
Abstract

This paper describes a new basis for the
implementation of a shifter functional unit. We present
a design based on the inverse butterfly and butterfly
datapath circuits that performs the standard shift and
rotate operations, as well as more advanced extract,
deposit and mix operations found in some processors.
Additionally, it also supports important new classes of
even more advanced bit manipulation instructions
recently proposed: these include arbitrary bit
permutations, bit scatter and bit gather instructions.
The new functional unit’s datapath is comparable in
latency to that of the classic barrel shifter. It replaces
two existing functional units - shifter and mix - with a
much more powerful one.
Keywords: shifter, rotations, permutations, bit
manipulations, arithmetic, processor

1. Introduction

Computer arithmetic for integers and floating-

point numbers is a well-developed and mature field.
Many books and papers describe the design of integer
arithmetic and floating-point arithmetic units. Less
extensively studied is the design of shifters, and
functional units for advanced bit manipulations in
general-purpose, word-oriented microprocessors.
Simple bit-parallel operations like AND, OR, XOR
and NOT are supported in word-oriented processors.
Denoted “logical” operations, they are typically
implemented with the integer arithmetic operations in
the Arithmetic-Logic Unit (ALU), which is the most
basic functional unit in a processor.

In current microprocessors, only very few bit
operations that are not bit-parallel are supported.
These are shifts and rotates, where each bit moves in
the same relative amount as every other bit in the word
(register). A separate Shifter functional unit is
typically used to implement these operations. A few

processors also have Extract_field and Deposit_field
operations, which can be viewed as variants of
Shift_Right and Shift_Left operations, with certain
bits masked out and set to zeros or replicated-sign bits.

There are many emerging applications, such as
cryptography, imaging and biometrics, where more
advanced bit manipulation operations are needed.
While these can be built from the simpler logical and
shift operations, the applications using these advanced
bit manipulation operations are significantly sped up if
the processor can support more powerful bit
manipulation instructions. Such operations include
arbitrary bit permutations, performing multiple bit-
field extract operations in parallel, and performing
multiple bit-field deposit operations in parallel. We
call these permutation (perm), parallel extract (pex) or
bit gather, and parallel deposit (pdep) or bit scatter
operations, respectively. They will be further
described in section 2. It has been shown that these
operations can be implemented in a single new
Permutation functional unit, utilizing two simple
datapaths: an inverse butterfly circuit and a butterfly
circuit [1].

In this paper, we show that we can perform both
existing and newly proposed bit manipulation
instructions with a single, simple functional unit,
rather than two (or more) separate units. Also, instead
of starting with the existing Shifter functional unit and
extending it so that it also performs bit permutations,
bit gather and bit scatter operations, we propose to
start with the more powerful Permutation functional
unit and perform all the operations previously done by
the Shifter functional unit. Hence, our new Shift-
Permute functional unit can perform all the useful bit
manipulations beyond the simple bit-parallel logical
operations already done by the ALU.

The contributions of this paper are:
• A proposal for a new basis for the design of

Shifters, based on the inverse butterfly
circuit, that is much more powerful, with only
small or no impact on cycle-time and area.

• A recursive algorithm for determining the

Performing Advanced Bit Manipulations Efficiently in

General-Purpose Processors

Yedidya Hilewitz and Ruby B. Lee
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 USA

{hilewitz, rblee}@princeton.edu

control bits for Rotate, Shift, Extract, Deposit
and Mix operations on the inverse butterfly
and butterfly datapath circuits.

• Demonstration of the implementation of a
powerful Shift-Permute unit, comparing its
complexity with that of an ordinary Shifter
functional unit.

In section 2, we list the instructions supported by
our proposed new functional unit. In section 3, we
show how to obtain the control bits for the inverse
butterfly and butterfly datapaths. In section 4, the
implementation of the new functional unit is described
and compared to that of the barrel and log shifter.
Section 5 concludes the paper.

2. Existing and Newly-Proposed Bit
Manipulation Instructions

We now detail the operations supported by two
existing microprocessor functional units – the Shifter
and the Mix multimedia functional units - as well as a
recently proposed Permutation functional unit [1].

2.1. Shifter and Mix Operations

The first 4 groups of instructions in Table 1 are

the rotate and shift instructions supported in most
microprocessors. These include right or left rotates,
right or left shifts (with zero or sign propagation). The
last 3 groups of instructions exist in a few Instruction
Set Architectures (ISAs) such as PA-RISC [2] and IA-
64 [3]. These include extract, deposit and mix
instructions.

