office of Scientific Research
under Grant AFOSR-84-0132, by the Army Research Office under Contract
DAAG29-84-0045, and by the National Science Foundation under Grant
MCS-830200.

R. A. Sahner is with Gould Computer Systems Division, Urbana, IL
61801. .

K. S. Trivedi is with the Department of Computer Science, Duke Uni-
versity, Durham, NC 27706.

IEEE Log Number 8716568.

duration. The degree of concurrency may be limited or
unlimited. A particular model may assign activities to
nodes and use edges for precedence [12], or it may assign
activities to edges and use the nodes for precedence spec-
ification [13]. Many models assume that all activities must
occur [2]. Some allow probabilistic branching [27].

When the activity times are constant and there are in-
finite resources, it is easy to compute the completion time
for the entire set of activities composing a graph. When
activity times are allowed to be random, the analysis of a
graph model is extremely difficult. The source of the dif-
ficulty is the fact that if two paths in the graph have one
or more edges in common, the random variables for the
finishing time of the paths are not independent.

There is a long history of investigation of this abstract
problem in the context of PERT (Program Evaluation Re-
view Technique) networks [5]. The networks may be ana-
lyzed for mean completion time, for time of shortest route,
and for various other measures, such as the probability
that a path is the shortest path. Because of the dependen-
cies among paths, the exact analysis of a network involves
investigating each path assuming a constant time for the
common edges, then combining the individual results
using integral formulas containing conditional distribu-
tions [9], [16]. In [22], an approach has been developed
that conditions on the edges in a uniformly directed cut
set and then evaluates the integral formulas numerically
using Monte-Carlo simulation. The exact solution is time-
consuming, so work has been done in obtaining efficient
approximations and bounds [5], [8].

If all activity times are memoryless, an alternative to
the use of conditioning is to transform the graph into a
continuous-time Markov chain [11], [25]. The chain can
then be analyzed by using one of a number of numerical
methods. The main drawback of this alternative is that the
number of states in the Markov chain increases exponen-
tially with the number of nodes in the graph. The modeler
must also contend with the practical difficulties of gener-
ating the states and transitions of the Markov chain and
solving a very large system of ordinary differential equa-
tions. :

If the structure of the graphs is restricted, the problem
becomes less complex. Many problems that are NP-com-
plete for arbitrary graphs can be solved in linear or poly-
nomial time for series-parallel graphs, because of their
restricted structure. Such problems include many graph-

0098-5589/87/1000-1105$01.00 © 1987 IEEE

1106

theoretical problems [23] and also problems such as
scheduling, for which a graph is the underlying model
[12]. If an event-precedence graph with random activity
times is series-parallel, the distribution function of the
completion time of the graph can be obtained exactly in
linear time by combining the distribution functions of the
individual nodes using multiplication and convolution.

Martin [13] applied this approach to the analysis of
PERT networks. The distributions were assumed to be
piecewise polynomials defined over a finite range. More
recently, Robinson [18] and Kleinoder [10] have also used
series-parallel graphs to analyze the performance of pro-
grams that contain concurrent tasks. When tasks or
subgraphs are executed in parallel, all of them must finish
before any successor tasks can be started. The graphs are
analyzed by performing numerical calculations on distri-
bution functions obtained experimentally; Kleinoder also
allows phase-type distributions, which are approximated
and represented internally as sums of discrete density
functions. '

Such series-parallel models are a special case of our
modeling technique, which is called SPADE (Series-PAr-
allel Directed acyclic graph Evaluator). We have gener-
alized the series-parallel graph model in a way that allows
it to be used not only for performance analysis, but also
for reliability and (under certain restrictions) availability
analysis. The key features of the technique are:

® Each graph node is assigned a function that is al-
lowed to be any exponential polynomial that is real-val-
ued and has range between zero and one. The functions
are allowed to have a mass at zero and/or at infinity. This
class of functions includes all of the Coxian phase-type
distributions [3].

¢ No assumptions are made about the nature of the
““activities’’ associated with the nodes. It is this fact that
allows our technique to be used for performance, relia-
bility and availability analysis. When used for perfor-
mance analysis, the function F(¢) associated with a node
represents the probability that a task finishes by time ¢.
When used for reliability analysis, F(¢) represents the
probability that a component has failed by time . When
used for availability analysis, F(¢) denotes the probabil-
ity that a component is not available at time ¢.

¢ The interpretation of parallel subgraphs is chosen
from a general and useful group of alternatives. Parallel
subgraphs are not required to have identical distributions.

® The analysis of a graph is done symbolically in ¢, and
is exact (up to truncation error).

¢ Because results are symbolic, it is possible to use the
solution of a graph as the function assigned to a node in
another graph. Thus it is possible to combine graphs hi-
erarchically. The facility for using a hierarchy of graphs
is built into the modeling technique, but the choice of how
to arrange the hierarchy is left to the modeler.

¢ The technique is suitable for efficient automation, and
has been automated in the form of a software tool, also
called SPADE.

¢ Although the model is described here in the form of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 10, OCTOBER 1987

a series-parallel graph, it includes as special cases relia-
bility block diagrams [7], [14], fault trees without re-
peated components [21], and acyclic Markov and semi-
Markov chains [25]. Each of these models can be trans-
formed in linear time to a series-parallel graph model. For
details on how this can be done, see [19]. The SPADE
program accepts the specification of the specialized
models, in addition to the general series-parallel graph
model.

In the next section, we describe the SPADE modeling
technique. In Section III we briefly describe the SPADE
program. Section IV gives examples illustrating the use
of our approach. Although the examples are simple, more
complex problems can be and have been analyzed using
our modeling technique.

