
Abstract 
 

This paper describes a new basis for the 
implementation of a shifter functional unit. We present 
a design based on the inverse butterfly and butterfly 
datapath circuits that performs the standard shift and 
rotate operations, as well as more advanced extract, 
deposit and mix operations found in some processors. 
Additionally, it also supports important new classes of 
even more advanced bit manipulation instructions 
recently proposed: these include arbitrary bit 
permutations, bit scatter and bit gather instructions. 
The new functional unit’s datapath is comparable in 
latency to that of the classic barrel shifter. It replaces 
two existing functional units - shifter and mix - with a 
much more powerful one.  
Keywords: shifter, rotations, permutations, bit 
manipulations, arithmetic, processor 

 
 

1. Introduction 
 
Computer arithmetic for integers and floating-

point numbers is a well-developed and mature field. 
Many books and papers describe the design of integer 
arithmetic and floating-point arithmetic units. Less 
extensively studied is the design of shifters, and 
functional units for advanced bit manipulations in 
general-purpose, word-oriented microprocessors. 
Simple bit-parallel operations like AND, OR, XOR 
and NOT are supported in word-oriented processors. 
Denoted “logical” operations, they are typically 
implemented with the integer arithmetic operations in 
the Arithmetic-Logic Unit (ALU), which is the most 
basic functional unit in a processor.  

In current microprocessors, only very few bit 
operations that are not bit-parallel are supported. 
These are shifts and rotates, where each bit moves in 
the same relative amount as every other bit in the word 
(register). A separate Shifter functional unit is 
typically used to implement these operations. A few 

processors also have Extract_field and Deposit_field 
operations, which can be viewed as variants of 
Shift_Right and Shift_Left operations, with certain 
bits masked out and set to zeros or replicated-sign bits. 

There are many emerging applications, such as 
cryptography, imaging and biometrics, where more 
advanced bit manipulation operations are needed. 
While these can be built from the simpler logical and 
shift operations, the applications using these advanced 
bit manipulation operations are significantly sped up if 
the processor can support more powerful bit 
manipulation instructions. Such operations include 
arbitrary bit permutations, performing multiple bit-
field extract operations in parallel, and performing 
multiple bit-field deposit operations in parallel. We 
call these permutation (perm), parallel extract (pex) or 
bit gather, and parallel deposit (pdep) or bit scatter 
operations, respectively. They will be further 
described in section 2. It has been shown that these 
operations can be implemented in a single new 
Permutation functional unit, utilizing two simple 
datapaths: an inverse butterfly circuit and a butterfly 
circuit [1].  

In this paper, we show that we can perform both 
existing and newly proposed bit manipulation 
instructions with a single, simple functional unit, 
rather than two (or more) separate units. Also, instead 
of starting with the existing Shifter functional unit and 
extending it so that it also performs bit permutations, 
bit gather and bit scatter operations, we propose to 
start with the more powerful Permutation functional 
unit and perform all the operations previously done by 
the Shifter functional unit. Hence, our new Shift-
Permute functional unit can perform all the useful bit 
manipulations beyond the simple bit-parallel logical 
operations already done by the ALU. 

The contributions of this paper are: 
• A proposal for a new basis for the design of 

Shifters, based on the inverse butterfly 
circuit, that is much more powerful, with only 
small or no impact on cycle-time and area. 

• A recursive algorithm for determining the 
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control bits for Rotate, Shift, Extract, Deposit 
and Mix operations on the inverse butterfly 
and butterfly datapath circuits. 

• Demonstration of the implementation of a 
powerful Shift-Permute unit, comparing its 
complexity with that of an ordinary Shifter 
functional unit. 

In section 2, we list the instructions supported by 
our proposed new functional unit. In section 3, we 
show how to obtain the control bits for the inverse 
butterfly and butterfly datapaths. In section 4, the 
implementation of the new functional unit is described 
and compared to that of the barrel and log shifter. 
Section 5 concludes the paper. 

 
2. Existing and Newly-Proposed Bit 
Manipulation Instructions 
 

We now detail the operations supported by two 
existing microprocessor functional units – the Shifter 
and the Mix multimedia functional units - as well as a 
recently proposed Permutation functional unit [1]. 