The extract operation (Figure 1 (a)) selects a
single field of bits of arbitrary length from any

arbitrary position in the source register and right
justifies that field in the result. Extract is equivalent to
a shift right and mask operation. Extract has both
unsigned and signed variants. In the latter, the sign bit
of the extracted field is propagated to the most-
significant bit of the destination register.

The deposit operation (Figure 1(b)) takes a single
right justified field of arbitrary length from the source
register and deposits it at any arbitrary position in the
destination register. Deposit is equivalent to a left shift
and mask operation. There are two variants of deposit:
the remaining bits can be zeroed out, or they are
supplied from a second register, in which case a
masked merge is required.

(a)

(b)

Figure 1. (a) extr.u r1 = r2, pos, len
(b) dep.z r1 = r2, pos, len

The mix operation selects the left subwords or

right subwords from each pair of subwords alternating
between the two source registers r2 and r3 (Figure 2).
The mix instruction was first introduced in PA-RISC
for multimedia acceleration [4], and also appears in

Table 1. Existing Shifter and Mix Operations
Instruction Description
rotr r1 = r2, shamt
rotr r1 = r2, r3

Right rotate of r2. The rotate amount is either an immediate in the opcode (shamt), or
specified using a second source register r3.

rotl r1 = r2, shamt
rotl r1 = r2, r3

Left rotate of r2.

shr r1 = r2, shamt
shr r1 = r2, r3
shr.u r1 = r2, shamt
shr.u r1 = r2, r3

Right shift of r2 with vacated positions on the left filled with the sign bit (most significant
bit of r2) or zero-filled. The shift amount is either an immediate in the opcode or specified
using a second source register r3.

shl r1 = r2, shamt
shl r1 = r2, r3

Left shift of r2 with vacated positions on the right zero-filled.

extr r1 = r2, pos, len
extr.u r1 = r2, pos, len

Extraction and right justification of single field from r2 of length len from position pos.
The high order bits are filled with the sign bit of the extracted field or zero-filled.

dep.z r1 = r2, pos, len
dep r1= r2, r3, pos, len

Deposit at position pos of single right justified field from r2 of length len. Remaining bits
are zero-filled or merged from second source register r3.

mix {r,l} {0,1,2,3,4,5} r1
= r2, r3

Select right or left subword from a pair of subwords, alternating between source registers
r2 and r3. Subword sizes are 2i bits, for i = 0,1,2,…,5, for a 64-bit processor.

IA-64 (Itanium) [3], where it is implemented in a
separate multimedia functional unit. No ISA currently
supports mix for subwords smaller than a byte,
although this is very useful, e.g., for bit matrix
transposition and fast parallel sorting [5]. In our
proposed new functional unit, mix for bits – and for all
subword sizes that are powers of 2 – are supported.
This includes 12 mix operations: mix_left and
mix_right for each of 6 subword sizes of 20, 21, 22, 23,
24, 25, for a 64-bit datapath processor.

Figure 2. Mix left operation

2.2. Permute Operations

The permute operations are a new class of bit

manipulation instructions that have been proposed for
accelerating various application domains ranging from
cryptography to bioinformatics. These instructions
include the butterfly and inverse butterfly permutation
instructions and the parallel extract and parallel
deposit instructions, which are like bit gather and bit
scatter instructions (Table 2). Without loss of
generality, we consider only the simpler static
versions of these instructions in this paper, where
software “pre-decodes” the mask in the second source
register into control bits for the datapath, and moves
these into Application Registers (ARs), which are
registers associated with the Permute functional unit.
Dynamic mask decoding by hardware involves a
complicated decoder circuit that we have found
unnecessary for most applications [1].

The butterfly (bfly) and inverse butterfly (ibfly)
instructions route their inputs through butterfly and
inverse butterfly circuits, respectively [6]. The
concatenation of these two circuits forms a Benes
circuit, a general permutation network [7]. Thus a
single execution of bfly followed by ibfly (or vice
versa) can achieve any of the n! permutations of n bits
in at most 2 cycles [8].

The structure of the circuits is shown in Figure 3,
which shows 8-bit circuits. The n-bit circuits consist of
lg(n) stages, each stage composed of n/2 2-input
switches. Each of these circuits takes at most one
cycle, since they are less complicated than an ALU of
the same width, which we normalize to a latency of
one processor cycle. Furthermore, each switch is
composed of two 2:1 multiplexers, totaling n × lg(n)
multiplexers for each circuit, leading to small overall
circuit area.