II. THE SPADE MODELING TECHNIQUE

The SPADE modeling technique is a method for ana-
lyzing systems whose underlying structure can be mod-
eled as a series-parallel graph or a hierarchy of such
graphs. Graph nodes correspond to components of a sys-
tem or subsystem. Each graph node is assigned a function
of one variable ¢, generally representing time. Each set of
parallel subgraphs is assigned one of several alternative
types. Analysis of the graph results in a function in z. The
interpretation of the function produced by the analysis de-
pends on the interpretation of the functions assigned to
the individual nodes.

To use SPADE for performance analysis, each node
would be assigned the cumulative distribution function
(CDF) for the completion time of the task it models. Then
the result function is the CDF for the completion time of
the graph consisting of these tasks. To use SPADE for
reliability analysis, each node would be assigned the CDF
for the time-to-failure of a component. Then the result
function is the CDF for the time-to-failure for the system
modeled by the graph. To use SPADE for availability
analysis, each node would be assigned a function that
gives the probability that a component is unavailable at a
given time. Then the result function gives the probability
that the system as a whole is unavailable at a given time.

This section presents a definition of ‘‘series-parallel’’
graphs and defines how a CDF is obtained for a graph
based on the CDFs of the individual nodes.

A. Series-Parallel Graphs

There are many definitions for the term ‘‘series-paral-
lel,”” and many different names for the series-parallel
structure. In [10], such graphs are called ‘‘simple,’” in
[11] they are called ‘‘standard,’’ in [9] they are called
‘‘uncrossed,’’ and in [5] they are called ‘‘completely re- -
ducible.”’ Informally, series-parallel graphs can be de-
scribed as being ‘‘well-structured.”” They are built by
starting with single nodes. These single nodes may be
combined, either in series or in parallel. The subgraphs
obtained in that way may in turn be combined, in series
or in parallel, with other nodes or subgraphs. An impor-
tant characteristic of series-parallel graphs is that when-

SAHNER AND TRIVEDI: PERFORMANCE ANALYSIS USING DIRECTED ACYCLC GRAPHS

ever multiple edges leave a node, they lead to two or more
disjoint parallel subgraphs. Once an activity with multiple
successor activities is finished, the disjoint subgraphs that
follow it proceed in parallel, with neither having any de-
pendencies on what is happening in the other subgraph.

To define ‘‘series-parallel’” more formally, we begin
by defining a finite linear directed graph to be an ordered
quadruple G = (N, 4, S, T') where

a) N is a finite set of elements called nodes.

b) A is a subset of N X N, called the set of edges.

c) Sis the subset of N containing those nodes that have
no incoming edges. These are the entrance nodes.

d) Tis the subset of N containing those nodes that have
no outgoing edges. These are the exit nodes.

Suppose G, = (Ny, A, Sy, T;) and G, = (N, Ay, Sy,
T,) are nonintersecting graphs. A graph G = (N, A4, S,
T) is the series connection of G; and G, if and only if

a) Atleastone of | 7| | and | S, | is 1. That is, at least
one of the two sets is a singleton.

b) N=N;, UN,.

C) A=A1 UAzU (Tl XSz).

d) S=8,T=T1,.

A graph G is the parallel combination of G, and G, if
and only if

a) N=N 1 U N2.

b) A= Al U A2.

C) S=S1US2,T=T1UT2.

The class of series-parallel graphs is the smallest class
of graphs containing the unit graphs (graphs consisting of
one node) and having the property that whenever G is the
series or parallel connection of two graphs in the class,
then G is in the class.

Note that a series-parallel graph is by definition acyclic.
Our definition of series-parallel also implies that a series-

parallel graph cannot have redundant edges. That is, if

there is an edge from node x to node y, there is no other
path from x to y. :

Fig. 1 shows several examples of series-parallel graphs.
In this and all subsequent figures, the direction of the
edges is not shown explicitly; it is assumed that an edge
points downward. In Fig. 2, graph Gl is ‘‘transitive se-
ries-parallel’’ [26] but is not series-parallel because of the
redundant arc from A4 to C. It can be transformed into the
series-parallel graph G2 by adding the dummy node Z,
whose activity takes no time. Graph G3 in Fig. 2 is not
series-parallel under any definition.

Although the definition of series-parallel is binary in
nature, it is convenient to think of each series or parallel
combination as being built from n subgraphs, rather than
two. The parallel (series) combination of n subgraphs is
defined to be the sequence of n — 1 binary parallel (series)
combinations of the subgraphs.

B. Distribution Function of a Graph

With each node in a graph is associated a real-valued
function whose range is [0, 1]. The class of allowed func-
tions will be described in Section II-E. It is also possible

1107

B L

Fig. 1. Examples of series-parallel graphs.

Fig. 2. Graph examples.

to assign to a node a function obtained by analyzing some
graph.

Each set of parallel subgraphs is specified to be either
probabilistic or concurrent. If the set is probabilisitic, each
subgraph is assigned a probability value. If the set is con-
current, the set of n subgraphs is assigned a type and an
integer k < n.

We define the cumulative distribution function (CDF)
of a graph recursively. In this section, we simply define
how the function is computed. In the next section, we will
explain how the computation of the function can be inter-
preted in terms of performance, reliability, and availabil-

ity analysis.

If G consists of a single node, the distribution function
is given as part of the model specification.

Suppose G was formed by combining the graphs G,
G,, '+, G, having independent distribution functions
F, F,, -- -, F, If the graphs were combined in series,
the distribution function for the graph G is defined by

Fsum(t)= @Fi(t) (1)
where the symbol ® represents convolution. The convo-
lution of two CDF’s F; and F is defined by

t

Fi(t) ® F (1) = So F (t — x) dF;(x).

Note that the order of the subgraphs does not matter.