 
2.1. Shifter and Mix Operations 

 
The first 4 groups of instructions in Table 1 are 

the rotate and shift instructions supported in most 
microprocessors. These include right or left rotates, 
right or left shifts (with zero or sign propagation). The 
last 3 groups of instructions exist in a few Instruction 
Set Architectures (ISAs) such as PA-RISC [2] and IA-
64 [3]. These include extract, deposit and mix 
instructions. 

The extract operation (Figure 1 (a)) selects a 
single field of bits of arbitrary length from any 

arbitrary position in the source register and right 
justifies that field in the result. Extract is equivalent to 
a shift right and mask operation. Extract has both 
unsigned and signed variants. In the latter, the sign bit 
of the extracted field is propagated to the most-
significant bit of the destination register. 

The deposit operation (Figure 1(b)) takes a single 
right justified field of arbitrary length from the source 
register and deposits it at any arbitrary position in the 
destination register. Deposit is equivalent to a left shift 
and mask operation. There are two variants of deposit: 
the remaining bits can be zeroed out, or they are 
supplied from a second register, in which case a 
masked merge is required. 

 

 
(a) 

 
(b) 

Figure 1. (a) extr.u r1 = r2, pos, len                     
(b) dep.z r1 = r2, pos, len 

 
The mix operation selects the left subwords or 

right subwords from each pair of subwords alternating 
between the two source registers r2 and r3 (Figure 2). 
The mix instruction was first introduced in PA-RISC 
for multimedia acceleration [4], and also appears in 

Table 1. Existing Shifter and Mix Operations
Instruction Description 
rotr r1 = r2, shamt 
rotr r1 = r2, r3  

Right rotate of r2. The rotate amount is either an immediate in the opcode (shamt), or 
specified using a second source register r3. 

rotl r1 = r2, shamt 
rotl r1 = r2, r3 

Left rotate of r2. 

shr r1 = r2, shamt 
shr r1 = r2, r3  
shr.u r1 = r2, shamt 
shr.u r1 = r2, r3 

Right shift of r2 with vacated positions on the left filled with the sign bit (most significant 
bit of r2) or zero-filled. The shift amount is either an immediate in the opcode or specified 
using a second source register r3. 
 

shl r1 = r2, shamt 
shl r1 = r2, r3 

Left shift of r2 with vacated positions on the right zero-filled. 

extr r1 = r2, pos, len  
extr.u r1 = r2, pos, len 

Extraction and right justification of single field from r2 of length len from position pos. 
The high order bits are filled with the sign bit of the extracted field or zero-filled. 

dep.z r1 = r2, pos, len  
dep r1= r2, r3, pos, len 

Deposit at position pos of single right justified field from r2 of length len. Remaining bits 
are zero-filled or merged from second source register r3. 

mix {r,l} {0,1,2,3,4,5} r1 
= r2, r3 

Select right or left subword from a pair of subwords, alternating between source registers 
r2 and r3. Subword sizes are 2i bits, for i = 0,1,2,…,5, for a 64-bit processor.  

 



IA-64 (Itanium) [3], where it is implemented in a 
separate multimedia functional unit. No ISA currently 
supports mix for subwords smaller than a byte, 
although this is very useful, e.g., for bit matrix 
transposition and fast parallel sorting [5]. In our 
proposed new functional unit, mix for bits – and for all 
subword sizes that are powers of 2 – are supported. 
This includes 12 mix operations: mix_left and 
mix_right for each of 6 subword sizes of 20, 21, 22, 23, 
24, 25, for a 64-bit datapath processor. 

 

Figure 2. Mix left operation 
 

2.2. Permute Operations 
 
The permute operations are a new class of bit 

manipulation instructions that have been proposed for 
accelerating various application domains ranging from 
cryptography to bioinformatics. These instructions 
include the butterfly and inverse butterfly permutation 
instructions and the parallel extract and parallel 
deposit instructions, which are like bit gather and bit 
scatter instructions (Table 2). Without loss of 
generality, we consider only the simpler static 
versions of these instructions in this paper, where 
software “pre-decodes” the mask in the second source 
register into control bits for the datapath, and moves 
these into Application Registers (ARs), which are 
registers associated with the Permute functional unit. 
Dynamic mask decoding by hardware involves a 
complicated decoder circuit that we have found 
unnecessary for most applications [1].  