In the ith stage (i starting from 1), the paired bits
are n/2i positions apart for the butterfly network and 2i-

1 positions apart for the inverse butterfly network. A
switch either passes through or swaps its inputs based
on the value of a control bit. Thus, the operation
requires n/2 × lg(n) control bits. For n = 64, four 64-bit
registers are required to hold the 64 data bits and the
32 × 6 control bits. Our preferred implementation for
bfly and ibfly instructions, in an architecture that has
only 2 source operands per instruction, utilizes 3
Application Registers (ar.b1, ar.b2, ar.b3) associated
with the functional unit to supply the control bits
during the execution of these instructions. Application
registers are already available in some ISAs, e.g., IA-
64 [3].

Figure 3. 8-bit Butterfly and Inverse Butterfly
Circuits

The parallel extract (pex) and parallel deposit

(pdep) instructions are generalizations of the extract
and deposit instructions [1]. Parallel extract performs a
bit gather operation – it extracts and compacts bits
from one source register from positions selected by
“1”s in a second source register (see Figure 4(a)). The

Table 2. Recently Proposed Bit Permutation Instructions
Instruction Description
bfly r1 = r2, ar.b1, ar.b2, ar.b3 Perform Butterfly permutation of data bits in r2
ibfly r1 = r2, ar.ib1, ar.ib2, ar.ib3 Perform Inverse Butterfly permutation of data bits in r2
pex r1 = r2, r3, ar.ib1, ar.ib2, ar.ib3 Parallel extract, static: Data bits in r2 selected by a pre-decoded mask r3 are

extracted, compressed and right-aligned in the result r1
pdep r1 = r2, r3, ar.b1, ar.b2, ar.b3 Parallel deposit, static: Right-aligned data bits in r2 are deposited, in order, in

result r1 at bit positions marked with a “1” in the statically-decoded mask r3
mov ar.x = r2, r3 Move values from GRs to ARs, to set controls (calculated by software) for pex,

pdep, bfly or ibfly

rest of the bits in the result register are cleared to “0”s.
Parallel deposit performs a bit scatter operation – it
deposits bits from one source register to positions
selected by “1”s in a second source register (see
Figure 4(b)). The remaining bits in the result register
are cleared to “0”s.

Parallel extract and parallel deposit are equivalent
to masked inverse butterfly and butterfly permutations,
respectively. The pex or pdep bit mask in the second
operand can be decoded by hardware [1] or software
to generate the n/2 × lg(n) inverse butterfly or butterfly
control bits. Only the static variants for pex and pdep
are listed in Table 2, where the application registers
used to control the inverse butterfly and butterfly
circuits are first loaded with pex or pdep control bits
generated by software. The bit mask is still needed to
mask the permutation to produce the pex or pdep
result.

The goal of this work is to show that such a
Permutation functional unit based on the butterfly and
inverse butterfly circuits in Figure 3 can also support
the existing Rotate, Shift, Extract, Deposit and Mix
instructions listed in Table 1.

(a)

(b)

Figure 4. (a) pex r1 = r2, r3; (b) pdep r1 = r2, r3

3. Control Bits for Shift Operations on
Butterfly and Inverse Butterfly Networks

In this section, we show that the n-bit inverse
butterfly and butterfly circuits can achieve any of the
Shifter and Mix operations in Table 1. The hard part is
determining how the controls of the lg(n) stages of the
circuit should be set, and we give a definitive
algorithm for this.

Theorem 1: An inverse butterfly circuit can
achieve any rotation of its input.

Proof: This is a known property of inverse

butterfly circuits (see [9] for example, where rotations
are called cyclic shifts).

Corollary 1: An enhanced inverse butterfly
circuit can perform on its input:

a. Right and left shifts
b. Extract operations
c. Deposit operations
d. Mix operations

Proof: This follows from Theorem 1, with these
operations modeled as a rotate with additional logic
handling zeroing or sign extension from an arbitrary
position or merging bits from the second source
operand. Mix is modeled as a rotate of one operand by
the subword size and then a merge of subwords
alternating between the two operands.

As the inverse butterfly circuit only performs
permutations without zeroing and without replication,
the circuit must be enhanced with an extra 2:1
multiplexer stage at the end that either selects the
rotated bits as is or other bits which are precomputed
as either zero or the sign bit or the bits of the second
source operand depending on the desired operation.

Corollary 2: Theorem 1 and Corollary 1 are
true for the butterfly network as well.

Proof: The butterfly and inverse butterfly

networks exhibit a reverse symmetry of their stages
from input to output. Thus a rotation on the inverse
butterfly network is equivalent to a rotation in the
opposite direction on the butterfly network when the
flow through the network is reversed (see Figure 5).
Hence, a butterfly circuit can also achieve any rotation
of its inputs. As in Corollary 1, a butterfly network
enhanced with an extra multiplexer stage at the end is
needed to handle zeroing or sign extension, or merging
bits from the second source operand.