If the subgraphs G; were combined in parallel, the dis-
tribution function of the graph depends on whether the
subgraphs are probabilistic or concurrent. For probabilis-
tic parallel subgraphs, suppose the probability assigned to
G; is p;. Then the distribution function of G is given by

Fs®) = 2 piFi(0). @)

1108

For concurrent parallel subgraphs, the distribution func-
tion for G is given by the kth order statistic [4] of the n
subgraph functions. Two special cases occur so often that
we treat them separately. If k = 1 then the distribution is
the ‘‘minimum’’ of the distributions of the subgraphs. In
that case we have

n

Frin(t) = 1 — _131 (1 = F;(2)). (3)

If k = n then the distribution is the ‘‘maximum’’ of those
of the subgraphs, and we have

(4)

In the general case, if the n subgraphs have identical dis-
tributions F then the distribution for G is (omitting the
parameter ¢ for better readability)

Fu/p = lﬁ]k <'Z> F(1-F)""

Fa) = 1L Fi(0).

(5)

If the subgraphs do not have identical distributions, the
expression for Fy/, is (see [4])

fem 2(B8) (Ra-m) @
where T is a set of indexes ranging over all combinations
of k or more indexes chosen from {1, 2, - -+ , n}. That
is, T ranges over all choices {ji, j,, * * * , jm} such that
k=m=snandj, <j, < *** < jn

Equation (6) can be written in a form more suitable for
mechanical computation. Given a vector F = (F,, F,
©++, F,), let §;(F) be the elementary symmetric poly-
nomial of degree i in F. That is,

S(F)= X

|U|=ijeU

I
where U ranges over all combinations of i indexes chosen
from {1, 2, - - -, n}. Then we have the following lemma.

Lemma: If n subgraphs have distributions given by the
elements of the vector F, the distribution for the kth
subgraph to finish is given by

Fa(F) = Z (-1 <]: 11> S/(F). (6a)

Proof: First we expand the second product in (6), so
that we have

FuF)= 2 <H Fj) <V§Tc(‘1)'”11}y Fj>

|T|=zk \ jeT

= 3 (- 1O F).
|T|zk,() jeruv ?
yere

Now we are interested in obtaining the coefficient for a

particular product F; F;, - - - Fj, where i = k. That product

appears whenever T S {j;, - -+ ,j;} and | T| = k. For

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 10, OCTOBER 1987

each m = k, there are (,,) ways of choosing 7. Once T is
chosen, V is determined and | V| = i — m. Therefore the
coeflicient of interest is (see [17])

mék(—l)"'"' (;)

i w[fi—-1\ [i-1
m=0(b K m >+ <m— lﬂ
i-m (1 — 1

07 (1)
Noting that this coefficient is independent of the particular
i-tuple chosen, and that the sum of all such i-tuples is
exactly the elementary symmetric polynomial S; (F), we
have the desired result.

Formula (6a) is computationally much more tractable
than (6), because the elementary symmetric polynomials
can be computed efficiently. Let us write S; (j) for the
elementary symmetric polynomial of degree i chosen out

of a vector F with j components. We can compute the
polynomials S; (j) as follows:

a) Sl(l) =F1.
b) $i(j)=8(j—1) + Fiforj > 1.
¢) §;(j)=8;_4(j— 1)F;forj > 1.
d S(j)=80-1)+FS_(j—-1))forl <i
< j.
Note that we do not need to compute all of the terms
S; (j), but only the last n — k + 1 terms for each j. Using

this method, the number of multiplications of CDF’s is
O(n(n — k)).

C. Graph Interpretation

Suppose we are modeling program execution. Clearly,
series subgraphs represent serial statement execution. The
interpretation of parallel subgraphs depends on the type
of parallelism. We assign the type maximum to a parallel
combination of subgraphs in order to model the concur-
rent execution of groups of tasks, with each group running
to completion. The set of groups is not considered fin-
ished until all task groups are finished. This construct
models the statement types cobegin or parbegin in various
concurrent programming languages. This is the only kind
of concurrency considered in PERT networks and by
Robinson [18] and Kleinoder [10]. If parallel subgraphs
are probabilistic, they can be interpreted as the alterna-
tives in a conditional statement (if or case statement types
in programming languages).

Parallel subgraphs of the type minimum can model the
parallel execution of a nondeterministic algorithm in
which the verification of all guessed solutions is at-
tempted concurrently, and the first guess to be verified
provides a solution to the whole problem. Another ex-

SAHNER AND TRIVEDI: PERFORMANCE ANALYSIS USING DIRECTED ACYCLC GRAPHS

ample of the use of parallel subgraphs of type minimum
is in modeling the parallel search of a database where the
first one of the concurrent search processes to finish will
terminate the overall search. We can also model the un-
reliability of tasks by representing each task by a parallel
combination of the task execution and the failure process
of the task.

Suppose we are modeling closed (nonrepairable) fault-
tolerant systems with permanent faults. Such systems are
defined in [15], where they are analyzed by Markov chain
techniques. We note that our graphs allow more general
distributions of subsystem or component lifetimes than
those allowed by the Markov chain techniques. In the
SPADE technique, the distribution function attached to a
graph node will be the lifetime distribution (or unreliabil-
ity function) of the component or subsystem jt represents.
A system consisting of a series combination of compo-
nents is modeled by parallel graph nodes with type mini-
mum; a parallel combination is modeled as parallel graph
nodes with type maximum. Systems with redundant com-
ponents, some minimum number of which must function,
are modeled as k-out-of-n parallel subgraphs.

We can also model the point (instantaneous) availabil-
ity for the restricted class of repairable systems where each
component has an independent repair facility.