The butterfly (bfly) and inverse butterfly (ibfly) 
instructions route their inputs through butterfly and 
inverse butterfly circuits, respectively [6]. The 
concatenation of these two circuits forms a Benes 
circuit, a general permutation network [7]. Thus a 
single execution of bfly followed by ibfly (or vice 
versa) can achieve any of the n! permutations of n bits 
in at most 2 cycles [8]. 

The structure of the circuits is shown in Figure 3, 
which shows 8-bit circuits. The n-bit circuits consist of 
lg(n) stages, each stage composed of n/2 2-input 
switches. Each of these circuits takes at most one 
cycle, since they are less complicated than an ALU of 
the same width, which we normalize to a latency of 
one processor cycle. Furthermore, each switch is 
composed of two 2:1 multiplexers, totaling n × lg(n) 
multiplexers for each circuit, leading to small overall 
circuit area.  

In the ith stage (i starting from 1), the paired bits 
are n/2i positions apart for the butterfly network and 2i-

1 positions apart for the inverse butterfly network. A 
switch either passes through or swaps its inputs based 
on the value of a control bit. Thus, the operation 
requires n/2 × lg(n) control bits. For n = 64, four 64-bit 
registers are required to hold the 64 data bits and the 
32 × 6 control bits. Our preferred implementation for 
bfly and ibfly instructions, in an architecture that has 
only 2 source operands per instruction, utilizes 3 
Application Registers (ar.b1, ar.b2, ar.b3) associated 
with the functional unit to supply the control bits 
during the execution of these instructions. Application 
registers are already available in some ISAs, e.g., IA-
64 [3]. 

 

 
Figure 3. 8-bit Butterfly and Inverse Butterfly 
Circuits 

 
The parallel extract (pex) and parallel deposit 

(pdep) instructions are generalizations of the extract 
and deposit instructions [1]. Parallel extract performs a 
bit gather operation – it extracts and compacts bits 
from one source register from positions selected by 
“1”s in a second source register (see Figure 4(a)). The 

Table 2. Recently Proposed Bit Permutation Instructions 
Instruction Description 
bfly r1 = r2, ar.b1, ar.b2, ar.b3 Perform Butterfly permutation of data bits in r2 
ibfly r1 = r2, ar.ib1, ar.ib2, ar.ib3 Perform Inverse Butterfly permutation of data bits in r2 
pex r1 = r2, r3, ar.ib1, ar.ib2, ar.ib3 Parallel extract, static: Data bits in r2 selected by a pre-decoded mask r3 are 

extracted, compressed and right-aligned in the result r1 
pdep r1 = r2, r3, ar.b1, ar.b2, ar.b3 Parallel deposit, static: Right-aligned data bits in r2 are deposited, in order, in 

result r1 at bit positions marked with a “1” in the statically-decoded mask r3 
mov ar.x = r2, r3 Move values from GRs to ARs, to set controls (calculated by software) for pex, 

pdep, bfly or ibfly 



rest of the bits in the result register are cleared to “0”s. 
Parallel deposit performs a bit scatter operation – it 
deposits bits from one source register to positions 
selected by “1”s in a second source register (see 
Figure 4(b)). The remaining bits in the result register  
are cleared to “0”s. 

Parallel extract and parallel deposit are equivalent 
to masked inverse butterfly and butterfly permutations, 
respectively. The pex or pdep bit mask in the second 
operand can be decoded by hardware [1] or software 
to generate the n/2 × lg(n) inverse butterfly or butterfly 
control bits. Only the static variants for pex and pdep 
are listed in Table 2, where the application registers 
used to control the inverse butterfly and butterfly 
circuits are first loaded with pex or pdep control bits 
generated by software. The bit mask is still needed to 
mask the permutation to produce the pex or pdep 
result.  

The goal of this work is to show that such a 
Permutation functional unit based on the butterfly and 
inverse butterfly circuits in Figure 3 can also support 
the existing Rotate, Shift, Extract, Deposit and Mix 
instructions listed in Table 1. 