Figure 5. Left rotate by three on inverse
butterfly is equivalent to right rotate by three
on butterfly

We first show how control bits are obtained for

rotations in section 3.1, then for the other operations in
section 3.2.

3.1. Determining the Control Bits for
Rotations

To achieve a rotation by s positions, s = 0, 1, 2 …
n-1, using the n-bit wide inverse butterfly circuit with
lg(n) stages, the input must be rotated by s mod 2j
within each 2j-bit wide inverse butterfly circuit with j
stages contained in the full n-bit circuit. This is
because stage j+1 on can only move bits at
granularities larger than 2j positions.

Consider the full n-bit circuit, which can be
viewed as two (lg(n)-1)-stage circuits followed by a
stage that swaps or passes through paired bits that are
n/2 positions apart. To right_rotate the input {inn-1 …
in0} by s positions, the two (lg(n)-1)-stage circuits
must have right_rotated their half inputs by s’ = s mod
n/2 and the input to stage lg(n) must be of the form:

{inn/2+s’-1 … inn/2 inn-1 … inn/2+s’ ||

ins’-1 … in0 inn/2-1 … ins’} (1)

as the last stage can only move bits by n/2 positions.

When the rotation amount s is less than n/2 then
the bits that wrapped around in the (lg(n)-1)-stage
circuits must be swapped in the final stage to yield the
input right_rotated by s (Figure 6(a)):

{ins’-1 … in0 inn-1 … inn/2+s’ ||

inn/2+s’-1 … inn/2 inn/2-1 … ins’}, (2)

When the rotation amount is greater than or equal to
n/2 then the bits that do not wrap in the (lg(n)-1)-stage
circuits must be swapped in the final stage to yield the
input right_rotated by s (Figure 6(b)):

{inn/2+s’-1 … inn/2 inn/2-1 … ins’ ||

ins’-1 … in0 inn-1 … inn/2+s’}. (3)

(a)

(b)

Figure 6. (a) rotation by s<n/2 and (b) by s≥n/2

Figure 7. Right rotate by 5 on 8-bit, 3-stage
inverse butterfly network

For example, consider the 8-bit inverse butterfly

network with right rotation amount s = 5, depicted in
Figure 7. As s=5 is greater than n/2=4, the bits that did
not wrap in stage 2 are swapped in stage 3 to yield the
final result.

As the rotation amount through stage 2, s mod 22
= 5 mod 4 = 1, is less than 22-1 = 2, the bits that did
wrap in stage 1 are swapped in stage 2 to yield the
input to stage 3.

As the rotation amount through stage 1, s mod 21
= 5 mod 2 = 1, is equal to than 21-1 = 1, the bits that did
not wrap in the input, i.e., all the bits, are swapped in
stage 1 to yield the input to stage 2.

We can mathematically derive recursive equations

for the control bits, cbj, j = 1, 2, … lg(n), for achieving
rotations on an inverse butterfly datapath. These
equations yield a compact circuit (shown in Figure 8)
for the (rotation) control bit generator shown in Figure
9 and Figure 10.

From (1)-(3) and Figure 6, we observe that the
control bits pattern for the final stage, which we call
cblg(n), for a rotate of s bits, is:

()




≥
<

= −−−

−

2/,1||0
2/,0||1

2/2/2/

2/

)lg(ns
ns

cb nsnns

sns

n
 (4)

where ak is a string of k “a”s, “1” means “swap” and
“0” means “pass through.” Note that s = s mod n/2
when s < n/2 and s-n/2 = s mod n/2 when s ≥ n/2:

()

()




≥
<

= −

−

2/mod,1||0
2/mod,0||1

2/mod2/2/mod

2/mod2/2/mod

)lg(nns
nns

cb nsnns

nsnns

n

()

()()



≥
<

=
−

−

2/mod,0||1~
2/mod,0||1

2/mod2/2/mod

2/mod2/2/mod

)lg(nns
nns

cb
nsnns

nsnns

n
(5)

where ~ indicates negation.