D. Implementation of the Graph Analysis

In practice, the calculation of the distribution of a graph
is done in two steps. First we decompose the graph, ob-
taining a tree representation of the graph that shows the
series and parallel combinations that formed the graph.
The leaves of the tree correspond to. nodes of the graph,
and each internal tree node represents either a series or
parallel combination of its subtrees. Fig. 3 shows a graph
and its tree decomposition. When the decomposition is
parallel, we label the internal node with the particular
interptetation (maximum, minimum, probabilistic, or k-
out-of-n) assigned to the set of parallel subgraphs. It is
possible to carry out this decomposition in time propor-
tional to the number of nodes in the resulting tree. For a
description of such a linear algorithm for decomposing
any transitive series-parallel graph into a binary tree, see
[26]. The actual algorithm used in the SPADE program is
described in [19].

Once we have the tree representation of a graph, the
second step is to calculate the graph’s distribution accord-
ing to the definitions in Section II-B. We do that by vis-
iting all of the nodes of the tree in postorder, assigning
each one a distribution. The distribution of the root node
of the tree will be the CDF of the graph.

If a node is a leaf we assign it the distribution of the
graph node to which it corresponds. If a node is internal,
it represents the series or parallel combination of two or
more subgraphs. Because we are traversing the tree in
postorder, the children of the node will already contain
the distributions of these subgraphs. We apply one of the
formulas (1) through (6a), depending on the type of the

1109

Fig. 3. A series-parallel graph and its decomposition tree.

node, to the distributions assigned to the node’s children,
and assign the resulting distribution to the node itself.
When we reach the root node, we are finished.

If we take as our unit of calculation the multiplication
and convolution of distributions, then the time needed to
calculate the CDF for a tree node of type series, maxi-
mum, minimum, probabilistic, or k-out-of-n with identi-
cally distributed subgraphs is O(n). If the type is k-out-
of-n with nonidentically distributed subgraphs, the time
is at worst (when k is small) O(n?).

The overall time complexity of the algorithm depends
on the representation of distributions; and on the imple-
mentation of the various operations done on distribu-
tions.

E. Distribution Functions

Up to this point, we have made no assumptions about
the character of the CDF’s associated with the nodes of
our graphs except that they are statistically independent.
For CDF’s of any form, it would be possible to compute
F(t) numerically for the overall graph for any particular
value of ¢. If the type of the CDF’s is restricted to be of
exponential polynomial form and the parameters are
given, we can compute the overall CDF as a function of
t.

An exponential polynomial is defined to be an expres-
sion of the form

2. a;thiet
;

where the k; are nonnegative integers and the a; and b; are
real or complex numbers. Of course, not every exponen-
tial polynomial is a valid CDF. For a function F(¢) to be

-the CDF of a nonnegative random variable, it must sat-

isfy the following properties:

F is real-valued. (7)
O0<F(t)=s1vu (8)
F is monotone nondecreasing

and right continuous. (9)

Note that these properties imply that the real part of each
b; must be less than or equal to zero, and that if b, = 0
then we must have k; = 0. In order for F(¢) to be real-
valued, complex numbers must occur in conjugate pairs.

1110

That is, whenever F () contains the term at’e®, if the
imaginary part of a or b is nonzero, F(¢) must also con-
tain the term ar‘e®’.

The class of exponential polynomials that satisfy these
requirements is quite general. In fact, this class is exactly
the class of Coxidan phase-type distributions [3], [19]. In
particular, the CDF of each node can be exponential, hy-
perexponential, Erlang, or a mixture of Erlang distribu-
tions. Because the class of exponential polynomials is
closed under the operations of addition, subtraction, mul-
tiplication, differentiation, and integration, a series-par-
allel graph whose nodes have exponential polynomials for
CDF’s will have an overall CDF that is also an exponen-
tial polynomial. ‘

If F(0) > 0, then F(0) is a discrete probability mass at
the origin. F(0) is the probability that the activity with
distribution F takes no time. If an activity represents the
failure of a component, it is useful to allow for the pos-
sibility .that the component is defective to begin with.
Also, the distribution of the waiting time in a queueing
system usually possesses a mass at the origin [25].

It is possible to have F(0) = 1 (F is the “‘zero’’ distri-
bution), in which case the activity always takes no time.
This is the counterpart of an instantaneous transition in a
stochastic Petri net [6]. Nodes with distribution *‘zero’’
can be used to specify precedence relations that otherwise
would not adhere to our definition of series-parallel (see
graphs G1 and G2 in Fig. 2).

The limit of a distribution at infinity represents the
probability that an activity ever finishes. If lim,_, ,, F(¢)
< 1, then Fis a ‘‘defective’’ distribution. If an activity
represents a numerical algorithm that does not always
converge, it is useful to be able to express the probability
that the algorithm does not converge. Similarly, if we
consider program execution in a failure-prone environ-
ment, then we may allow for the possibility of a failure
occurring before program completion, so that the program
does not complete.

Section IV includes examples that show how distribu-
tions with a mass at zero or infinity can be used.

Equations (1)-(6a) for computing the distributions of
- combinations of subgraphs are valid for distributions with
a mass at zero or infinity (or both) as well as for absolutely
continuous distributions. In practice, we do not have to
implement the formulas in their full generality; instead we

rederive them taking into account the exponential polyno- -

mial form of the distributions.

III. THE SPADE ProGcam

We have developed a software tool (also called SPADE)
that implemients the SPADE modeling technique. It is
written in C and consists of ‘about 2800 lines of code.
SPADE may be used either interactively or in batch mode.
The data that must be supplied by the user is the same in
either case. When used interactively, SPADE prompts the
user_for data entry, allowing retry whenever possible if
invalid data is entered and ensuring that all required data
is entered. In batch mode, the user creates a file that con-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 10, OCTOBER 1987

tains data in the form of a simple input language. The
SPADE program has proven to be easy to learn and use.
Some of its features are:

¢]t recognizes arithmetic expressions containing any
well-formed combination of variables, constants, func-
tion names, and the operators 4+, —, *, /, exponentiation
and parentheses. (Variables must be bound to values be-
fore graph analysis takes place.)