 

 
(a) 

 
(b) 

Figure 4. (a) pex r1 = r2, r3; (b) pdep r1 = r2, r3 
 

3. Control Bits for Shift Operations on 
Butterfly and Inverse Butterfly Networks 
 

In this section, we show that the n-bit inverse 
butterfly and butterfly circuits can achieve any of the 
Shifter and Mix operations in Table 1. The hard part is 
determining how the controls of the lg(n) stages of the 
circuit should be set, and we give a definitive 
algorithm for this.  

 
Theorem 1: An inverse butterfly circuit can 
achieve any rotation of its input. 

 
Proof: This is a known property of inverse 

butterfly circuits (see [9] for example, where rotations 
are called cyclic shifts). 

Corollary 1: An enhanced inverse butterfly 
circuit can perform on its input: 

a. Right and left shifts  
b. Extract operations  
c. Deposit operations  
d. Mix operations  
 

Proof: This follows from Theorem 1, with these 
operations modeled as a rotate with additional logic 
handling zeroing or sign extension from an arbitrary 
position or merging bits from the second source 
operand. Mix is modeled as a rotate of one operand by 
the subword size and then a merge of subwords 
alternating between the two operands. 

As the inverse butterfly circuit only performs 
permutations without zeroing and without replication, 
the circuit must be enhanced with an extra 2:1 
multiplexer stage at the end that either selects the 
rotated bits as is or other bits which are precomputed 
as either zero or the sign bit or the bits of the second 
source operand depending on the desired operation.  

 
Corollary 2: Theorem 1 and Corollary 1 are 
true for the butterfly network as well. 

 
Proof: The butterfly and inverse butterfly 

networks exhibit a reverse symmetry of their stages 
from input to output. Thus a rotation on the inverse 
butterfly network is equivalent to a rotation in the 
opposite direction on the butterfly network when the 
flow through the network is reversed (see Figure 5). 
Hence, a butterfly circuit can also achieve any rotation 
of its inputs. As in Corollary 1, a butterfly network 
enhanced with an extra multiplexer stage at the end is 
needed to handle zeroing or sign extension, or merging 
bits from the second source operand. 

 

Figure 5. Left rotate by three on inverse 
butterfly is equivalent to right rotate by three 
on butterfly  

  
We first show how control bits are obtained for 

rotations in section 3.1, then for the other operations in 
section 3.2.  



3.1. Determining the Control Bits for 
Rotations 
 

To achieve a rotation by s positions, s = 0, 1, 2 … 
n-1, using the n-bit wide inverse butterfly circuit with 
lg(n) stages, the input must be rotated by s mod 2j 
within each 2j-bit wide inverse butterfly circuit with j 
stages contained in the full n-bit circuit. This is 
because stage j+1 on can only move bits at 
granularities larger than 2j positions. 

Consider the full n-bit circuit, which can be 
viewed as two (lg(n)-1)-stage circuits followed by a 
stage that swaps or passes through paired bits that are 
n/2 positions apart. To right_rotate the input {inn-1 … 
in0} by s positions, the two (lg(n)-1)-stage circuits 
must have right_rotated their half inputs by s’ = s mod 
n/2 and the input to stage lg(n) must be of the form: 

 
{inn/2+s’-1 … inn/2 inn-1 … inn/2+s’ || 

ins’-1 … in0 inn/2-1 … ins’}   (1) 
 
as the last stage can only move bits by n/2 positions.  

When the rotation amount s is less than n/2 then 
the bits that wrapped around in the (lg(n)-1)-stage 
circuits must be swapped in the final stage to yield the 
input right_rotated by s (Figure 6(a)): 

 
{ins’-1 … in0 inn-1 … inn/2+s’ || 

inn/2+s’-1 … inn/2 inn/2-1 … ins’},  (2) 
 
When the rotation amount is greater than or equal to 
n/2 then the bits that do not wrap in the (lg(n)-1)-stage 
circuits must be swapped in the final stage to yield the 
input right_rotated by s (Figure 6(b)): 

 
{inn/2+s’-1 … inn/2 inn/2-1 … ins’ || 

ins’-1 … in0 inn-1 … inn/2+s’}.  (3) 
 

 
(a) 

 
(b) 

Figure 6. (a) rotation by s<n/2 and (b) by s≥n/2
 

 
Figure 7. Right rotate by 5 on 8-bit, 3-stage 
inverse butterfly network 

 
For example, consider the 8-bit inverse butterfly 

network with right rotation amount s = 5, depicted in 
Figure 7. As s=5 is greater than n/2=4, the bits that did 
not wrap in stage 2 are swapped in stage 3 to yield the 
final result. 