Furthermore, due to the recursive structure of the

inverse butterfly circuit, we can generalize (5) by
substituting j for lg(n), 2j for n and 2j-1 for n/2:

()

()()





≥
<=

−−

−−

−−−

−−−

12mod22mod

12mod22mod

22mod,0||1~
22mod,0||1

111

111

jjss

jjss

j s
scb jjj

jjj

(6)

There are j bits in s mod 2j, with the most significant
bit denoted sj-1. The condition s mod 2j

 < 2j-1 is
equivalent to sj-1 being equal to 0 and the condition s
mod 2j

 ≥ 2j-1 is equivalent to sj-1 being equal to 1:

()
()()





=
=

=
−

−
−

−

−−−

−−−

1,0||1~
0,0||1

1
2mod22mod

1
2mod22mod

111

111

j
ss

j
ss

j s
s

cb jjj

jjj

 (7)

(7) can be rewritten as the pattern XORed with sj-1:

()() 1
2mod22mod 111

0||1 −
− ⊕=

−−−

j
ss

j scb
jjj (8)

Since s mod k ≤ k-1, k – (s mod k) ≥ 1 and hence

the length of the string of zeros in (8) is always ≥ 1
(k=2j-1). Consequently, the least significant bit of the
pattern (prior to XOR with sj-1) is always “0”:

()() 1

2mod122mod 0||0||1
111

−
−− ⊕=

−−−

j
ss

j scb
jjj

()()() 11

2mod122mod ||0||1
111

−−
−− ⊕=

−−−

jj
ss

j sscb
jjj (9)

We call the bit pattern inside the inner parenthesis

of (9) f(s, j), a string of 2j-1-1 bits with the s mod 2j-1
leftmost bits set to “1” and the remaining bits set to
“0.” This function is only defined for j ≥ 2 and returns
the empty string for j = 1:

()
()







=
≥=

−−− −−

1{},
2,0||1,

111 2mod122mod

j
jjsf

jjj ss
 (10)

()() 11 ||, −−⊕= jjj ssjsfcb (11)

Note that we can derive f(s, j+1) from f(s, j):

() ()jjj ssjsf 2mod122mod 0||11, −−=+ (12)

If bit sj-1 = 0 then s mod 2j = s mod 2j-1:

() ()

() 1111

11

22mod122mod

2mod122mod

0||0||1

0||11,
−−−−

−−

−−

−−

=

=+
jjjj

jjj

ss

ssjsf

() () 120||,1,
−

=+
j

jsfjsf (13)

If bit sj-1 = 1 then s mod 2j = 2j-1 + s mod 2j-1:

() ()

()1111

1111

2mod122mod2

2mod2122mod2

0||1||1

0||11,
−−−−

−−−−

−−

+−−+

=

=+
jjjj

jjjjj

ss

ssjsf

() ()jsfjsf
j

,||11,
12 −

=+ (14)

Combining (13) and (14), we get:

() ()
()





=
=

=+
−

−
−

−

1,,||1
0,0||,

1,
1

2
1

2

1

1

j

j

sjsf
sjsf

jsf j

j

() ()
()





=
=

=+
−

−
−

−

−

−

1,,||1||1
0,0||0||,

1,
1

12
1

12

1

1

j

j

sjsf
sjsf

jsf j

j

 (15)

Since f(s, j) is a string of 2j-1-1 bits, we can replace the
string of ones and zeros in (15) by f(s, j) ORed (+) and
ANDed (•) with 1 and 0, respectively:

() () ()
() ()




=•+
=•+

=+
−

−

1,1,||1||1,
0,0,||0||0,

1,
1

1

j

j

sjsfjsf
sjsfjsf

jsf

() ()() ()()111 ,||||,1, −−− •+=+ jjj sjsfssjsfjsf (16)

From (10) and (16) we obtain a simple recursive

expression for f(s, j):

() ()() ()()




=
≥•−+−

= −−−

1{},
2,1,||||1,

, 222

j
jsjsfssjsf

jsf jjj

 (17)

Figure 8 depicts the hardware implementation of
the control bit generator for rotations. Equation (17) is
used to derive f(s, 2), f(s, 3), f(s, 4) and f(s, 5). Also,
the control bits for rotations, cb1, cb2, cb3, cb4 and cb5,
are obtained using equation (11). This implementation
is based on sharing of gates by reusing f(s, j) for both
cbj and f(s, j+1).

We now illustrate the use of these equations with
the example of Figure 7, the 8-bit inverse butterfly
network with right rotation amount s = 5 (s2s1s0 =
101). The first stage control bit, cb1, replicated for the
four 2-bit circuits, is given by:

()() 1||{}||1,5 000001 ==⊕=⊕= sssssfcb .