¢ It allows users to define arithmetic functions of any
number of parameters (including none).

¢ In addition to recognizing certain built-in distribution
functions, it allows user to define distribution functions
in any number of parameters (including none). A distri-
bution can be specified by giving a list of exponential
polynomial terms or it can be specified to be the distri-
bution function that results from the analysis of some
specified graph.

¢ It contains a convenient shorthand for specifying the
common case when the distributions of all subgraphs in a
set of parallel subgraphs are identical. _

e It allows the user to select what results are printed
and, to some extent, the format of the results.

* The input can be split into any number of files. This
makes it easy to set up a permanent library of function,
distribution, and graph definitions.

* When input is given in the form of block diagrams,
fault trees, acyclic Markov chains, or acyclic semi-
Markov processes, the model analysis is done using al-
gorithms specialized for these particular models, rather
than transforming the models into series-parallel graphs
and using the general algorithm. With these specialized

" algorithms, the analysis is quite efficient.

IV. EXAMPLES

This section contains examples of models that can be
analyzed using the SPADE technique.

A. Example 1—CPU-I/ O Overlap

Fig. 4 shows a series-parallel graph representing one
iteration of the program with CPU-1/0 overlap consid-
ered by Towsley, Chandy, and Browne [24]. In each it-
eration of the program there are two stages. The first stage
is always a CPU burst. The second stage consists of either
pure input/output, or input/output that may be overlapped
with a second CPU burst. The probability that the s€cond
stage consists of CPU-1/O overlap is given by p. The
node called ZERO is a dummy node having distribution
zero. It allows us to have one branch of the CPU node
lead to a single node, while the other branch leads to a
group of nodes to be executed in parallel.

We might like to know how much it helps to allow the
overlap. We define the ‘‘speedup’’ to be the ratio of the
mean sequential execution time (the time when no overlap
is allowed) to the mean parallel execution time. We can
use the SPADE program to compute the speedup for var-
ious values of p. Fig. 5(a) shows part of an input file for
the SPADE program and Fig. 5(b) shows the output pro-
duced by SPADE.

SAHNER AND TRIVEDI: PERFORMANCE ANALYSIS USING DIRECTED ACYCLC GRAPHS

exp(it2)

Fig. 4. One iteration of CPU-I/O example.

by this point, the variables lambda, mu1
and mu2 have been assigned the values
1/0.0376,1/0,125 and1/0.14995 and the
graph SERIAL has been defined.

mean(SERIAL;0.7): 2.7505e-01

PP

graph OVERLAP(p) mean(OVERLAP;0.7). 2.2733e-01

cpul 2ero

speedup(0.6): 1.1845e+00

exit cpul prob

prob cpul zero p

ext zero max

dist cpul exp{mut)
dist zero zero

dist o1 exp (lambda)
dist cpu2 exp(mu2)
dist o2 exp(lambda)
end

speedup(0.7): 1.2099e+00

speedup(0.8): 1.23418+00

speedup(0.9): 1.2570e+00
expr mean(SERIAL;0.7)
expr mean(OVERLAP(0.7)
func speedup(p)\
mean(SERIAL ;p)/mean(OVERLAP;p)
expr speedup(0.6)
expr speedup(0.7)
expr speedup(0.8)
expr speedup(0.9)
expr speedup(1.0)

speedup(1.0): 1.2790e+00

speedup(1.0): 1.3145e+00

bind
mut 1/0.01

end

expr speedup(1.0)
end

@) (b)
Fig. 5. Input and output for CPU-I1/0 example. (a) Input. (b) Output.

- When p is 0.7, the mean execution time for the serial
graph is 0.27505, the mean execution time for the graph
with overlap is 0.22733, and the speedup is 1. 21. It is
interesting to note that even when we have maximum par-
allelism for this graph (when the branch leading to 101 is
never taken), the speedup is only 1.28. This is because of
the time spent in CPUI. When we decreased the mean
service time at CPUI to 0.01 rather than 0.0376, the

speedup with maximum parallelism is increased to 1.31.

As a further experiment, we can add more detail to the
model. First, we recognize the fact that the time spent in
each CPU may vary, depending on the particular job being
done. We can model this by dividing the jobs into n
classes and assigning each CPU an n-stage hyperexpo-
nential distribution. Second, we assume that the I/O ser-
vice consists of three sequential phases. The first phase,
corresponding to seek time, is assumed to be exponen-
tially distributed with a mass at the origin:

Foeer (1) = Proseek T (1 — Proseer) (1 — €
The second phase is the rotational latency phase, and the

—)\seekt).

1111

third phase is the transfer phase; we assume that the time

- spent in each of these phases in exponentially distributed.

We choose the parameter values so that the mean for
the hyperexponential distribution for each CPU node is
the same as the mean for the previously used exponential
distributions for the nodes, and the mean for the 1/0
nodes is the same as before. The more detailed model
shows a shorter mean execution time for the graph with
overlap and a greater speedup for each value of p. This
illustrates the fact that the mean of a distribution does not
contain all of the information about a distribution.

It took the SPADE program about 0.9 seconds (more
than half of which was input/output time) on a lightly
loaded Gould CONCEPT™ 32 /87 to compute all of the
results discussed above.