As the rotation amount through stage 2, s mod 22 
= 5 mod 4 = 1, is less than 22-1 = 2, the bits that did 
wrap in stage 1 are swapped in stage 2 to yield the 
input to stage 3. 

As the rotation amount through stage 1, s mod 21 
= 5 mod 2 = 1, is equal to than 21-1 = 1, the bits that did 
not wrap in the input, i.e., all the bits, are swapped in 
stage 1 to yield the input to stage 2. 

 
We can mathematically derive recursive equations 

for the control bits, cbj, j = 1, 2, … lg(n), for achieving 
rotations on an inverse butterfly datapath. These 
equations yield a compact circuit (shown in Figure 8) 
for the (rotation) control bit generator shown in Figure 
9 and Figure 10. 

From (1)-(3) and Figure 6, we observe that the 
control bits pattern for the final stage, which we call 
cblg(n), for a rotate of s bits, is: 
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where ak is a string of k “a”s, “1” means “swap” and 
“0” means “pass through.” Note that s = s mod n/2 
when s < n/2 and s-n/2 = s mod n/2 when s ≥ n/2: 
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where ~ indicates negation. 

Furthermore, due to the recursive structure of the 



inverse butterfly circuit, we can generalize (5) by 
substituting j for lg(n), 2j for n and 2j-1 for n/2: 
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There are j bits in s mod 2j, with the most significant 
bit denoted sj-1. The condition s mod 2j

 < 2j-1 is 
equivalent to sj-1 being equal to 0 and the condition s 
mod 2j

 ≥ 2j-1 is equivalent to sj-1 being equal to 1: 
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(7) can be rewritten as the pattern XORed with sj-1: 
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Since s mod k ≤ k-1, k – (s mod k) ≥ 1 and hence 

the length of the string of zeros in (8) is always ≥ 1 
(k=2j-1). Consequently, the least significant bit of the 
pattern (prior to XOR with sj-1) is always “0”: 
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We call the bit pattern inside the inner parenthesis 

of (9) f(s, j), a string of 2j-1-1 bits with the s mod 2j-1 
leftmost bits set to “1” and the remaining bits set to 
“0.” This function is only defined for j ≥ 2 and returns 
the empty string for j = 1: 
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( )( ) 11 ||, −−⊕= jjj ssjsfcb                           (11) 

 
Note that we can derive f(s, j+1) from f(s, j): 
 

( ) ( )jjj ssjsf 2mod122mod 0||11, −−=+            (12) 
 
If bit sj-1 = 0 then s mod 2j = s mod 2j-1: 
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If bit sj-1 = 1 then s mod 2j = 2j-1 + s mod 2j-1:  
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Combining (13) and (14), we get: 
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Since f(s, j) is a string of 2j-1-1 bits, we can replace the 
string of ones and zeros in (15) by f(s, j) ORed (+) and 
ANDed (•) with 1 and 0, respectively: 
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From (10) and (16) we obtain a simple recursive 

expression for f(s, j): 
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Figure 8 depicts the hardware implementation of 
the control bit generator for rotations. Equation (17) is 
used to derive f(s, 2), f(s, 3), f(s, 4) and f(s, 5). Also, 
the control bits for rotations, cb1, cb2, cb3, cb4 and cb5, 
are obtained using equation (11). This implementation 
is based on sharing of gates by reusing f(s, j) for both 
cbj and f(s, j+1). 

We now illustrate the use of these equations with 
the example of Figure 7, the 8-bit inverse butterfly 
network with right rotation amount s = 5 (s2s1s0 = 
101). The first stage control bit, cb1, replicated for the 
four 2-bit circuits, is given by: 

 
( )( ) 1||{}||1,5 000001 ==⊕=⊕= sssssfcb . 