The second stage control bits, cb2, replicated for the
two 4-bit circuits, are given by:

()()
() ()()()

()()
()
()

.10
0||01
||

||{}||||{}
||1,5||||1,5

||2,5

110

11000

11000

112

=
⊕=

⊕=
⊕•+=

⊕•+=
⊕=

sss
sssss

sssfssf
ssfcb

Note that f(5,2) = 1 in the above. The final stage
control bits, cb3, are given by:

()()
() ()()()

()()
()()
()

.0111
1||100~

1||101||0||01
||1||||1

||2,5||||2,5
||3,5

22111

22111

223

=
=

⊕•+=
⊕•+=

⊕•+=
⊕=

sssss
sssfssf

ssfcb

Figure 7 shows that this configuration of the

inverse butterfly circuit does indeed right rotate the
input by 5 mod 8 (and that the outputs of stage 2 are
rotated by 5 mod 4 = 1 and that the outputs of stage 1
are rotated by 5 mod 2 = 1).

3.2. Determining the Control Bits for Other
Shift Operations

The other operations (shifts, extract, deposit and
mix) are modeled as a rotation part plus a masked-
merge part with zeroes, sign bits or second source
operand bits. The rotation part can use the same
rotation control bit generator described above to
configure the inverse butterfly network datapath. We
achieve the masked-merge part by using an enhanced
inverse butterfly datapath with an extra multiplexer
stage added as the final stage (see Figure 9). The mask
control bits are “0” when selecting the rotated bits and
“1” when selecting the merge bits. We now describe
how this is used to generate these other operations:
shifts, extracts, deposits and mix’s.

For a right shift by s operation, the s sign or zero
bits on the left are merged in. This requires a control
string 1s||0n-s for the extra multiplexer stage. From the
definition of f(s,j), (10), we see that f(s, lg(n)+1) is the
string 1s||0n-1-s. Thus the desired control string is given
by f(s, lg(n)+1) || 0. (Recall that s < n therefore the
least significant bit is always “0”, i.e., the least
significant bit is always selected from the inverse
butterfly datapath.) f(s, lg(n)+1) can easily be
produced by extending the rotation control bit
generator by one extra stage. For left shift, which can

Figure 8. Control bit generator circuit for rotations on inverse butterfly (first 5 stages)

be viewed as the left-to-right reversal of right shift, the
control bits for the extra stage are obtained by
reversing left-to-right the right shift control string to
yield 0n-s||1s.

For extract operations, which are like right shift
operations with the left end replaced by the sign bit of
the extracted field or zeros, our enhanced inverse
butterfly network selects in its extra multiplexer stage
the rotated bits or zeros or the sign bit of the extracted
field i.e., the bit in position pos+len in the source
register. The bit can be selected using an n:1
multiplexer. The control bit pattern for this stage is n-
len “1”s followed by len “0”s (1n-len||0len) to propagate
the sign bit of the extracted field in the output (which
is in position len) to the high order bits. Note that
{f(len, lg(n)+1) || 0} is 1len||0n-len. So reversing left-to-
right {f(len, lg(n)+1) || 0} yields 0n-len||1len and then
negating it produces 1n-len||0len, the correct bit pattern
for stage lg(n)+1.

For deposit operations, which are like left shift
operations with the right and left ends replaced by
zeros or bits from the second operand, our enhanced
inverse butterfly network selects in its extra
multiplexer stage the rotated bits or zeros or bits from
the second input operand. The correct pattern is a
string of n-pos-len “1”s followed by len “0”s followed
by s=pos “1”s (1n-pos-len||0len||1pos) to merge in bits on
the right and left around the deposited field.
{f(pos+len,lg(n)+1) || 0} is 1pos+len||0n-pos-len. Reversing
left-to-right this string yields 0n-pos-len||1pos+len and then
negating it produces 1n-pos-len||0pos+len. Bitwise ORing
this with the left shift control string, 0n-pos||1pos, yields
1n-pos-len||0len||1pos, the correct pattern for the masked-
merge part of the deposit operation is produced.

For mix operations, the enhanced inverse butterfly
network selects in its extra multiplexer stage the
rotated bits or the bits from the second input operand.
The control bit pattern is simply a pattern of
alternating strings of “0”s and “1”s, the precise pattern
depending on the subword size and whether mix left or
mix right is executed. These patterns can be hard
coded in the circuit for the 12 mix operations (6
operand sizes × 2 directions).

4. New Shift-Permute Functional Unit
Implementation

A circuit block diagram of the combined shift-
permute functional unit is shown in Figure 9. The
functional unit consists of the two datapaths, the
butterfly and inverse butterfly circuits each enhanced
with an extra 2:1 multiplexer stage (as well as pre-
masking for the pex operation [1]); the control bit
generator for configuring the two datapaths; and the
masked merge block which generates the merge bits

and mask control for the extra multiplexer stage. Note
that the control bits fed to the butterfly circuit are
reversed left-to-right and the order of the stages is
reversed, following Corollary 2. Also note that the
butterfly circuit is considered optional and hence is
shown in dotted lines as the functionality can be
emulated using the inverse butterfly network at the
cost of some performance. Also the latency of the
control bit generation is serialized with respect to the
latency of the butterfly circuit, since the control bits
that take longest to generate are needed to control the
first stage of the butterfly circuit, which is the last
stage of the inverse butterfly. Thus the inverse
butterfly datapath is faster, since its control bit
generation latency is overlapped with its datapath
latency.