B. Example 2—Modeling Interprocess Communication

Consider the task graph shown in Fig. 6. This model is
based on a model suggested by Kung [11]. Nodes 1, 2,
3, and 4 represent tasks; tasks 1 and 2 are executed on
one processor and tasks 3 and 4 are executed on another
processor. Results from task 1 must be sent from one pro-
cessor to the other before task 3 can begin, and similarly
for tasks 2 and 4. The time needed for communication
between tasks 1 and 3 and tasks 2 and 4 is modeled by
the nodes S13 and S24, respectively.

Kung assumed that all of the distributions are exponen-
tial and analyzed the graph by converting it into a Markov
chain. The SPADE technique allows distributions to be
any exponential polynomial. We assigned task 2 the 2-
stage Erlang distribution with parameter 0.4, and the rest
of the tasks the exponential distribution with parameters
0.3, 0.57, and 0.25 for tasks 1, 3, and 4, respectively.
Each communication task is exponentially distributed with
mean c. By varying the value of ¢, we can get a feel for
when the cost of communication outweighs the benefits
gained from using two processors. The results showed that
when c is greater than about 1.25, the communication cost
causes the two-processor implementation to take longer
(on the average) than if the tasks were all run on a single
processor.

We can use the defective distributions allowed by
SPADE to model the case where the communication link
can fail so that with some probability, the overall program
will not finish. If the link used for communication task
S13 has failure rate A3 then the completion time distri-
bution for S13 is '

<Tl+/cl—/_’—c) (1 —exp[— (A3 + l/c)t]).

The distribution for S14 is computed similarly. When
these defective distributions are used, the resulting CDF
for the entire graph is defective, and gives both the prob-
ability of a link failure before completion of all the tasks
as well as the distribution for the time-to-finish in case all

™CONCEPT is a trademark of Gould Inc.

1m2 -

Fig. 6. Communicating tasks.

tasks do complete. If A;; = 0.0001, A,, = 0.0003, and
¢ = 1, the probability of a link failure before completion
of the graph is 0.0003999.

C. Example 3—Program Execution with a Possibility of
Failure

To see how SPADE can be used to analyze the com-
pletion time of a program that is subject to software or
hardware failure, we consider an example taken from Wei
and Campbell [27]. In Fig. 7(a), the nodes in the graph
represent segments of a process. Associated with each
segment i is the distribution function F; (f;, u;, t) = (1
= f) (1 — e™*"). The probability of failure during the
execution of the segment is 1 — lim,., o, F(f;, p;, t) =
Jfi- All branching in the graph is probabilistic, and the la-
bel p;; on the edge leading from node i to node j gives the
probability that after the completion of segment i the
branch to segment j is taken.

In [27], a formula is given for approximating the over-
all failure probability. Using the SPADE technique, the
result function F for the overall graph gives the CDF for
the completion time of the entire process. The mass at
infinity of this CDF gives the probability p that a failure
occurs before the whole process completes. The distri-
bution F/p is the CDF of the process completion time
given that a failure did not occur.

We used SPADE to analyze this graph for the same two
sets of values for the probabilities on the edges and failure
probabilities as in [27]. We assigned the p; arbitrary val-
ues, since the original example did not contain execution-
time parameters. Fig. 7(b) compares the exact results from
SPADE to the approximations obtained by the method
used in [27]. As expected, the approximation is better
when the individual failure probabilities are smaller.

D. Example 4—Reliability of an Aircraft Flight Control
System

To illustrate the use of k-out-of-n parallelism and see
how the SPADE technique can be used to analyze a fault
tree model, we consider example problem 7 in Appendix
G of [1]. This problem models an aircraft flight control
system. The system contains three inertial reference sen-
sors (IRS) and three pitch rate sensors (PRS), that monitor
the status of the aircraft. All of the sensors are connected
to each of four computer systems (CS). The computer sys-

tems independently collect information from the sensors -

and process the information. The computers are con-
nected to each other and to three secondary actuators (SA)
through four identical bus systems (BS).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 10, OCTOBER 1987

dataset 1 | dataset 2

SHARPE Result | 0.2559 | 0.0283

Wei & Campbell

Approximation 0.2864

0.0286

Fi =(1-4)(1-e Uit

(@ ®

Fig. 7. A program that may fail. (a) Graph of program. (b) Comparison
of results.

N

RERIRER SR

Fig. 8. Aircraft control system.

In order for the entire system to function (so that the
aircraft remains airborne) at least two of each type of
component must be functioning. A fault tree for this sys-
tem is given in Fig. 8. It took the SPADE program less
than half a second to compute the failure time CDF and
the probability of failure for ten values of ¢.

E. Example 5—Instantaneous Availability

If a system is composed of components, each having an
independent repair facility, the SPADE technique can be
used to compute the instantaneous availability of the sys-
tem. Consider the series-parallel system of components
pictured in Fig. 9. This is the example presented in [14],
where an approximation method is given for computing
the steady state unavailability of a series-parallel system.
Using our model, we can compute the steady state un-
availability exactly, and in addition we compute the tran-
sient unavailabilities.

Assume that each component is subject to failure, and
has its own independent repair facility. If the time-to-fail-
ure of component i is exponentlally distributed with fail-
ure rate \;, and the time-to-repair is exponentially distrib-
uted with repair rate u;, then the instantaneous availability

©is [25]

Bi A;

—()\i+ui)t
A+ o

As t approaches infinity, 4; (¢) approaches the steady-state
availability. If u; = 0 (no repair), A4; (¢) reduces to the
reliability (as a function of time) of the component.