 
The second stage control bits, cb2, replicated for the 
two 4-bit circuits, are given by: 
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Note that f(5,2) = 1 in the above. The final stage 
control bits, cb3, are given by: 
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Figure 7 shows that this configuration of the 

inverse butterfly circuit does indeed right rotate the 
input by 5 mod 8 (and that the outputs of stage 2 are 
rotated by 5 mod 4 = 1 and that the outputs of stage 1 
are rotated by 5 mod 2 = 1). 

 

3.2. Determining the Control Bits for Other 
Shift Operations 
 

The other operations (shifts, extract, deposit and 
mix) are modeled as a rotation part plus a masked-
merge part with zeroes, sign bits or second source 
operand bits. The rotation part can use the same 
rotation control bit generator described above to 
configure the inverse butterfly network datapath. We 
achieve the masked-merge part by using an enhanced 
inverse butterfly datapath with an extra multiplexer 
stage added as the final stage (see Figure 9). The mask 
control bits are “0” when selecting the rotated bits and 
“1” when selecting the merge bits. We now describe 
how this is used to generate these other operations: 
shifts, extracts, deposits and mix’s. 

For a right shift by s operation, the s sign or zero 
bits on the left are merged in. This requires a control 
string 1s||0n-s for the extra multiplexer stage. From the 
definition of f(s,j), (10), we see that f(s, lg(n)+1) is the 
string 1s||0n-1-s. Thus the desired control string is given 
by f(s, lg(n)+1) || 0. (Recall that s < n therefore the 
least significant bit is always “0”, i.e., the least 
significant bit is always selected from the inverse 
butterfly datapath.) f(s, lg(n)+1) can easily be 
produced by extending the rotation control bit 
generator by one extra stage. For left shift, which can 

 
Figure 8. Control bit generator circuit for rotations on inverse butterfly (first 5 stages) 



be viewed as the left-to-right reversal of right shift, the 
control bits for the extra stage are obtained by 
reversing left-to-right the right shift control string to 
yield 0n-s||1s. 

For extract operations, which are like right shift 
operations with the left end replaced by the sign bit of 
the extracted field or zeros, our enhanced inverse 
butterfly network selects in its extra multiplexer stage 
the rotated bits or zeros or the sign bit of the extracted 
field i.e., the bit in position pos+len in the source 
register. The bit can be selected using an n:1 
multiplexer. The control bit pattern for this stage is n-
len “1”s followed by len “0”s  (1n-len||0len) to propagate 
the sign bit of the extracted field in the output (which 
is in position len) to the high order bits. Note that 
{f(len, lg(n)+1) || 0} is 1len||0n-len. So reversing left-to-
right {f(len, lg(n)+1) || 0} yields 0n-len||1len and then 
negating it produces 1n-len||0len, the correct bit pattern 
for stage lg(n)+1.  

For deposit operations, which are like left shift 
operations with the right and left ends replaced by 
zeros or bits from the second operand, our enhanced 
inverse butterfly network selects in its extra 
multiplexer stage the rotated bits or zeros or bits from 
the second input operand. The correct pattern is a 
string of n-pos-len “1”s followed by len “0”s followed 
by s=pos “1”s (1n-pos-len||0len||1pos) to merge in bits on 
the right and left around the deposited field. 
{f(pos+len,lg(n)+1) || 0} is 1pos+len||0n-pos-len. Reversing 
left-to-right this string yields 0n-pos-len||1pos+len and then 
negating it produces 1n-pos-len||0pos+len. Bitwise ORing 
this with the left shift control string, 0n-pos||1pos, yields 
1n-pos-len||0len||1pos, the correct pattern for the masked-
merge part of the deposit operation is produced.  

For mix operations, the enhanced inverse butterfly 
network selects in its extra multiplexer stage the 
rotated bits or the bits from the second input operand. 
The control bit pattern is simply a pattern of 
alternating strings of “0”s and “1”s, the precise pattern 
depending on the subword size and whether mix left or 
mix right is executed. These patterns can be hard 
coded in the circuit for the 12 mix operations (6 
operand sizes × 2 directions). 