Figure 9. Combined shift-permute functional
unit based on inverse butterfly circuit

Figure 10 shows the control bit generator block in

more detail. The source of the control bits can be from
a pex/pdep decoder [1], the rotation control bit
generator (Figure 8) or the application registers. The
pex/pdep decoder supplies the bits for the dynamic pex
and pdep operations. This block is consider optional,
as the decoder is large and has long latency (2 cycles),
and is only needed for variable pex/pdep instructions
which we found were rarely used [1]. Hence, it is
shown in dotted lines. The rotation control bit
generator is that of Figure 8, extended to produce
cblg(n). The shift amount is s for right rotates, right

Figure 10. Control Bit Generator Circuit Block

Figure 11. Masked Merge Block

shifts, mix_left (the left subwords are shifted right)
and extracts; it is n-s for left rotates, left shifts,
mix_right and deposits. Also output is f(s, lg(n)) to the
masked-merge block for use in computing the masked-
merge controls. The final source of the control bits is
from the application registers for use in the bfly and
ibfly permutation instructions or static pex and pdep.

Figure 11 shows an overview of the masked
merge block and lists the bit patterns generated for the
merge bits and the mask control bits. The merge bits
can be:

• the zero string for unsigned right shift, left
shift, unsigned extract, deposit-and-zero, and
parallel deposit;

• the sign bit for arithmetic right shift;
• the sign bit of the extracted field (bit pos+len

of the source operand) for signed extract or
• the second source operand r3 for deposit-and-

merge and mix.
The mask control bits are “0” when selecting the
rotated bits output from the butterfly or inverse
butterfly circuit and “1” when selecting the merge bits.
The patterns are:

• the zero string for right and left rotate, bfly
and ibfly permutation instructions and
parallel extract (which do not merge bits);

• the second source operand r3 for parallel
deposit and

• various strings of “1”s and “0”s for shifts,
extract, deposit and mix, as described in
Section 3.2.

4.1. Comparison to Barrel and Log Shifters

One popular shifter architecture is the barrel

shifter. The barrel shifter essentially is an n-bit wide
n:1 multiplexer that selects the input shifted by s
positions, where s = 0,1,2,…, n-1 (Figure 12). The
advantage of this design is that there is only a single
gate delay between the input and output. The
disadvantages are that n2 switch elements (pass
transistors or transmission gates) are required, and
long delays due to capacitance as each input fans out
to n elements, each output fans in from n elements and
the shift amount needs to be decoded.

A second popular shifter architecture is the log
shifter. The log shifter shifts the input by decreasing
powers of two or four and selects at each stage the
shifted version or the version as is from the previous
stage (Figure 13). The advantages are that only
n×lg(n) or n×log4(n) elements are required and that the
shift amount directly controls the multiplexer
elements. The disadvantage is that there are lg(n) or
log4(n) gates between the input and output.

Left and right shifts are performed by
implementing a single, say right, shifter; the left shift
is performed by subtracting the left shift amount from
the bit width, n, (with the appropriate logic to ensure
proper zero propagation). Arithmetic right shift is
accomplished by conditionally propagating the sign bit
rather than a zero bit. Additionally, the shifters easily
support rotations by wrapping around the bits.

As the 64-bit barrel shifter is impractical due to
the capacitance on the output lines, we implemented a
64-bit shifter as an 8-byte barrel shifter followed by an
8-bit barrel shifter, which limits the number of
transmission gates tied together to 8. We also
implemented a 64-bit log shifter using 3 stages of 4:1
multiplexers.

Figure 12. 8-bit Barrel Shifter with detail of
pass transistor switch element

Figure 13. 8-bit log shifter

We used the method of logical effort [10] to
compare the delay along the critical paths for the
barrel shifter, the log shifter and the inverse butterfly
shifter. We consider the delay only from the input to
the decoder through the two shifter levels for the
barrel shifter and through the three shifter levels for
the log shifter. For our proposed Shift-Permute
functional unit, we consider the delay from the input to
the rotation control bit generator (Figure 8) through
the output of the inverse butterfly circuit. We assume
that any preprocessing of the shift amount and post-
processing for masked merge is approximately equal
for the two designs.