Let the distribution function associated with component
ibe U;(t) =1 — 4 (). This distribution represents the
instantaneous unavailability of the component and is in

SAHNER AND TRIVEDI: PERFORMANCE ANALYSIS USING DIRECTED ACYCLC GRAPHS

Fig. 9. Availability block diagram.

exponential polynomial form with a mass at infinity. We
want to compute the instantaneous unavailability of the
system as a whole. For subsystems in parallel, we must
take the product of the component unavailabilities (the
system is unavailable only when all parallel subsystems
are unavailable). This is the ‘‘maximum’’ combination.
For a series of components, the availability is the product
of the component availabilities (the system is available
only when all subsystems are available). Thus, the un-
availability of the system is exactly the ‘‘minimum’’ com-
bination of the components. :

Because the combining operations are exactly ‘‘maxi-
mum’’ and ‘‘minimum,’’ we can use SPADE to compute
U (1), the instantaneous unavailability for the system as a
whole. By taking the limit of U(¢) as ¢ approaches infin-
ity, we obtain the steady-state system unavailability, and
by setting all x; = 0, we obtain system unreliability as a
function of the mission time ¢. Note that x; may be zero
for some or all of the components, and we still obtain the
instantaneous unavailability for the overall system.

We used SPADE to compute the unavailability for this
system using the same parameters as in [14]. Those pa-
rameters are A5 = Ag = 0.005, A\; = 0.001, \; = 0.01
forall otheri, ps = pg =1/6, 01 = p1o=puy = 1/5,
and p; = 1/7.5 for all other i. The steady-state unavail-
ability is computed to be 5.7430 * 10~*. It should be noted
that the approximation given in [14] is in error. The ap-
proximation as computed using the method in [14] should
be 7.1021 * 107*.

Because SPADE distributions can contain complex
numbers, we can allow the failure or repair time distri-
butions to be nonexponential. Suppose the failure time
distribution for a component i is 2-stage Erlang with pa-
rameter 2\ ; and the repair time distribution is exponential
with rate ;. Then its instantaneous availablility is given
by:.

Ki \; 0 — Ni —
A (1) = +
(1) N+ >\i+#i<)
0., — N: — 1.
Ay + i2 i Bi g
¢ i — 0i ¢
where
AN+ opy 2 V(e — 8N
.. 0, = pi £ Vi (p)

2

If u; < 8\;, the above function will contain complex
numbers, a situation easily handled by SPADE.

1113

(a) (b) ©)

Fig. 10. Analyzing a non-series-parallel graph. (a) Non-series-parallel
graph. (b)Lower level: Markov chain. (c) Upper level: series-parallel
graph.

F. Example 6—A Hierarchical Model

Suppose we have the task graph shown in Fig. 10(a).
Assume that all tasks must run to completion. This graph
is non-series-parallel, so we cannot use the series-parallel
graph model directly to find the distribution of its com-
pletion time. However, if the distributions of the nodes in
the non-series-parallel parts are exponential, we can make
use of the ability of the SPADE technique to combine
models hierarchically. We can extract the non-series-par-
allel portions of the graph and model them by Markov
chains. Then we can replace each non-series-parallel por-
tion of the graph by a single node assigned the CDF of
the time to absorption in the corresponding Markov chain.
This will give us an exact answer.

Consider the subgraph containing nodes 1, 2, 3, and 4.
The Markov chain in Fig. 10(b) is a representation of this
system. Each state in the Markov chain is a list of those
nodes that are currently running but have not yet com-
pleted. The time to reach the absorbing state done in the
Markov chain is exactly the time-to-completion of the
subgraph. Since the subgraph containing nodes 5, 6, 7,
and 8 is structurally the same as the subgraph containing
nodes 1, 2, 3, and 4, it can be represented by the same
Markov chain, with possibly different values for the rates
;. Fig. 10(c) shows the graph with the non-series-parallel
parts replaced by the single nodes 1234 and 5678.

V. CoNcLUSIONS AND FUTURE WORK

We have developed a modeling technique for analyzing
stochastic activity networks having series-parallel struc-
ture. We allow node execution times to have general ex-
ponential polynomial form and allow these distributions
to have a mass at the origin and a mass at infinity. We
allow several interpretations of parallel subgraphs, in-
cluding the possibilities of required completion of one,
all, or k of the n subgraphs. Parallel subgraphs are al-
lowed to have nonidentical (but independent) distribu-
tions.

This technique allows us to model a wide-ranging set
of applications including the execution time analysis of
concurrent programs, program execution in a failure-prone
environment, reliability analysis of nonrepairable fault-

1114

tolerant systems, and availability analysis of a class of
repairable systems.

Several generalizations of the techniques discussed in
this paper have been investigated or are under investiga-
tion. The SPADE technique has been extended to include
irreducible Markov chains and cyclic Markov chains with
absorbing states. With this accomplished, we are able to
analyze models of the type discussed in [20]. In order to
obtain the symbolic CDF for the time to absorption in a
cyclic Markov chain, we need to obtain the eigenvalues
of its generator matrix. In general, these eigenvalues may
be complex, but this does not pose a difficulty since
SPADE distributions allow complex numbers. However,
the eigenvalue approach has numerical problems, partic-
ularly for large chains. We have a version of the SPADE
program that allows cyclic Markov models.

REFERENCES

[1] S. Bavuso, P. Peterson, and D. Rose, ‘‘Care III model overview and
user’s guide,”” NASA Tech. Memo. 85810, June 1984.

[2] E. G. Coffman, Computer and Job/Shop Scheduling.
Wiley, 1976.

[3] D. R. Cox, ‘‘The use of Complex probability in the theory of sto-
chastic processes,’” Proc. Cambridge Philosophical Soc., vol. 51,
pp. 313-319, 1955.

[4] H. E. David, Order Statistics. New York: Wiley, 1981.

[5] B. Dodin, ‘‘Bounding the project completion time distribution in
PERT networks,’” Oper. Res., vol. 33, no. 4, pp. 862-881, July-
Aug. 1985.

[6] J. B. Dugan, K. S. Trivedi, R. M. Geist, and V. F. Nicola, ‘‘Ex-
tended stochastic Petri nets: Analysis and applications,’” in PERFOR-
MANCE ’84. Paris: North-Holland, Dec. 1984.