 
4. New Shift-Permute Functional Unit 
Implementation 
 

A circuit block diagram of the combined shift-
permute functional unit is shown in Figure 9. The 
functional unit consists of the two datapaths, the 
butterfly and inverse butterfly circuits each enhanced 
with an extra 2:1 multiplexer stage (as well as pre-
masking for the pex operation [1]); the control bit 
generator for configuring the two datapaths; and the 
masked merge block which generates the merge bits 

and mask control for the extra multiplexer stage. Note 
that the control bits fed to the butterfly circuit are 
reversed left-to-right and the order of the stages is 
reversed, following Corollary 2. Also note that the 
butterfly circuit is considered optional and hence is 
shown in dotted lines as the functionality can be 
emulated using the inverse butterfly network at the 
cost of some performance. Also the latency of the 
control bit generation is serialized with respect to the 
latency of the butterfly circuit, since the control bits 
that take longest to generate are needed to control the 
first stage of the butterfly circuit, which is the last 
stage of the inverse butterfly. Thus the inverse 
butterfly datapath is faster, since its control bit 
generation latency is overlapped with its datapath 
latency. 

 

 
Figure 9. Combined shift-permute functional 
unit based on inverse butterfly circuit 

 
Figure 10 shows the control bit generator block in 

more detail. The source of the control bits can be from 
a pex/pdep decoder [1], the rotation control bit 
generator (Figure 8) or the application registers. The 
pex/pdep decoder supplies the bits for the dynamic pex 
and pdep operations. This block is consider optional, 
as the decoder is large and has long latency (2 cycles), 
and is only needed for variable pex/pdep instructions 
which we found were rarely used [1]. Hence, it is 
shown in dotted lines. The rotation control bit 
generator is that of Figure 8, extended to produce 
cblg(n). The shift amount is s for right rotates, right  
  

 
Figure 10. Control Bit Generator Circuit Block 



 

 
Figure 11. Masked Merge Block 
 
shifts, mix_left (the left subwords are shifted right) 
and extracts; it is n-s for left rotates, left shifts, 
mix_right and deposits. Also output is f(s, lg(n)) to the 
masked-merge block for use in computing the masked-
merge controls. The final source of the control bits is 
from the application registers for use in the bfly and 
ibfly permutation instructions or static pex and pdep. 

Figure 11 shows an overview of the masked 
merge block and lists the bit patterns generated for the 
merge bits and the mask control bits. The merge bits 
can be: 

• the zero string for unsigned right shift, left 
shift, unsigned extract, deposit-and-zero, and 
parallel deposit;  

• the sign bit for arithmetic right shift; 
• the sign bit of the extracted field (bit pos+len 

of the source operand) for signed extract or  
• the second source operand r3 for deposit-and-

merge and mix.  
The mask control bits are “0” when selecting the 
rotated bits output from the butterfly or inverse 
butterfly circuit and “1” when selecting the merge bits. 
The patterns are: 

• the zero string for right and left rotate, bfly 
and ibfly permutation instructions and 
parallel extract (which do not merge bits);  

• the second source operand r3 for parallel 
deposit and  

• various strings of “1”s and “0”s for shifts, 
extract, deposit and mix, as described in 
Section 3.2. 

 
4.1. Comparison to Barrel and Log Shifters 

 
One popular shifter architecture is the barrel 

shifter. The barrel shifter essentially is an n-bit wide 
n:1 multiplexer that selects the input shifted by s 
positions, where s = 0,1,2,…, n-1 (Figure 12). The 
advantage of this design is that there is only a single 
gate delay between the input and output. The 
disadvantages are that n2 switch elements (pass 
transistors or transmission gates) are required, and 
long delays due to capacitance as each input fans out 
to n elements, each output fans in from n elements and 
the shift amount needs to be decoded. 

A second popular shifter architecture is the log 
shifter. The log shifter shifts the input by decreasing 
powers of two or four and selects at each stage the 
shifted version or the version as is from the previous 
stage (Figure 13). The advantages are that only 
n×lg(n) or n×log4(n) elements are required and that the 
shift amount directly controls the multiplexer 
elements. The disadvantage is that there are lg(n) or 
log4(n) gates between the input and output.  