The critical path for the barrel shifter extends
through the 3:8 decoder to the select lines of the first
shifter, to the input to the second shifter, to the output.
For the log shifter, the critical path is through the first
stage select lines, to the second stage input, to the third
stage input, to the output. The critical path for our
inverse butterfly shifter extends through cb2
generation, to the stage 2 select lines, to the remainder
of the inverse butterfly network. According to the
logical effort calculations, the delay for the barrel
shifter is 15.1 FO4 and the delay for the log shifter is
13.0 FO4, while the delay for inverse butterfly shifter
is 15.5 FO4. Thus the delay along the critical path for
the barrel shifter and our new proposed shifter is
comparable, and our new shifter is 19% slower than a
log shifter. Using our new shifter may adversely affect
cycle time for processors that use the log shifter
implementation depending on the slack in the shifter
critical path.

5. Conclusions

We have described a new basis for Shifter and

Mix functional units based on the inverse butterfly
datapath (with optional butterfly datapath). Our new
Shift-Permute functional unit is a much more powerful
functional unit: it performs the existing Shifter
operations and multimedia subword-permutation
operations (shift, rotate, extract, deposit and mix
operations) as well as the newly proposed advanced bit
manipulation instructions (bfly, ibfly, parallel extract
and parallel deposit) [1].

We have shown how to determine the control bits
to configure the inverse butterfly (and butterfly)
circuits to perform rotations; this is given by a simple
recursive function of the shift amount. Furthermore we
have shown how to compute the merge bits and mask
control for turning rotations into shifts, extract, deposit
and mix operations, and how the mask control uses the
same recursive function.

Additionally, we have compared the complexity
of our new functional unit to that of the classic barrel

shifter and log shifter using logical effort. Our
proposed Shift-Permute unit has comparable latency to
that of the barrel shifter and is 19% slower than the log
shifter while supporting a much more powerful set of
advanced permutation operations (as given in Table 2)
as well as existing shifter and mix operations (as given
in Table 1.) There is essentially no area overhead since
the existing Shifter unit is replaced. Since the mix
operation is currently supported as a separate
multimedia functional unit in [3], we may have
reduced area requirements by replacing two existing
functional units (Shifter, Multimedia-mix) with one
new unit.

In summary, our proposed new Shift-Permute
functional unit enables processors to support advanced
bit permutations efficient, without any area overhead
and with only minor or no cycle-time latency impact.
We recommend its use in future microprocessors, and
hope to have stimulated further research into optimal
implementations of shifters and important new bit
manipulation operations.

6. References

[1] Yedidya Hilewitz and Ruby B. Lee, “Fast Bit

Compression and Expansion with Parallel Extract and
Parallel Deposit Instructions”, Proceedings of the IEEE
17th International Conference on Application-Specific
Systems, Architectures and Processors (ASAP), pp. 65-
72, September 11-13, 2006.

[2] Ruby Lee, ‘‘Precision Architecture’’, IEEE Computer,
Vol. 22, No. 1, pp.78-91, Jan 1989.

[3] Intel Corporation, Intel® Itanium® Architecture
Software Developer's Manual, rev. 2.2, Jan. 2006.

[4] Ruby B. Lee, “Subword Parallelism with MAX-2”,
IEEE Micro, Vol. 16 No. 4, pp. 51-59, August 1996.

[5] Zhijie Shi and Ruby B. Lee, Subword Sorting with
Versatile Permutation Instructions, Proceedings of the
International Conference on Computer Design (ICCD
2002), pp. 234-241, September 2002.

[6] Zhijie Shi, Xiao Yang and Ruby B. Lee, ‘‘Arbitrary Bit
Permutations in One or Two Cycles’’, Proceedings of
the IEEE International Conference on Application-
Specific Systems, Architectures and Processors, pp.
237-247, June 2003.

[7] V. E. Beneš, “Optimal Rearrangeable Multistage
Connecting Networks”, Bell System Technical Journal,
Vol. 43, No. 4, July 1964, pp. 1641-1656.

[8] Ruby B. Lee, Zhijie Shi, and Xiao Yang, How a
Processor can Permute n bits in O(1) cycles,
Proceedings of Hot Chips 14 - A Symposium on High
Performance Chips, August 2002.

[9] F. Thompson Leighton, Introduction to Parallel
Algorithms and Architectures: Arrays, Trees,
Hypercubes, Morgan Kaufmann Publishers, 1992.

[10] Ivan Sutherland, Bob Sproull, David Harris, Logical
Effort: Designing Fast CMOS Circuits, Morgan
Kaufmann Publishers, 1999.