[7] J. L. Fleming, ‘‘Relcomp: A computer program for calculating sys-
tem reliability and MTBF,”’ IEEE Trans. ‘Rel., vol. R-20, pp. 102-
107, Aug. 1971.

[8] H. Frank, ‘‘Shortest paths in probabilistic graphs,’’ Oper. Res., vol.
17, no. 4, pp. 583-599, July-Aug. 1969.

[9] H. Hartley and A. Wortham, ‘‘Statistical theory for PERT critical
path analysis,”’ Management Sci., vol. 12, no. 1, pp. B-469-481,
June 1966.

[10] W. Kleinoder, ‘‘Evaluation of task structures for a hierarchical mul-
tiprocessor system,’’ in Proc. Int. Conf. Modeling Techniques and
Tools for Performance Analysis, May 1984.

[11] K. C.-Y. Kung, ‘‘Concurrency in parallel processing systems,’” Ph.D.
dissertation, Dep. Comput. Sci., Univ. California, Los Angeles,
1984.

[12] E. L. Lawler, ‘‘Sequencing jobs to minimize total weighted comple-
tion time subject to precedence constraints,’’ Ann. Discrete Math.,
vol. 2, pp. 75-90, 1978.

[13] J. Martin, ‘‘Distribution of the time through a directed acyclic net-
work,’” Oper. Res., vol. 13, pp. 44-66, 1965.

[14] M. Modarres, ‘‘A method of predicting availability characteristics of
series-parallel systems,’” IEEE Trans. Rel., vol. R-33, no. 4, pp. 308-
312, Oct. 1984.

[15] Y.-W. Ng and A. Avizienis, ‘‘A model for transient and permanent
fault recovery in closed fault-tolerant systems,’’ in Proc. 1976 Int.
Symp. Fault-Tolerant Computing, June 1976.

[16] L. Ringer, ‘‘Numerical operators for statistical PERT critical path
analysis,”” Management Sci., vol. 16, no. 2, pp. B-136-143, Oct.
1969.

New York:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 10, OCTOBER 1987

[17] J. Riordan, Combinatorial Identities. New York: Wiley, 1968.

[18] J. T. Robinson, ‘‘Some analysis techniques for asynchronous multi-
processor algorithms,”” IEEE Trans. Software Eng., vol. SE-5, pp.
24-31, Jan. 1979.

[19] R. Sahner, ‘‘A hybrid, combinatorial-Markov method of solving per-
formance and reliability models,’” Ph.D. dissertation, Dep. Comput.
Sci., Duke Univ., 1986.

[20] R. D. Schlichting, ‘‘A technique for estimating performance of fault-
tolerant programs,’’ IEEE Trans. Software Eng., vol. SE-11, pp. 555~
563, June 1985. |

[21] M. Shooman, Probabilistic Reliability, An Engineering Approach.
New York: McGraw-Hill, 1968.

[22] C. Sigal, A. Pritsker, and J. Solberg, ‘‘The stochastic shortest route
problem,”’ Oper. Res., vol. 28, no. 5, pp. 1122-1129, Sept.-Oct.
1980.

[23] ‘K. Takamizawa, T. Nishizeki, and N. Saito, ‘‘Linear-time comput-
ability of combinatorial problems on series-parallel graphs,”” JACM,
vol. 29, no. 3, pp. 623-641, July 1982.

[24] D. F. Towsley, J. C. Browne, and K. M. Chandy, ‘‘Models for par-
allel processing within programs,”’ Commun. ACM, vol. 21, no. 10,
pp- 821-831, Oct. 1978.

[25] K. S. Trivedi, Probability and Statistics with Reliability, Queuing
and Computer Science Applications. Edgewood Cliffs, NJ: Pren-
tice-Hall, 1982.

[26] J. Valdes, R. E. Tarjan, and E. L. Lawler, ‘‘The recognition of se-
ries-parallel digraphs,’” Siam J. Comput., vol. 11, no. 2, pp. 298-
313, 1982.

[27] A.T. Wei and R. H. Campbell, ‘‘Construction of a fault tolerant real-
time software systems,’’ Univ. Illinois, Tech. Rep. UIUCDCS-R-80-
1042, Dec. 1980.

Robin A. Sahner received the B.S. degree in
mathematics and the B.A. degree in music from
the University of Hartford, Hartford, CT, in 1976
and the A.M. degree in mathematics and the Ph.D.
degree in computer science from Duke Univer-
sity, Durham, NC, in 1978 and 1986, respec-
tively.

Since 1981, she has been a Computer Scientist
at Gould Computer Systems Division in Urbana,
1L, where her work is concerned with network and
interprocessor communications and secure Sys-
tems. Her research interests include reliability and performance analysis
and software engineering.

Kishor S. Trivedi (M’86) received the B.Tech.
degree from the Indian Institute of Technology,
Bombay, and the M..S. and Ph.D. degrees in com-
puter science from the University of Illinois, Ur-
bana-Champaign.

He is the author of a widely used text, Proba-
bility and Statistics with Reliability, Queuing and
Computer Science Applications (Englewood
Cliffs, NJ: Prentice-Hall). Both the text, and his
related research activities, have been focused on
establishing a unified mathematical modeling
foundation for computing system reliability and performance evaluation.
Presently, he is a Professor of Computer Science and Electrical Engineer-
ing at Duke University, Durham, NC. He has served as a Principal Inves-
tigator on various AFOSR, ARO, IBM, NASA, NIH, and NSF funded
projects and as a consultant to industry and research laboratories.

Dr. Trivedi is an Editor of the IEEE TRANSACTIONS ON COMPUTERS.