Left and right shifts are performed by 
implementing a single, say right, shifter; the left shift 
is performed by subtracting the left shift amount from 
the bit width, n, (with the appropriate logic to ensure 
proper zero propagation). Arithmetic right shift is 
accomplished by conditionally propagating the sign bit 
rather than a zero bit. Additionally, the shifters easily 
support rotations by wrapping around the bits.  

As the 64-bit barrel shifter is impractical due to 
the capacitance on the output lines, we implemented a 
64-bit shifter as an 8-byte barrel shifter followed by an 
8-bit barrel shifter, which limits the number of 
transmission gates tied together to 8. We also 
implemented a 64-bit log shifter using 3 stages of 4:1 
multiplexers.  

 

 
Figure 12. 8-bit Barrel Shifter with detail of 
pass transistor switch element 
 

 
Figure 13. 8-bit log shifter 



We used the method of logical effort [10] to 
compare the delay along the critical paths for the 
barrel shifter, the log shifter and the inverse butterfly 
shifter. We consider the delay only from the input to 
the decoder through the two shifter levels for the 
barrel shifter and through the three shifter levels for 
the log shifter. For our proposed Shift-Permute 
functional unit, we consider the delay from the input to 
the rotation control bit generator (Figure 8) through 
the output of the inverse butterfly circuit. We assume 
that any preprocessing of the shift amount and post-
processing for masked merge is approximately equal 
for the two designs. 

The critical path for the barrel shifter extends 
through the 3:8 decoder to the select lines of the first 
shifter, to the input to the second shifter, to the output. 
For the log shifter, the critical path is through the first 
stage select lines, to the second stage input, to the third 
stage input, to the output. The critical path for our 
inverse butterfly shifter extends through cb2 
generation, to the stage 2 select lines, to the remainder 
of the inverse butterfly network. According to the 
logical effort calculations, the delay for the barrel 
shifter is 15.1 FO4 and the delay for the log shifter is 
13.0 FO4, while the delay for inverse butterfly shifter 
is 15.5 FO4. Thus the delay along the critical path for 
the barrel shifter and our new proposed shifter is 
comparable, and our new shifter is 19% slower than a 
log shifter. Using our new shifter may adversely affect 
cycle time for processors that use the log shifter 
implementation depending on the slack in the shifter 
critical path. 
 
5. Conclusions 

 
We have described a new basis for Shifter and 

Mix functional units based on the inverse butterfly 
datapath (with optional butterfly datapath). Our new 
Shift-Permute functional unit is a much more powerful 
functional unit: it performs the existing Shifter 
operations and multimedia subword-permutation 
operations (shift, rotate, extract, deposit and mix 
operations) as well as the newly proposed advanced bit 
manipulation instructions (bfly, ibfly, parallel extract 
and parallel deposit) [1]. 

We have shown how to determine the control bits 
to configure the inverse butterfly (and butterfly) 
circuits to perform rotations; this is given by a simple 
recursive function of the shift amount. Furthermore we 
have shown how to compute the merge bits and mask 
control for turning rotations into shifts, extract, deposit 
and mix operations, and how the mask control uses the 
same recursive function. 

Additionally, we have compared the complexity 
of our new functional unit to that of the classic barrel 

shifter and log shifter using logical effort. Our 
proposed Shift-Permute unit has comparable latency to 
that of the barrel shifter and is 19% slower than the log 
shifter while supporting a much more powerful set of 
advanced permutation operations (as given in Table 2) 
as well as existing shifter and mix operations (as given 
in Table 1.) There is essentially no area overhead since 
the existing Shifter unit is replaced. Since the mix 
operation is currently supported as a separate 
multimedia functional unit in [3], we may have 
reduced area requirements by replacing two existing 
functional units (Shifter, Multimedia-mix) with one 
new unit.  

In summary, our proposed new Shift-Permute 
functional unit enables processors to support advanced 
bit permutations efficient, without any area overhead 
and with only minor or no cycle-time latency impact. 
We recommend its use in future microprocessors, and 
hope to have stimulated further research into optimal 
implementations of shifters and important new bit 
manipulation operations. 
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